Subversion Repositories HelenOS

Rev

Rev 3798 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3798 Rev 4679
1
/*
1
/*
2
 * Copyright (c) 2001-2007 Jakub Jermar
2
 * Copyright (c) 2001-2007 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericproc
29
/** @addtogroup genericproc
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Scheduler and load balancing.
35
 * @brief   Scheduler and load balancing.
36
 *
36
 *
37
 * This file contains the scheduler and kcpulb kernel thread which
37
 * This file contains the scheduler and kcpulb kernel thread which
38
 * performs load-balancing of per-CPU run queues.
38
 * performs load-balancing of per-CPU run queues.
39
 */
39
 */
40
 
40
 
41
#include <proc/scheduler.h>
41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
43
#include <proc/task.h>
44
#include <mm/frame.h>
44
#include <mm/frame.h>
45
#include <mm/page.h>
45
#include <mm/page.h>
46
#include <mm/as.h>
46
#include <mm/as.h>
47
#include <time/timeout.h>
47
#include <time/timeout.h>
48
#include <time/delay.h>
48
#include <time/delay.h>
49
#include <arch/asm.h>
49
#include <arch/asm.h>
50
#include <arch/faddr.h>
50
#include <arch/faddr.h>
51
#include <arch/cycle.h>
51
#include <arch/cycle.h>
52
#include <atomic.h>
52
#include <atomic.h>
53
#include <synch/spinlock.h>
53
#include <synch/spinlock.h>
54
#include <config.h>
54
#include <config.h>
55
#include <context.h>
55
#include <context.h>
56
#include <fpu_context.h>
56
#include <fpu_context.h>
57
#include <func.h>
57
#include <func.h>
58
#include <arch.h>
58
#include <arch.h>
59
#include <adt/list.h>
59
#include <adt/list.h>
60
#include <panic.h>
60
#include <panic.h>
61
#include <cpu.h>
61
#include <cpu.h>
62
#include <print.h>
62
#include <print.h>
63
#include <debug.h>
63
#include <debug.h>
-
 
64
#include <arch/smp/sun4v/smp.h>
64
 
65
 
65
static void before_task_runs(void);
66
static void before_task_runs(void);
66
static void before_thread_runs(void);
67
static void before_thread_runs(void);
67
static void after_thread_ran(void);
68
static void after_thread_ran(void);
68
static void scheduler_separated_stack(void);
69
static void scheduler_separated_stack(void);
69
 
70
 
70
atomic_t nrdy;  /**< Number of ready threads in the system. */
71
atomic_t nrdy;  /**< Number of ready threads in the system. */
71
 
72
 
72
/** Carry out actions before new task runs. */
73
/** Carry out actions before new task runs. */
73
void before_task_runs(void)
74
void before_task_runs(void)
74
{
75
{
75
    before_task_runs_arch();
76
    before_task_runs_arch();
76
}
77
}
77
 
78
 
78
/** Take actions before new thread runs.
79
/** Take actions before new thread runs.
79
 *
80
 *
80
 * Perform actions that need to be
81
 * Perform actions that need to be
81
 * taken before the newly selected
82
 * taken before the newly selected
82
 * tread is passed control.
83
 * tread is passed control.
83
 *
84
 *
84
 * THREAD->lock is locked on entry
85
 * THREAD->lock is locked on entry
85
 *
86
 *
86
 */
87
 */
87
void before_thread_runs(void)
88
void before_thread_runs(void)
88
{
89
{
89
    before_thread_runs_arch();
90
    before_thread_runs_arch();
90
#ifdef CONFIG_FPU_LAZY
91
#ifdef CONFIG_FPU_LAZY
91
    if(THREAD == CPU->fpu_owner)
92
    if(THREAD == CPU->fpu_owner)
92
        fpu_enable();
93
        fpu_enable();
93
    else
94
    else
94
        fpu_disable();
95
        fpu_disable();
95
#else
96
#else
96
    fpu_enable();
97
    fpu_enable();
97
    if (THREAD->fpu_context_exists)
98
    if (THREAD->fpu_context_exists)
98
        fpu_context_restore(THREAD->saved_fpu_context);
99
        fpu_context_restore(THREAD->saved_fpu_context);
99
    else {
100
    else {
100
        fpu_init();
101
        fpu_init();
101
        THREAD->fpu_context_exists = 1;
102
        THREAD->fpu_context_exists = 1;
102
    }
103
    }
103
#endif
104
#endif
104
}
105
}
105
 
106
 
106
/** Take actions after THREAD had run.
107
/** Take actions after THREAD had run.
107
 *
108
 *
108
 * Perform actions that need to be
109
 * Perform actions that need to be
109
 * taken after the running thread
110
 * taken after the running thread
110
 * had been preempted by the scheduler.
111
 * had been preempted by the scheduler.
111
 *
112
 *
112
 * THREAD->lock is locked on entry
113
 * THREAD->lock is locked on entry
113
 *
114
 *
114
 */
115
 */
115
void after_thread_ran(void)
116
void after_thread_ran(void)
116
{
117
{
117
    after_thread_ran_arch();
118
    after_thread_ran_arch();
118
}
119
}
119
 
120
 
120
#ifdef CONFIG_FPU_LAZY
121
#ifdef CONFIG_FPU_LAZY
121
void scheduler_fpu_lazy_request(void)
122
void scheduler_fpu_lazy_request(void)
122
{
123
{
123
restart:
124
restart:
124
    fpu_enable();
125
    fpu_enable();
125
    spinlock_lock(&CPU->lock);
126
    spinlock_lock(&CPU->lock);
126
 
