Subversion Repositories HelenOS

Rev

Rev 3397 | Rev 3742 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3397 Rev 3492
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int);
114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
117
static void sh_info_remove_reference(share_info_t *);
118
 
118
 
119
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
120
{
120
{
121
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
122
    int rc;
122
    int rc;
123
 
123
 
124
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
   
126
   
127
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
128
   
128
   
129
    return rc;
129
    return rc;
130
}
130
}
131
 
131
 
132
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
133
{
133
{
134
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
135
 
135
 
136
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
137
}
137
}
138
 
138
 
139
/** Initialize address space subsystem. */
139
/** Initialize address space subsystem. */
140
void as_init(void)
140
void as_init(void)
141
{
141
{
142
    as_arch_init();
142
    as_arch_init();
143
 
143
 
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
   
146
   
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    if (!AS_KERNEL)
148
    if (!AS_KERNEL)
149
        panic("can't create kernel address space\n");
149
        panic("can't create kernel address space\n");
150
   
150
   
151
}
151
}
152
 
152
 
153
/** Create address space.
153
/** Create address space.
154
 *
154
 *
155
 * @param flags     Flags that influence the way in wich the address space
155
 * @param flags     Flags that influence the way in wich the address space
156
 *          is created.
156
 *          is created.
157
 */
157
 */
158
as_t *as_create(int flags)
158
as_t *as_create(int flags)
159
{
159
{
160
    as_t *as;
160
    as_t *as;
161
 
161
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
164
   
164
   
165
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
166
   
166
   
167
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
169
    else
169
    else
170
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
171
   
171
   
172
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
176
#else
176
#else
177
    page_table_create(flags);
177
    page_table_create(flags);
178
#endif
178
#endif
179
 
179
 
180
    return as;
180
    return as;
181
}
181
}
182
 
182
 
183
/** Destroy adress space.
183
/** Destroy adress space.
184
 *
184
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
187
 *
187
 *
188
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
189
 *
189
 *
190
 * @param as        Address space to be destroyed.
190
 * @param as        Address space to be destroyed.
191
 */
191
 */
192
void as_destroy(as_t *as)
192
void as_destroy(as_t *as)
193
{
193
{
194
    ipl_t ipl;
194
    ipl_t ipl;
195
    bool cond;
195
    bool cond;
196
    DEADLOCK_PROBE_INIT(p_asidlock);
196
    DEADLOCK_PROBE_INIT(p_asidlock);
197
 
197
 
198
    ASSERT(atomic_get(&as->refcount) == 0);
198
    ASSERT(atomic_get(&as->refcount) == 0);
199
   
199
   
200
    /*
200
    /*
201
     * Since there is no reference to this area,
201
     * Since there is no reference to this area,
202
     * it is safe not to lock its mutex.
202
     * it is safe not to lock its mutex.
203
     */
203
     */
204
 
204
 
205
    /*
205
    /*
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
207
     * We therefore try to take asid conditionally and if we don't succeed,
207
     * We therefore try to take asid conditionally and if we don't succeed,
208
     * we enable interrupts and try again. This is done while preemption is
208
     * we enable interrupts and try again. This is done while preemption is
209
     * disabled to prevent nested context switches. We also depend on the
209
     * disabled to prevent nested context switches. We also depend on the
210
     * fact that so far no spinlocks are held.
210
     * fact that so far no spinlocks are held.
211
     */
211
     */
212
    preemption_disable();
212
    preemption_disable();
213
    ipl = interrupts_read();
213
    ipl = interrupts_read();
214
retry:
214
retry:
215
    interrupts_disable();
215
    interrupts_disable();
216
    if (!spinlock_trylock(&asidlock)) {
216
    if (!spinlock_trylock(&asidlock)) {
217
        interrupts_enable();
217
        interrupts_enable();
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
        goto retry;
219
        goto retry;
220
    }
220
    }
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
223
        if (as != AS && as->cpu_refcount == 0)
223
        if (as != AS && as->cpu_refcount == 0)
224
            list_remove(&as->inactive_as_with_asid_link);
224
            list_remove(&as->inactive_as_with_asid_link);
225
        asid_put(as->asid);
225
        asid_put(as->asid);
226
    }
226
    }
227
    spinlock_unlock(&asidlock);
227
    spinlock_unlock(&asidlock);
228
 
228
 
229
    /*
229
    /*
230
     * Destroy address space areas of the address space.
230
     * Destroy address space areas of the address space.
231
     * The B+tree must be walked carefully because it is
231
     * The B+tree must be walked carefully because it is
232
     * also being destroyed.
232
     * also being destroyed.
233
     */
233
     */
234
    for (cond = true; cond; ) {
234
    for (cond = true; cond; ) {
235
        btree_node_t *node;
235
        btree_node_t *node;
236
 
