Subversion Repositories HelenOS

Rev

Rev 3492 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3492 Rev 3742
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int);
114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
117
static void sh_info_remove_reference(share_info_t *);
118
 
118
 
119
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
120
{
120
{
121
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
122
    int rc;
122
    int rc;
123
 
123
 
124
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
   
126
   
127
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
128
   
128
   
129
    return rc;
129
    return rc;
130
}
130
}
131
 
131
 
132
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
133
{
133
{
134
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
135
 
135
 
136
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
137
}
137
}
138
 
138
 
139
/** Initialize address space subsystem. */
139
/** Initialize address space subsystem. */
140
void as_init(void)
140
void as_init(void)
141
{
141
{
142
    as_arch_init();
142
    as_arch_init();
143
 
143
 
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
   
146
   
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    if (!AS_KERNEL)
148
    if (!AS_KERNEL)
149
        panic("can't create kernel address space\n");
149
        panic("Cannot create kernel address space\n");
150
   
150
   
-
 
151
    /* Make sure the kernel address space
-
 
152
     * reference count never drops to zero.
-
 
153
     */
-
 
154
    atomic_set(&AS_KERNEL->refcount, 1);
151
}
155
}
152
 
156
 
153
/** Create address space.
157
/** Create address space.
154
 *
158
 *
155
 * @param flags     Flags that influence the way in wich the address space
159
 * @param flags     Flags that influence the way in wich the address space
156
 *          is created.
160
 *          is created.
157
 */
161
 */
158
as_t *as_create(int flags)
162
as_t *as_create(int flags)
159
{
163
{
160
    as_t *as;
164
    as_t *as;
161
 
165
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
166
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
167
    (void) as_create_arch(as, 0);
164
   
168
   
165
    btree_create(&as->as_area_btree);
169
    btree_create(&as->as_area_btree);
166
   
170
   
167
    if (flags & FLAG_AS_KERNEL)
171
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
172
        as->asid = ASID_KERNEL;
169
    else
173
    else
170
        as->asid = ASID_INVALID;
174
        as->asid = ASID_INVALID;
171
   
175
   
172
    atomic_set(&as->refcount, 0);
176
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
177
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
178
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
179
    as->genarch.page_table = page_table_create(flags);
176
#else
180
#else
177
    page_table_create(flags);
181
    page_table_create(flags);
178
#endif
182
#endif
179
 
183
   
180
    return as;
184
    return as;
181
}
185
}
182
 
186
 
183
/** Destroy adress space.
187
/** Destroy adress space.
184
 *
188
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
189
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
190
 * zero), the address space can be destroyed.
187
 *
191
 *
188
 * We know that we don't hold any spinlock.
192
 * We know that we don't hold any spinlock.
189
 *
193
 *
190
 * @param as        Address space to be destroyed.
194
 * @param as        Address space to be destroyed.
191
 */
195
 */
192
void as_destroy(as_t *as)
196
void as_destroy(as_t *as)
193
{
197
{
194
    ipl_t ipl;
198
    ipl_t ipl;
195
    bool cond;
199
    bool cond;
196
    DEADLOCK_PROBE_INIT(p_asidlock);
200
    DEADLOCK_PROBE_INIT(p_asidlock);
197
 
201
 
198
    ASSERT(atomic_get(&as->refcount) == 0);
202
    ASSERT(atomic_get(&as->refcount) == 0);
199
   
203
   
200
    /*
204
    /*
201
     * Since there is no reference to this area,
205
     * Since there is no reference to this area,
202
     * it is safe not to lock its mutex.
206
     * it is safe not to lock its mutex.
203
     */
207
     */
204
 
208
 
205
    /*
209
    /*
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
210
     * We need to avoid deadlock between TLB shootdown and asidlock.
207
     * We therefore try to take asid conditionally and if we don't succeed,
211
     * We therefore try to take asid conditionally and if we don't succeed,
208
     * we enable interrupts and try again. This is done while preemption is
212
     * we enable interrupts and try again. This is done while preemption is
209
     * disabled to prevent nested context switches. We also depend on the
213
     * disabled to prevent nested context switches. We also depend on the
210
     * fact that so far no spinlocks are held.
214
     * fact that so far no spinlocks are held.
211
     */
215
     */
212
    preemption_disable();
216
    preemption_disable();
213
    ipl = interrupts_read();
217
    ipl = interrupts_read();
214
retry:
218
retry:
215
    interrupts_disable();
219
    interrupts_disable();
216
    if (!spinlock_trylock(&asidlock)) {
220
    if (!spinlock_trylock(&asidlock)) {
217
        interrupts_enable();
221
        interrupts_enable();
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
222
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
        goto retry;
223
        goto retry;
220
    }
224
    }
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
225
    preemption_enable();    /* Interrupts disabled, enable preemption */
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
226
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
223
        if (as != AS && as->cpu_refcount == 0)
227
        if (as != AS && as->cpu_refcount == 0)
224
            list_remove(&as->inactive_as_with_asid_link);
228
            list_remove(&as->inactive_as_with_asid_link);
225
        asid_put(as->asid);
229
        asid_put(as->asid);
226
    }
230
    }
227
    spinlock_unlock(&asidlock);
231
    spinlock_unlock(&asidlock);
228
 
232
 
229
    /*
233
    /*
230
     * Destroy address space areas of the address space.
234
     * Destroy address space areas of the address space.
231
     * The B+tree must be walked carefully because it is
235
     * The B+tree must be walked carefully because it is
232
     * also being destroyed.
236
     * also being destroyed.
233
     */
237
     */
234
    for (cond = true; cond; ) {
238
    for (cond = true; cond; ) {
235
        btree_node_t *node;
239
        btree_node_t *node;
236
 
240
 
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
241
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
242
        node = list_get_instance(as->as_area_btree.leaf_head.next,
239
            btree_node_t, leaf_link);
243
            btree_node_t, leaf_link);
240
 
244
 
241
        if ((cond = node->keys)) {
245
        if ((cond = node->keys)) {
242
            as_area_destroy(as, node->key[0]);
246
            as_area_destroy(as, node->key[0]);
243
        }
247
        }
244
    }
248
    }
245
 
249
 
246
    btree_destroy(&as->as_area_btree);
250
    btree_destroy(&as->as_area_btree);
247
#ifdef AS_PAGE_TABLE
251
#ifdef AS_PAGE_TABLE
248
    page_table_destroy(as->genarch.page_table);
252
    page_table_destroy(as->genarch.page_table);
249
#else
253
#else
250
    page_table_destroy(NULL);
254
    page_table_destroy(NULL);
251
#endif
255
#endif
252
 
256
 
253
    interrupts_restore(ipl);
257
    interrupts_restore(ipl);
254
 
258
 
255
    slab_free(as_slab, as);
259
    slab_free(as_slab, as);
256
}
260
}
257
 
261
 
258
/** Create address space area of common attributes.
262
/** Create address space area of common attributes.
259
 *
263
 *
260
 * The created address space area is added to the target address space.
264
 * The created address space area is added to the target address space.
261
 *
265
 *
262
 * @param as        Target address space.
266
 * @param as        Target address space.
263
 * @param flags     Flags of the area memory.
267
 * @param flags     Flags of the area memory.
264
 * @param size      Size of area.
268
 * @param size      Size of area.
265
 * @param base      Base address of area.
269
 * @param base      Base address of area.
266
 * @param attrs     Attributes of the area.
270
 * @param attrs     Attributes of the area.
267
 * @param backend   Address space area backend. NULL if no backend is used.
271
 * @param backend   Address space area backend. NULL if no backend is used.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
272
 * @param backend_data  NULL or a pointer to an array holding two void *.
269
 *
273
 *
270
 * @return      Address space area on success or NULL on failure.
274
 * @return      Address space area on success or NULL on failure.
271
 */
275
 */
272
as_area_t *
276
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
277
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
278
    mem_backend_t *backend, mem_backend_data_t *backend_data)
275
{
279
{
276
    ipl_t ipl;
280
    ipl_t ipl;
277
    as_area_t *a;
281
    as_area_t *a;
278
   
282
   
279
    if (base % PAGE_SIZE)
283
    if (base % PAGE_SIZE)
280
        return NULL;
284
        return NULL;
281
 
285
 
282
    if (!size)
286
    if (!size)
283
        return NULL;
287
        return NULL;
284
 
288
 
285
    /* Writeable executable areas are not supported. */
289
    /* Writeable executable areas are not supported. */
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
290
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
        return NULL;
291
        return NULL;
288
   
292
   
289
    ipl = interrupts_disable();
293
    ipl = interrupts_disable();
290
    mutex_lock(&as->lock);
294
    mutex_lock(&as->lock);
291
   
295
   
292
    if (!check_area_conflicts(as, base, size, NULL)) {
296
    if (!check_area_conflicts(as, base, size, NULL)) {
293
        mutex_unlock(&as->lock);
297
        mutex_unlock(&as->lock);
294
        interrupts_restore(ipl);
298
        interrupts_restore(ipl);
295
        return NULL;
299
        return NULL;
296
    }
300
    }
297
   
301
   
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
302
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
299
 
303
 
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
304
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
301
   
305
   
302
    a->as = as;
306
    a->as = as;
303
    a->flags = flags;
307
    a->flags = flags;
304
    a->attributes = attrs;
308
    a->attributes = attrs;
305
    a->pages = SIZE2FRAMES(size);
309
    a->pages = SIZE2FRAMES(size);
306
    a->base = base;
310
    a->base = base;
307
    a->sh_info = NULL;
311
    a->sh_info = NULL;
308
    a->backend = backend;
312
    a->backend = backend;
309
    if (backend_data)
313
    if (backend_data)
310
        a->backend_data = *backend_data;
314
        a->backend_data = *backend_data;
311
    else
315
    else
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
316
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
313
 
317
 
314
    btree_create(&a->used_space);
318
    btree_create(&a->used_space);
315
   
319
   
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
320
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
317
 
321
 
318
    mutex_unlock(&as->lock);
322
    mutex_unlock(&as->lock);
319
    interrupts_restore(ipl);
323
    interrupts_restore(ipl);
320
 
324
 
321
    return a;
325
    return a;
322
}
326
}
323
 
327
 
324
/** Find address space area and change it.
328
/** Find address space area and change it.
325
 *
329
 *
326
 * @param as        Address space.
330
 * @param as        Address space.
327
 * @param address   Virtual address belonging to the area to be changed.
331
 * @param address   Virtual address belonging to the area to be changed.
328
 *          Must be page-aligned.
332
 *          Must be page-aligned.
329
 * @param size      New size of the virtual memory block starting at
333
 * @param size      New size of the virtual memory block starting at
330
 *          address.
334
 *          address.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
335
 * @param flags     Flags influencing the remap operation. Currently unused.
332
 *
336
 *
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
337
 * @return      Zero on success or a value from @ref errno.h otherwise.
334
 */
338
 */
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
339
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
336
{
340
{
337
    as_area_t *area;
341
    as_area_t *area;
338
    ipl_t ipl;
342
    ipl_t ipl;
339
    size_t pages;
343
    size_t pages;
340
   
344
   
341
    ipl = interrupts_disable();
345
    ipl = interrupts_disable();
342
    mutex_lock(&as->lock);
346
    mutex_lock(&as->lock);
343
   
347
   
344
    /*
348
    /*
345
     * Locate the area.
349
     * Locate the area.
346
     */
350
     */
347
    area = find_area_and_lock(as, address);
351
    area = find_area_and_lock(as, address);
348
    if (!area) {
352
    if (!area) {
349
        mutex_unlock(&as->lock);
353
        mutex_unlock(&as->lock);
350
        interrupts_restore(ipl);
354
        interrupts_restore(ipl);
351
        return ENOENT;
355
        return ENOENT;
352
    }
356
    }
353
 
357
 
354
    if (area->backend == &phys_backend) {
358
    if (area->backend == &phys_backend) {
355
        /*
359
        /*
356
         * Remapping of address space areas associated
360
         * Remapping of address space areas associated
357
         * with memory mapped devices is not supported.
361
         * with memory mapped devices is not supported.
358
         */
362
         */
359
        mutex_unlock(&area->lock);
363
        mutex_unlock(&area->lock);
360
        mutex_unlock(&as->lock);
364
        mutex_unlock(&as->lock);
361
        interrupts_restore(ipl);
365
        interrupts_restore(ipl);
362
        return ENOTSUP;
366
        return ENOTSUP;
363
    }
367
    }
364
    if (area->sh_info) {
368
    if (area->sh_info) {
365
        /*
369
        /*
366
         * Remapping of shared address space areas
370
         * Remapping of shared address space areas
367
         * is not supported.
371
         * is not supported.
368
         */
372
         */
369
        mutex_unlock(&area->lock);
373
        mutex_unlock(&area->lock);
370
        mutex_unlock(&as->lock);
374
        mutex_unlock(&as->lock);
371
        interrupts_restore(ipl);
375
        interrupts_restore(ipl);
372
        return ENOTSUP;
376
        return ENOTSUP;
373
    }
377
    }
374
 
378
 
375
    pages = SIZE2FRAMES((address - area->base) + size);
379
    pages = SIZE2FRAMES((address - area->base) + size);
376
    if (!pages) {
380
    if (!pages) {
377
        /*
381
        /*
378
         * Zero size address space areas are not allowed.
382
         * Zero size address space areas are not allowed.
379
         */
383
         */
380
        mutex_unlock(&area->lock);
384
        mutex_unlock(&area->lock);
381
        mutex_unlock(&as->lock);
385
        mutex_unlock(&as->lock);
382
        interrupts_restore(ipl);
386
        interrupts_restore(ipl);
383
        return EPERM;
387
        return EPERM;
384
    }
388
    }
385
   