127
 
127
    /* Save old context */
128
    /* Save old context */
128
    if (CPU->fpu_owner != NULL) {  
129
    if (CPU->fpu_owner != NULL) {  
129
        spinlock_lock(&CPU->fpu_owner->lock);
130
        spinlock_lock(&CPU->fpu_owner->lock);
130
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
131
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
131
        /* don't prevent migration */
132
        /* don't prevent migration */
132
        CPU->fpu_owner->fpu_context_engaged = 0;
133
        CPU->fpu_owner->fpu_context_engaged = 0;
133
        spinlock_unlock(&CPU->fpu_owner->lock);
134
        spinlock_unlock(&CPU->fpu_owner->lock);
134
        CPU->fpu_owner = NULL;
135
        CPU->fpu_owner = NULL;
135
    }
136
    }
136
 
137
 
137
    spinlock_lock(&THREAD->lock);
138
    spinlock_lock(&THREAD->lock);
138
    if (THREAD->fpu_context_exists) {
139
    if (THREAD->fpu_context_exists) {
139
        fpu_context_restore(THREAD->saved_fpu_context);
140
        fpu_context_restore(THREAD->saved_fpu_context);
140
    } else {
141
    } else {
141
        /* Allocate FPU context */
142
        /* Allocate FPU context */
142
        if (!THREAD->saved_fpu_context) {
143
        if (!THREAD->saved_fpu_context) {
143
            /* Might sleep */
144
            /* Might sleep */
144
            spinlock_unlock(&THREAD->lock);
145
            spinlock_unlock(&THREAD->lock);
145
            spinlock_unlock(&CPU->lock);
146
            spinlock_unlock(&CPU->lock);
146
            THREAD->saved_fpu_context =
147
            THREAD->saved_fpu_context =
147
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
148
                (fpu_context_t *) slab_alloc(fpu_context_slab, 0);
148
            /* We may have switched CPUs during slab_alloc */
149
            /* We may have switched CPUs during slab_alloc */
149
            goto restart;
150
            goto restart;
150
        }
151
        }
151
        fpu_init();
152
        fpu_init();
152
        THREAD->fpu_context_exists = 1;
153
        THREAD->fpu_context_exists = 1;
153
    }
154
    }
154
    CPU->fpu_owner = THREAD;
155
    CPU->fpu_owner = THREAD;
155
    THREAD->fpu_context_engaged = 1;
156
    THREAD->fpu_context_engaged = 1;
156
    spinlock_unlock(&THREAD->lock);
157
    spinlock_unlock(&THREAD->lock);
157
 
158
 
158
    spinlock_unlock(&CPU->lock);
159
    spinlock_unlock(&CPU->lock);
159
}
160
}
160
#endif
161
#endif
161
 
162
 
162
/** Initialize scheduler
163
/** Initialize scheduler
163
 *
164
 *
164
 * Initialize kernel scheduler.
165
 * Initialize kernel scheduler.
165
 *
166
 *
166
 */
167
 */
167
void scheduler_init(void)
168
void scheduler_init(void)
168
{
169
{
169
}
170
}
170
 
171
 
171
/** Get thread to be scheduled
172
/** Get thread to be scheduled
172
 *
173
 *
173
 * Get the optimal thread to be scheduled
174
 * Get the optimal thread to be scheduled
174
 * according to thread accounting and scheduler
175
 * according to thread accounting and scheduler
175
 * policy.
176
 * policy.
176
 *
177
 *
177
 * @return Thread to be scheduled.
178
 * @return Thread to be scheduled.
178
 *
179
 *
179
 */
180
 */
180
static thread_t *find_best_thread(void)
181
static thread_t *find_best_thread(void)
181
{
182
{
182
    thread_t *t;
183
    thread_t *t;
183
    runq_t *r;
184
    runq_t *r;
184
    int i;
185
    int i;
185
 
186
 
186
    ASSERT(CPU != NULL);
187
    ASSERT(CPU != NULL);
187
 
188
 
188
loop:
189
loop:
189
    interrupts_enable();
190
    interrupts_enable();
190
   
191
   
191
    if (atomic_get(&CPU->nrdy) == 0) {
192
    if (atomic_get(&CPU->nrdy) == 0) {
192
        /*
193
        /*
193
         * For there was nothing to run, the CPU goes to sleep
194
         * For there was nothing to run, the CPU goes to sleep
194
         * until a hardware interrupt or an IPI comes.
195
         * until a hardware interrupt or an IPI comes.
195
         * This improves energy saving and hyperthreading.
196
         * This improves energy saving and hyperthreading.
196
         */
197
         */
197
 
198
 
198
        /*
199
        /*
199
         * An interrupt might occur right now and wake up a thread.
200
         * An interrupt might occur right now and wake up a thread.
200
         * In such case, the CPU will continue to go to sleep
201
         * In such case, the CPU will continue to go to sleep
201
         * even though there is a runnable thread.
202
         * even though there is a runnable thread.
202
         */
203
         */
203
 
204
 
204
         cpu_sleep();
205
         cpu_sleep();
205
         goto loop;
206
         goto loop;
206
    }
207
    }
207
 
208
 
208
    interrupts_disable();
209
    interrupts_disable();
209
   
210
   
210
    for (i = 0; i < RQ_COUNT; i++) {
211
    for (i = 0; i < RQ_COUNT; i++) {
211
        r = &CPU->rq[i];
212
        r = &CPU->rq[i];
212
        spinlock_lock(&r->lock);
213
        spinlock_lock(&r->lock);
213
        if (r->n == 0) {
214
        if (r->n == 0) {
214
            /*
215
            /*
215
             * If this queue is empty, try a lower-priority queue.
216
             * If this queue is empty, try a lower-priority queue.
216
             */
217
             */
217
            spinlock_unlock(&r->lock);
218
            spinlock_unlock(&r->lock);
218
            continue;
219
            continue;
219
        }
220
        }
220
 