236
 
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
239
            btree_node_t, leaf_link);
239
            btree_node_t, leaf_link);
240
 
240
 
241
        if ((cond = node->keys)) {
241
        if ((cond = node->keys)) {
242
            as_area_destroy(as, node->key[0]);
242
            as_area_destroy(as, node->key[0]);
243
        }
243
        }
244
    }
244
    }
245
 
245
 
246
    btree_destroy(&as->as_area_btree);
246
    btree_destroy(&as->as_area_btree);
247
#ifdef AS_PAGE_TABLE
247
#ifdef AS_PAGE_TABLE
248
    page_table_destroy(as->genarch.page_table);
248
    page_table_destroy(as->genarch.page_table);
249
#else
249
#else
250
    page_table_destroy(NULL);
250
    page_table_destroy(NULL);
251
#endif
251
#endif
252
 
252
 
253
    interrupts_restore(ipl);
253
    interrupts_restore(ipl);
254
 
254
 
255
    slab_free(as_slab, as);
255
    slab_free(as_slab, as);
256
}
256
}
257
 
257
 
258
/** Create address space area of common attributes.
258
/** Create address space area of common attributes.
259
 *
259
 *
260
 * The created address space area is added to the target address space.
260
 * The created address space area is added to the target address space.
261
 *
261
 *
262
 * @param as        Target address space.
262
 * @param as        Target address space.
263
 * @param flags     Flags of the area memory.
263
 * @param flags     Flags of the area memory.
264
 * @param size      Size of area.
264
 * @param size      Size of area.
265
 * @param base      Base address of area.
265
 * @param base      Base address of area.
266
 * @param attrs     Attributes of the area.
266
 * @param attrs     Attributes of the area.
267
 * @param backend   Address space area backend. NULL if no backend is used.
267
 * @param backend   Address space area backend. NULL if no backend is used.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
269
 *
269
 *
270
 * @return      Address space area on success or NULL on failure.
270
 * @return      Address space area on success or NULL on failure.
271
 */
271
 */
272
as_area_t *
272
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
275
{
275
{
276
    ipl_t ipl;
276
    ipl_t ipl;
277
    as_area_t *a;
277
    as_area_t *a;
278
   
278
   
279
    if (base % PAGE_SIZE)
279
    if (base % PAGE_SIZE)
280
        return NULL;
280
        return NULL;
281
 
281
 
282
    if (!size)
282
    if (!size)
283
        return NULL;
283
        return NULL;
284
 
284
 
285
    /* Writeable executable areas are not supported. */
285
    /* Writeable executable areas are not supported. */
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
        return NULL;
287
        return NULL;
288
   
288
   
289
    ipl = interrupts_disable();
289
    ipl = interrupts_disable();
290
    mutex_lock(&as->lock);
290
    mutex_lock(&as->lock);
291
   
291
   
292
    if (!check_area_conflicts(as, base, size, NULL)) {
292
    if (!check_area_conflicts(as, base, size, NULL)) {
293
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
294
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
295
        return NULL;
295
        return NULL;
296
    }
296
    }
297
   
297
   
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
299
 
299
 
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
301
   
301
   
302
    a->as = as;
302
    a->as = as;
303
    a->flags = flags;
303
    a->flags = flags;
304
    a->attributes = attrs;
304
    a->attributes = attrs;
305
    a->pages = SIZE2FRAMES(size);
305
    a->pages = SIZE2FRAMES(size);
306
    a->base = base;
306
    a->base = base;
307
    a->sh_info = NULL;
307
    a->sh_info = NULL;
308
    a->backend = backend;
308
    a->backend = backend;
309
    if (backend_data)
309
    if (backend_data)
310
        a->backend_data = *backend_data;
310
        a->backend_data = *backend_data;
311
    else
311
    else
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
313
 
313
 
314
    btree_create(&a->used_space);
314
    btree_create(&a->used_space);
315
   
315
   
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
317
 
317
 
318
    mutex_unlock(&as->lock);
318
    mutex_unlock(&as->lock);
319
    interrupts_restore(ipl);
319
    interrupts_restore(ipl);
320
 
320
 
321
    return a;
321
    return a;
322
}
322
}
323
 
323
 
324
/** Find address space area and change it.
324
/** Find address space area and change it.
325
 *
325
 *
326
 * @param as        Address space.
326
 * @param as        Address space.
327
 * @param address   Virtual address belonging to the area to be changed.
327
 * @param address   Virtual address belonging to the area to be changed.
328
 *          Must be page-aligned.
328
 *          Must be page-aligned.
329
 * @param size      New size of the virtual memory block starting at
329
 * @param size      New size of the virtual memory block starting at
330
 *          address.
330
 *          address.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
332
 *
332
 *
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
334
 */
334
 */
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
336
{
336
{
337
    as_area_t *area;
337
    as_area_t *area;
338
    ipl_t ipl;
338
    ipl_t ipl;
339
    size_t pages;
339
    size_t pages;
340
   
