Subversion Repositories HelenOS

Rev

Rev 4377 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4377 Rev 4692
1
/*
1
/*
2
 * Copyright (c) 2006 Ondrej Palkovsky
2
 * Copyright (c) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Slab allocator.
35
 * @brief   Slab allocator.
36
 *
36
 *
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39
 *
39
 *
40
 * with the following exceptions:
40
 * with the following exceptions:
41
 * @li empty slabs are deallocated immediately
41
 * @li empty slabs are deallocated immediately
42
 *     (in Linux they are kept in linked list, in Solaris ???)
42
 *     (in Linux they are kept in linked list, in Solaris ???)
43
 * @li empty magazines are deallocated when not needed
43
 * @li empty magazines are deallocated when not needed
44
 *     (in Solaris they are held in linked list in slab cache)
44
 *     (in Solaris they are held in linked list in slab cache)
45
 *
45
 *
46
 * Following features are not currently supported but would be easy to do:
46
 * Following features are not currently supported but would be easy to do:
47
 * @li cache coloring
47
 * @li cache coloring
48
 * @li dynamic magazine growing (different magazine sizes are already
48
 * @li dynamic magazine growing (different magazine sizes are already
49
 *     supported, but we would need to adjust allocation strategy)
49
 *     supported, but we would need to adjust allocation strategy)
50
 *
50
 *
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52
 * good SMP scaling.
52
 * good SMP scaling.
53
 *
53
 *
54
 * When a new object is being allocated, it is first checked, if it is
54
 * When a new object is being allocated, it is first checked, if it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
56
 * allocated from a CPU-shared slab - if a partially full one is found,
56
 * allocated from a CPU-shared slab - if a partially full one is found,
57
 * it is used, otherwise a new one is allocated.
57
 * it is used, otherwise a new one is allocated.
58
 *
58
 *
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
60
 * If there is no such magazine, a new one is allocated (if this fails,
60
 * If there is no such magazine, a new one is allocated (if this fails,
61
 * the object is deallocated into slab). If the magazine is full, it is
61
 * the object is deallocated into slab). If the magazine is full, it is
62
 * put into cpu-shared list of magazines and a new one is allocated.
62
 * put into cpu-shared list of magazines and a new one is allocated.
63
 *
63
 *
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
67
 * as much as possible.
67
 * as much as possible.
68
 *  
68
 *  
69
 * Every cache contains list of full slabs and list of partially full slabs.
69
 * Every cache contains list of full slabs and list of partially full slabs.
70
 * Empty slabs are immediately freed (thrashing will be avoided because
70
 * Empty slabs are immediately freed (thrashing will be avoided because
71
 * of magazines).
71
 * of magazines).
72
 *
72
 *
73
 * The slab information structure is kept inside the data area, if possible.
73
 * The slab information structure is kept inside the data area, if possible.
74
 * The cache can be marked that it should not use magazines. This is used
74
 * The cache can be marked that it should not use magazines. This is used
75
 * only for slab related caches to avoid deadlocks and infinite recursion
75
 * only for slab related caches to avoid deadlocks and infinite recursion
76
 * (the slab allocator uses itself for allocating all it's control structures).
76
 * (the slab allocator uses itself for allocating all it's control structures).
77
 *
77
 *
78
 * The slab allocator allocates a lot of space and does not free it. When
78
 * The slab allocator allocates a lot of space and does not free it. When
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82
 * is deallocated in each cache (this algorithm should probably change).
82
 * is deallocated in each cache (this algorithm should probably change).
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
84
 * magazines.
84
 * magazines.
85
 *
85
 *
86
 * @todo
86
 * @todo
87
 * For better CPU-scaling the magazine allocation strategy should
87
 * For better CPU-scaling the magazine allocation strategy should
88
 * be extended. Currently, if the cache does not have magazine, it asks
88
 * be extended. Currently, if the cache does not have magazine, it asks
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92
 * buffer. The other possibility is to use the per-cache
92
 * buffer. The other possibility is to use the per-cache
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
94
 * magazine cache.
94
 * magazine cache.
95
 *
95
 *
96
 * @todo
96
 * @todo
97
 * it might be good to add granularity of locks even to slab level,
97
 * it might be good to add granularity of locks even to slab level,
98
 * we could then try_spinlock over all partial slabs and thus improve
98
 * we could then try_spinlock over all partial slabs and thus improve
99
 * scalability even on slab level
99
 * scalability even on slab level
100
 */
100
 */
101
 
101
 
102
#include <synch/spinlock.h>
102
#include <synch/spinlock.h>
103
#include <mm/slab.h>
103
#include <mm/slab.h>
104
#include <adt/list.h>
104
#include <adt/list.h>
105
#include <memstr.h>
105
#include <memstr.h>
106
#include <align.h>
106
#include <align.h>
107
#include <mm/frame.h>
107
#include <mm/frame.h>
108
#include <config.h>
108
#include <config.h>
109
#include <print.h>
109
#include <print.h>
110
#include <arch.h>
110
#include <arch.h>
111
#include <panic.h>
111
#include <panic.h>
112
#include <debug.h>
112
#include <debug.h>
113
#include <bitops.h>
113
#include <bitops.h>
114
#include <macros.h>
114
#include <macros.h>
115
 
115
 
116
SPINLOCK_INITIALIZE(slab_cache_lock);
116
SPINLOCK_INITIALIZE(slab_cache_lock);
117
static LIST_INITIALIZE(slab_cache_list);
117
static LIST_INITIALIZE(slab_cache_list);
118
 
118
 
119
/** Magazine cache */
119
/** Magazine cache */
120
static slab_cache_t mag_cache;
120
static slab_cache_t mag_cache;
121
/** Cache for cache descriptors */
121
/** Cache for cache descriptors */
122
static slab_cache_t slab_cache_cache;
122
static slab_cache_t slab_cache_cache;
123
/** Cache for external slab descriptors
123
/** Cache for external slab descriptors
124
 * This time we want per-cpu cache, so do not make it static
124
 * This time we want per-cpu cache, so do not make it static
125
 * - using slab for internal slab structures will not deadlock,
125
 * - using slab for internal slab structures will not deadlock,
126
 *   as all slab structures are 'small' - control structures of
126
 *   as all slab structures are 'small' - control structures of
127
 *   their caches do not require further allocation
127
 *   their caches do not require further allocation
128
 */
128
 */
129
static slab_cache_t *slab_extern_cache;
129
static slab_cache_t *slab_extern_cache;
130
/** Caches for malloc */
130
/** Caches for malloc */
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132
static char *malloc_names[] =  {
132
static char *malloc_names[] =  {
133
    "malloc-16",
133
    "malloc-16",
134
    "malloc-32",
134
    "malloc-32",
135
    "malloc-64",
135
    "malloc-64",
136
    "malloc-128",
136
    "malloc-128",
137
    "malloc-256",
137
    "malloc-256",
138
    "malloc-512",
138
    "malloc-512",
139
    "malloc-1K",
139
    "malloc-1K",
140
    "malloc-2K",
140
    "malloc-2K",
141
    "malloc-4K",
141
    "malloc-4K",
142
    "malloc-8K",
142
    "malloc-8K",
143
    "malloc-16K",
143
    "malloc-16K",
144
    "malloc-32K",
144
    "malloc-32K",
145
    "malloc-64K",
145
    "malloc-64K",
146
    "malloc-128K",
146
    "malloc-128K",
147
    "malloc-256K",
147
    "malloc-256K",
148
    "malloc-512K",
148
    "malloc-512K",
149
    "malloc-1M",
149
    "malloc-1M",
150
    "malloc-2M",
150
    "malloc-2M",
151
    "malloc-4M"
151
    "malloc-4M"
152
};
152
};
153
 