221
 
221
        atomic_dec(&CPU->nrdy);
222
        atomic_dec(&CPU->nrdy);
222
        atomic_dec(&nrdy);
223
        atomic_dec(&nrdy);
-
 
224
        if (CPU->arch.exec_unit)
-
 
225
            atomic_dec(&(CPU->arch.exec_unit->nrdy));
223
        r->n--;
226
        r->n--;
224
 
227
 
225
        /*
228
        /*
226
         * Take the first thread from the queue.
229
         * Take the first thread from the queue.
227
         */
230
         */
228
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
231
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
229
        list_remove(&t->rq_link);
232
        list_remove(&t->rq_link);
230
 
233
 
231
        spinlock_unlock(&r->lock);
234
        spinlock_unlock(&r->lock);
232
 
235
 
233
        spinlock_lock(&t->lock);
236
        spinlock_lock(&t->lock);
234
        t->cpu = CPU;
237
        t->cpu = CPU;
235
 
238
 
236
        t->ticks = us2ticks((i + 1) * 10000);
239
        t->ticks = us2ticks((i + 1) * 10000);
237
        t->priority = i;    /* correct rq index */
240
        t->priority = i;    /* correct rq index */
238
 
241
 
239
        /*
242
        /*
240
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
243
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
241
         * when load balancing needs emerge.
244
         * when load balancing needs emerge.
242
         */
245
         */
243
        t->flags &= ~THREAD_FLAG_STOLEN;
246
        t->flags &= ~THREAD_FLAG_STOLEN;
244
        spinlock_unlock(&t->lock);
247
        spinlock_unlock(&t->lock);
245
 
248
 
246
        return t;
249
        return t;
247
    }
250
    }
248
    goto loop;
251
    goto loop;
249
 
252
 
250
}
253
}
251
 
254
 
252
/** Prevent rq starvation
255
/** Prevent rq starvation
253
 *
256
 *
254
 * Prevent low priority threads from starving in rq's.
257
 * Prevent low priority threads from starving in rq's.
255
 *
258
 *
256
 * When the function decides to relink rq's, it reconnects
259
 * When the function decides to relink rq's, it reconnects
257
 * respective pointers so that in result threads with 'pri'
260
 * respective pointers so that in result threads with 'pri'
258
 * greater or equal start are moved to a higher-priority queue.
261
 * greater or equal start are moved to a higher-priority queue.
259
 *
262
 *
260
 * @param start Threshold priority.
263
 * @param start Threshold priority.
261
 *
264
 *
262
 */
265
 */
263
static void relink_rq(int start)
266
static void relink_rq(int start)
264
{
267
{
265
    link_t head;
268
    link_t head;
266
    runq_t *r;
269
    runq_t *r;
267
    int i, n;
270
    int i, n;
268
 
271
 
269
    list_initialize(&head);
272
    list_initialize(&head);
270
    spinlock_lock(&CPU->lock);
273
    spinlock_lock(&CPU->lock);
271
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
274
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
272
        for (i = start; i < RQ_COUNT - 1; i++) {
275
        for (i = start; i < RQ_COUNT - 1; i++) {
273
            /* remember and empty rq[i + 1] */
276
            /* remember and empty rq[i + 1] */
274
            r = &CPU->rq[i + 1];
277
            r = &CPU->rq[i + 1];
275
            spinlock_lock(&r->lock);
278
            spinlock_lock(&r->lock);
276
            list_concat(&head, &r->rq_head);
279
            list_concat(&head, &r->rq_head);
277
            n = r->n;
280
            n = r->n;
278
            r->n = 0;
281
            r->n = 0;
279
            spinlock_unlock(&r->lock);
282
            spinlock_unlock(&r->lock);
280
       
283
       
281
            /* append rq[i + 1] to rq[i] */
284
            /* append rq[i + 1] to rq[i] */
282
            r = &CPU->rq[i];
285
            r = &CPU->rq[i];
283
            spinlock_lock(&r->lock);
286
            spinlock_lock(&r->lock);
284
            list_concat(&r->rq_head, &head);
287
            list_concat(&r->rq_head, &head);
285
            r->n += n;
288
            r->n += n;
286
            spinlock_unlock(&r->lock);
289
            spinlock_unlock(&r->lock);
287
        }
290
        }
288
        CPU->needs_relink = 0;
291
        CPU->needs_relink = 0;
289
    }
292
    }
290
    spinlock_unlock(&CPU->lock);
293
    spinlock_unlock(&CPU->lock);
291
 
294
 
292
}
295
}
293
 
296
 
294
/** The scheduler
297
/** The scheduler
295
 *
298
 *
296
 * The thread scheduling procedure.
299
 * The thread scheduling procedure.
297
 * Passes control directly to
300
 * Passes control directly to
298
 * scheduler_separated_stack().
301
 * scheduler_separated_stack().
299
 *
302
 *
300
 */
303
 */
301
void scheduler(void)
304
void scheduler(void)
302
{
305
{
303
    volatile ipl_t ipl;
306
    volatile ipl_t ipl;
304
 
307
 
305
    ASSERT(CPU != NULL);
308
    ASSERT(CPU != NULL);
306
 
309
 
307
    ipl = interrupts_disable();
310
    ipl = interrupts_disable();
308
 
311
 
309
    if (atomic_get(&haltstate))
312
    if (atomic_get(&haltstate))
310
        halt();
313
        halt();
311
   
314
   
312
    if (THREAD) {
315
    if (THREAD) {
313
        spinlock_lock(&THREAD->lock);
316
        spinlock_lock(&THREAD->lock);
314
       