340
   
341
    ipl = interrupts_disable();
341
    ipl = interrupts_disable();
342
    mutex_lock(&as->lock);
342
    mutex_lock(&as->lock);
343
   
343
   
344
    /*
344
    /*
345
     * Locate the area.
345
     * Locate the area.
346
     */
346
     */
347
    area = find_area_and_lock(as, address);
347
    area = find_area_and_lock(as, address);
348
    if (!area) {
348
    if (!area) {
349
        mutex_unlock(&as->lock);
349
        mutex_unlock(&as->lock);
350
        interrupts_restore(ipl);
350
        interrupts_restore(ipl);
351
        return ENOENT;
351
        return ENOENT;
352
    }
352
    }
353
 
353
 
354
    if (area->backend == &phys_backend) {
354
    if (area->backend == &phys_backend) {
355
        /*
355
        /*
356
         * Remapping of address space areas associated
356
         * Remapping of address space areas associated
357
         * with memory mapped devices is not supported.
357
         * with memory mapped devices is not supported.
358
         */
358
         */
359
        mutex_unlock(&area->lock);
359
        mutex_unlock(&area->lock);
360
        mutex_unlock(&as->lock);
360
        mutex_unlock(&as->lock);
361
        interrupts_restore(ipl);
361
        interrupts_restore(ipl);
362
        return ENOTSUP;
362
        return ENOTSUP;
363
    }
363
    }
364
    if (area->sh_info) {
364
    if (area->sh_info) {
365
        /*
365
        /*
366
         * Remapping of shared address space areas
366
         * Remapping of shared address space areas
367
         * is not supported.
367
         * is not supported.
368
         */
368
         */
369
        mutex_unlock(&area->lock);
369
        mutex_unlock(&area->lock);
370
        mutex_unlock(&as->lock);
370
        mutex_unlock(&as->lock);
371
        interrupts_restore(ipl);
371
        interrupts_restore(ipl);
372
        return ENOTSUP;
372
        return ENOTSUP;
373
    }
373
    }
374
 
374
 
375
    pages = SIZE2FRAMES((address - area->base) + size);
375
    pages = SIZE2FRAMES((address - area->base) + size);
376
    if (!pages) {
376
    if (!pages) {
377
        /*
377
        /*
378
         * Zero size address space areas are not allowed.
378
         * Zero size address space areas are not allowed.
379
         */
379
         */
380
        mutex_unlock(&area->lock);
380
        mutex_unlock(&area->lock);
381
        mutex_unlock(&as->lock);
381
        mutex_unlock(&as->lock);
382
        interrupts_restore(ipl);
382
        interrupts_restore(ipl);
383
        return EPERM;
383
        return EPERM;
384
    }
384
    }
385
   
385
   
386
    if (pages < area->pages) {
386
    if (pages < area->pages) {
387
        bool cond;
387
        bool cond;
388
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
389
 
389
 
390
        /*
390
        /*
391
         * Shrinking the area.
391
         * Shrinking the area.
392
         * No need to check for overlaps.
392
         * No need to check for overlaps.
393
         */
393
         */
394
 
394
 
395
        /*
395
        /*
396
         * Start TLB shootdown sequence.
396
         * Start TLB shootdown sequence.
397
         */
397
         */
398
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
399
            pages * PAGE_SIZE, area->pages - pages);
399
            pages * PAGE_SIZE, area->pages - pages);
400
 
400
 
401
        /*
401
        /*
402
         * Remove frames belonging to used space starting from
402
         * Remove frames belonging to used space starting from
403
         * the highest addresses downwards until an overlap with
403
         * the highest addresses downwards until an overlap with
404
         * the resized address space area is found. Note that this
404
         * the resized address space area is found. Note that this
405
         * is also the right way to remove part of the used_space
405
         * is also the right way to remove part of the used_space
406
         * B+tree leaf list.
406
         * B+tree leaf list.
407
         */    
407
         */    
408
        for (cond = true; cond;) {
408
        for (cond = true; cond;) {
409
            btree_node_t *node;
409
            btree_node_t *node;
410
       
410
       
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
412
            node =
412
            node =
413
                list_get_instance(area->used_space.leaf_head.prev,
413
                list_get_instance(area->used_space.leaf_head.prev,
414
                btree_node_t, leaf_link);
414
                btree_node_t, leaf_link);
415
            if ((cond = (bool) node->keys)) {
415
            if ((cond = (bool) node->keys)) {
416
                uintptr_t b = node->key[node->keys - 1];
416
                uintptr_t b = node->key[node->keys - 1];
417
                count_t c =
417
                count_t c =
418
                    (count_t) node->value[node->keys - 1];
418
                    (count_t) node->value[node->keys - 1];
419
                unsigned int i = 0;
419
                unsigned int i = 0;
420
           