389
   
386
    if (pages < area->pages) {
390
    if (pages < area->pages) {
387
        bool cond;
391
        bool cond;
388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
392
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
389
 
393
 
390
        /*
394
        /*
391
         * Shrinking the area.
395
         * Shrinking the area.
392
         * No need to check for overlaps.
396
         * No need to check for overlaps.
393
         */
397
         */
394
 
398
 
395
        /*
399
        /*
396
         * Start TLB shootdown sequence.
400
         * Start TLB shootdown sequence.
397
         */
401
         */
398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
402
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
399
            pages * PAGE_SIZE, area->pages - pages);
403
            pages * PAGE_SIZE, area->pages - pages);
400
 
404
 
401
        /*
405
        /*
402
         * Remove frames belonging to used space starting from
406
         * Remove frames belonging to used space starting from
403
         * the highest addresses downwards until an overlap with
407
         * the highest addresses downwards until an overlap with
404
         * the resized address space area is found. Note that this
408
         * the resized address space area is found. Note that this
405
         * is also the right way to remove part of the used_space
409
         * is also the right way to remove part of the used_space
406
         * B+tree leaf list.
410
         * B+tree leaf list.
407
         */    
411
         */    
408
        for (cond = true; cond;) {
412
        for (cond = true; cond;) {
409
            btree_node_t *node;
413
            btree_node_t *node;
410
       
414
       
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
415
            ASSERT(!list_empty(&area->used_space.leaf_head));
412
            node =
416
            node =
413
                list_get_instance(area->used_space.leaf_head.prev,
417
                list_get_instance(area->used_space.leaf_head.prev,
414
                btree_node_t, leaf_link);
418
                btree_node_t, leaf_link);
415
            if ((cond = (bool) node->keys)) {
419
            if ((cond = (bool) node->keys)) {
416
                uintptr_t b = node->key[node->keys - 1];
420
                uintptr_t b = node->key[node->keys - 1];
417
                count_t c =
421
                count_t c =
418
                    (count_t) node->value[node->keys - 1];
422
                    (count_t) node->value[node->keys - 1];
419
                unsigned int i = 0;
423
                unsigned int i = 0;
420
           
424
           
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
425
                if (overlaps(b, c * PAGE_SIZE, area->base,
422
                    pages * PAGE_SIZE)) {
426
                    pages * PAGE_SIZE)) {
423
                   
427
                   
424
                    if (b + c * PAGE_SIZE <= start_free) {
428
                    if (b + c * PAGE_SIZE <= start_free) {
425
                        /*
429
                        /*
426
                         * The whole interval fits
430
                         * The whole interval fits
427
                         * completely in the resized
431
                         * completely in the resized
428
                         * address space area.
432
                         * address space area.
429
                         */
433
                         */
430
                        break;
434
                        break;
431
                    }
435
                    }
432
       
436
       
433
                    /*
437
                    /*
434
                     * Part of the interval corresponding
438
                     * Part of the interval corresponding
435
                     * to b and c overlaps with the resized
439
                     * to b and c overlaps with the resized
436
                     * address space area.
440
                     * address space area.
437
                     */
441
                     */
438
       
442
       
439
                    cond = false;   /* we are almost done */
443
                    cond = false;   /* we are almost done */
440
                    i = (start_free - b) >> PAGE_WIDTH;
444
                    i = (start_free - b) >> PAGE_WIDTH;
441
                    if (!used_space_remove(area, start_free,
445
                    if (!used_space_remove(area, start_free,
442
                        c - i))
446
                        c - i))
443
                        panic("Could not remove used "
447
                        panic("Could not remove used "
444
                            "space.\n");
448
                            "space.\n");
445
                } else {
449
                } else {
446
                    /*
450
                    /*
447
                     * The interval of used space can be
451
                     * The interval of used space can be
448
                     * completely removed.
452
                     * completely removed.
449
                     */
453
                     */
450
                    if (!used_space_remove(area, b, c))
454
                    if (!used_space_remove(area, b, c))
451
                        panic("Could not remove used "
455
                        panic("Could not remove used "
452
                            "space.\n");
456
                            "space.\n");
453
                }
457
                }
454
           
458
           
455
                for (; i < c; i++) {
459
                for (; i < c; i++) {
456
                    pte_t *pte;
460
                    pte_t *pte;
457
           
461
           
458
                    page_table_lock(as, false);
462
                    page_table_lock(as, false);
459
                    pte = page_mapping_find(as, b +
463
                    pte = page_mapping_find(as, b +
460
                        i * PAGE_SIZE);
464
                        i * PAGE_SIZE);
461
                    ASSERT(pte && PTE_VALID(pte) &&
465
                    ASSERT(pte && PTE_VALID(pte) &&
462
                        PTE_PRESENT(pte));
466
                        PTE_PRESENT(pte));
463
                    if (area->backend &&
467
                    if (area->backend &&
464
                        area->backend->frame_free) {
468
                        area->backend->frame_free) {
465
                        area->backend->frame_free(area,
469
                        area->backend->frame_free(area,
466
                            b + i * PAGE_SIZE,
470
                            b + i * PAGE_SIZE,
467
                            PTE_GET_FRAME(pte));
471
                            PTE_GET_FRAME(pte));
468
                    }
472
                    }
469
                    page_mapping_remove(as, b +
473
                    page_mapping_remove(as, b +
470
                        i * PAGE_SIZE);
474
                        i * PAGE_SIZE);
471
                    page_table_unlock(as, false);
475
                    page_table_unlock(as, false);
472
                }
476
                }
473
            }
477
            }
474
        }
478
        }
475
 
479
 
476
        /*
480
        /*
477
         * Finish TLB shootdown sequence.
481
         * Finish TLB shootdown sequence.
478
         */
482
         */
479
 
483
 
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
484
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
            area->pages - pages);
485
            area->pages - pages);
482
        /*
486
        /*
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
487
         * Invalidate software translation caches (e.g. TSB on sparc64).
484
         */
488
         */
485
        as_invalidate_translation_cache(as, area->base +
489
        as_invalidate_translation_cache(as, area->base +
486
            pages * PAGE_SIZE, area->pages - pages);
490
            pages * PAGE_SIZE, area->pages - pages);
487
        tlb_shootdown_finalize();
491
        tlb_shootdown_finalize();
488
       
492
       
489
    } else {
493
    } else {
490
        /*
494
        /*
491
         * Growing the area.
495
         * Growing the area.
492
         * Check for overlaps with other address space areas.
496
         * Check for overlaps with other address space areas.
493
         */
497
         */
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
498
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
            area)) {
499
            area)) {
496
            mutex_unlock(&area->lock);
500
            mutex_unlock(&area->lock);
497
            mutex_unlock(&as->lock);       
501
            mutex_unlock(&as->lock);       
498
            interrupts_restore(ipl);
502
            interrupts_restore(ipl);
499
            return EADDRNOTAVAIL;
503
            return EADDRNOTAVAIL;
500
        }
504
        }
501
    }
505
    }
502
 
506
 
503
    area->pages = pages;
507
    area->pages = pages;
504
   
508
   
505
    mutex_unlock(&area->lock);
509
    mutex_unlock(&area->lock);
506
    mutex_unlock(&as->lock);
510
    mutex_unlock(&as->lock);
507
    interrupts_restore(ipl);
511
    interrupts_restore(ipl);
508
 
512
 
509
    return 0;
513
    return 0;
510
}
514
}
511
 
515
 
512
/** Destroy address space area.
516
/** Destroy address space area.
513
 *
517
 *
514
 * @param as        Address space.
518
 * @param as        Address space.
515
 * @param address   Address within the area to be deleted.
519
 * @param address   Address within the area to be deleted.
516
 *
520
 *
517
 * @return      Zero on success or a value from @ref errno.h on failure.
521
 * @return      Zero on success or a value from @ref errno.h on failure.
518
 */
522
 */
519
int as_area_destroy(as_t *as, uintptr_t address)
523
int as_area_destroy(as_t *as, uintptr_t address)
520
{
524
{
521
    as_area_t *area;
525
    as_area_t *area;
522
    uintptr_t base;
526
    uintptr_t base;
523
    link_t *cur;
527
    link_t *cur;
524
    ipl_t ipl;
528
    ipl_t ipl;
525
 
529
 
526
    ipl = interrupts_disable();
530
    ipl = interrupts_disable();
527
    mutex_lock(&as->lock);
531
    mutex_lock(&as->lock);
528
 
532
 
529
    area = find_area_and_lock(as, address);
533
    area = find_area_and_lock(as, address);
530
    if (!area) {
534
    if (!area) {
531
        mutex_unlock(&as->lock);
535
        mutex_unlock(&as->lock);
532
        interrupts_restore(ipl);
536
        interrupts_restore(ipl);
533
        return ENOENT;
537
        return ENOENT;
534
    }
538
    }
535
 
539
 
536
    base = area->base;
540
    base = area->base;
537
 
541
 
538
    /*
542
    /*
539
     * Start TLB shootdown sequence.
543
     * Start TLB shootdown sequence.
540
     */
544
     */
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
545
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
542
 
546
 
543
    /*
547
    /*
544
     * Visit only the pages mapped by used_space B+tree.
548
     * Visit only the pages mapped by used_space B+tree.
545
     */
549
     */
546
    for (cur = area->used_space.leaf_head.next;
550
    for (cur = area->used_space.leaf_head.next;
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
551
        cur != &area->used_space.leaf_head; cur = cur->next) {
548
        btree_node_t *node;
552
        btree_node_t *node;
549
        unsigned int i;
553
        unsigned int i;
550
       
554
       
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
555
        node = list_get_instance(cur, btree_node_t, leaf_link);
552
        for (i = 0; i < node->keys; i++) {
556
        for (i = 0; i < node->keys; i++) {
553
            uintptr_t b = node->key[i];
557
            uintptr_t b = node->key[i];
554
            count_t j;
558
            count_t j;
555
            pte_t *pte;
559
            pte_t *pte;
556
           
560
           
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
561
            for (j = 0; j < (count_t) node->value[i]; j++) {
558
                page_table_lock(as, false);
562
                page_table_lock(as, false);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
563
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
                ASSERT(pte && PTE_VALID(pte) &&
564
                ASSERT(pte && PTE_VALID(pte) &&
561
                    PTE_PRESENT(pte));
565
                    PTE_PRESENT(pte));
562
                if (area->backend &&
566
                if (area->backend &&
563
                    area->backend->frame_free) {
567
                    area->backend->frame_free) {
564
                    area->backend->frame_free(area, b +
568
                    area->backend->frame_free(area, b +
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
569
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
566
                }
570
                }
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
571
                page_mapping_remove(as, b + j * PAGE_SIZE);            
568
                page_table_unlock(as, false);
572
                page_table_unlock(as, false);
569
            }
573
            }
570
        }
574
        }
571
    }
575
    }
572
 
576
 
573
    /*
577
    /*
574
     * Finish TLB shootdown sequence.
578
     * Finish TLB shootdown sequence.
575
     */
579
     */
576
 
580
 
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
581
    tlb_invalidate_pages(as->asid, area->base, area->pages);
578
    /*
582
    /*
579
     * Invalidate potential software translation caches (e.g. TSB on
583
     * Invalidate potential software translation caches (e.g. TSB on
580
     * sparc64).
584
     * sparc64).
581
     */
585
     */
582
    as_invalidate_translation_cache(as, area->base, area->pages);
586
    as_invalidate_translation_cache(as, area->base, area->pages);
583
    tlb_shootdown_finalize();
587
    tlb_shootdown_finalize();
584
   
588
   
585
    btree_destroy(&area->used_space);
589
    btree_destroy(&area->used_space);
586
 
590
 
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
591
    area->attributes |= AS_AREA_ATTR_PARTIAL;
588
   
592
   
589
    if (area->sh_info)
593
    if (area->sh_info)
590
        sh_info_remove_reference(area->sh_info);
594
        sh_info_remove_reference(area->sh_info);
591
       
595
       
592
    mutex_unlock(&area->lock);
596
    mutex_unlock(&area->lock);
593
 
597
 
594
    /*
598
    /*
595
     * Remove the empty area from address space.
599
     * Remove the empty area from address space.
596
     */
600
     */
597
    btree_remove(&as->as_area_btree, base, NULL);
601
    btree_remove(&as->as_area_btree, base, NULL);
598
   
602
   
599
    free(area);
603
    free(area);
600
   
604
   
601
    mutex_unlock(&as->lock);
605
    mutex_unlock(&as->lock);
602
    interrupts_restore(ipl);
606
    interrupts_restore(ipl);
603
    return 0;
607
    return 0;
604
}
608
}
605
 