153
 
154
/** Slab descriptor */
154
/** Slab descriptor */
155
typedef struct {
155
typedef struct {
156
    slab_cache_t *cache;    /**< Pointer to parent cache. */
156
    slab_cache_t *cache;    /**< Pointer to parent cache. */
157
    link_t link;        /**< List of full/partial slabs. */
157
    link_t link;        /**< List of full/partial slabs. */
158
    void *start;        /**< Start address of first available item. */
158
    void *start;        /**< Start address of first available item. */
159
    count_t available;  /**< Count of available items in this slab. */
159
    size_t available;   /**< Count of available items in this slab. */
160
    index_t nextavail;  /**< The index of next available item. */
160
    size_t nextavail;   /**< The index of next available item. */
161
} slab_t;
161
} slab_t;
162
 
162
 
163
#ifdef CONFIG_DEBUG
163
#ifdef CONFIG_DEBUG
164
static int _slab_initialized = 0;
164
static int _slab_initialized = 0;
165
#endif
165
#endif
166
 
166
 
167
/**************************************/
167
/**************************************/
168
/* Slab allocation functions          */
168
/* Slab allocation functions          */
169
 
169
 
170
/**
170
/**
171
 * Allocate frames for slab space and initialize
171
 * Allocate frames for slab space and initialize
172
 *
172
 *
173
 */
173
 */
174
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
174
static slab_t *slab_space_alloc(slab_cache_t *cache, int flags)
175
{
175
{
176
    void *data;
176
    void *data;
177
    slab_t *slab;
177
    slab_t *slab;
178
    size_t fsize;
178
    size_t fsize;
179
    unsigned int i;
179
    unsigned int i;
180
    count_t zone = 0;
180
    size_t zone = 0;
181
   
181
   
182
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
182
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
183
    if (!data) {
183
    if (!data) {
184
        return NULL;
184
        return NULL;
185
    }
185
    }
186
    if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
186
    if (!(cache->flags & SLAB_CACHE_SLINSIDE)) {
187
        slab = slab_alloc(slab_extern_cache, flags);
187
        slab = slab_alloc(slab_extern_cache, flags);
188
        if (!slab) {
188
        if (!slab) {
189
            frame_free(KA2PA(data));
189
            frame_free(KA2PA(data));
190
            return NULL;
190
            return NULL;
191
        }
191
        }
192
    } else {
192
    } else {
193
        fsize = (PAGE_SIZE << cache->order);
193
        fsize = (PAGE_SIZE << cache->order);
194
        slab = data + fsize - sizeof(*slab);
194
        slab = data + fsize - sizeof(*slab);
195
    }
195
    }
196
   
196
   
197
    /* Fill in slab structures */
197
    /* Fill in slab structures */
198
    for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
198
    for (i = 0; i < ((unsigned int) 1 << cache->order); i++)
199
        frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
199
        frame_set_parent(ADDR2PFN(KA2PA(data)) + i, slab, zone);
200
 
200
 
201
    slab->start = data;
201
    slab->start = data;
202
    slab->available = cache->objects;
202
    slab->available = cache->objects;
203
    slab->nextavail = 0;
203
    slab->nextavail = 0;
204
    slab->cache = cache;
204
    slab->cache = cache;
205
 
205
 
206
    for (i = 0; i < cache->objects; i++)
206
    for (i = 0; i < cache->objects; i++)
207
        *((int *) (slab->start + i*cache->size)) = i + 1;
207
        *((int *) (slab->start + i*cache->size)) = i + 1;
208
 
208
 
209
    atomic_inc(&cache->allocated_slabs);
209
    atomic_inc(&cache->allocated_slabs);
210
    return slab;
210
    return slab;
211
}
211
}
212
 
212
 
213
/**
213
/**
214
 * Deallocate space associated with slab
214
 * Deallocate space associated with slab
215
 *
215
 *
216
 * @return number of freed frames
216
 * @return number of freed frames
217
 */
217
 */
218
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
218
static size_t slab_space_free(slab_cache_t *cache, slab_t *slab)
219
{
219
{
220
    frame_free(KA2PA(slab->start));
220
    frame_free(KA2PA(slab->start));
221
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
221
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
222
        slab_free(slab_extern_cache, slab);
222
        slab_free(slab_extern_cache, slab);
223
 
223
 
224
    atomic_dec(&cache->allocated_slabs);
224
    atomic_dec(&cache->allocated_slabs);
225
   
225
   
226
    return 1 << cache->order;
226
    return 1 << cache->order;
227
}
227
}
228
 
228
 
229
/** Map object to slab structure */
229
/** Map object to slab structure */
230
static slab_t * obj2slab(void *obj)
230
static slab_t * obj2slab(void *obj)
231
{
231
{
232
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
232
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
233
}
233
}
234
 
234
 
235
/**************************************/
235
/**************************************/
236
/* Slab functions */
236
/* Slab functions */
237
 
237
 
238
 
238
 
239
/**
239
/**
240
 * Return object to slab and call a destructor
240
 * Return object to slab and call a destructor
241
 *
241
 *
242
 * @param slab If the caller knows directly slab of the object, otherwise NULL
242
 * @param slab If the caller knows directly slab of the object, otherwise NULL
243
 *
243
 *
244
 * @return Number of freed pages
244
 * @return Number of freed pages
245
 */
245
 */
246
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
246
static size_t slab_obj_destroy(slab_cache_t *cache, void *obj, slab_t *slab)
247
{
247
{
248
    int freed = 0;
248
    int freed = 0;
249
 
249
 
250
    if (!slab)
250
    if (!slab)
251
        slab = obj2slab(obj);
251
        slab = obj2slab(obj);
252
 
252
 
253
    ASSERT(slab->cache == cache);
253
    ASSERT(slab->cache == cache);
254
 
254
 
255
    if (cache->destructor)
255
    if (cache->destructor)
256
        freed = cache->destructor(obj);
256
        freed = cache->destructor(obj);
257
   
257
   
258
    spinlock_lock(&cache->slablock);
258
    spinlock_lock(&cache->slablock);
259
    ASSERT(slab->available < cache->objects);
259
    ASSERT(slab->available < cache->objects);
260
 
260
 
261
    *((int *)obj) = slab->nextavail;
261
    *((int *)obj) = slab->nextavail;
262
    slab->nextavail = (obj - slab->start) / cache->size;
262
    slab->nextavail = (obj - slab->start) / cache->size;
263
    slab->available++;
263
    slab->available++;
264
 
264
 
265
    /* Move it to correct list */
265
    /* Move it to correct list */
266
    if (slab->available == cache->objects) {
266
    if (slab->available == cache->objects) {
267
        /* Free associated memory */
267
        /* Free associated memory */
268
        list_remove(&slab->link);
268
        list_remove(&slab->link);
269
        spinlock_unlock(&cache->slablock);
269
        spinlock_unlock(&cache->slablock);
270
 
270
 
271
        return freed + slab_space_free(cache, slab);
271
        return freed + slab_space_free(cache, slab);
272
 