317
       
315
        /* Update thread accounting */
318
        /* Update thread accounting */
316
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
319
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
317
       
320
       
318
#ifndef CONFIG_FPU_LAZY
321
#ifndef CONFIG_FPU_LAZY
319
        fpu_context_save(THREAD->saved_fpu_context);
322
        fpu_context_save(THREAD->saved_fpu_context);
320
#endif
323
#endif
321
        if (!context_save(&THREAD->saved_context)) {
324
        if (!context_save(&THREAD->saved_context)) {
322
            /*
325
            /*
323
             * This is the place where threads leave scheduler();
326
             * This is the place where threads leave scheduler();
324
             */
327
             */
325
           
328
           
326
            /* Save current CPU cycle */
329
            /* Save current CPU cycle */
327
            THREAD->last_cycle = get_cycle();
330
            THREAD->last_cycle = get_cycle();
328
           
331
           
329
            spinlock_unlock(&THREAD->lock);
332
            spinlock_unlock(&THREAD->lock);
330
            interrupts_restore(THREAD->saved_context.ipl);
333
            interrupts_restore(THREAD->saved_context.ipl);
331
           
334
           
332
            return;
335
            return;
333
        }
336
        }
334
 
337
 
335
        /*
338
        /*
336
         * Interrupt priority level of preempted thread is recorded
339
         * Interrupt priority level of preempted thread is recorded
337
         * here to facilitate scheduler() invocations from
340
         * here to facilitate scheduler() invocations from
338
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
341
         * interrupts_disable()'d code (e.g. waitq_sleep_timeout()).
339
         */
342
         */
340
        THREAD->saved_context.ipl = ipl;
343
        THREAD->saved_context.ipl = ipl;
341
    }
344
    }
342
 
345
 
343
    /*
346
    /*
344
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
347
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
345
     * and preemption counter. At this point THE could be coming either
348
     * and preemption counter. At this point THE could be coming either
346
     * from THREAD's or CPU's stack.
349
     * from THREAD's or CPU's stack.
347
     */
350
     */
348
    the_copy(THE, (the_t *) CPU->stack);
351
    the_copy(THE, (the_t *) CPU->stack);
349
 
352
 
350
    /*
353
    /*
351
     * We may not keep the old stack.
354
     * We may not keep the old stack.
352
     * Reason: If we kept the old stack and got blocked, for instance, in
355
     * Reason: If we kept the old stack and got blocked, for instance, in
353
     * find_best_thread(), the old thread could get rescheduled by another
356
     * find_best_thread(), the old thread could get rescheduled by another
354
     * CPU and overwrite the part of its own stack that was also used by
357
     * CPU and overwrite the part of its own stack that was also used by
355
     * the scheduler on this CPU.
358
     * the scheduler on this CPU.
356
     *
359
     *
357
     * Moreover, we have to bypass the compiler-generated POP sequence
360
     * Moreover, we have to bypass the compiler-generated POP sequence
358
     * which is fooled by SP being set to the very top of the stack.
361
     * which is fooled by SP being set to the very top of the stack.
359
     * Therefore the scheduler() function continues in
362
     * Therefore the scheduler() function continues in
360
     * scheduler_separated_stack().
363
     * scheduler_separated_stack().
361
     */
364
     */
362
    context_save(&CPU->saved_context);
365
    context_save(&CPU->saved_context);
363
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
366
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
364
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
367
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
365
    context_restore(&CPU->saved_context);
368
    context_restore(&CPU->saved_context);
366
    /* not reached */
369
    /* not reached */
367
}
370
}
368
 
371
 
369
/** Scheduler stack switch wrapper
372
/** Scheduler stack switch wrapper
370
 *
373
 *
371
 * Second part of the scheduler() function
374
 * Second part of the scheduler() function
372
 * using new stack. Handling the actual context
375
 * using new stack. Handling the actual context
373
 * switch to a new thread.
376
 * switch to a new thread.
374
 *
377
 *
375
 * Assume THREAD->lock is held.
378
 * Assume THREAD->lock is held.
376
 */
379
 */
377
void scheduler_separated_stack(void)
380
void scheduler_separated_stack(void)
378
{
381
{
379
    int priority;
382
    int priority;
380
    DEADLOCK_PROBE_INIT(p_joinwq);
383
    DEADLOCK_PROBE_INIT(p_joinwq);
381
 
384
 
382
    ASSERT(CPU != NULL);
385
    ASSERT(CPU != NULL);
383
 
386
 
384
    if (THREAD) {
387
    if (THREAD) {
385
        /* must be run after the switch to scheduler stack */
388
        /* must be run after the switch to scheduler stack */
386
        after_thread_ran();
389
        after_thread_ran();
387
 
390
 
388
        switch (THREAD->state) {
391
        switch (THREAD->state) {
389
        case Running:
392
        case Running:
390
            spinlock_unlock(&THREAD->lock);
393
            spinlock_unlock(&THREAD->lock);
391
            thread_ready(THREAD);
394
            thread_ready(THREAD);
392
            break;
395
            break;
393
 