609
 
606
/** Share address space area with another or the same address space.
610
/** Share address space area with another or the same address space.
607
 *
611
 *
608
 * Address space area mapping is shared with a new address space area.
612
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
613
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
614
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
615
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
616
 * mapping is done through the backend share function.
613
 *
617
 *
614
 * @param src_as    Pointer to source address space.
618
 * @param src_as    Pointer to source address space.
615
 * @param src_base  Base address of the source address space area.
619
 * @param src_base  Base address of the source address space area.
616
 * @param acc_size  Expected size of the source area.
620
 * @param acc_size  Expected size of the source area.
617
 * @param dst_as    Pointer to destination address space.
621
 * @param dst_as    Pointer to destination address space.
618
 * @param dst_base  Target base address.
622
 * @param dst_base  Target base address.
619
 * @param dst_flags_mask Destination address space area flags mask.
623
 * @param dst_flags_mask Destination address space area flags mask.
620
 *
624
 *
621
 * @return      Zero on success or ENOENT if there is no such task or if
625
 * @return      Zero on success or ENOENT if there is no such task or if
622
 *          there is no such address space area, EPERM if there was
626
 *          there is no such address space area, EPERM if there was
623
 *          a problem in accepting the area or ENOMEM if there was a
627
 *          a problem in accepting the area or ENOMEM if there was a
624
 *          problem in allocating destination address space area.
628
 *          problem in allocating destination address space area.
625
 *          ENOTSUP is returned if the address space area backend
629
 *          ENOTSUP is returned if the address space area backend
626
 *          does not support sharing.
630
 *          does not support sharing.
627
 */
631
 */
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
632
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
633
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
630
{
634
{
631
    ipl_t ipl;
635
    ipl_t ipl;
632
    int src_flags;
636
    int src_flags;
633
    size_t src_size;
637
    size_t src_size;
634
    as_area_t *src_area, *dst_area;
638
    as_area_t *src_area, *dst_area;
635
    share_info_t *sh_info;
639
    share_info_t *sh_info;
636
    mem_backend_t *src_backend;
640
    mem_backend_t *src_backend;
637
    mem_backend_data_t src_backend_data;
641
    mem_backend_data_t src_backend_data;
638
   
642
   
639
    ipl = interrupts_disable();
643
    ipl = interrupts_disable();
640
    mutex_lock(&src_as->lock);
644
    mutex_lock(&src_as->lock);
641
    src_area = find_area_and_lock(src_as, src_base);
645
    src_area = find_area_and_lock(src_as, src_base);
642
    if (!src_area) {
646
    if (!src_area) {
643
        /*
647
        /*
644
         * Could not find the source address space area.
648
         * Could not find the source address space area.
645
         */
649
         */
646
        mutex_unlock(&src_as->lock);
650
        mutex_unlock(&src_as->lock);
647
        interrupts_restore(ipl);
651
        interrupts_restore(ipl);
648
        return ENOENT;
652
        return ENOENT;
649
    }
653
    }
650
 
654
 
651
    if (!src_area->backend || !src_area->backend->share) {
655
    if (!src_area->backend || !src_area->backend->share) {
652
        /*
656
        /*
653
         * There is no backend or the backend does not
657
         * There is no backend or the backend does not
654
         * know how to share the area.
658
         * know how to share the area.
655
         */
659
         */
656
        mutex_unlock(&src_area->lock);
660
        mutex_unlock(&src_area->lock);
657
        mutex_unlock(&src_as->lock);
661
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
662
        interrupts_restore(ipl);
659
        return ENOTSUP;
663
        return ENOTSUP;
660
    }
664
    }
661
   
665
   
662
    src_size = src_area->pages * PAGE_SIZE;
666
    src_size = src_area->pages * PAGE_SIZE;
663
    src_flags = src_area->flags;
667
    src_flags = src_area->flags;
664
    src_backend = src_area->backend;
668
    src_backend = src_area->backend;
665
    src_backend_data = src_area->backend_data;
669
    src_backend_data = src_area->backend_data;
666
 
670
 
667
    /* Share the cacheable flag from the original mapping */
671
    /* Share the cacheable flag from the original mapping */
668
    if (src_flags & AS_AREA_CACHEABLE)
672
    if (src_flags & AS_AREA_CACHEABLE)
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
673
        dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
674
 
671
    if (src_size != acc_size ||
675
    if (src_size != acc_size ||
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
676
        (src_flags & dst_flags_mask) != dst_flags_mask) {
673
        mutex_unlock(&src_area->lock);
677
        mutex_unlock(&src_area->lock);
674
        mutex_unlock(&src_as->lock);
678
        mutex_unlock(&src_as->lock);
675
        interrupts_restore(ipl);
679
        interrupts_restore(ipl);
676
        return EPERM;
680
        return EPERM;
677
    }
681
    }
678
 
682
 
679
    /*
683
    /*
680
     * Now we are committed to sharing the area.
684
     * Now we are committed to sharing the area.
681
     * First, prepare the area for sharing.
685
     * First, prepare the area for sharing.
682
     * Then it will be safe to unlock it.
686
     * Then it will be safe to unlock it.
683
     */
687
     */
684
    sh_info = src_area->sh_info;
688
    sh_info = src_area->sh_info;
685
    if (!sh_info) {
689
    if (!sh_info) {
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
690
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
691
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
688
        sh_info->refcount = 2;
692
        sh_info->refcount = 2;
689
        btree_create(&sh_info->pagemap);
693
        btree_create(&sh_info->pagemap);
690
        src_area->sh_info = sh_info;
694
        src_area->sh_info = sh_info;
691
        /*
695
        /*
692
         * Call the backend to setup sharing.
696
         * Call the backend to setup sharing.
693
         */
697
         */
694
        src_area->backend->share(src_area);
698
        src_area->backend->share(src_area);
695
    } else {
699
    } else {
696
        mutex_lock(&sh_info->lock);
700
        mutex_lock(&sh_info->lock);
697
        sh_info->refcount++;
701
        sh_info->refcount++;
698
        mutex_unlock(&sh_info->lock);
702
        mutex_unlock(&sh_info->lock);
699
    }
703
    }
700
 
704
 
701
    mutex_unlock(&src_area->lock);
705
    mutex_unlock(&src_area->lock);
702
    mutex_unlock(&src_as->lock);
706
    mutex_unlock(&src_as->lock);
703
 
707
 
704
    /*
708
    /*
705
     * Create copy of the source address space area.
709
     * Create copy of the source address space area.
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
710
     * The destination area is created with AS_AREA_ATTR_PARTIAL
707
     * attribute set which prevents race condition with
711
     * attribute set which prevents race condition with
708
     * preliminary as_page_fault() calls.
712
     * preliminary as_page_fault() calls.
709
     * The flags of the source area are masked against dst_flags_mask
713
     * The flags of the source area are masked against dst_flags_mask
710
     * to support sharing in less privileged mode.
714
     * to support sharing in less privileged mode.
711
     */
715
     */
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
716
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
717
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
714
    if (!dst_area) {
718
    if (!dst_area) {
715
        /*
719
        /*
716
         * Destination address space area could not be created.
720
         * Destination address space area could not be created.
717
         */
721
         */
718
        sh_info_remove_reference(sh_info);
722
        sh_info_remove_reference(sh_info);
719
       
723
       
720
        interrupts_restore(ipl);
724
        interrupts_restore(ipl);
721
        return ENOMEM;
725
        return ENOMEM;
722
    }
726
    }
723
 
727
 
724
    /*
728
    /*
725
     * Now the destination address space area has been
729
     * Now the destination address space area has been
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
730
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
727
     * attribute and set the sh_info.
731
     * attribute and set the sh_info.
728
     */
732
     */
729
    mutex_lock(&dst_as->lock); 
733
    mutex_lock(&dst_as->lock); 
730
    mutex_lock(&dst_area->lock);
734
    mutex_lock(&dst_area->lock);
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
735
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
732
    dst_area->sh_info = sh_info;
736
    dst_area->sh_info = sh_info;
733
    mutex_unlock(&dst_area->lock);
737
    mutex_unlock(&dst_area->lock);
734
    mutex_unlock(&dst_as->lock);   
738
    mutex_unlock(&dst_as->lock);   
735
 
739
 
736
    interrupts_restore(ipl);
740
    interrupts_restore(ipl);
737
   
741
   
738
    return 0;
742
    return 0;
739
}
743
}
740
 
744
 
741
/** Check access mode for address space area.
745
/** Check access mode for address space area.
742
 *
746
 *
743
 * The address space area must be locked prior to this call.
747
 * The address space area must be locked prior to this call.
744
 *
748
 *
745
 * @param area      Address space area.
749
 * @param area      Address space area.
746
 * @param access    Access mode.
750
 * @param access    Access mode.
747
 *
751
 *
748
 * @return      False if access violates area's permissions, true
752
 * @return      False if access violates area's permissions, true
749
 *          otherwise.
753
 *          otherwise.
750
 */
754
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
755
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
756
{
753
    int flagmap[] = {
757
    int flagmap[] = {
754
        [PF_ACCESS_READ] = AS_AREA_READ,
758
        [PF_ACCESS_READ] = AS_AREA_READ,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
759
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
760
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
757
    };
761
    };
758
 
762
 
759
    if (!(area->flags & flagmap[access]))
763
    if (!(area->flags & flagmap[access]))
760
        return false;
764
        return false;
761
   
765
   
762
    return true;
766
    return true;
763
}
767
}
764
 
768
 
765
/** Change adress space area flags.
769
/** Change adress space area flags.
766
 *
770
 *
767
 * The idea is to have the same data, but with a different access mode.
771
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
772
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
773
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
774
 * into private anonymous memory (unless it's already there).
771
 *
775
 *
772
 * @param as        Address space.
776
 * @param as      Address space.
773
 * @param flags     Flags of the area memory.
777
 * @param flags   Flags of the area memory.
774
 * @param address   Address withing the area to be changed.
778
 * @param address Address within the area to be changed.
-
 
779
 *
-
 
780
 * @return Zero on success or a value from @ref errno.h on failure.
775
 *
781
 *
776
 * @return      Zero on success or a value from @ref errno.h on failure.
-
 
777
 */
782
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
783
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
784
{
780
    as_area_t *area;
785
    as_area_t *area;
781
    uintptr_t base;
786
    uintptr_t base;
782
    link_t *cur;
787
    link_t *cur;
783
    ipl_t ipl;
788
    ipl_t ipl;
784
    int page_flags;
789
    int page_flags;
785
    uintptr_t *old_frame;
790
    uintptr_t *old_frame;
786
    index_t frame_idx;
791
    index_t frame_idx;
787
    count_t used_pages;
792
    count_t used_pages;
788
 
793
   
789
    /* Flags for the new memory mapping */
794
    /* Flags for the new memory mapping */
790
    page_flags = area_flags_to_page_flags(flags);
795
    page_flags = area_flags_to_page_flags(flags);
791
 
796
 
792
    ipl = interrupts_disable();
797
    ipl = interrupts_disable();
793
    mutex_lock(&as->lock);
798
    mutex_lock(&as->lock);
794
 
799
 
795
    area = find_area_and_lock(as, address);
800
    area = find_area_and_lock(as, address);
796
    if (!area) {
801
    if (!area) {
797
        mutex_unlock(&as->lock);
802
        mutex_unlock(&as->lock);
798
        interrupts_restore(ipl);
803
        interrupts_restore(ipl);
799
        return ENOENT;
804
        return ENOENT;
800
    }
805
    }
801
 
806
 
802
    if (area->sh_info || area->backend != &anon_backend) {
807
    if ((area->sh_info) || (area->backend != &anon_backend)) {
803
        /* Copying shared areas not supported yet */
808
        /* Copying shared areas not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
809
        /* Copying non-anonymous memory not supported yet */
805
        mutex_unlock(&area->lock);
810
        mutex_unlock(&area->lock);
806
        mutex_unlock(&as->lock);
811
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
812
        interrupts_restore(ipl);
808
        return ENOTSUP;
813
        return ENOTSUP;
809
    }
814
    }
810
 
815
 
811
    base = area->base;
816
    base = area->base;
812
 
817
 
813
    /*
818
    /*
814
     * Compute total number of used pages in the used_space B+tree
819
     * Compute total number of used pages in the used_space B+tree
815
     */
820
     */
816
    used_pages = 0;
821
    used_pages = 0;
817
 
822
 
818
    for (cur = area->used_space.leaf_head.next;
823
    for (cur = area->used_space.leaf_head.next;
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
824
        cur != &area->used_space.leaf_head; cur = cur->next) {
820
        btree_node_t *node;
825
        btree_node_t *node;
821
        unsigned int i;
826
        unsigned int i;
822
       
827
       
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
828
        node = list_get_instance(cur, btree_node_t, leaf_link);
824
        for (i = 0; i < node->keys; i++) {
829
        for (i = 0; i < node->keys; i++) {
825
            used_pages += (count_t) node->value[i];
830
            used_pages += (count_t) node->value[i];
826
        }
831
        }
827
    }
832
    }
828
 
833
 
829
    /* An array for storing frame numbers */
834
    /* An array for storing frame numbers */
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
835
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
836
 
832
    /*
837
    /*
833
     * Start TLB shootdown sequence.
838
     * Start TLB shootdown sequence.
834
     */
839
     */
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
840
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
841
 
837
    /*
842
    /*
838
     * Remove used pages from page tables and remember their frame
843
     * Remove used pages from page tables and remember their frame
839
     * numbers.
844
     * numbers.
840
     */
845
     */
841
    frame_idx = 0;
846
    frame_idx = 0;
842
 
847
 
843
    for (cur = area->used_space.leaf_head.next;
848
    for (cur = area->used_space.leaf_head.next;
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
849
        cur != &area->used_space.leaf_head; cur = cur->next) {
845
        btree_node_t *node;
850
        btree_node_t *node;
846
        unsigned int i;
851
        unsigned int i;
847
       
852
       
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
853
        node = list_get_instance(cur, btree_node_t, leaf_link);
849
        for (i = 0; i < node->keys; i++) {
854
        for (i = 0; i < node->keys; i++) {
850
            uintptr_t b = node->key[i];
855
            uintptr_t b = node->key[i];
851
            count_t j;
856
            count_t j;
852
            pte_t *pte;
857
            pte_t *pte;
853
           