272
 
273
    } else if (slab->available == 1) {
273
    } else if (slab->available == 1) {
274
        /* It was in full, move to partial */
274
        /* It was in full, move to partial */
275
        list_remove(&slab->link);
275
        list_remove(&slab->link);
276
        list_prepend(&slab->link, &cache->partial_slabs);
276
        list_prepend(&slab->link, &cache->partial_slabs);
277
    }
277
    }
278
    spinlock_unlock(&cache->slablock);
278
    spinlock_unlock(&cache->slablock);
279
    return freed;
279
    return freed;
280
}
280
}
281
 
281
 
282
/**
282
/**
283
 * Take new object from slab or create new if needed
283
 * Take new object from slab or create new if needed
284
 *
284
 *
285
 * @return Object address or null
285
 * @return Object address or null
286
 */
286
 */
287
static void *slab_obj_create(slab_cache_t *cache, int flags)
287
static void *slab_obj_create(slab_cache_t *cache, int flags)
288
{
288
{
289
    slab_t *slab;
289
    slab_t *slab;
290
    void *obj;
290
    void *obj;
291
 
291
 
292
    spinlock_lock(&cache->slablock);
292
    spinlock_lock(&cache->slablock);
293
 
293
 
294
    if (list_empty(&cache->partial_slabs)) {
294
    if (list_empty(&cache->partial_slabs)) {
295
        /* Allow recursion and reclaiming
295
        /* Allow recursion and reclaiming
296
         * - this should work, as the slab control structures
296
         * - this should work, as the slab control structures
297
         *   are small and do not need to allocate with anything
297
         *   are small and do not need to allocate with anything
298
         *   other than frame_alloc when they are allocating,
298
         *   other than frame_alloc when they are allocating,
299
         *   that's why we should get recursion at most 1-level deep
299
         *   that's why we should get recursion at most 1-level deep
300
         */
300
         */
301
        spinlock_unlock(&cache->slablock);
301
        spinlock_unlock(&cache->slablock);
302
        slab = slab_space_alloc(cache, flags);
302
        slab = slab_space_alloc(cache, flags);
303
        if (!slab)
303
        if (!slab)
304
            return NULL;
304
            return NULL;
305
        spinlock_lock(&cache->slablock);
305
        spinlock_lock(&cache->slablock);
306
    } else {
306
    } else {
307
        slab = list_get_instance(cache->partial_slabs.next, slab_t,
307
        slab = list_get_instance(cache->partial_slabs.next, slab_t,
308
            link);
308
            link);
309
        list_remove(&slab->link);
309
        list_remove(&slab->link);
310
    }
310
    }
311
    obj = slab->start + slab->nextavail * cache->size;
311
    obj = slab->start + slab->nextavail * cache->size;
312
    slab->nextavail = *((int *)obj);
312
    slab->nextavail = *((int *)obj);
313
    slab->available--;
313
    slab->available--;
314
 
314
 
315
    if (!slab->available)
315
    if (!slab->available)
316
        list_prepend(&slab->link, &cache->full_slabs);
316
        list_prepend(&slab->link, &cache->full_slabs);
317
    else
317
    else
318
        list_prepend(&slab->link, &cache->partial_slabs);
318
        list_prepend(&slab->link, &cache->partial_slabs);
319
 
319
 
320
    spinlock_unlock(&cache->slablock);
320
    spinlock_unlock(&cache->slablock);
321
 
321
 
322
    if (cache->constructor && cache->constructor(obj, flags)) {
322
    if (cache->constructor && cache->constructor(obj, flags)) {
323
        /* Bad, bad, construction failed */
323
        /* Bad, bad, construction failed */
324
        slab_obj_destroy(cache, obj, slab);
324
        slab_obj_destroy(cache, obj, slab);
325
        return NULL;
325
        return NULL;
326
    }
326
    }
327
    return obj;
327
    return obj;
328
}
328
}
329
 
329
 
330
/**************************************/
330
/**************************************/
331
/* CPU-Cache slab functions */
331
/* CPU-Cache slab functions */
332
 
332
 
333
/**
333
/**
334
 * Finds a full magazine in cache, takes it from list
334
 * Finds a full magazine in cache, takes it from list
335
 * and returns it
335
 * and returns it
336
 *
336
 *
337
 * @param first If true, return first, else last mag
337
 * @param first If true, return first, else last mag
338
 */
338
 */
339
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
339
static slab_magazine_t *get_mag_from_cache(slab_cache_t *cache, int first)
340
{
340
{
341
    slab_magazine_t *mag = NULL;
341
    slab_magazine_t *mag = NULL;
342
    link_t *cur;
342
    link_t *cur;
343
 
343
 
344
    spinlock_lock(&cache->maglock);
344
    spinlock_lock(&cache->maglock);
345
    if (!list_empty(&cache->magazines)) {
345
    if (!list_empty(&cache->magazines)) {
346
        if (first)
346
        if (first)
347
            cur = cache->magazines.next;
347
            cur = cache->magazines.next;
348
        else
348
        else
349
            cur = cache->magazines.prev;
349
            cur = cache->magazines.prev;
350
        mag = list_get_instance(cur, slab_magazine_t, link);
350
        mag = list_get_instance(cur, slab_magazine_t, link);
351
        list_remove(&mag->link);
351
        list_remove(&mag->link);
352
        atomic_dec(&cache->magazine_counter);
352
        atomic_dec(&cache->magazine_counter);
353
    }
353
    }
354
    spinlock_unlock(&cache->maglock);
354
    spinlock_unlock(&cache->maglock);
355
    return mag;
355
    return mag;
356
}
356
}
357
 
357
 
358
/** Prepend magazine to magazine list in cache */
358
/** Prepend magazine to magazine list in cache */
359
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
359
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
360
{
360
{
361
    spinlock_lock(&cache->maglock);
361
    spinlock_lock(&cache->maglock);
362
 
362
 
363
    list_prepend(&mag->link, &cache->magazines);
363
    list_prepend(&mag->link, &cache->magazines);
364
    atomic_inc(&cache->magazine_counter);
364
    atomic_inc(&cache->magazine_counter);
365
   
365
   
366
    spinlock_unlock(&cache->maglock);
366
    spinlock_unlock(&cache->maglock);
367
}
367
}
368
 
368
 
369
/**
369
/**
370
 * Free all objects in magazine and free memory associated with magazine
370
 * Free all objects in magazine and free memory associated with magazine
371
 *
371
 *
372
 * @return Number of freed pages
372
 * @return Number of freed pages
373
 */
373
 */
374
static count_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
374
static size_t magazine_destroy(slab_cache_t *cache, slab_magazine_t *mag)
375
{
375
{
376
    unsigned int i;
376
    unsigned int i;
377
    count_t frames = 0;
377
    size_t frames = 0;
378
 
378
 
379
    for (i = 0; i < mag->busy; i++) {
379
    for (i = 0; i < mag->busy; i++) {
380
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
380
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
381
        atomic_dec(&cache->cached_objs);
381
        atomic_dec(&cache->cached_objs);
382
    }
382
    }
383
   
383
   
384
    slab_free(&mag_cache, mag);
384
    slab_free(&mag_cache, mag);
385
 
385
 
386
    return frames;
386
    return frames;
387
}
387
}
388
 
388
 
389
/**
389
/**
390
 * Find full magazine, set it as current and return it
390
 * Find full magazine, set it as current and return it
391
 *
391
 *
392
 * Assume cpu_magazine lock is held
392
 * Assume cpu_magazine lock is held
393
 */
393
 */
394
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
394
static slab_magazine_t *get_full_current_mag(slab_cache_t *cache)
395
{
395
{
396
    slab_magazine_t *cmag, *lastmag, *newmag;
396
    slab_magazine_t *cmag, *lastmag, *newmag;
397
 