396
 
394
        case Exiting:
397
        case Exiting:
395
repeat:
398
repeat:
396
            if (THREAD->detached) {
399
            if (THREAD->detached) {
397
                thread_destroy(THREAD);
400
                thread_destroy(THREAD);
398
            } else {
401
            } else {
399
                /*
402
                /*
400
                 * The thread structure is kept allocated until
403
                 * The thread structure is kept allocated until
401
                 * somebody calls thread_detach() on it.
404
                 * somebody calls thread_detach() on it.
402
                 */
405
                 */
403
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
406
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
404
                    /*
407
                    /*
405
                     * Avoid deadlock.
408
                     * Avoid deadlock.
406
                     */
409
                     */
407
                    spinlock_unlock(&THREAD->lock);
410
                    spinlock_unlock(&THREAD->lock);
408
                    delay(HZ);
411
                    delay(HZ);
409
                    spinlock_lock(&THREAD->lock);
412
                    spinlock_lock(&THREAD->lock);
410
                    DEADLOCK_PROBE(p_joinwq,
413
                    DEADLOCK_PROBE(p_joinwq,
411
                        DEADLOCK_THRESHOLD);
414
                        DEADLOCK_THRESHOLD);
412
                    goto repeat;
415
                    goto repeat;
413
                }
416
                }
414
                _waitq_wakeup_unsafe(&THREAD->join_wq,
417
                _waitq_wakeup_unsafe(&THREAD->join_wq,
415
                    WAKEUP_FIRST);
418
                    WAKEUP_FIRST);
416
                spinlock_unlock(&THREAD->join_wq.lock);
419
                spinlock_unlock(&THREAD->join_wq.lock);
417
               
420
               
418
                THREAD->state = Lingering;
421
                THREAD->state = Lingering;
419
                spinlock_unlock(&THREAD->lock);
422
                spinlock_unlock(&THREAD->lock);
420
            }
423
            }
421
            break;
424
            break;
422
           
425
           
423
        case Sleeping:
426
        case Sleeping:
424
            /*
427
            /*
425
             * Prefer the thread after it's woken up.
428
             * Prefer the thread after it's woken up.
426
             */
429
             */
427
            THREAD->priority = -1;
430
            THREAD->priority = -1;
428
 
431
 
429
            /*
432
            /*
430
             * We need to release wq->lock which we locked in
433
             * We need to release wq->lock which we locked in
431
             * waitq_sleep(). Address of wq->lock is kept in
434
             * waitq_sleep(). Address of wq->lock is kept in
432
             * THREAD->sleep_queue.
435
             * THREAD->sleep_queue.
433
             */
436
             */
434
            spinlock_unlock(&THREAD->sleep_queue->lock);
437
            spinlock_unlock(&THREAD->sleep_queue->lock);
435
 
438
 
436
            /*
439
            /*
437
             * Check for possible requests for out-of-context
440
             * Check for possible requests for out-of-context
438
             * invocation.
441
             * invocation.
439
             */
442
             */
440
            if (THREAD->call_me) {
443
            if (THREAD->call_me) {
441
                THREAD->call_me(THREAD->call_me_with);
444
                THREAD->call_me(THREAD->call_me_with);
442
                THREAD->call_me = NULL;
445
                THREAD->call_me = NULL;
443
                THREAD->call_me_with = NULL;
446
                THREAD->call_me_with = NULL;
444
            }
447
            }
445
 
448
 
446
            spinlock_unlock(&THREAD->lock);
449
            spinlock_unlock(&THREAD->lock);
447
 
450
 
448
            break;
451
            break;
449
 
452
 
450
        default:
453
        default:
451
            /*
454
            /*
452
             * Entering state is unexpected.
455
             * Entering state is unexpected.
453
             */
456
             */
454
            panic("tid%" PRIu64 ": unexpected state %s\n",
457
            panic("tid%" PRIu64 ": unexpected state %s\n",
455
                THREAD->tid, thread_states[THREAD->state]);
458
                THREAD->tid, thread_states[THREAD->state]);
456
            break;
459
            break;
457
        }
460
        }
458
 
461
 
459
        THREAD = NULL;
462
        THREAD = NULL;
460
    }
463
    }
461
 
464
 
462
    THREAD = find_best_thread();
465
    THREAD = find_best_thread();
463
 
466
 
464
    spinlock_lock(&THREAD->lock);
467
    spinlock_lock(&THREAD->lock);
465
    priority = THREAD->priority;
468
    priority = THREAD->priority;
466
    spinlock_unlock(&THREAD->lock);
469
    spinlock_unlock(&THREAD->lock);
467
 
470
 
468
    relink_rq(priority);       
471
    relink_rq(priority);       
469
 
472
 
470
    /*
473
    /*
471
     * If both the old and the new task are the same, lots of work is
474
     * If both the old and the new task are the same, lots of work is
472
     * avoided.
475
     * avoided.
473
     */
476
     */
474
    if (TASK != THREAD->task) {
477
    if (TASK != THREAD->task) {
475
        as_t *as1 = NULL;
478
        as_t *as1 = NULL;
476
        as_t *as2;
479
        as_t *as2;
477
 
480
 
478
        if (TASK) {
481
        if (TASK) {
479
            spinlock_lock(&TASK->lock);
482
            spinlock_lock(&TASK->lock);
480
            as1 = TASK->as;
483
            as1 = TASK->as;
481
            spinlock_unlock(&TASK->lock);
484
            spinlock_unlock(&TASK->lock);
482
        }
485
        }
483
 
486
 
484
        spinlock_lock(&THREAD->task->lock);
487
        spinlock_lock(&THREAD->task->lock);
485
        as2 = THREAD->task->as;
488
        as2 = THREAD->task->as;
486
        spinlock_unlock(&THREAD->task->lock);
489
        spinlock_unlock(&THREAD->task->lock);
487
       
490
       
488
        /*
491
        /*
489
         * Note that it is possible for two tasks to share one address
492
         * Note that it is possible for two tasks to share one address
490
         * space.
493
         * space.
491
         */
494
         */
492
        if (as1 != as2) {
495
        if (as1 != as2) {
493
            /*
496
            /*
494
             * Both tasks and address spaces are different.
497
             * Both tasks and address spaces are different.
495
             * Replace the old one with the new one.
498
             * Replace the old one with the new one.
496
             */
499
             */
497
            as_switch(as1, as2);
500
            as_switch(as1, as2);
498
        }
501
        }
499
        TASK = THREAD->task;
502
        TASK = THREAD->task;
500
        before_task_runs();
503
        before_task_runs();
501
    }
504
    }
502
 