858
           
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
859
            for (j = 0; j < (count_t) node->value[i]; j++) {
855
                page_table_lock(as, false);
860
                page_table_lock(as, false);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
861
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
                ASSERT(pte && PTE_VALID(pte) &&
862
                ASSERT(pte && PTE_VALID(pte) &&
858
                    PTE_PRESENT(pte));
863
                    PTE_PRESENT(pte));
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
864
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
865
 
861
                /* Remove old mapping */
866
                /* Remove old mapping */
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
867
                page_mapping_remove(as, b + j * PAGE_SIZE);
863
                page_table_unlock(as, false);
868
                page_table_unlock(as, false);
864
            }
869
            }
865
        }
870
        }
866
    }
871
    }
867
 
872
 
868
    /*
873
    /*
869
     * Finish TLB shootdown sequence.
874
     * Finish TLB shootdown sequence.
870
     */
875
     */
871
 
876
 
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
877
    tlb_invalidate_pages(as->asid, area->base, area->pages);
-
 
878
   
873
    /*
879
    /*
874
     * Invalidate potential software translation caches (e.g. TSB on
880
     * Invalidate potential software translation caches (e.g. TSB on
875
     * sparc64).
881
     * sparc64).
876
     */
882
     */
877
    as_invalidate_translation_cache(as, area->base, area->pages);
883
    as_invalidate_translation_cache(as, area->base, area->pages);
878
    tlb_shootdown_finalize();
884
    tlb_shootdown_finalize();
879
 
885
 
880
    /*
886
    /*
881
     * Set the new flags.
887
     * Set the new flags.
882
     */
888
     */
883
    area->flags = flags;
889
    area->flags = flags;
884
 
890
 
885
    /*
891
    /*
886
     * Map pages back in with new flags. This step is kept separate
892
     * Map pages back in with new flags. This step is kept separate
887
     * so that the memory area could not be accesed with both the old and
893
     * so that the memory area could not be accesed with both the old and
888
     * the new flags at once.
894
     * the new flags at once.
889
     */
895
     */
890
    frame_idx = 0;
896
    frame_idx = 0;
891
 
897
 
892
    for (cur = area->used_space.leaf_head.next;
898
    for (cur = area->used_space.leaf_head.next;
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
899
        cur != &area->used_space.leaf_head; cur = cur->next) {
894
        btree_node_t *node;
900
        btree_node_t *node;
895
        unsigned int i;
901
        unsigned int i;
896
       
902
       
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
903
        node = list_get_instance(cur, btree_node_t, leaf_link);
898
        for (i = 0; i < node->keys; i++) {
904
        for (i = 0; i < node->keys; i++) {
899
            uintptr_t b = node->key[i];
905
            uintptr_t b = node->key[i];
900
            count_t j;
906
            count_t j;
901
           
907
           
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
908
            for (j = 0; j < (count_t) node->value[i]; j++) {
903
                page_table_lock(as, false);
909
                page_table_lock(as, false);
904
 
910
 
905
                /* Insert the new mapping */
911
                /* Insert the new mapping */
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
912
                page_mapping_insert(as, b + j * PAGE_SIZE,
907
                    old_frame[frame_idx++], page_flags);
913
                    old_frame[frame_idx++], page_flags);
908
 
914
 
909
                page_table_unlock(as, false);
915
                page_table_unlock(as, false);
910
            }
916
            }
911
        }
917
        }
912
    }
918
    }
913
 
919
 
914
    free(old_frame);
920
    free(old_frame);
915
 
921
 
916
    mutex_unlock(&area->lock);
922
    mutex_unlock(&area->lock);
917
    mutex_unlock(&as->lock);
923
    mutex_unlock(&as->lock);
918
    interrupts_restore(ipl);
924
    interrupts_restore(ipl);
919
 
925
 
920
    return 0;
926
    return 0;
921
}
927
}
922
 
928
 
923
 
929
 
924
/** Handle page fault within the current address space.
930
/** Handle page fault within the current address space.
925
 *
931
 *
926
 * This is the high-level page fault handler. It decides whether the page fault
932
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
933
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
934
 * the page fault.
929
 *
935
 *
930
 * Interrupts are assumed disabled.
936
 * Interrupts are assumed disabled.
931
 *
937
 *
932
 * @param page      Faulting page.
938
 * @param page      Faulting page.
933
 * @param access    Access mode that caused the page fault (i.e.
939
 * @param access    Access mode that caused the page fault (i.e.
934
 *          read/write/exec).
940
 *          read/write/exec).
935
 * @param istate    Pointer to the interrupted state.
941
 * @param istate    Pointer to the interrupted state.
936
 *
942
 *
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
943
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
944
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 *          or copy_from_uspace().
945
 *          or copy_from_uspace().
940
 */
946
 */
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
947
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
942
{
948
{
943
    pte_t *pte;
949
    pte_t *pte;
944
    as_area_t *area;
950
    as_area_t *area;
945
   
951
   
946
    if (!THREAD)
952
    if (!THREAD)
947
        return AS_PF_FAULT;
953
        return AS_PF_FAULT;
948
       
954
       
949
    ASSERT(AS);
955
    ASSERT(AS);
950
 
956
 
951
    mutex_lock(&AS->lock);
957
    mutex_lock(&AS->lock);
952
    area = find_area_and_lock(AS, page);   
958
    area = find_area_and_lock(AS, page);   
953
    if (!area) {
959
    if (!area) {
954
        /*
960
        /*
955
         * No area contained mapping for 'page'.
961
         * No area contained mapping for 'page'.
956
         * Signal page fault to low-level handler.
962
         * Signal page fault to low-level handler.
957
         */
963
         */
958
        mutex_unlock(&AS->lock);
964
        mutex_unlock(&AS->lock);
959
        goto page_fault;
965
        goto page_fault;
960
    }
966
    }
961
 
967
 
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
968
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
        /*
969
        /*
964
         * The address space area is not fully initialized.
970
         * The address space area is not fully initialized.
965
         * Avoid possible race by returning error.
971
         * Avoid possible race by returning error.
966
         */
972
         */
967
        mutex_unlock(&area->lock);
973
        mutex_unlock(&area->lock);
968
        mutex_unlock(&AS->lock);
974
        mutex_unlock(&AS->lock);
969
        goto page_fault;       
975
        goto page_fault;       
970
    }
976
    }
971
 
977
 
972
    if (!area->backend || !area->backend->page_fault) {
978
    if (!area->backend || !area->backend->page_fault) {
973
        /*
979
        /*
974
         * The address space area is not backed by any backend
980
         * The address space area is not backed by any backend
975
         * or the backend cannot handle page faults.
981
         * or the backend cannot handle page faults.
976
         */
982
         */
977
        mutex_unlock(&area->lock);
983
        mutex_unlock(&area->lock);
978
        mutex_unlock(&AS->lock);
984
        mutex_unlock(&AS->lock);
979
        goto page_fault;       
985
        goto page_fault;       
980
    }
986
    }
981
 
987
 
982
    page_table_lock(AS, false);
988
    page_table_lock(AS, false);
983
   
989
   
984
    /*
990
    /*
985
     * To avoid race condition between two page faults on the same address,
991
     * To avoid race condition between two page faults on the same address,
986
     * we need to make sure the mapping has not been already inserted.
992
     * we need to make sure the mapping has not been already inserted.
987
     */
993
     */
988
    if ((pte = page_mapping_find(AS, page))) {
994
    if ((pte = page_mapping_find(AS, page))) {
989
        if (PTE_PRESENT(pte)) {
995
        if (PTE_PRESENT(pte)) {
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
996
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
997
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
998
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
993
                page_table_unlock(AS, false);
999
                page_table_unlock(AS, false);
994
                mutex_unlock(&area->lock);
1000
                mutex_unlock(&area->lock);
995
                mutex_unlock(&AS->lock);
1001
                mutex_unlock(&AS->lock);
996
                return AS_PF_OK;
1002
                return AS_PF_OK;
997
            }
1003
            }
998
        }
1004
        }
999
    }
1005
    }
1000
   
1006
   
1001
    /*
1007
    /*
1002
     * Resort to the backend page fault handler.
1008
     * Resort to the backend page fault handler.
1003
     */
1009
     */
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1010
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1005
        page_table_unlock(AS, false);
1011
        page_table_unlock(AS, false);
1006
        mutex_unlock(&area->lock);
1012
        mutex_unlock(&area->lock);
1007
        mutex_unlock(&AS->lock);
1013
        mutex_unlock(&AS->lock);
1008
        goto page_fault;
1014
        goto page_fault;
1009
    }
1015
    }
1010
   
1016
   
1011
    page_table_unlock(AS, false);
1017
    page_table_unlock(AS, false);
1012
    mutex_unlock(&area->lock);
1018
    mutex_unlock(&area->lock);
1013
    mutex_unlock(&AS->lock);
1019
    mutex_unlock(&AS->lock);
1014
    return AS_PF_OK;
1020
    return AS_PF_OK;
1015
 
1021
 
1016
page_fault:
1022
page_fault:
1017
    if (THREAD->in_copy_from_uspace) {
1023
    if (THREAD->in_copy_from_uspace) {
1018
        THREAD->in_copy_from_uspace = false;
1024
        THREAD->in_copy_from_uspace = false;
1019
        istate_set_retaddr(istate,
1025
        istate_set_retaddr(istate,
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1026
            (uintptr_t) &memcpy_from_uspace_failover_address);
1021
    } else if (THREAD->in_copy_to_uspace) {
1027
    } else if (THREAD->in_copy_to_uspace) {
1022
        THREAD->in_copy_to_uspace = false;
1028
        THREAD->in_copy_to_uspace = false;
1023
        istate_set_retaddr(istate,
1029
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1030
            (uintptr_t) &memcpy_to_uspace_failover_address);
1025
    } else {
1031
    } else {
1026
        return AS_PF_FAULT;
1032
        return AS_PF_FAULT;
1027
    }
1033
    }
1028
 
1034
 
1029
    return AS_PF_DEFER;
1035
    return AS_PF_DEFER;
1030
}
1036
}
1031
 
1037
 
1032
/** Switch address spaces.
1038
/** Switch address spaces.
1033
 *
1039
 *
1034
 * Note that this function cannot sleep as it is essentially a part of
1040
 * Note that this function cannot sleep as it is essentially a part of
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1041
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1042
 * thing which is forbidden in this context is locking the address space.
1037
 *
1043
 *
1038
 * When this function is enetered, no spinlocks may be held.
1044
 * When this function is enetered, no spinlocks may be held.
1039
 *
1045
 *
1040
 * @param old       Old address space or NULL.
1046
 * @param old       Old address space or NULL.
1041
 * @param new       New address space.
1047
 * @param new       New address space.
1042
 */
1048
 */
1043
void as_switch(as_t *old_as, as_t *new_as)
1049
void as_switch(as_t *old_as, as_t *new_as)
1044
{
1050
{
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1051
    DEADLOCK_PROBE_INIT(p_asidlock);
1046
    preemption_disable();
1052
    preemption_disable();
1047
retry:
1053
retry:
1048
    (void) interrupts_disable();
1054
    (void) interrupts_disable();
1049
    if (!spinlock_trylock(&asidlock)) {
1055
    if (!spinlock_trylock(&asidlock)) {
1050
        /*
1056
        /*
1051
         * Avoid deadlock with TLB shootdown.
1057
         * Avoid deadlock with TLB shootdown.
1052
         * We can enable interrupts here because
1058
         * We can enable interrupts here because
1053
         * preemption is disabled. We should not be
1059
         * preemption is disabled. We should not be
1054
         * holding any other lock.
1060
         * holding any other lock.
1055
         */
1061
         */
1056
        (void) interrupts_enable();
1062
        (void) interrupts_enable();
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1063
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
        goto retry;
1064
        goto retry;
1059
    }
1065
    }
1060
    preemption_enable();
1066
    preemption_enable();
1061
 
1067
 
1062
    /*
1068
    /*
1063
     * First, take care of the old address space.
1069
     * First, take care of the old address space.
1064
     */
1070
     */
1065
    if (old_as) {
1071
    if (old_as) {
1066
        ASSERT(old_as->cpu_refcount);
1072
        ASSERT(old_as->cpu_refcount);
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1073
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1068
            /*
1074
            /*
1069
             * The old address space is no longer active on
1075
             * The old address space is no longer active on
1070
             * any processor. It can be appended to the
1076
             * any processor. It can be appended to the
1071
             * list of inactive address spaces with assigned
1077
             * list of inactive address spaces with assigned
1072
             * ASID.
1078
             * ASID.
1073
             */
1079
             */
1074
            ASSERT(old_as->asid != ASID_INVALID);
1080
            ASSERT(old_as->asid != ASID_INVALID);
1075
            list_append(&old_as->inactive_as_with_asid_link,
1081
            list_append(&old_as->inactive_as_with_asid_link,
1076
                &inactive_as_with_asid_head);
1082
                &inactive_as_with_asid_head);
1077
        }
1083
        }
1078
 
1084
 
1079
        /*
1085
        /*
1080
         * Perform architecture-specific tasks when the address space
1086
         * Perform architecture-specific tasks when the address space
1081
         * is being removed from the CPU.
1087
         * is being removed from the CPU.
1082
         */
1088
         */
1083
        as_deinstall_arch(old_as);
1089
        as_deinstall_arch(old_as);
1084
    }
1090
    }
1085
 