397
 
398
    cmag = cache->mag_cache[CPU->id].current;
398
    cmag = cache->mag_cache[CPU->id].current;
399
    lastmag = cache->mag_cache[CPU->id].last;
399
    lastmag = cache->mag_cache[CPU->id].last;
400
    if (cmag) { /* First try local CPU magazines */
400
    if (cmag) { /* First try local CPU magazines */
401
        if (cmag->busy)
401
        if (cmag->busy)
402
            return cmag;
402
            return cmag;
403
 
403
 
404
        if (lastmag && lastmag->busy) {
404
        if (lastmag && lastmag->busy) {
405
            cache->mag_cache[CPU->id].current = lastmag;
405
            cache->mag_cache[CPU->id].current = lastmag;
406
            cache->mag_cache[CPU->id].last = cmag;
406
            cache->mag_cache[CPU->id].last = cmag;
407
            return lastmag;
407
            return lastmag;
408
        }
408
        }
409
    }
409
    }
410
    /* Local magazines are empty, import one from magazine list */
410
    /* Local magazines are empty, import one from magazine list */
411
    newmag = get_mag_from_cache(cache, 1);
411
    newmag = get_mag_from_cache(cache, 1);
412
    if (!newmag)
412
    if (!newmag)
413
        return NULL;
413
        return NULL;
414
 
414
 
415
    if (lastmag)
415
    if (lastmag)
416
        magazine_destroy(cache, lastmag);
416
        magazine_destroy(cache, lastmag);
417
 
417
 
418
    cache->mag_cache[CPU->id].last = cmag;
418
    cache->mag_cache[CPU->id].last = cmag;
419
    cache->mag_cache[CPU->id].current = newmag;
419
    cache->mag_cache[CPU->id].current = newmag;
420
    return newmag;
420
    return newmag;
421
}
421
}
422
 
422
 
423
/**
423
/**
424
 * Try to find object in CPU-cache magazines
424
 * Try to find object in CPU-cache magazines
425
 *
425
 *
426
 * @return Pointer to object or NULL if not available
426
 * @return Pointer to object or NULL if not available
427
 */
427
 */
428
static void *magazine_obj_get(slab_cache_t *cache)
428
static void *magazine_obj_get(slab_cache_t *cache)
429
{
429
{
430
    slab_magazine_t *mag;
430
    slab_magazine_t *mag;
431
    void *obj;
431
    void *obj;
432
 
432
 
433
    if (!CPU)
433
    if (!CPU)
434
        return NULL;
434
        return NULL;
435
 
435
 
436
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
436
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
437
 
437
 
438
    mag = get_full_current_mag(cache);
438
    mag = get_full_current_mag(cache);
439
    if (!mag) {
439
    if (!mag) {
440
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
440
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
441
        return NULL;
441
        return NULL;
442
    }
442
    }
443
    obj = mag->objs[--mag->busy];
443
    obj = mag->objs[--mag->busy];
444
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
444
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
445
    atomic_dec(&cache->cached_objs);
445
    atomic_dec(&cache->cached_objs);
446
   
446
   
447
    return obj;
447
    return obj;
448
}
448
}
449
 
449
 
450
/**
450
/**
451
 * Assure that the current magazine is empty, return pointer to it, or NULL if
451
 * Assure that the current magazine is empty, return pointer to it, or NULL if
452
 * no empty magazine is available and cannot be allocated
452
 * no empty magazine is available and cannot be allocated
453
 *
453
 *
454
 * Assume mag_cache[CPU->id].lock is held
454
 * Assume mag_cache[CPU->id].lock is held
455
 *
455
 *
456
 * We have 2 magazines bound to processor.
456
 * We have 2 magazines bound to processor.
457
 * First try the current.
457
 * First try the current.
458
 *  If full, try the last.
458
 *  If full, try the last.
459
 *   If full, put to magazines list.
459
 *   If full, put to magazines list.
460
 *   allocate new, exchange last & current
460
 *   allocate new, exchange last & current
461
 *
461
 *
462
 */
462
 */
463
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
463
static slab_magazine_t *make_empty_current_mag(slab_cache_t *cache)
464
{
464
{
465
    slab_magazine_t *cmag,*lastmag,*newmag;
465
    slab_magazine_t *cmag,*lastmag,*newmag;
466
 
466
 
467
    cmag = cache->mag_cache[CPU->id].current;
467
    cmag = cache->mag_cache[CPU->id].current;
468
    lastmag = cache->mag_cache[CPU->id].last;
468
    lastmag = cache->mag_cache[CPU->id].last;
469
 
469
 
470
    if (cmag) {
470
    if (cmag) {
471
        if (cmag->busy < cmag->size)
471
        if (cmag->busy < cmag->size)
472
            return cmag;
472
            return cmag;
473
        if (lastmag && lastmag->busy < lastmag->size) {
473
        if (lastmag && lastmag->busy < lastmag->size) {
474
            cache->mag_cache[CPU->id].last = cmag;
474
            cache->mag_cache[CPU->id].last = cmag;
475
            cache->mag_cache[CPU->id].current = lastmag;
475
            cache->mag_cache[CPU->id].current = lastmag;
476
            return lastmag;
476
            return lastmag;
477
        }
477
        }
478
    }
478
    }
479
    /* current | last are full | nonexistent, allocate new */
479
    /* current | last are full | nonexistent, allocate new */
480
    /* We do not want to sleep just because of caching */
480
    /* We do not want to sleep just because of caching */
481
    /* Especially we do not want reclaiming to start, as
481
    /* Especially we do not want reclaiming to start, as
482
     * this would deadlock */
482
     * this would deadlock */
483
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
483
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
484
    if (!newmag)
484
    if (!newmag)
485
        return NULL;
485
        return NULL;
486
    newmag->size = SLAB_MAG_SIZE;
486
    newmag->size = SLAB_MAG_SIZE;
487
    newmag->busy = 0;
487
    newmag->busy = 0;
488
 
488
 
489
    /* Flush last to magazine list */
489
    /* Flush last to magazine list */
490
    if (lastmag)
490
    if (lastmag)
491
        put_mag_to_cache(cache, lastmag);
491
        put_mag_to_cache(cache, lastmag);
492
 
492
 
493
    /* Move current as last, save new as current */
493
    /* Move current as last, save new as current */
494
    cache->mag_cache[CPU->id].last = cmag; 
494
    cache->mag_cache[CPU->id].last = cmag; 
495
    cache->mag_cache[CPU->id].current = newmag;
495
    cache->mag_cache[CPU->id].current = newmag;
496
 
496
 
497
    return newmag;
497
    return newmag;
498
}
498
}
499
 
499
 
500
/**
500
/**
501
 * Put object into CPU-cache magazine
501
 * Put object into CPU-cache magazine
502
 *
502
 *
503
 * @return 0 - success, -1 - could not get memory
503
 * @return 0 - success, -1 - could not get memory
504
 */
504
 */
505
static int magazine_obj_put(slab_cache_t *cache, void *obj)
505
static int magazine_obj_put(slab_cache_t *cache, void *obj)
506
{
506
{
507
    slab_magazine_t *mag;
507
    slab_magazine_t *mag;
508
 
508
 
509
    if (!CPU)
509
    if (!CPU)
510
        return -1;
510
        return -1;
511
 