420
           
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
422
                    pages * PAGE_SIZE)) {
422
                    pages * PAGE_SIZE)) {
423
                   
423
                   
424
                    if (b + c * PAGE_SIZE <= start_free) {
424
                    if (b + c * PAGE_SIZE <= start_free) {
425
                        /*
425
                        /*
426
                         * The whole interval fits
426
                         * The whole interval fits
427
                         * completely in the resized
427
                         * completely in the resized
428
                         * address space area.
428
                         * address space area.
429
                         */
429
                         */
430
                        break;
430
                        break;
431
                    }
431
                    }
432
       
432
       
433
                    /*
433
                    /*
434
                     * Part of the interval corresponding
434
                     * Part of the interval corresponding
435
                     * to b and c overlaps with the resized
435
                     * to b and c overlaps with the resized
436
                     * address space area.
436
                     * address space area.
437
                     */
437
                     */
438
       
438
       
439
                    cond = false;   /* we are almost done */
439
                    cond = false;   /* we are almost done */
440
                    i = (start_free - b) >> PAGE_WIDTH;
440
                    i = (start_free - b) >> PAGE_WIDTH;
441
                    if (!used_space_remove(area, start_free,
441
                    if (!used_space_remove(area, start_free,
442
                        c - i))
442
                        c - i))
443
                        panic("Could not remove used "
443
                        panic("Could not remove used "
444
                            "space.\n");
444
                            "space.\n");
445
                } else {
445
                } else {
446
                    /*
446
                    /*
447
                     * The interval of used space can be
447
                     * The interval of used space can be
448
                     * completely removed.
448
                     * completely removed.
449
                     */
449
                     */
450
                    if (!used_space_remove(area, b, c))
450
                    if (!used_space_remove(area, b, c))
451
                        panic("Could not remove used "
451
                        panic("Could not remove used "
452
                            "space.\n");
452
                            "space.\n");
453
                }
453
                }
454
           
454
           
455
                for (; i < c; i++) {
455
                for (; i < c; i++) {
456
                    pte_t *pte;
456
                    pte_t *pte;
457
           
457
           
458
                    page_table_lock(as, false);
458
                    page_table_lock(as, false);
459
                    pte = page_mapping_find(as, b +
459
                    pte = page_mapping_find(as, b +
460
                        i * PAGE_SIZE);
460
                        i * PAGE_SIZE);
461
                    ASSERT(pte && PTE_VALID(pte) &&
461
                    ASSERT(pte && PTE_VALID(pte) &&
462
                        PTE_PRESENT(pte));
462
                        PTE_PRESENT(pte));
463
                    if (area->backend &&
463
                    if (area->backend &&
464
                        area->backend->frame_free) {
464
                        area->backend->frame_free) {
465
                        area->backend->frame_free(area,
465
                        area->backend->frame_free(area,
466
                            b + i * PAGE_SIZE,
466
                            b + i * PAGE_SIZE,
467
                            PTE_GET_FRAME(pte));
467
                            PTE_GET_FRAME(pte));
468
                    }
468
                    }
469
                    page_mapping_remove(as, b +
469
                    page_mapping_remove(as, b +
470
                        i * PAGE_SIZE);
470
                        i * PAGE_SIZE);
471
                    page_table_unlock(as, false);
471
                    page_table_unlock(as, false);
472
                }
472
                }
473
            }
473
            }
474
        }
474
        }
475
 
475
 
476
        /*
476
        /*
477
         * Finish TLB shootdown sequence.
477
         * Finish TLB shootdown sequence.
478
         */
478
         */
479
 
479
 
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
            area->pages - pages);
481
            area->pages - pages);
482
        /*
482
        /*
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
484
         */
484
         */
485
        as_invalidate_translation_cache(as, area->base +
485
        as_invalidate_translation_cache(as, area->base +
486
            pages * PAGE_SIZE, area->pages - pages);
486
            pages * PAGE_SIZE, area->pages - pages);
487
        tlb_shootdown_finalize();
487
        tlb_shootdown_finalize();
488
       
488
       
489
    } else {
489
    } else {
490
        /*
490
        /*
491
         * Growing the area.
491
         * Growing the area.
492
         * Check for overlaps with other address space areas.
492
         * Check for overlaps with other address space areas.
493
         */
493
         */
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
            area)) {
495
            area)) {
496
            mutex_unlock(&area->lock);
496
            mutex_unlock(&area->lock);
497
            mutex_unlock(&as->lock);       
497
            mutex_unlock(&as->lock);       
498
            interrupts_restore(ipl);
498
            interrupts_restore(ipl);
499
            return EADDRNOTAVAIL;
499
            return EADDRNOTAVAIL;
500
        }
500
        }
501
    }
501
    }
502
 