1091
 
1086
    /*
1092
    /*
1087
     * Second, prepare the new address space.
1093
     * Second, prepare the new address space.
1088
     */
1094
     */
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1095
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1090
        if (new_as->asid != ASID_INVALID)
1096
        if (new_as->asid != ASID_INVALID)
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1097
            list_remove(&new_as->inactive_as_with_asid_link);
1092
        else
1098
        else
1093
            new_as->asid = asid_get();
1099
            new_as->asid = asid_get();
1094
    }
1100
    }
1095
#ifdef AS_PAGE_TABLE
1101
#ifdef AS_PAGE_TABLE
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1102
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
1103
#endif
1098
   
1104
   
1099
    /*
1105
    /*
1100
     * Perform architecture-specific steps.
1106
     * Perform architecture-specific steps.
1101
     * (e.g. write ASID to hardware register etc.)
1107
     * (e.g. write ASID to hardware register etc.)
1102
     */
1108
     */
1103
    as_install_arch(new_as);
1109
    as_install_arch(new_as);
1104
 
1110
 
1105
    spinlock_unlock(&asidlock);
1111
    spinlock_unlock(&asidlock);
1106
   
1112
   
1107
    AS = new_as;
1113
    AS = new_as;
1108
}
1114
}
1109
 
1115
 
1110
/** Convert address space area flags to page flags.
1116
/** Convert address space area flags to page flags.
1111
 *
1117
 *
1112
 * @param aflags    Flags of some address space area.
1118
 * @param aflags    Flags of some address space area.
1113
 *
1119
 *
1114
 * @return      Flags to be passed to page_mapping_insert().
1120
 * @return      Flags to be passed to page_mapping_insert().
1115
 */
1121
 */
1116
int area_flags_to_page_flags(int aflags)
1122
int area_flags_to_page_flags(int aflags)
1117
{
1123
{
1118
    int flags;
1124
    int flags;
1119
 
1125
 
1120
    flags = PAGE_USER | PAGE_PRESENT;
1126
    flags = PAGE_USER | PAGE_PRESENT;
1121
   
1127
   
1122
    if (aflags & AS_AREA_READ)
1128
    if (aflags & AS_AREA_READ)
1123
        flags |= PAGE_READ;
1129
        flags |= PAGE_READ;
1124
       
1130
       
1125
    if (aflags & AS_AREA_WRITE)
1131
    if (aflags & AS_AREA_WRITE)
1126
        flags |= PAGE_WRITE;
1132
        flags |= PAGE_WRITE;
1127
   
1133
   
1128
    if (aflags & AS_AREA_EXEC)
1134
    if (aflags & AS_AREA_EXEC)
1129
        flags |= PAGE_EXEC;
1135
        flags |= PAGE_EXEC;
1130
   
1136
   
1131
    if (aflags & AS_AREA_CACHEABLE)
1137
    if (aflags & AS_AREA_CACHEABLE)
1132
        flags |= PAGE_CACHEABLE;
1138
        flags |= PAGE_CACHEABLE;
1133
       
1139
       
1134
    return flags;
1140
    return flags;
1135
}
1141
}
1136
 
1142
 
1137
/** Compute flags for virtual address translation subsytem.
1143
/** Compute flags for virtual address translation subsytem.
1138
 *
1144
 *
1139
 * The address space area must be locked.
1145
 * The address space area must be locked.
1140
 * Interrupts must be disabled.
1146
 * Interrupts must be disabled.
1141
 *
1147
 *
1142
 * @param a     Address space area.
1148
 * @param a     Address space area.
1143
 *
1149
 *
1144
 * @return      Flags to be used in page_mapping_insert().
1150
 * @return      Flags to be used in page_mapping_insert().
1145
 */
1151
 */
1146
int as_area_get_flags(as_area_t *a)
1152
int as_area_get_flags(as_area_t *a)
1147
{
1153
{
1148
    return area_flags_to_page_flags(a->flags);
1154
    return area_flags_to_page_flags(a->flags);
1149
}
1155
}
1150
 
1156
 
1151
/** Create page table.
1157
/** Create page table.
1152
 *
1158
 *
1153
 * Depending on architecture, create either address space private or global page
1159
 * Depending on architecture, create either address space private or global page
1154
 * table.
1160
 * table.
1155
 *
1161
 *
1156
 * @param flags     Flags saying whether the page table is for the kernel
1162
 * @param flags     Flags saying whether the page table is for the kernel
1157
 *          address space.
1163
 *          address space.
1158
 *
1164
 *
1159
 * @return      First entry of the page table.
1165
 * @return      First entry of the page table.
1160
 */
1166
 */
1161
pte_t *page_table_create(int flags)
1167
pte_t *page_table_create(int flags)
1162
{
1168
{
1163
    ASSERT(as_operations);
1169
    ASSERT(as_operations);
1164
    ASSERT(as_operations->page_table_create);
1170
    ASSERT(as_operations->page_table_create);
1165
   
1171
   
1166
    return as_operations->page_table_create(flags);
1172
    return as_operations->page_table_create(flags);
1167
}
1173
}
1168
 
1174
 
1169
/** Destroy page table.
1175
/** Destroy page table.
1170
 *
1176
 *
1171
 * Destroy page table in architecture specific way.
1177
 * Destroy page table in architecture specific way.
1172
 *
1178
 *
1173
 * @param page_table    Physical address of PTL0.
1179
 * @param page_table    Physical address of PTL0.
1174
 */
1180
 */
1175
void page_table_destroy(pte_t *page_table)
1181
void page_table_destroy(pte_t *page_table)
1176
{
1182
{
1177
    ASSERT(as_operations);
1183
    ASSERT(as_operations);
1178
    ASSERT(as_operations->page_table_destroy);
1184
    ASSERT(as_operations->page_table_destroy);
1179
   
1185
   
1180
    as_operations->page_table_destroy(page_table);
1186
    as_operations->page_table_destroy(page_table);
1181
}
1187
}
1182
 
1188
 
1183
/** Lock page table.
1189
/** Lock page table.
1184
 *
1190
 *
1185
 * This function should be called before any page_mapping_insert(),
1191
 * This function should be called before any page_mapping_insert(),
1186
 * page_mapping_remove() and page_mapping_find().
1192
 * page_mapping_remove() and page_mapping_find().
1187
 *
1193
 *
1188
 * Locking order is such that address space areas must be locked
1194
 * Locking order is such that address space areas must be locked
1189
 * prior to this call. Address space can be locked prior to this
1195
 * prior to this call. Address space can be locked prior to this
1190
 * call in which case the lock argument is false.
1196
 * call in which case the lock argument is false.
1191
 *
1197
 *
1192
 * @param as        Address space.
1198
 * @param as        Address space.
1193
 * @param lock      If false, do not attempt to lock as->lock.
1199
 * @param lock      If false, do not attempt to lock as->lock.
1194
 */
1200
 */
1195
void page_table_lock(as_t *as, bool lock)
1201
void page_table_lock(as_t *as, bool lock)
1196
{
1202
{
1197
    ASSERT(as_operations);
1203
    ASSERT(as_operations);
1198
    ASSERT(as_operations->page_table_lock);
1204
    ASSERT(as_operations->page_table_lock);
1199
   
1205
   
1200
    as_operations->page_table_lock(as, lock);
1206
    as_operations->page_table_lock(as, lock);
1201
}
1207
}
1202
 
1208
 
1203
/** Unlock page table.
1209
/** Unlock page table.
1204
 *
1210
 *
1205
 * @param as        Address space.
1211
 * @param as        Address space.
1206
 * @param unlock    If false, do not attempt to unlock as->lock.
1212
 * @param unlock    If false, do not attempt to unlock as->lock.
1207
 */
1213
 */
1208
void page_table_unlock(as_t *as, bool unlock)
1214
void page_table_unlock(as_t *as, bool unlock)
1209
{
1215
{
1210
    ASSERT(as_operations);
1216
    ASSERT(as_operations);
1211
    ASSERT(as_operations->page_table_unlock);
1217
    ASSERT(as_operations->page_table_unlock);
1212
   
1218
   
1213
    as_operations->page_table_unlock(as, unlock);
1219
    as_operations->page_table_unlock(as, unlock);
1214
}
1220
}
1215
 
1221
 
1216
 
1222
 
1217
/** Find address space area and lock it.
1223
/** Find address space area and lock it.
1218
 *
1224
 *
1219
 * The address space must be locked and interrupts must be disabled.
1225
 * The address space must be locked and interrupts must be disabled.
1220
 *
1226
 *
1221
 * @param as        Address space.
1227
 * @param as        Address space.
1222
 * @param va        Virtual address.
1228
 * @param va        Virtual address.
1223
 *
1229
 *
1224
 * @return      Locked address space area containing va on success or
1230
 * @return      Locked address space area containing va on success or
1225
 *          NULL on failure.
1231
 *          NULL on failure.
1226
 */
1232
 */
1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1233
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1228
{
1234
{
1229
    as_area_t *a;
1235
    as_area_t *a;
1230
    btree_node_t *leaf, *lnode;
1236
    btree_node_t *leaf, *lnode;
1231
    unsigned int i;
1237
    unsigned int i;
1232
   
1238
   
1233
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1239
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1234
    if (a) {
1240
    if (a) {
1235
        /* va is the base address of an address space area */
1241
        /* va is the base address of an address space area */
1236
        mutex_lock(&a->lock);
1242
        mutex_lock(&a->lock);
1237
        return a;
1243
        return a;
1238
    }
1244
    }
1239
   
1245
   
1240
    /*
1246
    /*
1241
     * Search the leaf node and the righmost record of its left neighbour
1247
     * Search the leaf node and the righmost record of its left neighbour
1242
     * to find out whether this is a miss or va belongs to an address
1248
     * to find out whether this is a miss or va belongs to an address
1243
     * space area found there.
1249
     * space area found there.
1244
     */
1250
     */
1245
   
1251
   
1246
    /* First, search the leaf node itself. */
1252
    /* First, search the leaf node itself. */
1247
    for (i = 0; i < leaf->keys; i++) {
1253
    for (i = 0; i < leaf->keys; i++) {
1248
        a = (as_area_t *) leaf->value[i];
1254
        a = (as_area_t *) leaf->value[i];
1249
        mutex_lock(&a->lock);
1255
        mutex_lock(&a->lock);
1250
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1256
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1251
            return a;
1257
            return a;
1252
        }
1258
        }
1253
        mutex_unlock(&a->lock);
1259
        mutex_unlock(&a->lock);
1254
    }
1260
    }
1255
 
1261
 
1256
    /*
1262
    /*
1257
     * Second, locate the left neighbour and test its last record.
1263
     * Second, locate the left neighbour and test its last record.
1258
     * Because of its position in the B+tree, it must have base < va.
1264
     * Because of its position in the B+tree, it must have base < va.
1259
     */
1265
     */
1260
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1266
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1261
    if (lnode) {
1267
    if (lnode) {
1262
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1268
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1263
        mutex_lock(&a->lock);
1269
        mutex_lock(&a->lock);
1264
        if (va < a->base + a->pages * PAGE_SIZE) {
1270
        if (va < a->base + a->pages * PAGE_SIZE) {
1265
            return a;
1271
            return a;
1266
        }
1272
        }
1267
        mutex_unlock(&a->lock);
1273
        mutex_unlock(&a->lock);
1268
    }
1274
    }
1269
 
1275
 
1270
    return NULL;
1276
    return NULL;
1271
}
1277
}
1272
 
1278
 
1273
/** Check area conflicts with other areas.
1279
/** Check area conflicts with other areas.
1274
 *
1280
 *
1275
 * The address space must be locked and interrupts must be disabled.
1281
 * The address space must be locked and interrupts must be disabled.
1276
 *
1282
 *
1277
 * @param as        Address space.
1283
 * @param as        Address space.
1278
 * @param va        Starting virtual address of the area being tested.
1284
 * @param va        Starting virtual address of the area being tested.
1279
 * @param size      Size of the area being tested.
1285
 * @param size      Size of the area being tested.
1280
 * @param avoid_area    Do not touch this area.
1286
 * @param avoid_area    Do not touch this area.
1281
 *
1287
 *
1282
 * @return      True if there is no conflict, false otherwise.
1288
 * @return      True if there is no conflict, false otherwise.
1283
 */
1289
 */
1284
bool
1290
bool
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1291
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1286
{
1292
{
1287
    as_area_t *a;
1293
    as_area_t *a;
1288
    btree_node_t *leaf, *node;
1294
    btree_node_t *leaf, *node;
1289
    unsigned int i;
1295
    unsigned int i;
1290
   
1296
   
1291
    /*
1297
    /*
1292
     * We don't want any area to have conflicts with NULL page.
1298
     * We don't want any area to have conflicts with NULL page.
1293
     */
1299
     */
1294
    if (overlaps(va, size, NULL, PAGE_SIZE))
1300
    if (overlaps(va, size, NULL, PAGE_SIZE))
1295
        return false;
1301
        return false;
1296
   
1302
   
1297
    /*
1303
    /*
1298
     * The leaf node is found in O(log n), where n is proportional to
1304
     * The leaf node is found in O(log n), where n is proportional to
1299
     * the number of address space areas belonging to as.
1305
     * the number of address space areas belonging to as.
1300
     * The check for conflicts is then attempted on the rightmost
1306
     * The check for conflicts is then attempted on the rightmost
1301
     * record in the left neighbour, the leftmost record in the right
1307
     * record in the left neighbour, the leftmost record in the right
1302
     * neighbour and all records in the leaf node itself.
1308
     * neighbour and all records in the leaf node itself.
1303
     */
1309
     */
1304
   