505
 
503
    spinlock_lock(&THREAD->lock);  
506
    spinlock_lock(&THREAD->lock);  
504
    THREAD->state = Running;
507
    THREAD->state = Running;
505
 
508
 
506
#ifdef SCHEDULER_VERBOSE
509
#ifdef SCHEDULER_VERBOSE
507
    printf("cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
510
    printf("cpu%u: tid %" PRIu64 " (priority=%d, ticks=%" PRIu64
508
        ", nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority,
511
        ", nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority,
509
        THREAD->ticks, atomic_get(&CPU->nrdy));
512
        THREAD->ticks, atomic_get(&CPU->nrdy));
510
#endif  
513
#endif  
511
 
514
 
512
    /*
515
    /*
513
     * Some architectures provide late kernel PA2KA(identity)
516
     * Some architectures provide late kernel PA2KA(identity)
514
     * mapping in a page fault handler. However, the page fault
517
     * mapping in a page fault handler. However, the page fault
515
     * handler uses the kernel stack of the running thread and
518
     * handler uses the kernel stack of the running thread and
516
     * therefore cannot be used to map it. The kernel stack, if
519
     * therefore cannot be used to map it. The kernel stack, if
517
     * necessary, is to be mapped in before_thread_runs(). This
520
     * necessary, is to be mapped in before_thread_runs(). This
518
     * function must be executed before the switch to the new stack.
521
     * function must be executed before the switch to the new stack.
519
     */
522
     */
520
    before_thread_runs();
523
    before_thread_runs();
521
 
524
 
522
    /*
525
    /*
523
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
526
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to
524
     * thread's stack.
527
     * thread's stack.
525
     */
528
     */
526
    the_copy(THE, (the_t *) THREAD->kstack);
529
    the_copy(THE, (the_t *) THREAD->kstack);
527
   
530
   
528
    context_restore(&THREAD->saved_context);
531
    context_restore(&THREAD->saved_context);
529
    /* not reached */
532
    /* not reached */
530
}
533
}
531
 
534
 
532
#ifdef CONFIG_SMP
535
#ifdef CONFIG_SMP
533
/** Load balancing thread
536
/** Load balancing thread
534
 *
537
 *
535
 * SMP load balancing thread, supervising thread supplies
538
 * SMP load balancing thread, supervising thread supplies
536
 * for the CPU it's wired to.
539
 * for the CPU it's wired to.
537
 *
540
 *
538
 * @param arg Generic thread argument (unused).
541
 * @param arg Generic thread argument (unused).
539
 *
542
 *
540
 */
543
 */
541
void kcpulb(void *arg)
544
void kcpulb(void *arg)
542
{
545
{
543
    thread_t *t;
546
    thread_t *t;
544
    int count, average, j, k = 0;
547
    int count, average, j, k = 0;
545
    unsigned int i;
548
    unsigned int i;
546
    ipl_t ipl;
549
    ipl_t ipl;
547
 
550
 
548
    /*
551
    /*
549
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
552
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
550
     */
553
     */
551
    thread_detach(THREAD);
554
    thread_detach(THREAD);
552
   
555
   
553
loop:
556
loop:
554
    /*
557
    /*
555
     * Work in 1s intervals.
558
     * Work in 1s intervals.
556
     */
559
     */
557
    thread_sleep(1);
560
    thread_sleep(1);
558
 
561
 
559
not_satisfied:
562
not_satisfied:
560
    /*
563
    /*
561
     * Calculate the number of threads that will be migrated/stolen from
564
     * Calculate the number of threads that will be migrated/stolen from
562
     * other CPU's. Note that situation can have changed between two
565
     * other CPU's. Note that situation can have changed between two
563
     * passes. Each time get the most up to date counts.
566
     * passes. Each time get the most up to date counts.
564
     */
567
     */
565
    average = atomic_get(&nrdy) / config.cpu_active + 1;
568
    average = atomic_get(&nrdy) / config.cpu_active + 1;
566
    count = average - atomic_get(&CPU->nrdy);
569
    count = average - atomic_get(&CPU->nrdy);
567
 
570
 
-
 
571
    /* calculate number of threads to be stolen from other exec. units */
-
 
572
    spinlock_lock(&(CPU->arch.exec_unit->proposed_nrdy_lock));
-
 
573
    bool eu_busy = calculate_optimal_nrdy(CPU->arch.exec_unit);
-
 
574
    unsigned int count_other_eus = CPU->arch.proposed_nrdy
-
 
575
        - atomic_get(&(CPU->nrdy));
-
 
576
    spinlock_unlock(&(CPU->arch.exec_unit->proposed_nrdy_lock));
-
 
577
 
-
 
578
    /*
-
 
579
     * If the CPU's parent core is overloaded, do not do the load
-
 
580
     * balancing, otherwise we would migrate threads which should be
-
 
581
     * migrated to other cores and since a thread cannot be migrated
-
 
582
     * multiple times, it would not be migrated to the other core
-
 
583
     * in the future.
-
 
584
     */
-
 
585
    if (eu_busy)
-
 
586
        return;
-
 
587
 
-
 
588
    /*
-
 
589
     * get the maximum - stole enough threads to satisfy both the need to
-
 
590
     * have all virtual CPUs equally busy and the need to have all the
-
 
591
     * cores equally busy
-
 
592
     */
-
 
593
    if (((int) count_other_eus) > count)
-
 
594
        count = count_other_eus;
-
 
595
 
568
    if (count <= 0)
596
    if (count <= 0)
569
        goto satisfied;
597
        goto satisfied;
570
 