502
 
503
    area->pages = pages;
503
    area->pages = pages;
504
   
504
   
505
    mutex_unlock(&area->lock);
505
    mutex_unlock(&area->lock);
506
    mutex_unlock(&as->lock);
506
    mutex_unlock(&as->lock);
507
    interrupts_restore(ipl);
507
    interrupts_restore(ipl);
508
 
508
 
509
    return 0;
509
    return 0;
510
}
510
}
511
 
511
 
512
/** Destroy address space area.
512
/** Destroy address space area.
513
 *
513
 *
514
 * @param as        Address space.
514
 * @param as        Address space.
515
 * @param address   Address within the area to be deleted.
515
 * @param address   Address within the area to be deleted.
516
 *
516
 *
517
 * @return      Zero on success or a value from @ref errno.h on failure.
517
 * @return      Zero on success or a value from @ref errno.h on failure.
518
 */
518
 */
519
int as_area_destroy(as_t *as, uintptr_t address)
519
int as_area_destroy(as_t *as, uintptr_t address)
520
{
520
{
521
    as_area_t *area;
521
    as_area_t *area;
522
    uintptr_t base;
522
    uintptr_t base;
523
    link_t *cur;
523
    link_t *cur;
524
    ipl_t ipl;
524
    ipl_t ipl;
525
 
525
 
526
    ipl = interrupts_disable();
526
    ipl = interrupts_disable();
527
    mutex_lock(&as->lock);
527
    mutex_lock(&as->lock);
528
 
528
 
529
    area = find_area_and_lock(as, address);
529
    area = find_area_and_lock(as, address);
530
    if (!area) {
530
    if (!area) {
531
        mutex_unlock(&as->lock);
531
        mutex_unlock(&as->lock);
532
        interrupts_restore(ipl);
532
        interrupts_restore(ipl);
533
        return ENOENT;
533
        return ENOENT;
534
    }
534
    }
535
 
535
 
536
    base = area->base;
536
    base = area->base;
537
 
537
 
538
    /*
538
    /*
539
     * Start TLB shootdown sequence.
539
     * Start TLB shootdown sequence.
540
     */
540
     */
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
542
 
542
 
543
    /*
543
    /*
544
     * Visit only the pages mapped by used_space B+tree.
544
     * Visit only the pages mapped by used_space B+tree.
545
     */
545
     */
546
    for (cur = area->used_space.leaf_head.next;
546
    for (cur = area->used_space.leaf_head.next;
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
548
        btree_node_t *node;
548
        btree_node_t *node;
549
        unsigned int i;
549
        unsigned int i;
550
       
550
       
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
552
        for (i = 0; i < node->keys; i++) {
552
        for (i = 0; i < node->keys; i++) {
553
            uintptr_t b = node->key[i];
553
            uintptr_t b = node->key[i];
554
            count_t j;
554
            count_t j;
555
            pte_t *pte;
555
            pte_t *pte;
556
           
556
           
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
558
                page_table_lock(as, false);
558
                page_table_lock(as, false);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
                ASSERT(pte && PTE_VALID(pte) &&
560
                ASSERT(pte && PTE_VALID(pte) &&
561
                    PTE_PRESENT(pte));
561
                    PTE_PRESENT(pte));
562
                if (area->backend &&
562
                if (area->backend &&
563
                    area->backend->frame_free) {
563
                    area->backend->frame_free) {
564
                    area->backend->frame_free(area, b +
564
                    area->backend->frame_free(area, b +
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
566
                }
566
                }
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
568
                page_table_unlock(as, false);
568
                page_table_unlock(as, false);
569
            }
569
            }
570
        }
570
        }
571
    }
571
    }
572
 
572
 
573
    /*
573
    /*
574
     * Finish TLB shootdown sequence.
574
     * Finish TLB shootdown sequence.
575
     */
575
     */
576
 
576
 
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
578
    /*
578
    /*
579
     * Invalidate potential software translation caches (e.g. TSB on
579
     * Invalidate potential software translation caches (e.g. TSB on
580
     * sparc64).
580
     * sparc64).
581
     */
581
     */
582
    as_invalidate_translation_cache(as, area->base, area->pages);
582
    as_invalidate_translation_cache(as, area->base, area->pages);
583
    tlb_shootdown_finalize();
583
    tlb_shootdown_finalize();
584
   
584
   
585
    btree_destroy(&area->used_space);
585
    btree_destroy(&area->used_space);
586
 
586
 
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
588
   
588
   
589
    if (area->sh_info)
589
    if (area->sh_info)
590
        sh_info_remove_reference(area->sh_info);
590
        sh_info_remove_reference(area->sh_info);
591
       