511
 
512
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
512
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
513
 
513
 
514
    mag = make_empty_current_mag(cache);
514
    mag = make_empty_current_mag(cache);
515
    if (!mag) {
515
    if (!mag) {
516
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
516
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
517
        return -1;
517
        return -1;
518
    }
518
    }
519
   
519
   
520
    mag->objs[mag->busy++] = obj;
520
    mag->objs[mag->busy++] = obj;
521
 
521
 
522
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
522
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
523
    atomic_inc(&cache->cached_objs);
523
    atomic_inc(&cache->cached_objs);
524
    return 0;
524
    return 0;
525
}
525
}
526
 
526
 
527
 
527
 
528
/**************************************/
528
/**************************************/
529
/* Slab cache functions */
529
/* Slab cache functions */
530
 
530
 
531
/** Return number of objects that fit in certain cache size */
531
/** Return number of objects that fit in certain cache size */
532
static unsigned int comp_objects(slab_cache_t *cache)
532
static unsigned int comp_objects(slab_cache_t *cache)
533
{
533
{
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
535
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
535
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) /
536
            cache->size;
536
            cache->size;
537
    else
537
    else
538
        return (PAGE_SIZE << cache->order) / cache->size;
538
        return (PAGE_SIZE << cache->order) / cache->size;
539
}
539
}
540
 
540
 
541
/** Return wasted space in slab */
541
/** Return wasted space in slab */
542
static unsigned int badness(slab_cache_t *cache)
542
static unsigned int badness(slab_cache_t *cache)
543
{
543
{
544
    unsigned int objects;
544
    unsigned int objects;
545
    unsigned int ssize;
545
    unsigned int ssize;
546
 
546
 
547
    objects = comp_objects(cache);
547
    objects = comp_objects(cache);
548
    ssize = PAGE_SIZE << cache->order;
548
    ssize = PAGE_SIZE << cache->order;
549
    if (cache->flags & SLAB_CACHE_SLINSIDE)
549
    if (cache->flags & SLAB_CACHE_SLINSIDE)
550
        ssize -= sizeof(slab_t);
550
        ssize -= sizeof(slab_t);
551
    return ssize - objects * cache->size;
551
    return ssize - objects * cache->size;
552
}
552
}
553
 
553
 
554
/**
554
/**
555
 * Initialize mag_cache structure in slab cache
555
 * Initialize mag_cache structure in slab cache
556
 */
556
 */
557
static void make_magcache(slab_cache_t *cache)
557
static void make_magcache(slab_cache_t *cache)
558
{
558
{
559
    unsigned int i;
559
    unsigned int i;
560
   
560
   
561
    ASSERT(_slab_initialized >= 2);
561
    ASSERT(_slab_initialized >= 2);
562
 
562
 
563
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
563
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t) * config.cpu_count,
564
        0);
564
        0);
565
    for (i = 0; i < config.cpu_count; i++) {
565
    for (i = 0; i < config.cpu_count; i++) {
566
        memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
566
        memsetb(&cache->mag_cache[i], sizeof(cache->mag_cache[i]), 0);
567
        spinlock_initialize(&cache->mag_cache[i].lock,
567
        spinlock_initialize(&cache->mag_cache[i].lock,
568
            "slab_maglock_cpu");
568
            "slab_maglock_cpu");
569
    }
569
    }
570
}
570
}
571
 
571
 
572
/** Initialize allocated memory as a slab cache */
572
/** Initialize allocated memory as a slab cache */
573
static void
573
static void
574
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
574
_slab_cache_create(slab_cache_t *cache, char *name, size_t size, size_t align,
575
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
575
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
576
    int flags)
576
    int flags)
577
{
577
{
578
    int pages;
578
    int pages;
579
    ipl_t ipl;
579
    ipl_t ipl;
580
 
580
 
581
    memsetb(cache, sizeof(*cache), 0);
581
    memsetb(cache, sizeof(*cache), 0);
582
    cache->name = name;
582
    cache->name = name;
583
 
583
 
584
    if (align < sizeof(unative_t))
584
    if (align < sizeof(unative_t))
585
        align = sizeof(unative_t);
585
        align = sizeof(unative_t);
586
    size = ALIGN_UP(size, align);
586
    size = ALIGN_UP(size, align);
587
       
587
       
588
    cache->size = size;
588
    cache->size = size;
589
 
589
 
590
    cache->constructor = constructor;
590
    cache->constructor = constructor;
591
    cache->destructor = destructor;
591
    cache->destructor = destructor;
592
    cache->flags = flags;
592
    cache->flags = flags;
593
 
593
 
594
    list_initialize(&cache->full_slabs);
594
    list_initialize(&cache->full_slabs);
595
    list_initialize(&cache->partial_slabs);
595
    list_initialize(&cache->partial_slabs);
596
    list_initialize(&cache->magazines);
596
    list_initialize(&cache->magazines);
597
    spinlock_initialize(&cache->slablock, "slab_lock");
597
    spinlock_initialize(&cache->slablock, "slab_lock");
598
    spinlock_initialize(&cache->maglock, "slab_maglock");
598
    spinlock_initialize(&cache->maglock, "slab_maglock");
599
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
599
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
600
        make_magcache(cache);
600
        make_magcache(cache);
601
 
601
 
602
    /* Compute slab sizes, object counts in slabs etc. */
602
    /* Compute slab sizes, object counts in slabs etc. */
603
    if (cache->size < SLAB_INSIDE_SIZE)
603
    if (cache->size < SLAB_INSIDE_SIZE)
604
        cache->flags |= SLAB_CACHE_SLINSIDE;
604
        cache->flags |= SLAB_CACHE_SLINSIDE;
605
 
605
 
606
    /* Minimum slab order */
606
    /* Minimum slab order */
607
    pages = SIZE2FRAMES(cache->size);
607
    pages = SIZE2FRAMES(cache->size);
608
    /* We need the 2^order >= pages */
608
    /* We need the 2^order >= pages */
609
    if (pages == 1)
609
    if (pages == 1)
610
        cache->order = 0;
610
        cache->order = 0;
611
    else
611
    else
612
        cache->order = fnzb(pages - 1) + 1;
612
        cache->order = fnzb(pages - 1) + 1;
613
 
613
 
614
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
614
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
615
        cache->order += 1;
615
        cache->order += 1;
616
    }
616
    }
617
    cache->objects = comp_objects(cache);
617
    cache->objects = comp_objects(cache);
618
    /* If info fits in, put it inside */
618
    /* If info fits in, put it inside */
619
    if (badness(cache) > sizeof(slab_t))
619
    if (badness(cache) > sizeof(slab_t))
620
        cache->flags |= SLAB_CACHE_SLINSIDE;
620
        cache->flags |= SLAB_CACHE_SLINSIDE;
621
 
621
 
622
    /* Add cache to cache list */
622
    /* Add cache to cache list */
623
    ipl = interrupts_disable();
623
    ipl = interrupts_disable();
624
    spinlock_lock(&slab_cache_lock);
624
    spinlock_lock(&slab_cache_lock);
625
 
625
 
626
    list_append(&cache->link, &slab_cache_list);
626
    list_append(&cache->link, &slab_cache_list);
627
 
627
 
628
    spinlock_unlock(&slab_cache_lock);
628
    spinlock_unlock(&slab_cache_lock);
629
    interrupts_restore(ipl);
629
    interrupts_restore(ipl);
630
}
630
}
631
 