598
 
571
    /*
599
    /*
572
     * Searching least priority queues on all CPU's first and most priority
600
     * Searching least priority queues on all CPU's first and most priority
573
     * queues on all CPU's last.
601
     * queues on all CPU's last.
574
     */
602
     */
575
    for (j = RQ_COUNT - 1; j >= 0; j--) {
603
    for (j = RQ_COUNT - 1; j >= 0; j--) {
576
        for (i = 0; i < config.cpu_active; i++) {
604
        for (i = 0; i < config.cpu_active; i++) {
577
            link_t *l;
605
            link_t *l;
578
            runq_t *r;
606
            runq_t *r;
579
            cpu_t *cpu;
607
            cpu_t *cpu;
580
 
608
 
581
            cpu = &cpus[(i + k) % config.cpu_active];
609
            cpu = &cpus[(i + k) % config.cpu_active];
582
 
610
 
583
            /*
611
            /*
584
             * Not interested in ourselves.
612
             * Not interested in ourselves.
585
             * Doesn't require interrupt disabling for kcpulb has
613
             * Doesn't require interrupt disabling for kcpulb has
586
             * THREAD_FLAG_WIRED.
614
             * THREAD_FLAG_WIRED.
587
             */
615
             */
588
            if (CPU == cpu)
616
            if (CPU == cpu)
589
                continue;
617
                continue;
590
            if (atomic_get(&cpu->nrdy) <= average)
618
            if (atomic_get(&cpu->nrdy) <= average)
591
                continue;
619
                continue;
592
 
620
 
593
            ipl = interrupts_disable();
621
            ipl = interrupts_disable();
594
            r = &cpu->rq[j];
622
            r = &cpu->rq[j];
595
            spinlock_lock(&r->lock);
623
            spinlock_lock(&r->lock);
596
            if (r->n == 0) {
624
            if (r->n == 0) {
597
                spinlock_unlock(&r->lock);
625
                spinlock_unlock(&r->lock);
598
                interrupts_restore(ipl);
626
                interrupts_restore(ipl);
599
                continue;
627
                continue;
600
            }
628
            }
601
       
629
       
602
            t = NULL;
630
            t = NULL;
603
            l = r->rq_head.prev;    /* search rq from the back */
631
            l = r->rq_head.prev;    /* search rq from the back */
604
            while (l != &r->rq_head) {
632
            while (l != &r->rq_head) {
605
                t = list_get_instance(l, thread_t, rq_link);
633
                t = list_get_instance(l, thread_t, rq_link);
606
                /*
634
                /*
607
                 * We don't want to steal CPU-wired threads
635
                 * We don't want to steal CPU-wired threads
608
                 * neither threads already stolen. The latter
636
                 * neither threads already stolen. The latter
609
                 * prevents threads from migrating between CPU's
637
                 * prevents threads from migrating between CPU's
610
                 * without ever being run. We don't want to
638
                 * without ever being run. We don't want to
611
                 * steal threads whose FPU context is still in
639
                 * steal threads whose FPU context is still in
612
                 * CPU.
640
                 * CPU.
613
                 */
641
                 */
614
                spinlock_lock(&t->lock);
642
                spinlock_lock(&t->lock);
615
                if ((!(t->flags & (THREAD_FLAG_WIRED |
643
                if ((!(t->flags & (THREAD_FLAG_WIRED |
616
                    THREAD_FLAG_STOLEN))) &&
644
                    THREAD_FLAG_STOLEN))) &&
617
                    (!(t->fpu_context_engaged))) {
645
                    (!(t->fpu_context_engaged))) {
618
                    /*
646
                    /*
619
                     * Remove t from r.
647
                     * Remove t from r.
620
                     */
648
                     */
621
                    spinlock_unlock(&t->lock);
649
                    spinlock_unlock(&t->lock);
622
                   
650
                   
623
                    atomic_dec(&cpu->nrdy);
651
                    atomic_dec(&cpu->nrdy);
624
                    atomic_dec(&nrdy);
652
                    atomic_dec(&nrdy);
-
 
653
                    if (cpu->arch.exec_unit)
-
 
654
                        atomic_dec(&(cpu->arch.exec_unit->nrdy));
625
 
655
 
626
                    r->n--;
656
                    r->n--;
627
                    list_remove(&t->rq_link);
657
                    list_remove(&t->rq_link);
628
 
658
 
629
                    break;
659
                    break;
630
                }
660
                }
631
                spinlock_unlock(&t->lock);
661
                spinlock_unlock(&t->lock);
632
                l = l->prev;
662
                l = l->prev;
633
                t = NULL;
663
                t = NULL;
634
            }
664
            }
635
            spinlock_unlock(&r->lock);
665
            spinlock_unlock(&r->lock);
636
 
666
 
637
            if (t) {
667
            if (t) {
638
                /*
668
                /*
639
                 * Ready t on local CPU
669
                 * Ready t on local CPU
640
                 */
670
                 */
641
                spinlock_lock(&t->lock);
671
                spinlock_lock(&t->lock);
642
#ifdef KCPULB_VERBOSE
672
#ifdef KCPULB_VERBOSE
643
                printf("kcpulb%u: TID %" PRIu64 " -> cpu%u, "
673
                printf("kcpulb%u: TID %" PRIu64 " -> cpu%u, "
644
                    "nrdy=%ld, avg=%ld\n", CPU->id, t->tid,
674
                    "nrdy=%ld, avg=%ld\n", CPU->id, t->tid,
645
                    CPU->id, atomic_get(&CPU->nrdy),
675
                    CPU->id, atomic_get(&CPU->nrdy),
646
                    atomic_get(&nrdy) / config.cpu_active);
676
                    atomic_get(&nrdy) / config.cpu_active);
647
#endif
677
#endif
648
                t->flags |= THREAD_FLAG_STOLEN;
678
                t->flags |= THREAD_FLAG_STOLEN;
649
                t->state = Entering;
679
                t->state = Entering;
650
                spinlock_unlock(&t->lock);
680
                spinlock_unlock(&t->lock);
651
   