1310
   
1305
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1311
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1306
        if (a != avoid_area)
1312
        if (a != avoid_area)
1307
            return false;
1313
            return false;
1308
    }
1314
    }
1309
   
1315
   
1310
    /* First, check the two border cases. */
1316
    /* First, check the two border cases. */
1311
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1317
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1312
        a = (as_area_t *) node->value[node->keys - 1];
1318
        a = (as_area_t *) node->value[node->keys - 1];
1313
        mutex_lock(&a->lock);
1319
        mutex_lock(&a->lock);
1314
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1320
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1315
            mutex_unlock(&a->lock);
1321
            mutex_unlock(&a->lock);
1316
            return false;
1322
            return false;
1317
        }
1323
        }
1318
        mutex_unlock(&a->lock);
1324
        mutex_unlock(&a->lock);
1319
    }
1325
    }
1320
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1326
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1321
    if (node) {
1327
    if (node) {
1322
        a = (as_area_t *) node->value[0];
1328
        a = (as_area_t *) node->value[0];
1323
        mutex_lock(&a->lock);
1329
        mutex_lock(&a->lock);
1324
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1330
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1325
            mutex_unlock(&a->lock);
1331
            mutex_unlock(&a->lock);
1326
            return false;
1332
            return false;
1327
        }
1333
        }
1328
        mutex_unlock(&a->lock);
1334
        mutex_unlock(&a->lock);
1329
    }
1335
    }
1330
   
1336
   
1331
    /* Second, check the leaf node. */
1337
    /* Second, check the leaf node. */
1332
    for (i = 0; i < leaf->keys; i++) {
1338
    for (i = 0; i < leaf->keys; i++) {
1333
        a = (as_area_t *) leaf->value[i];
1339
        a = (as_area_t *) leaf->value[i];
1334
   
1340
   
1335
        if (a == avoid_area)
1341
        if (a == avoid_area)
1336
            continue;
1342
            continue;
1337
   
1343
   
1338
        mutex_lock(&a->lock);
1344
        mutex_lock(&a->lock);
1339
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1345
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1340
            mutex_unlock(&a->lock);
1346
            mutex_unlock(&a->lock);
1341
            return false;
1347
            return false;
1342
        }
1348
        }
1343
        mutex_unlock(&a->lock);
1349
        mutex_unlock(&a->lock);
1344
    }
1350
    }
1345
 
1351
 
1346
    /*
1352
    /*
1347
     * So far, the area does not conflict with other areas.
1353
     * So far, the area does not conflict with other areas.
1348
     * Check if it doesn't conflict with kernel address space.
1354
     * Check if it doesn't conflict with kernel address space.
1349
     */  
1355
     */  
1350
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1356
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1351
        return !overlaps(va, size,
1357
        return !overlaps(va, size,
1352
            KERNEL_ADDRESS_SPACE_START,
1358
            KERNEL_ADDRESS_SPACE_START,
1353
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1359
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1354
    }
1360
    }
1355
 
1361
 
1356
    return true;
1362
    return true;
1357
}
1363
}
1358
 
1364
 
1359
/** Return size of the address space area with given base.
1365
/** Return size of the address space area with given base.
1360
 *
1366
 *
1361
 * @param base      Arbitrary address insede the address space area.
1367
 * @param base      Arbitrary address insede the address space area.
1362
 *
1368
 *
1363
 * @return      Size of the address space area in bytes or zero if it
1369
 * @return      Size of the address space area in bytes or zero if it
1364
 *          does not exist.
1370
 *          does not exist.
1365
 */
1371
 */
1366
size_t as_area_get_size(uintptr_t base)
1372
size_t as_area_get_size(uintptr_t base)
1367
{
1373
{
1368
    ipl_t ipl;
1374
    ipl_t ipl;
1369
    as_area_t *src_area;
1375
    as_area_t *src_area;
1370
    size_t size;
1376
    size_t size;
1371
 
1377
 
1372
    ipl = interrupts_disable();
1378
    ipl = interrupts_disable();
1373
    src_area = find_area_and_lock(AS, base);
1379
    src_area = find_area_and_lock(AS, base);
1374
    if (src_area) {
1380
    if (src_area) {
1375
        size = src_area->pages * PAGE_SIZE;
1381
        size = src_area->pages * PAGE_SIZE;
1376
        mutex_unlock(&src_area->lock);
1382
        mutex_unlock(&src_area->lock);
1377
    } else {
1383
    } else {
1378
        size = 0;
1384
        size = 0;
1379
    }
1385
    }
1380
    interrupts_restore(ipl);
1386
    interrupts_restore(ipl);
1381
    return size;
1387
    return size;
1382
}
1388
}
1383
 
1389
 
1384
/** Mark portion of address space area as used.
1390
/** Mark portion of address space area as used.
1385
 *
1391
 *
1386
 * The address space area must be already locked.
1392
 * The address space area must be already locked.
1387
 *
1393
 *
1388
 * @param a     Address space area.
1394
 * @param a     Address space area.
1389
 * @param page      First page to be marked.
1395
 * @param page      First page to be marked.
1390
 * @param count     Number of page to be marked.
1396
 * @param count     Number of page to be marked.
1391
 *
1397
 *
1392
 * @return      Zero on failure and non-zero on success.
1398
 * @return      Zero on failure and non-zero on success.
1393
 */
1399
 */
1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1400
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1395
{
1401
{
1396
    btree_node_t *leaf, *node;
1402
    btree_node_t *leaf, *node;
1397
    count_t pages;
1403
    count_t pages;
1398
    unsigned int i;
1404
    unsigned int i;
1399
 
1405
 
1400
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1406
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1401
    ASSERT(count);
1407
    ASSERT(count);
1402
 
1408
 
1403
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1409
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1404
    if (pages) {
1410
    if (pages) {
1405
        /*
1411
        /*
1406
         * We hit the beginning of some used space.
1412
         * We hit the beginning of some used space.
1407
         */
1413
         */
1408
        return 0;
1414
        return 0;
1409
    }
1415
    }
1410
 
1416
 
1411
    if (!leaf->keys) {
1417
    if (!leaf->keys) {
1412
        btree_insert(&a->used_space, page, (void *) count, leaf);
1418
        btree_insert(&a->used_space, page, (void *) count, leaf);
1413
        return 1;
1419
        return 1;
1414
    }
1420
    }
1415
 
1421
 
1416
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1422
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1417
    if (node) {
1423
    if (node) {
1418
        uintptr_t left_pg = node->key[node->keys - 1];
1424
        uintptr_t left_pg = node->key[node->keys - 1];
1419
        uintptr_t right_pg = leaf->key[0];
1425
        uintptr_t right_pg = leaf->key[0];
1420
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1426
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1421
        count_t right_cnt = (count_t) leaf->value[0];
1427
        count_t right_cnt = (count_t) leaf->value[0];
1422
       
1428
       
1423
        /*
1429
        /*
1424
         * Examine the possibility that the interval fits
1430
         * Examine the possibility that the interval fits
1425
         * somewhere between the rightmost interval of
1431
         * somewhere between the rightmost interval of
1426
         * the left neigbour and the first interval of the leaf.
1432
         * the left neigbour and the first interval of the leaf.
1427
         */
1433
         */
1428
         
1434
         
1429
        if (page >= right_pg) {
1435
        if (page >= right_pg) {
1430
            /* Do nothing. */
1436
            /* Do nothing. */
1431
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1437
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1432
            left_cnt * PAGE_SIZE)) {
1438
            left_cnt * PAGE_SIZE)) {
1433
            /* The interval intersects with the left interval. */
1439
            /* The interval intersects with the left interval. */
1434
            return 0;
1440
            return 0;
1435
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1441
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1436
            right_cnt * PAGE_SIZE)) {
1442
            right_cnt * PAGE_SIZE)) {
1437
            /* The interval intersects with the right interval. */
1443
            /* The interval intersects with the right interval. */
1438
            return 0;          
1444
            return 0;          
1439
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1445
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1440
            (page + count * PAGE_SIZE == right_pg)) {
1446
            (page + count * PAGE_SIZE == right_pg)) {
1441
            /*
1447
            /*
1442
             * The interval can be added by merging the two already
1448
             * The interval can be added by merging the two already
1443
             * present intervals.
1449
             * present intervals.
1444
             */
1450
             */
1445
            node->value[node->keys - 1] += count + right_cnt;
1451
            node->value[node->keys - 1] += count + right_cnt;
1446
            btree_remove(&a->used_space, right_pg, leaf);
1452
            btree_remove(&a->used_space, right_pg, leaf);
1447
            return 1;
1453
            return 1;
1448
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1454
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1449
            /*
1455
            /*
1450
             * The interval can be added by simply growing the left
1456
             * The interval can be added by simply growing the left
1451
             * interval.
1457
             * interval.
1452
             */
1458
             */
1453
            node->value[node->keys - 1] += count;
1459
            node->value[node->keys - 1] += count;
1454
            return 1;
1460
            return 1;
1455
        } else if (page + count * PAGE_SIZE == right_pg) {
1461
        } else if (page + count * PAGE_SIZE == right_pg) {
1456
            /*
1462
            /*
1457
             * The interval can be addded by simply moving base of
1463
             * The interval can be addded by simply moving base of
1458
             * the right interval down and increasing its size
1464
             * the right interval down and increasing its size
1459
             * accordingly.
1465
             * accordingly.
1460
             */
1466
             */
1461
            leaf->value[0] += count;
1467
            leaf->value[0] += count;
1462
            leaf->key[0] = page;
1468
            leaf->key[0] = page;
1463
            return 1;
1469
            return 1;
1464
        } else {
1470
        } else {
1465
            /*
1471
            /*
1466
             * The interval is between both neigbouring intervals,
1472
             * The interval is between both neigbouring intervals,
1467
             * but cannot be merged with any of them.
1473
             * but cannot be merged with any of them.
1468
             */
1474
             */
1469
            btree_insert(&a->used_space, page, (void *) count,
1475
            btree_insert(&a->used_space, page, (void *) count,
1470
                leaf);
1476
                leaf);
1471
            return 1;
1477
            return 1;
1472
        }
1478
        }
1473
    } else if (page < leaf->key[0]) {
1479
    } else if (page < leaf->key[0]) {
1474
        uintptr_t right_pg = leaf->key[0];
1480
        uintptr_t right_pg = leaf->key[0];
1475
        count_t right_cnt = (count_t) leaf->value[0];
1481
        count_t right_cnt = (count_t) leaf->value[0];
1476
   
1482
   
1477
        /*
1483
        /*
1478
         * Investigate the border case in which the left neighbour does
1484
         * Investigate the border case in which the left neighbour does
1479
         * not exist but the interval fits from the left.
1485
         * not exist but the interval fits from the left.
1480
         */
1486
         */
1481
         
1487
         
1482
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1488
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1483
            right_cnt * PAGE_SIZE)) {
1489
            right_cnt * PAGE_SIZE)) {
1484
            /* The interval intersects with the right interval. */
1490
            /* The interval intersects with the right interval. */
1485
            return 0;
1491
            return 0;
1486
        } else if (page + count * PAGE_SIZE == right_pg) {
1492
        } else if (page + count * PAGE_SIZE == right_pg) {
1487
            /*
1493
            /*
1488
             * The interval can be added by moving the base of the
1494
             * The interval can be added by moving the base of the
1489
             * right interval down and increasing its size
1495
             * right interval down and increasing its size
1490
             * accordingly.
1496
             * accordingly.
1491
             */
1497
             */
1492
            leaf->key[0] = page;
1498
            leaf->key[0] = page;
1493
            leaf->value[0] += count;
1499
            leaf->value[0] += count;
1494
            return 1;
1500
            return 1;
1495
        } else {
1501
        } else {
1496
            /*
1502
            /*
1497
             * The interval doesn't adjoin with the right interval.
1503
             * The interval doesn't adjoin with the right interval.
1498
             * It must be added individually.
1504
             * It must be added individually.
1499
             */
1505
             */
1500
            btree_insert(&a->used_space, page, (void *) count,
1506
            btree_insert(&a->used_space, page, (void *) count,
1501
                leaf);
1507
                leaf);
1502
            return 1;
1508
            return 1;
1503
        }
1509
        }
1504
    }
1510
    }
1505
 
1511
 
1506
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1512
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1507
    if (node) {
1513
    if (node) {
1508
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1514
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1509
        uintptr_t right_pg = node->key[0];
1515
        uintptr_t right_pg = node->key[0];
1510
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1516
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1511
        count_t right_cnt = (count_t) node->value[0];
1517
        count_t right_cnt = (count_t) node->value[0];
1512
       
1518
       
1513
        /*
1519
        /*
1514
         * Examine the possibility that the interval fits
1520
         * Examine the possibility that the interval fits
1515
         * somewhere between the leftmost interval of
1521
         * somewhere between the leftmost interval of
1516
         * the right neigbour and the last interval of the leaf.
1522
         * the right neigbour and the last interval of the leaf.
1517
         */
1523
         */
1518
 