591
       
592
    mutex_unlock(&area->lock);
592
    mutex_unlock(&area->lock);
593
 
593
 
594
    /*
594
    /*
595
     * Remove the empty area from address space.
595
     * Remove the empty area from address space.
596
     */
596
     */
597
    btree_remove(&as->as_area_btree, base, NULL);
597
    btree_remove(&as->as_area_btree, base, NULL);
598
   
598
   
599
    free(area);
599
    free(area);
600
   
600
   
601
    mutex_unlock(&as->lock);
601
    mutex_unlock(&as->lock);
602
    interrupts_restore(ipl);
602
    interrupts_restore(ipl);
603
    return 0;
603
    return 0;
604
}
604
}
605
 
605
 
606
/** Share address space area with another or the same address space.
606
/** Share address space area with another or the same address space.
607
 *
607
 *
608
 * Address space area mapping is shared with a new address space area.
608
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
609
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
610
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
611
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
612
 * mapping is done through the backend share function.
613
 *
613
 *
614
 * @param src_as    Pointer to source address space.
614
 * @param src_as    Pointer to source address space.
615
 * @param src_base  Base address of the source address space area.
615
 * @param src_base  Base address of the source address space area.
616
 * @param acc_size  Expected size of the source area.
616
 * @param acc_size  Expected size of the source area.
617
 * @param dst_as    Pointer to destination address space.
617
 * @param dst_as    Pointer to destination address space.
618
 * @param dst_base  Target base address.
618
 * @param dst_base  Target base address.
619
 * @param dst_flags_mask Destination address space area flags mask.
619
 * @param dst_flags_mask Destination address space area flags mask.
620
 *
620
 *
621
 * @return      Zero on success or ENOENT if there is no such task or if
621
 * @return      Zero on success or ENOENT if there is no such task or if
622
 *          there is no such address space area, EPERM if there was
622
 *          there is no such address space area, EPERM if there was
623
 *          a problem in accepting the area or ENOMEM if there was a
623
 *          a problem in accepting the area or ENOMEM if there was a
624
 *          problem in allocating destination address space area.
624
 *          problem in allocating destination address space area.
625
 *          ENOTSUP is returned if the address space area backend
625
 *          ENOTSUP is returned if the address space area backend
626
 *          does not support sharing.
626
 *          does not support sharing.
627
 */
627
 */
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
630
{
630
{
631
    ipl_t ipl;
631
    ipl_t ipl;
632
    int src_flags;
632
    int src_flags;
633
    size_t src_size;
633
    size_t src_size;
634
    as_area_t *src_area, *dst_area;
634
    as_area_t *src_area, *dst_area;
635
    share_info_t *sh_info;
635
    share_info_t *sh_info;
636
    mem_backend_t *src_backend;
636
    mem_backend_t *src_backend;
637
    mem_backend_data_t src_backend_data;
637
    mem_backend_data_t src_backend_data;
638
   
638
   
639
    ipl = interrupts_disable();
639
    ipl = interrupts_disable();
640
    mutex_lock(&src_as->lock);
640
    mutex_lock(&src_as->lock);
641
    src_area = find_area_and_lock(src_as, src_base);
641
    src_area = find_area_and_lock(src_as, src_base);
642
    if (!src_area) {
642
    if (!src_area) {
643
        /*
643
        /*
644
         * Could not find the source address space area.
644
         * Could not find the source address space area.
645
         */
645
         */
646
        mutex_unlock(&src_as->lock);
646
        mutex_unlock(&src_as->lock);
647
        interrupts_restore(ipl);
647
        interrupts_restore(ipl);
648
        return ENOENT;
648
        return ENOENT;
649
    }
649
    }
650
 
650
 
651
    if (!src_area->backend || !src_area->backend->share) {
651
    if (!src_area->backend || !src_area->backend->share) {
652
        /*
652
        /*
653
         * There is no backend or the backend does not
653
         * There is no backend or the backend does not
654
         * know how to share the area.
654
         * know how to share the area.
655
         */
655
         */
656
        mutex_unlock(&src_area->lock);
656
        mutex_unlock(&src_area->lock);
657
        mutex_unlock(&src_as->lock);
657
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
658
        interrupts_restore(ipl);
659
        return ENOTSUP;
659
        return ENOTSUP;
660
    }
660
    }
661
   
661
   
662
    src_size = src_area->pages * PAGE_SIZE;
662
    src_size = src_area->pages * PAGE_SIZE;
663
    src_flags = src_area->flags;
663
    src_flags = src_area->flags;
664
    src_backend = src_area->backend;
664
    src_backend = src_area->backend;
665
    src_backend_data = src_area->backend_data;
665
    src_backend_data = src_area->backend_data;
666
 