681
   
652
                thread_ready(t);
682
                thread_ready(t);
653
 
683
 
654
                interrupts_restore(ipl);
684
                interrupts_restore(ipl);
655
   
685
   
656
                if (--count == 0)
686
                if (--count == 0)
657
                    goto satisfied;
687
                    goto satisfied;
658
                   
688
                   
659
                /*
689
                /*
660
                 * We are not satisfied yet, focus on another
690
                 * We are not satisfied yet, focus on another
661
                 * CPU next time.
691
                 * CPU next time.
662
                 */
692
                 */
663
                k++;
693
                k++;
664
               
694
               
665
                continue;
695
                continue;
666
            }
696
            }
667
            interrupts_restore(ipl);
697
            interrupts_restore(ipl);
668
        }
698
        }
669
    }
699
    }
670
 
700
 
671
    if (atomic_get(&CPU->nrdy)) {
701
    if (atomic_get(&CPU->nrdy)) {
672
        /*
702
        /*
673
         * Be a little bit light-weight and let migrated threads run.
703
         * Be a little bit light-weight and let migrated threads run.
674
         */
704
         */
675
        scheduler();
705
        scheduler();
676
    } else {
706
    } else {
677
        /*
707
        /*
678
         * We failed to migrate a single thread.
708
         * We failed to migrate a single thread.
679
         * Give up this turn.
709
         * Give up this turn.
680
         */
710
         */
681
        goto loop;
711
        goto loop;
682
    }
712
    }
683
       
713
       
684
    goto not_satisfied;
714
    goto not_satisfied;
685
 
715
 
686
satisfied:
716
satisfied:
687
    goto loop;
717
    goto loop;
688
}
718
}
689
 
719
 
690
#endif /* CONFIG_SMP */
720
#endif /* CONFIG_SMP */
691
 
721
 
692
 
722
 
693
/** Print information about threads & scheduler queues */
723
/** Print information about threads & scheduler queues */
694
void sched_print_list(void)
724
void sched_print_list(void)
695
{
725
{
696
    ipl_t ipl;
726
    ipl_t ipl;
697
    unsigned int cpu, i;
727
    unsigned int cpu, i;
698
    runq_t *r;
728
    runq_t *r;
699
    thread_t *t;
729
    thread_t *t;
700
    link_t *cur;
730
    link_t *cur;
701
 
731
 
702
    /* We are going to mess with scheduler structures,
732
    /* We are going to mess with scheduler structures,
703
     * let's not be interrupted */
733
     * let's not be interrupted */
704
    ipl = interrupts_disable();
734
    ipl = interrupts_disable();
705
    for (cpu = 0; cpu < config.cpu_count; cpu++) {
735
    for (cpu = 0; cpu < config.cpu_count; cpu++) {
706
 
736
 
707
        if (!cpus[cpu].active)
737
        if (!cpus[cpu].active)
708
            continue;
738
            continue;
709
 
739
 
710
        spinlock_lock(&cpus[cpu].lock);
740
        spinlock_lock(&cpus[cpu].lock);
711
        printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
741
        printf("cpu%u: address=%p, nrdy=%ld, needs_relink=%" PRIc "\n",
712
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
742
            cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy),
713
            cpus[cpu].needs_relink);
743
            cpus[cpu].needs_relink);
714
       
744
       
715
        for (i = 0; i < RQ_COUNT; i++) {
745
        for (i = 0; i < RQ_COUNT; i++) {
716
            r = &cpus[cpu].rq[i];
746
            r = &cpus[cpu].rq[i];
717
            spinlock_lock(&r->lock);
747
            spinlock_lock(&r->lock);
718
            if (!r->n) {
748
            if (!r->n) {
719
                spinlock_unlock(&r->lock);
749
                spinlock_unlock(&r->lock);
720
                continue;
750
                continue;
721
            }
751
            }
722
            printf("\trq[%u]: ", i);
752
            printf("\trq[%u]: ", i);
723
            for (cur = r->rq_head.next; cur != &r->rq_head;
753
            for (cur = r->rq_head.next; cur != &r->rq_head;
724
                cur = cur->next) {
754
                cur = cur->next) {
725
                t = list_get_instance(cur, thread_t, rq_link);
755
                t = list_get_instance(cur, thread_t, rq_link);
726
                printf("%" PRIu64 "(%s) ", t->tid,
756
                printf("%" PRIu64 "(%s) ", t->tid,
727
                    thread_states[t->state]);
757
                    thread_states[t->state]);
728
            }
758
            }
729
            printf("\n");
759
            printf("\n");
730
            spinlock_unlock(&r->lock);
760
            spinlock_unlock(&r->lock);
731
        }
761
        }
732
        spinlock_unlock(&cpus[cpu].lock);
762
        spinlock_unlock(&cpus[cpu].lock);
733
    }
763
    }
734
   
764
   
735
    interrupts_restore(ipl);
765
    interrupts_restore(ipl);
736
}
766
}
737
 
767
 
738
/** @}
768
/** @}
739
 */
769
 */
740
 
770