631
 
632
/** Create slab cache  */
632
/** Create slab cache  */
633
slab_cache_t *
633
slab_cache_t *
634
slab_cache_create(char *name, size_t size, size_t align,
634
slab_cache_create(char *name, size_t size, size_t align,
635
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
635
    int (*constructor)(void *obj, int kmflag), int (*destructor)(void *obj),
636
    int flags)
636
    int flags)
637
{
637
{
638
    slab_cache_t *cache;
638
    slab_cache_t *cache;
639
 
639
 
640
    cache = slab_alloc(&slab_cache_cache, 0);
640
    cache = slab_alloc(&slab_cache_cache, 0);
641
    _slab_cache_create(cache, name, size, align, constructor, destructor,
641
    _slab_cache_create(cache, name, size, align, constructor, destructor,
642
        flags);
642
        flags);
643
    return cache;
643
    return cache;
644
}
644
}
645
 
645
 
646
/**
646
/**
647
 * Reclaim space occupied by objects that are already free
647
 * Reclaim space occupied by objects that are already free
648
 *
648
 *
649
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
649
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
650
 * @return Number of freed pages
650
 * @return Number of freed pages
651
 */
651
 */
652
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
652
static size_t _slab_reclaim(slab_cache_t *cache, int flags)
653
{
653
{
654
    unsigned int i;
654
    unsigned int i;
655
    slab_magazine_t *mag;
655
    slab_magazine_t *mag;
656
    count_t frames = 0;
656
    size_t frames = 0;
657
    int magcount;
657
    int magcount;
658
   
658
   
659
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
659
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
660
        return 0; /* Nothing to do */
660
        return 0; /* Nothing to do */
661
 
661
 
662
    /* We count up to original magazine count to avoid
662
    /* We count up to original magazine count to avoid
663
     * endless loop
663
     * endless loop
664
     */
664
     */
665
    magcount = atomic_get(&cache->magazine_counter);
665
    magcount = atomic_get(&cache->magazine_counter);
666
    while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
666
    while (magcount-- && (mag=get_mag_from_cache(cache, 0))) {
667
        frames += magazine_destroy(cache,mag);
667
        frames += magazine_destroy(cache,mag);
668
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
668
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
669
            break;
669
            break;
670
    }
670
    }
671
   
671
   
672
    if (flags & SLAB_RECLAIM_ALL) {
672
    if (flags & SLAB_RECLAIM_ALL) {
673
        /* Free cpu-bound magazines */
673
        /* Free cpu-bound magazines */
674
        /* Destroy CPU magazines */
674
        /* Destroy CPU magazines */
675
        for (i = 0; i < config.cpu_count; i++) {
675
        for (i = 0; i < config.cpu_count; i++) {
676
            spinlock_lock(&cache->mag_cache[i].lock);
676
            spinlock_lock(&cache->mag_cache[i].lock);
677
 
677
 
678
            mag = cache->mag_cache[i].current;
678
            mag = cache->mag_cache[i].current;
679
            if (mag)
679
            if (mag)
680
                frames += magazine_destroy(cache, mag);
680
                frames += magazine_destroy(cache, mag);
681
            cache->mag_cache[i].current = NULL;
681
            cache->mag_cache[i].current = NULL;
682
           
682
           
683
            mag = cache->mag_cache[i].last;
683
            mag = cache->mag_cache[i].last;
684
            if (mag)
684
            if (mag)
685
                frames += magazine_destroy(cache, mag);
685
                frames += magazine_destroy(cache, mag);
686
            cache->mag_cache[i].last = NULL;
686
            cache->mag_cache[i].last = NULL;
687
 
687
 
688
            spinlock_unlock(&cache->mag_cache[i].lock);
688
            spinlock_unlock(&cache->mag_cache[i].lock);
689
        }
689
        }
690
    }
690
    }
691
 
691
 
692
    return frames;
692
    return frames;
693
}
693
}
694
 
694
 
695
/** Check that there are no slabs and remove cache from system  */
695
/** Check that there are no slabs and remove cache from system  */
696
void slab_cache_destroy(slab_cache_t *cache)
696
void slab_cache_destroy(slab_cache_t *cache)
697
{
697
{
698
    ipl_t ipl;
698
    ipl_t ipl;
699
 
699
 
700
    /* First remove cache from link, so that we don't need
700
    /* First remove cache from link, so that we don't need
701
     * to disable interrupts later
701
     * to disable interrupts later
702
     */
702
     */
703
 
703
 
704
    ipl = interrupts_disable();
704
    ipl = interrupts_disable();
705
    spinlock_lock(&slab_cache_lock);
705
    spinlock_lock(&slab_cache_lock);
706
 
706
 
707
    list_remove(&cache->link);
707
    list_remove(&cache->link);
708
 
708
 
709
    spinlock_unlock(&slab_cache_lock);
709
    spinlock_unlock(&slab_cache_lock);
710
    interrupts_restore(ipl);
710
    interrupts_restore(ipl);
711
 
711
 
712
    /* Do not lock anything, we assume the software is correct and
712
    /* Do not lock anything, we assume the software is correct and
713
     * does not touch the cache when it decides to destroy it */
713
     * does not touch the cache when it decides to destroy it */
714
   
714
   
715
    /* Destroy all magazines */
715
    /* Destroy all magazines */
716
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
716
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
717
 
717
 
718
    /* All slabs must be empty */
718
    /* All slabs must be empty */
719
    if (!list_empty(&cache->full_slabs) ||
719
    if (!list_empty(&cache->full_slabs) ||
720
        !list_empty(&cache->partial_slabs))
720
        !list_empty(&cache->partial_slabs))
721
        panic("Destroying cache that is not empty.");
721
        panic("Destroying cache that is not empty.");
722
 
722
 
723
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
723
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
724
        free(cache->mag_cache);
724
        free(cache->mag_cache);
725
    slab_free(&slab_cache_cache, cache);
725
    slab_free(&slab_cache_cache, cache);
726
}
726
}
727
 
727
 
728
/** Allocate new object from cache - if no flags given, always returns memory */
728
/** Allocate new object from cache - if no flags given, always returns memory */
729
void *slab_alloc(slab_cache_t *cache, int flags)
729
void *slab_alloc(slab_cache_t *cache, int flags)
730
{
730
{
731
    ipl_t ipl;
731
    ipl_t ipl;
732
    void *result = NULL;
732
    void *result = NULL;
733
   
733
   
734
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
734
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
735
    ipl = interrupts_disable();
735
    ipl = interrupts_disable();
736
 
736
 
737
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
737
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
738
        result = magazine_obj_get(cache);
738
        result = magazine_obj_get(cache);
739
    }
739
    }
740
    if (!result)
740
    if (!result)
741
        result = slab_obj_create(cache, flags);
741
        result = slab_obj_create(cache, flags);
742
 
742
 
743
    interrupts_restore(ipl);
743
    interrupts_restore(ipl);
744
 
744
 
745
    if (result)
745
    if (result)
746
        atomic_inc(&cache->allocated_objs);
746
        atomic_inc(&cache->allocated_objs);
747
 
747
 
748
    return result;
748
    return result;
749
}
749
}
750
 
750
 
751
/** Return object to cache, use slab if known  */
751
/** Return object to cache, use slab if known  */
752
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
752
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
753
{
753
{
754
    ipl_t ipl;
754
    ipl_t ipl;
755
 