1524
 
1519
        if (page < left_pg) {
1525
        if (page < left_pg) {
1520
            /* Do nothing. */
1526
            /* Do nothing. */
1521
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1527
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1522
            left_cnt * PAGE_SIZE)) {
1528
            left_cnt * PAGE_SIZE)) {
1523
            /* The interval intersects with the left interval. */
1529
            /* The interval intersects with the left interval. */
1524
            return 0;
1530
            return 0;
1525
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1531
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1526
            right_cnt * PAGE_SIZE)) {
1532
            right_cnt * PAGE_SIZE)) {
1527
            /* The interval intersects with the right interval. */
1533
            /* The interval intersects with the right interval. */
1528
            return 0;          
1534
            return 0;          
1529
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1535
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1530
            (page + count * PAGE_SIZE == right_pg)) {
1536
            (page + count * PAGE_SIZE == right_pg)) {
1531
            /*
1537
            /*
1532
             * The interval can be added by merging the two already
1538
             * The interval can be added by merging the two already
1533
             * present intervals.
1539
             * present intervals.
1534
             * */
1540
             * */
1535
            leaf->value[leaf->keys - 1] += count + right_cnt;
1541
            leaf->value[leaf->keys - 1] += count + right_cnt;
1536
            btree_remove(&a->used_space, right_pg, node);
1542
            btree_remove(&a->used_space, right_pg, node);
1537
            return 1;
1543
            return 1;
1538
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1544
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1539
            /*
1545
            /*
1540
             * The interval can be added by simply growing the left
1546
             * The interval can be added by simply growing the left
1541
             * interval.
1547
             * interval.
1542
             * */
1548
             * */
1543
            leaf->value[leaf->keys - 1] +=  count;
1549
            leaf->value[leaf->keys - 1] +=  count;
1544
            return 1;
1550
            return 1;
1545
        } else if (page + count * PAGE_SIZE == right_pg) {
1551
        } else if (page + count * PAGE_SIZE == right_pg) {
1546
            /*
1552
            /*
1547
             * The interval can be addded by simply moving base of
1553
             * The interval can be addded by simply moving base of
1548
             * the right interval down and increasing its size
1554
             * the right interval down and increasing its size
1549
             * accordingly.
1555
             * accordingly.
1550
             */
1556
             */
1551
            node->value[0] += count;
1557
            node->value[0] += count;
1552
            node->key[0] = page;
1558
            node->key[0] = page;
1553
            return 1;
1559
            return 1;
1554
        } else {
1560
        } else {
1555
            /*
1561
            /*
1556
             * The interval is between both neigbouring intervals,
1562
             * The interval is between both neigbouring intervals,
1557
             * but cannot be merged with any of them.
1563
             * but cannot be merged with any of them.
1558
             */
1564
             */
1559
            btree_insert(&a->used_space, page, (void *) count,
1565
            btree_insert(&a->used_space, page, (void *) count,
1560
                leaf);
1566
                leaf);
1561
            return 1;
1567
            return 1;
1562
        }
1568
        }
1563
    } else if (page >= leaf->key[leaf->keys - 1]) {
1569
    } else if (page >= leaf->key[leaf->keys - 1]) {
1564
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1570
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1565
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1571
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1566
   
1572
   
1567
        /*
1573
        /*
1568
         * Investigate the border case in which the right neighbour
1574
         * Investigate the border case in which the right neighbour
1569
         * does not exist but the interval fits from the right.
1575
         * does not exist but the interval fits from the right.
1570
         */
1576
         */
1571
         
1577
         
1572
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1578
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1573
            left_cnt * PAGE_SIZE)) {
1579
            left_cnt * PAGE_SIZE)) {
1574
            /* The interval intersects with the left interval. */
1580
            /* The interval intersects with the left interval. */
1575
            return 0;
1581
            return 0;
1576
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1582
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1577
            /*
1583
            /*
1578
             * The interval can be added by growing the left
1584
             * The interval can be added by growing the left
1579
             * interval.
1585
             * interval.
1580
             */
1586
             */
1581
            leaf->value[leaf->keys - 1] += count;
1587
            leaf->value[leaf->keys - 1] += count;
1582
            return 1;
1588
            return 1;
1583
        } else {
1589
        } else {
1584
            /*
1590
            /*
1585
             * The interval doesn't adjoin with the left interval.
1591
             * The interval doesn't adjoin with the left interval.
1586
             * It must be added individually.
1592
             * It must be added individually.
1587
             */
1593
             */
1588
            btree_insert(&a->used_space, page, (void *) count,
1594
            btree_insert(&a->used_space, page, (void *) count,
1589
                leaf);
1595
                leaf);
1590
            return 1;
1596
            return 1;
1591
        }
1597
        }
1592
    }
1598
    }
1593
   
1599
   
1594
    /*
1600
    /*
1595
     * Note that if the algorithm made it thus far, the interval can fit
1601
     * Note that if the algorithm made it thus far, the interval can fit
1596
     * only between two other intervals of the leaf. The two border cases
1602
     * only between two other intervals of the leaf. The two border cases
1597
     * were already resolved.
1603
     * were already resolved.
1598
     */
1604
     */
1599
    for (i = 1; i < leaf->keys; i++) {
1605
    for (i = 1; i < leaf->keys; i++) {
1600
        if (page < leaf->key[i]) {
1606
        if (page < leaf->key[i]) {
1601
            uintptr_t left_pg = leaf->key[i - 1];
1607
            uintptr_t left_pg = leaf->key[i - 1];
1602
            uintptr_t right_pg = leaf->key[i];
1608
            uintptr_t right_pg = leaf->key[i];
1603
            count_t left_cnt = (count_t) leaf->value[i - 1];
1609
            count_t left_cnt = (count_t) leaf->value[i - 1];
1604
            count_t right_cnt = (count_t) leaf->value[i];
1610
            count_t right_cnt = (count_t) leaf->value[i];
1605
 
1611
 
1606
            /*
1612
            /*
1607
             * The interval fits between left_pg and right_pg.
1613
             * The interval fits between left_pg and right_pg.
1608
             */
1614
             */
1609
 
1615
 
1610
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1616
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1611
                left_cnt * PAGE_SIZE)) {
1617
                left_cnt * PAGE_SIZE)) {
1612
                /*
1618
                /*
1613
                 * The interval intersects with the left
1619
                 * The interval intersects with the left
1614
                 * interval.
1620
                 * interval.
1615
                 */
1621
                 */
1616
                return 0;
1622
                return 0;
1617
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1623
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1618
                right_cnt * PAGE_SIZE)) {
1624
                right_cnt * PAGE_SIZE)) {
1619
                /*
1625
                /*
1620
                 * The interval intersects with the right
1626
                 * The interval intersects with the right
1621
                 * interval.
1627
                 * interval.
1622
                 */
1628
                 */
1623
                return 0;          
1629
                return 0;          
1624
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1630
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1625
                (page + count * PAGE_SIZE == right_pg)) {
1631
                (page + count * PAGE_SIZE == right_pg)) {
1626
                /*
1632
                /*
1627
                 * The interval can be added by merging the two
1633
                 * The interval can be added by merging the two
1628
                 * already present intervals.
1634
                 * already present intervals.
1629
                 */
1635
                 */
1630
                leaf->value[i - 1] += count + right_cnt;
1636
                leaf->value[i - 1] += count + right_cnt;
1631
                btree_remove(&a->used_space, right_pg, leaf);
1637
                btree_remove(&a->used_space, right_pg, leaf);
1632
                return 1;
1638
                return 1;
1633
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1639
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1634
                /*
1640
                /*
1635
                 * The interval can be added by simply growing
1641
                 * The interval can be added by simply growing
1636
                 * the left interval.
1642
                 * the left interval.
1637
                 */
1643
                 */
1638
                leaf->value[i - 1] += count;
1644
                leaf->value[i - 1] += count;
1639
                return 1;
1645
                return 1;
1640
            } else if (page + count * PAGE_SIZE == right_pg) {
1646
            } else if (page + count * PAGE_SIZE == right_pg) {
1641
                /*
1647
                /*
1642
                     * The interval can be addded by simply moving
1648
                     * The interval can be addded by simply moving
1643
                 * base of the right interval down and
1649
                 * base of the right interval down and
1644
                 * increasing its size accordingly.
1650
                 * increasing its size accordingly.
1645
                 */
1651
                 */
1646
                leaf->value[i] += count;
1652
                leaf->value[i] += count;
1647
                leaf->key[i] = page;
1653
                leaf->key[i] = page;
1648
                return 1;
1654
                return 1;
1649
            } else {
1655
            } else {
1650
                /*
1656
                /*
1651
                 * The interval is between both neigbouring
1657
                 * The interval is between both neigbouring
1652
                 * intervals, but cannot be merged with any of
1658
                 * intervals, but cannot be merged with any of
1653
                 * them.
1659
                 * them.
1654
                 */
1660
                 */
1655
                btree_insert(&a->used_space, page,
1661
                btree_insert(&a->used_space, page,
1656
                    (void *) count, leaf);
1662
                    (void *) count, leaf);
1657
                return 1;
1663
                return 1;
1658
            }
1664
            }
1659
        }
1665
        }
1660
    }
1666
    }
1661
 
1667
 
1662
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1668
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1663
        "space at %p.\n", count, page);
1669
        "space at %p.\n", count, page);
1664
}
1670
}
1665
 
1671
 
1666
/** Mark portion of address space area as unused.
1672
/** Mark portion of address space area as unused.
1667
 *
1673
 *
1668
 * The address space area must be already locked.
1674
 * The address space area must be already locked.
1669
 *
1675
 *
1670
 * @param a     Address space area.
1676
 * @param a     Address space area.
1671
 * @param page      First page to be marked.
1677
 * @param page      First page to be marked.
1672
 * @param count     Number of page to be marked.
1678
 * @param count     Number of page to be marked.
1673
 *
1679
 *
1674
 * @return      Zero on failure and non-zero on success.
1680
 * @return      Zero on failure and non-zero on success.
1675
 */
1681
 */
1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1682
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1677
{
1683
{
1678
    btree_node_t *leaf, *node;
1684
    btree_node_t *leaf, *node;
1679
    count_t pages;
1685
    count_t pages;
1680
    unsigned int i;
1686
    unsigned int i;
1681
 
1687
 
1682
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1688
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1683
    ASSERT(count);
1689
    ASSERT(count);
1684
 
1690
 
1685
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1691
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1686
    if (pages) {
1692
    if (pages) {
1687
        /*
1693
        /*
1688
         * We are lucky, page is the beginning of some interval.
1694
         * We are lucky, page is the beginning of some interval.
1689
         */
1695
         */
1690
        if (count > pages) {
1696
        if (count > pages) {
1691
            return 0;
1697
            return 0;
1692
        } else if (count == pages) {
1698
        } else if (count == pages) {
1693
            btree_remove(&a->used_space, page, leaf);
1699
            btree_remove(&a->used_space, page, leaf);
1694
            return 1;
1700
            return 1;
1695
        } else {
1701
        } else {
1696
            /*
1702
            /*
1697
             * Find the respective interval.
1703
             * Find the respective interval.
1698
             * Decrease its size and relocate its start address.
1704
             * Decrease its size and relocate its start address.
1699
             */
1705
             */
1700
            for (i = 0; i < leaf->keys; i++) {
1706
            for (i = 0; i < leaf->keys; i++) {
1701
                if (leaf->key[i] == page) {
1707
                if (leaf->key[i] == page) {
1702
                    leaf->key[i] += count * PAGE_SIZE;
1708
                    leaf->key[i] += count * PAGE_SIZE;
1703
                    leaf->value[i] -= count;
1709
                    leaf->value[i] -= count;
1704
                    return 1;
1710
                    return 1;
1705
                }
1711
                }
1706
            }
1712
            }
1707
            goto error;
1713
            goto error;
1708
        }
1714
        }
1709
    }
1715
    }
1710
 
1716
 
1711
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1717
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1712
    if (node && page < leaf->key[0]) {
1718
    if (node && page < leaf->key[0]) {
1713
        uintptr_t left_pg = node->key[node->keys - 1];
1719
        uintptr_t left_pg = node->key[node->keys - 1];
1714
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1720
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1715
 
1721
 
1716
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1722
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1717
            count * PAGE_SIZE)) {
1723
            count * PAGE_SIZE)) {
1718
            if (page + count * PAGE_SIZE ==
1724
            if (page + count * PAGE_SIZE ==
1719
                left_pg + left_cnt * PAGE_SIZE) {
1725
                left_pg + left_cnt * PAGE_SIZE) {
1720
                /*
1726
                /*
1721
                 * The interval is contained in the rightmost
1727
                 * The interval is contained in the rightmost
1722
                 * interval of the left neighbour and can be
1728
                 * interval of the left neighbour and can be
1723
                 * removed by updating the size of the bigger
1729
                 * removed by updating the size of the bigger
1724
                 * interval.
1730
                 * interval.
1725
                 */
1731
                 */
1726
                node->value[node->keys - 1] -= count;
1732
                node->value[node->keys - 1] -= count;
1727
                return 1;
1733
                return 1;
1728
            } else if (page + count * PAGE_SIZE <
1734
            } else if (page + count * PAGE_SIZE <
1729
                left_pg + left_cnt*PAGE_SIZE) {
1735
                left_pg + left_cnt*PAGE_SIZE) {
1730
                count_t new_cnt;
1736
                count_t new_cnt;
1731
               