666
 
667
    /* Share the cacheable flag from the original mapping */
667
    /* Share the cacheable flag from the original mapping */
668
    if (src_flags & AS_AREA_CACHEABLE)
668
    if (src_flags & AS_AREA_CACHEABLE)
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
670
 
671
    if (src_size != acc_size ||
671
    if (src_size != acc_size ||
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
673
        mutex_unlock(&src_area->lock);
673
        mutex_unlock(&src_area->lock);
674
        mutex_unlock(&src_as->lock);
674
        mutex_unlock(&src_as->lock);
675
        interrupts_restore(ipl);
675
        interrupts_restore(ipl);
676
        return EPERM;
676
        return EPERM;
677
    }
677
    }
678
 
678
 
679
    /*
679
    /*
680
     * Now we are committed to sharing the area.
680
     * Now we are committed to sharing the area.
681
     * First, prepare the area for sharing.
681
     * First, prepare the area for sharing.
682
     * Then it will be safe to unlock it.
682
     * Then it will be safe to unlock it.
683
     */
683
     */
684
    sh_info = src_area->sh_info;
684
    sh_info = src_area->sh_info;
685
    if (!sh_info) {
685
    if (!sh_info) {
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
688
        sh_info->refcount = 2;
688
        sh_info->refcount = 2;
689
        btree_create(&sh_info->pagemap);
689
        btree_create(&sh_info->pagemap);
690
        src_area->sh_info = sh_info;
690
        src_area->sh_info = sh_info;
691
        /*
691
        /*
692
         * Call the backend to setup sharing.
692
         * Call the backend to setup sharing.
693
         */
693
         */
694
        src_area->backend->share(src_area);
694
        src_area->backend->share(src_area);
695
    } else {
695
    } else {
696
        mutex_lock(&sh_info->lock);
696
        mutex_lock(&sh_info->lock);
697
        sh_info->refcount++;
697
        sh_info->refcount++;
698
        mutex_unlock(&sh_info->lock);
698
        mutex_unlock(&sh_info->lock);
699
    }
699
    }
700
 
700
 
701
    mutex_unlock(&src_area->lock);
701
    mutex_unlock(&src_area->lock);
702
    mutex_unlock(&src_as->lock);
702
    mutex_unlock(&src_as->lock);
703
 
703
 
704
    /*
704
    /*
705
     * Create copy of the source address space area.
705
     * Create copy of the source address space area.
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
707
     * attribute set which prevents race condition with
707
     * attribute set which prevents race condition with
708
     * preliminary as_page_fault() calls.
708
     * preliminary as_page_fault() calls.
709
     * The flags of the source area are masked against dst_flags_mask
709
     * The flags of the source area are masked against dst_flags_mask
710
     * to support sharing in less privileged mode.
710
     * to support sharing in less privileged mode.
711
     */
711
     */
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
714
    if (!dst_area) {
714
    if (!dst_area) {
715
        /*
715
        /*
716
         * Destination address space area could not be created.
716
         * Destination address space area could not be created.
717
         */
717
         */
718
        sh_info_remove_reference(sh_info);
718
        sh_info_remove_reference(sh_info);
719
       
719
       
720
        interrupts_restore(ipl);
720
        interrupts_restore(ipl);
721
        return ENOMEM;
721
        return ENOMEM;
722
    }
722
    }
723
 
723
 
724
    /*
724
    /*
725
     * Now the destination address space area has been
725
     * Now the destination address space area has been
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
727
     * attribute and set the sh_info.
727
     * attribute and set the sh_info.
728
     */
728
     */
729
    mutex_lock(&dst_as->lock); 
729
    mutex_lock(&dst_as->lock); 
730
    mutex_lock(&dst_area->lock);
730
    mutex_lock(&dst_area->lock);
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
732
    dst_area->sh_info = sh_info;
732
    dst_area->sh_info = sh_info;
733
    mutex_unlock(&dst_area->lock);
733
    mutex_unlock(&dst_area->lock);
734
    mutex_unlock(&dst_as->lock);   
734
    mutex_unlock(&dst_as->lock);   
735
 
735
 
736
    interrupts_restore(ipl);
736
    interrupts_restore(ipl);
737
   
737
   
738
    return 0;
738
    return 0;
739
}
739
}
740
 
740
 
741
/** Check access mode for address space area.
741
/** Check access mode for address space area.
742
 *
742
 *
743
 * The address space area must be locked prior to this call.
743
 * The address space area must be locked prior to this call.
744
 *
744
 *
745
 * @param area      Address space area.
745
 * @param area      Address space area.
746
 * @param access    Access mode.
746
 * @param access    Access mode.
747
 *
747
 *
748
 * @return      False if access violates area's permissions, true
748
 * @return      False if access violates area's permissions, true
749
 *          otherwise.
749
 *          otherwise.
750
 */
750
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
752
{
753
    int flagmap[] = {
753
    int flagmap[] = {
754
        [PF_ACCESS_READ] = AS_AREA_READ,
754
        [PF_ACCESS_READ] = AS_AREA_READ,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
757
    };
757
    };
758
 