755
 
756
    ipl = interrupts_disable();
756
    ipl = interrupts_disable();
757
 
757
 
758
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
758
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) ||
759
        magazine_obj_put(cache, obj)) {
759
        magazine_obj_put(cache, obj)) {
760
        slab_obj_destroy(cache, obj, slab);
760
        slab_obj_destroy(cache, obj, slab);
761
 
761
 
762
    }
762
    }
763
    interrupts_restore(ipl);
763
    interrupts_restore(ipl);
764
    atomic_dec(&cache->allocated_objs);
764
    atomic_dec(&cache->allocated_objs);
765
}
765
}
766
 
766
 
767
/** Return slab object to cache */
767
/** Return slab object to cache */
768
void slab_free(slab_cache_t *cache, void *obj)
768
void slab_free(slab_cache_t *cache, void *obj)
769
{
769
{
770
    _slab_free(cache, obj, NULL);
770
    _slab_free(cache, obj, NULL);
771
}
771
}
772
 
772
 
773
/* Go through all caches and reclaim what is possible */
773
/* Go through all caches and reclaim what is possible */
774
count_t slab_reclaim(int flags)
774
size_t slab_reclaim(int flags)
775
{
775
{
776
    slab_cache_t *cache;
776
    slab_cache_t *cache;
777
    link_t *cur;
777
    link_t *cur;
778
    count_t frames = 0;
778
    size_t frames = 0;
779
 
779
 
780
    spinlock_lock(&slab_cache_lock);
780
    spinlock_lock(&slab_cache_lock);
781
 
781
 
782
    /* TODO: Add assert, that interrupts are disabled, otherwise
782
    /* TODO: Add assert, that interrupts are disabled, otherwise
783
     * memory allocation from interrupts can deadlock.
783
     * memory allocation from interrupts can deadlock.
784
     */
784
     */
785
 
785
 
786
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
786
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
787
        cur = cur->next) {
787
        cur = cur->next) {
788
        cache = list_get_instance(cur, slab_cache_t, link);
788
        cache = list_get_instance(cur, slab_cache_t, link);
789
        frames += _slab_reclaim(cache, flags);
789
        frames += _slab_reclaim(cache, flags);
790
    }
790
    }
791
 
791
 
792
    spinlock_unlock(&slab_cache_lock);
792
    spinlock_unlock(&slab_cache_lock);
793
 
793
 
794
    return frames;
794
    return frames;
795
}
795
}
796
 
796
 
797
 
797
 
798
/* Print list of slabs */
798
/* Print list of slabs */
799
void slab_print_list(void)
799
void slab_print_list(void)
800
{
800
{
801
    int skip = 0;
801
    int skip = 0;
802
 
802
 
803
    printf("slab name        size     pages  obj/pg slabs  cached allocated"
803
    printf("slab name        size     pages  obj/pg slabs  cached allocated"
804
        " ctl\n");
804
        " ctl\n");
805
    printf("---------------- -------- ------ ------ ------ ------ ---------"
805
    printf("---------------- -------- ------ ------ ------ ------ ---------"
806
        " ---\n");
806
        " ---\n");
807
 
807
 
808
    while (true) {
808
    while (true) {
809
        slab_cache_t *cache;
809
        slab_cache_t *cache;
810
        link_t *cur;
810
        link_t *cur;
811
        ipl_t ipl;
811
        ipl_t ipl;
812
        int i;
812
        int i;
813
 
813
 
814
        /*
814
        /*
815
         * We must not hold the slab_cache_lock spinlock when printing
815
         * We must not hold the slab_cache_lock spinlock when printing
816
         * the statistics. Otherwise we can easily deadlock if the print
816
         * the statistics. Otherwise we can easily deadlock if the print
817
         * needs to allocate memory.
817
         * needs to allocate memory.
818
         *
818
         *
819
         * Therefore, we walk through the slab cache list, skipping some
819
         * Therefore, we walk through the slab cache list, skipping some
820
         * amount of already processed caches during each iteration and
820
         * amount of already processed caches during each iteration and
821
         * gathering statistics about the first unprocessed cache. For
821
         * gathering statistics about the first unprocessed cache. For
822
         * the sake of printing the statistics, we realese the
822
         * the sake of printing the statistics, we realese the
823
         * slab_cache_lock and reacquire it afterwards. Then the walk
823
         * slab_cache_lock and reacquire it afterwards. Then the walk
824
         * starts again.
824
         * starts again.
825
         *
825
         *
826
         * This limits both the efficiency and also accuracy of the
826
         * This limits both the efficiency and also accuracy of the
827
         * obtained statistics. The efficiency is decreased because the
827
         * obtained statistics. The efficiency is decreased because the
828
         * time complexity of the algorithm is quadratic instead of
828
         * time complexity of the algorithm is quadratic instead of
829
         * linear. The accuracy is impacted because we drop the lock
829
         * linear. The accuracy is impacted because we drop the lock
830
         * after processing one cache. If there is someone else
830
         * after processing one cache. If there is someone else
831
         * manipulating the cache list, we might omit an arbitrary
831
         * manipulating the cache list, we might omit an arbitrary
832
         * number of caches or process one cache multiple times.
832
         * number of caches or process one cache multiple times.
833
         * However, we don't bleed for this algorithm for it is only
833
         * However, we don't bleed for this algorithm for it is only
834
         * statistics.
834
         * statistics.
835
         */
835
         */
836
 
836
 
837
        ipl = interrupts_disable();
837
        ipl = interrupts_disable();
838
        spinlock_lock(&slab_cache_lock);
838
        spinlock_lock(&slab_cache_lock);
839
 
839
 
840
        for (i = 0, cur = slab_cache_list.next;
840
        for (i = 0, cur = slab_cache_list.next;
841
            i < skip && cur != &slab_cache_list;
841
            i < skip && cur != &slab_cache_list;
842
            i++, cur = cur->next)
842
            i++, cur = cur->next)
843
            ;
843
            ;
844
 
844
 
845
        if (cur == &slab_cache_list) {
845
        if (cur == &slab_cache_list) {
846
            spinlock_unlock(&slab_cache_lock);
846
            spinlock_unlock(&slab_cache_lock);
847
            interrupts_restore(ipl);
847
            interrupts_restore(ipl);
848
            break;
848
            break;
849
        }
849
        }
850
 
850
 
851
        skip++;
851
        skip++;
852
 
852
 
853
        cache = list_get_instance(cur, slab_cache_t, link);
853
        cache = list_get_instance(cur, slab_cache_t, link);
854
 
854
 
855
        char *name = cache->name;
855
        char *name = cache->name;
856
        uint8_t order = cache->order;
856
        uint8_t order = cache->order;
857
        size_t size = cache->size;
857
        size_t size = cache->size;
858
        unsigned int objects = cache->objects;
858
        unsigned int objects = cache->objects;
859
        long allocated_slabs = atomic_get(&cache->allocated_slabs);
859
        long allocated_slabs = atomic_get(&cache->allocated_slabs);
860
        long cached_objs = atomic_get(&cache->cached_objs);
860
        long cached_objs = atomic_get(&cache->cached_objs);
861
        long allocated_objs = atomic_get(&cache->allocated_objs);
861
        long allocated_objs = atomic_get(&cache->allocated_objs);
862
        int flags = cache->flags;
862
        int flags = cache->flags;
863
       
863
       
864
        spinlock_unlock(&slab_cache_lock);
864
        spinlock_unlock(&slab_cache_lock);
865
        interrupts_restore(ipl);
865
        interrupts_restore(ipl);
866
       