1737
               
1732
                /*
1738
                /*
1733
                 * The interval is contained in the rightmost
1739
                 * The interval is contained in the rightmost
1734
                 * interval of the left neighbour but its
1740
                 * interval of the left neighbour but its
1735
                 * removal requires both updating the size of
1741
                 * removal requires both updating the size of
1736
                 * the original interval and also inserting a
1742
                 * the original interval and also inserting a
1737
                 * new interval.
1743
                 * new interval.
1738
                 */
1744
                 */
1739
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1745
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1740
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1746
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1741
                node->value[node->keys - 1] -= count + new_cnt;
1747
                node->value[node->keys - 1] -= count + new_cnt;
1742
                btree_insert(&a->used_space, page +
1748
                btree_insert(&a->used_space, page +
1743
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1749
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1744
                return 1;
1750
                return 1;
1745
            }
1751
            }
1746
        }
1752
        }
1747
        return 0;
1753
        return 0;
1748
    } else if (page < leaf->key[0]) {
1754
    } else if (page < leaf->key[0]) {
1749
        return 0;
1755
        return 0;
1750
    }
1756
    }
1751
   
1757
   
1752
    if (page > leaf->key[leaf->keys - 1]) {
1758
    if (page > leaf->key[leaf->keys - 1]) {
1753
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1759
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1754
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1760
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1755
 
1761
 
1756
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1762
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1757
            count * PAGE_SIZE)) {
1763
            count * PAGE_SIZE)) {
1758
            if (page + count * PAGE_SIZE ==
1764
            if (page + count * PAGE_SIZE ==
1759
                left_pg + left_cnt * PAGE_SIZE) {
1765
                left_pg + left_cnt * PAGE_SIZE) {
1760
                /*
1766
                /*
1761
                 * The interval is contained in the rightmost
1767
                 * The interval is contained in the rightmost
1762
                 * interval of the leaf and can be removed by
1768
                 * interval of the leaf and can be removed by
1763
                 * updating the size of the bigger interval.
1769
                 * updating the size of the bigger interval.
1764
                 */
1770
                 */
1765
                leaf->value[leaf->keys - 1] -= count;
1771
                leaf->value[leaf->keys - 1] -= count;
1766
                return 1;
1772
                return 1;
1767
            } else if (page + count * PAGE_SIZE < left_pg +
1773
            } else if (page + count * PAGE_SIZE < left_pg +
1768
                left_cnt * PAGE_SIZE) {
1774
                left_cnt * PAGE_SIZE) {
1769
                count_t new_cnt;
1775
                count_t new_cnt;
1770
               
1776
               
1771
                /*
1777
                /*
1772
                 * The interval is contained in the rightmost
1778
                 * The interval is contained in the rightmost
1773
                 * interval of the leaf but its removal
1779
                 * interval of the leaf but its removal
1774
                 * requires both updating the size of the
1780
                 * requires both updating the size of the
1775
                 * original interval and also inserting a new
1781
                 * original interval and also inserting a new
1776
                 * interval.
1782
                 * interval.
1777
                 */
1783
                 */
1778
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1784
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1779
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1785
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1780
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1786
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1781
                btree_insert(&a->used_space, page +
1787
                btree_insert(&a->used_space, page +
1782
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1788
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1783
                return 1;
1789
                return 1;
1784
            }
1790
            }
1785
        }
1791
        }
1786
        return 0;
1792
        return 0;
1787
    }  
1793
    }  
1788
   
1794
   
1789
    /*
1795
    /*
1790
     * The border cases have been already resolved.
1796
     * The border cases have been already resolved.
1791
     * Now the interval can be only between intervals of the leaf.
1797
     * Now the interval can be only between intervals of the leaf.
1792
     */
1798
     */
1793
    for (i = 1; i < leaf->keys - 1; i++) {
1799
    for (i = 1; i < leaf->keys - 1; i++) {
1794
        if (page < leaf->key[i]) {
1800
        if (page < leaf->key[i]) {
1795
            uintptr_t left_pg = leaf->key[i - 1];
1801
            uintptr_t left_pg = leaf->key[i - 1];
1796
            count_t left_cnt = (count_t) leaf->value[i - 1];
1802
            count_t left_cnt = (count_t) leaf->value[i - 1];
1797
 
1803
 
1798
            /*
1804
            /*
1799
             * Now the interval is between intervals corresponding
1805
             * Now the interval is between intervals corresponding
1800
             * to (i - 1) and i.
1806
             * to (i - 1) and i.
1801
             */
1807
             */
1802
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1808
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1803
                count * PAGE_SIZE)) {
1809
                count * PAGE_SIZE)) {
1804
                if (page + count * PAGE_SIZE ==
1810
                if (page + count * PAGE_SIZE ==
1805
                    left_pg + left_cnt*PAGE_SIZE) {
1811
                    left_pg + left_cnt*PAGE_SIZE) {
1806
                    /*
1812
                    /*
1807
                     * The interval is contained in the
1813
                     * The interval is contained in the
1808
                     * interval (i - 1) of the leaf and can
1814
                     * interval (i - 1) of the leaf and can
1809
                     * be removed by updating the size of
1815
                     * be removed by updating the size of
1810
                     * the bigger interval.
1816
                     * the bigger interval.
1811
                     */
1817
                     */
1812
                    leaf->value[i - 1] -= count;
1818
                    leaf->value[i - 1] -= count;
1813
                    return 1;
1819
                    return 1;
1814
                } else if (page + count * PAGE_SIZE <
1820
                } else if (page + count * PAGE_SIZE <
1815
                    left_pg + left_cnt * PAGE_SIZE) {
1821
                    left_pg + left_cnt * PAGE_SIZE) {
1816
                    count_t new_cnt;
1822
                    count_t new_cnt;
1817
               
1823
               
1818
                    /*
1824
                    /*
1819
                     * The interval is contained in the
1825
                     * The interval is contained in the
1820
                     * interval (i - 1) of the leaf but its
1826
                     * interval (i - 1) of the leaf but its
1821
                     * removal requires both updating the
1827
                     * removal requires both updating the
1822
                     * size of the original interval and
1828
                     * size of the original interval and
1823
                     * also inserting a new interval.
1829
                     * also inserting a new interval.
1824
                     */
1830
                     */
1825
                    new_cnt = ((left_pg +
1831
                    new_cnt = ((left_pg +
1826
                        left_cnt * PAGE_SIZE) -
1832
                        left_cnt * PAGE_SIZE) -
1827
                        (page + count * PAGE_SIZE)) >>
1833
                        (page + count * PAGE_SIZE)) >>
1828
                        PAGE_WIDTH;
1834
                        PAGE_WIDTH;
1829
                    leaf->value[i - 1] -= count + new_cnt;
1835
                    leaf->value[i - 1] -= count + new_cnt;
1830
                    btree_insert(&a->used_space, page +
1836
                    btree_insert(&a->used_space, page +
1831
                        count * PAGE_SIZE, (void *) new_cnt,
1837
                        count * PAGE_SIZE, (void *) new_cnt,
1832
                        leaf);
1838
                        leaf);
1833
                    return 1;
1839
                    return 1;
1834
                }
1840
                }
1835
            }
1841
            }
1836
            return 0;
1842
            return 0;
1837
        }
1843
        }
1838
    }
1844
    }
1839
 
1845
 
1840
error:
1846
error:
1841
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1847
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1842
        "space from %p.\n", count, page);
1848
        "space from %p.\n", count, page);
1843
}
1849
}
1844
 
1850
 
1845
/** Remove reference to address space area share info.
1851
/** Remove reference to address space area share info.
1846
 *
1852
 *
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1853
 * If the reference count drops to 0, the sh_info is deallocated.
1848
 *
1854
 *
1849
 * @param sh_info   Pointer to address space area share info.
1855
 * @param sh_info   Pointer to address space area share info.
1850
 */
1856
 */
1851
void sh_info_remove_reference(share_info_t *sh_info)
1857
void sh_info_remove_reference(share_info_t *sh_info)
1852
{
1858
{
1853
    bool dealloc = false;
1859
    bool dealloc = false;
1854
 
1860
 
1855
    mutex_lock(&sh_info->lock);
1861
    mutex_lock(&sh_info->lock);
1856
    ASSERT(sh_info->refcount);
1862
    ASSERT(sh_info->refcount);
1857
    if (--sh_info->refcount == 0) {
1863
    if (--sh_info->refcount == 0) {
1858
        dealloc = true;
1864
        dealloc = true;
1859
        link_t *cur;
1865
        link_t *cur;
1860
       
1866
       
1861
        /*
1867
        /*
1862
         * Now walk carefully the pagemap B+tree and free/remove
1868
         * Now walk carefully the pagemap B+tree and free/remove
1863
         * reference from all frames found there.
1869
         * reference from all frames found there.
1864
         */
1870
         */
1865
        for (cur = sh_info->pagemap.leaf_head.next;
1871
        for (cur = sh_info->pagemap.leaf_head.next;
1866
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1872
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1867
            btree_node_t *node;
1873
            btree_node_t *node;
1868
            unsigned int i;
1874
            unsigned int i;
1869
           
1875
           
1870
            node = list_get_instance(cur, btree_node_t, leaf_link);
1876
            node = list_get_instance(cur, btree_node_t, leaf_link);
1871
            for (i = 0; i < node->keys; i++)
1877
            for (i = 0; i < node->keys; i++)
1872
                frame_free((uintptr_t) node->value[i]);
1878
                frame_free((uintptr_t) node->value[i]);
1873
        }
1879
        }
1874
       
1880
       
1875
    }
1881
    }
1876
    mutex_unlock(&sh_info->lock);
1882
    mutex_unlock(&sh_info->lock);
1877
   
1883
   
1878
    if (dealloc) {
1884
    if (dealloc) {
1879
        btree_destroy(&sh_info->pagemap);
1885
        btree_destroy(&sh_info->pagemap);
1880
        free(sh_info);
1886
        free(sh_info);
1881
    }
1887
    }
1882
}
1888
}
1883
 
1889
 
1884
/*
1890
/*
1885
 * Address space related syscalls.
1891
 * Address space related syscalls.
1886
 */
1892
 */
1887
 
1893
 
1888
/** Wrapper for as_area_create(). */
1894
/** Wrapper for as_area_create(). */
1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1895
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1890
{
1896
{
1891
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1897
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1892
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1898
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1893
        return (unative_t) address;
1899
        return (unative_t) address;
1894
    else
1900
    else
1895
        return (unative_t) -1;
1901
        return (unative_t) -1;
1896
}
1902
}
1897
 
1903
 
1898
/** Wrapper for as_area_resize(). */
1904
/** Wrapper for as_area_resize(). */
1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1905
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1900
{
1906
{
1901
    return (unative_t) as_area_resize(AS, address, size, 0);
1907
    return (unative_t) as_area_resize(AS, address, size, 0);
1902
}
1908
}
1903
 
1909
 
1904
/** Wrapper for as_area_change_flags(). */
1910
/** Wrapper for as_area_change_flags(). */
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1911
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1906
{
1912
{
1907
    return (unative_t) as_area_change_flags(AS, flags, address);
1913
    return (unative_t) as_area_change_flags(AS, flags, address);
1908
}
1914
}
1909
 
1915
 
1910
/** Wrapper for as_area_destroy(). */
1916
/** Wrapper for as_area_destroy(). */
1911
unative_t sys_as_area_destroy(uintptr_t address)
1917
unative_t sys_as_area_destroy(uintptr_t address)
1912
{
1918
{
1913
    return (unative_t) as_area_destroy(AS, address);
1919
    return (unative_t) as_area_destroy(AS, address);
1914
}
1920
}
1915
 
1921
 
1916
/** Print out information about address space.
1922
/** Print out information about address space.
1917
 *
1923
 *
1918
 * @param as        Address space.
1924
 * @param as        Address space.
1919
 */
1925
 */
1920
void as_print(as_t *as)
1926
void as_print(as_t *as)
1921
{
1927
{
1922
    ipl_t ipl;
1928
    ipl_t ipl;
1923
   
1929
   
1924
    ipl = interrupts_disable();
1930
    ipl = interrupts_disable();
1925
    mutex_lock(&as->lock);
1931
    mutex_lock(&as->lock);
1926
   
1932
   
1927
    /* print out info about address space areas */
1933
    /* print out info about address space areas */
1928
    link_t *cur;
1934
    link_t *cur;
1929
    for (cur = as->as_area_btree.leaf_head.next;
1935
    for (cur = as->as_area_btree.leaf_head.next;
1930
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1936
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1931
        btree_node_t *node;
1937
        btree_node_t *node;
1932
       
1938
       
1933
        node = list_get_instance(cur, btree_node_t, leaf_link);
1939
        node = list_get_instance(cur, btree_node_t, leaf_link);
1934
       
1940
       
1935
        unsigned int i;
1941
        unsigned int i;
1936
        for (i = 0; i < node->keys; i++) {
1942
        for (i = 0; i < node->keys; i++) {
1937
            as_area_t *area = node->value[i];
1943
            as_area_t *area = node->value[i];
1938
       
1944
       
1939
            mutex_lock(&area->lock);
1945
            mutex_lock(&area->lock);
1940
            printf("as_area: %p, base=%p, pages=%" PRIc
1946
            printf("as_area: %p, base=%p, pages=%" PRIc
1941
                " (%p - %p)\n", area, area->base, area->pages,
1947
                " (%p - %p)\n", area, area->base, area->pages,
1942
                area->base, area->base + FRAMES2SIZE(area->pages));
1948
                area->base, area->base + FRAMES2SIZE(area->pages));
1943
            mutex_unlock(&area->lock);
1949
            mutex_unlock(&area->lock);
1944
        }
1950
        }
1945
    }
1951
    }
1946
   
1952
   
1947
    mutex_unlock(&as->lock);
1953
    mutex_unlock(&as->lock);
1948
    interrupts_restore(ipl);
1954
    interrupts_restore(ipl);
1949
}
1955
}
1950
 
1956
 
1951
/** @}
1957
/** @}
1952
 */
1958
 */
1953
 
1959