866
       
867
        printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
867
        printf("%-16s %8" PRIs " %6d %6u %6ld %6ld %9ld %-3s\n",
868
            name, size, (1 << order), objects, allocated_slabs,
868
            name, size, (1 << order), objects, allocated_slabs,
869
            cached_objs, allocated_objs,
869
            cached_objs, allocated_objs,
870
            flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
870
            flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
871
    }
871
    }
872
}
872
}
873
 
873
 
874
void slab_cache_init(void)
874
void slab_cache_init(void)
875
{
875
{
876
    int i, size;
876
    int i, size;
877
 
877
 
878
    /* Initialize magazine cache */
878
    /* Initialize magazine cache */
879
    _slab_cache_create(&mag_cache, "slab_magazine",
879
    _slab_cache_create(&mag_cache, "slab_magazine",
880
        sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
880
        sizeof(slab_magazine_t) + SLAB_MAG_SIZE * sizeof(void*),
881
        sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
881
        sizeof(uintptr_t), NULL, NULL, SLAB_CACHE_NOMAGAZINE |
882
        SLAB_CACHE_SLINSIDE);
882
        SLAB_CACHE_SLINSIDE);
883
    /* Initialize slab_cache cache */
883
    /* Initialize slab_cache cache */
884
    _slab_cache_create(&slab_cache_cache, "slab_cache",
884
    _slab_cache_create(&slab_cache_cache, "slab_cache",
885
        sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
885
        sizeof(slab_cache_cache), sizeof(uintptr_t), NULL, NULL,
886
        SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
886
        SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
887
    /* Initialize external slab cache */
887
    /* Initialize external slab cache */
888
    slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
888
    slab_extern_cache = slab_cache_create("slab_extern", sizeof(slab_t), 0,
889
        NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
889
        NULL, NULL, SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
890
 
890
 
891
    /* Initialize structures for malloc */
891
    /* Initialize structures for malloc */
892
    for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
892
    for (i = 0, size = (1 << SLAB_MIN_MALLOC_W);
893
        i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
893
        i < (SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1);
894
        i++, size <<= 1) {
894
        i++, size <<= 1) {
895
        malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
895
        malloc_caches[i] = slab_cache_create(malloc_names[i], size, 0,
896
            NULL, NULL, SLAB_CACHE_MAGDEFERRED);
896
            NULL, NULL, SLAB_CACHE_MAGDEFERRED);
897
    }
897
    }
898
#ifdef CONFIG_DEBUG       
898
#ifdef CONFIG_DEBUG       
899
    _slab_initialized = 1;
899
    _slab_initialized = 1;
900
#endif
900
#endif
901
}
901
}
902
 
902
 
903
/** Enable cpu_cache
903
/** Enable cpu_cache
904
 *
904
 *
905
 * Kernel calls this function, when it knows the real number of
905
 * Kernel calls this function, when it knows the real number of
906
 * processors.
906
 * processors.
907
 * Allocate slab for cpucache and enable it on all existing
907
 * Allocate slab for cpucache and enable it on all existing
908
 * slabs that are SLAB_CACHE_MAGDEFERRED
908
 * slabs that are SLAB_CACHE_MAGDEFERRED
909
 */
909
 */
910
void slab_enable_cpucache(void)
910
void slab_enable_cpucache(void)
911
{
911
{
912
    link_t *cur;
912
    link_t *cur;
913
    slab_cache_t *s;
913
    slab_cache_t *s;
914
 
914
 
915
#ifdef CONFIG_DEBUG
915
#ifdef CONFIG_DEBUG
916
    _slab_initialized = 2;
916
    _slab_initialized = 2;
917
#endif
917
#endif
918
 
918
 
919
    spinlock_lock(&slab_cache_lock);
919
    spinlock_lock(&slab_cache_lock);
920
   
920
   
921
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
921
    for (cur = slab_cache_list.next; cur != &slab_cache_list;
922
        cur = cur->next){
922
        cur = cur->next){
923
        s = list_get_instance(cur, slab_cache_t, link);
923
        s = list_get_instance(cur, slab_cache_t, link);
924
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
924
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) !=
925
            SLAB_CACHE_MAGDEFERRED)
925
            SLAB_CACHE_MAGDEFERRED)
926
            continue;
926
            continue;
927
        make_magcache(s);
927
        make_magcache(s);
928
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
928
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
929
    }
929
    }
930
 
930
 
931
    spinlock_unlock(&slab_cache_lock);
931
    spinlock_unlock(&slab_cache_lock);
932
}
932
}
933
 
933
 
934
/**************************************/
934
/**************************************/
935
/* kalloc/kfree functions             */
935
/* kalloc/kfree functions             */
936
void *malloc(unsigned int size, int flags)
936
void *malloc(unsigned int size, int flags)
937
{
937
{
938
    ASSERT(_slab_initialized);
938
    ASSERT(_slab_initialized);
939
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
939
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
940
   
940
   
941
    if (size < (1 << SLAB_MIN_MALLOC_W))
941
    if (size < (1 << SLAB_MIN_MALLOC_W))
942
        size = (1 << SLAB_MIN_MALLOC_W);
942
        size = (1 << SLAB_MIN_MALLOC_W);
943
 
943
 
944
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
944
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
945
 
945
 
946
    return slab_alloc(malloc_caches[idx], flags);
946
    return slab_alloc(malloc_caches[idx], flags);
947
}
947
}
948
 
948
 
949
void *realloc(void *ptr, unsigned int size, int flags)
949
void *realloc(void *ptr, unsigned int size, int flags)
950
{
950
{
951
    ASSERT(_slab_initialized);
951
    ASSERT(_slab_initialized);
952
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
952
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
953
   
953
   
954
    void *new_ptr;
954
    void *new_ptr;
955
   
955
   
956
    if (size > 0) {
956
    if (size > 0) {
957
        if (size < (1 << SLAB_MIN_MALLOC_W))
957
        if (size < (1 << SLAB_MIN_MALLOC_W))
958
            size = (1 << SLAB_MIN_MALLOC_W);
958
            size = (1 << SLAB_MIN_MALLOC_W);
959
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
959
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
960
       
960
       
961
        new_ptr = slab_alloc(malloc_caches[idx], flags);
961
        new_ptr = slab_alloc(malloc_caches[idx], flags);
962
    } else
962
    } else
963
        new_ptr = NULL;
963
        new_ptr = NULL;
964
   
964
   
965
    if ((new_ptr != NULL) && (ptr != NULL)) {
965
    if ((new_ptr != NULL) && (ptr != NULL)) {
966
        slab_t *slab = obj2slab(ptr);
966
        slab_t *slab = obj2slab(ptr);
967
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
967
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
968
    }
968
    }
969
   
969
   
970
    if (ptr != NULL)
970
    if (ptr != NULL)
971
        free(ptr);
971
        free(ptr);
972
   
972
   
973
    return new_ptr;
973
    return new_ptr;
974
}
974
}
975
 
975
 
976
void free(void *ptr)
976
void free(void *ptr)
977
{
977
{
978
    if (!ptr)
978
    if (!ptr)
979
        return;
979
        return;
980
 
980
 
981
    slab_t *slab = obj2slab(ptr);
981
    slab_t *slab = obj2slab(ptr);
982
    _slab_free(slab->cache, ptr, slab);
982
    _slab_free(slab->cache, ptr, slab);
983
}
983
}
984
 
984
 
985
/** @}
985
/** @}
986
 */
986
 */
987
 
987