758
 
759
    if (!(area->flags & flagmap[access]))
759
    if (!(area->flags & flagmap[access]))
760
        return false;
760
        return false;
761
   
761
   
762
    return true;
762
    return true;
763
}
763
}
764
 
764
 
765
/** Change adress space area flags.
765
/** Change adress space area flags.
766
 *
766
 *
767
 * The idea is to have the same data, but with a different access mode.
767
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
768
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
769
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
770
 * into private anonymous memory (unless it's already there).
771
 *
771
 *
772
 * @param as        Address space.
772
 * @param as        Address space.
773
 * @param flags     Flags of the area memory.
773
 * @param flags     Flags of the area memory.
774
 * @param address   Address withing the area to be changed.
774
 * @param address   Address withing the area to be changed.
775
 *
775
 *
776
 * @return      Zero on success or a value from @ref errno.h on failure.
776
 * @return      Zero on success or a value from @ref errno.h on failure.
777
 */
777
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
779
{
780
    as_area_t *area;
780
    as_area_t *area;
781
    uintptr_t base;
781
    uintptr_t base;
782
    link_t *cur;
782
    link_t *cur;
783
    ipl_t ipl;
783
    ipl_t ipl;
784
    int page_flags;
784
    int page_flags;
785
    uintptr_t *old_frame;
785
    uintptr_t *old_frame;
786
    index_t frame_idx;
786
    index_t frame_idx;
787
    count_t used_pages;
787
    count_t used_pages;
788
 
788
 
789
    /* Flags for the new memory mapping */
789
    /* Flags for the new memory mapping */
790
    page_flags = area_flags_to_page_flags(flags);
790
    page_flags = area_flags_to_page_flags(flags);
791
 
791
 
792
    ipl = interrupts_disable();
792
    ipl = interrupts_disable();
793
    mutex_lock(&as->lock);
793
    mutex_lock(&as->lock);
794
 
794
 
795
    area = find_area_and_lock(as, address);
795
    area = find_area_and_lock(as, address);
796
    if (!area) {
796
    if (!area) {
797
        mutex_unlock(&as->lock);
797
        mutex_unlock(&as->lock);
798
        interrupts_restore(ipl);
798
        interrupts_restore(ipl);
799
        return ENOENT;
799
        return ENOENT;
800
    }
800
    }
801
 
801
 
802
    if (area->sh_info || area->backend != &anon_backend) {
802
    if (area->sh_info || area->backend != &anon_backend) {
803
        /* Copying shared areas not supported yet */
803
        /* Copying shared areas not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
805
        mutex_unlock(&area->lock);
805
        mutex_unlock(&area->lock);
806
        mutex_unlock(&as->lock);
806
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
807
        interrupts_restore(ipl);
808
        return ENOTSUP;
808
        return ENOTSUP;
809
    }
809
    }
810
 
810
 
811
    base = area->base;
811
    base = area->base;
812
 
812
 
813
    /*
813
    /*
814
     * Compute total number of used pages in the used_space B+tree
814
     * Compute total number of used pages in the used_space B+tree
815
     */
815
     */
816
    used_pages = 0;
816
    used_pages = 0;
817
 
817
 
818
    for (cur = area->used_space.leaf_head.next;
818
    for (cur = area->used_space.leaf_head.next;
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
820
        btree_node_t *node;
820
        btree_node_t *node;
821
        unsigned int i;
821
        unsigned int i;
822
       
822
       
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
824
        for (i = 0; i < node->keys; i++) {
824
        for (i = 0; i < node->keys; i++) {
825
            used_pages += (count_t) node->value[i];
825
            used_pages += (count_t) node->value[i];
826
        }
826
        }
827
    }
827
    }
828
 
828
 
829
    /* An array for storing frame numbers */
829
    /* An array for storing frame numbers */
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
831
 
832
    /*
832
    /*
833
     * Start TLB shootdown sequence.
833
     * Start TLB shootdown sequence.
834
     */
834
     */
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
836
 
837
    /*
837
    /*
838
     * Remove used pages from page tables and remember their frame
838
     * Remove used pages from page tables and remember their frame
839
     * numbers.
839
     * numbers.
840
     */
840
     */
841
    frame_idx = 0;
841
    frame_idx = 0;
842
 
842
 
843
    for (cur = area->used_space.leaf_head.next;
843
    for (cur = area->used_space.leaf_head.next;
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
845
        btree_node_t *node;
845
        btree_node_t *node;
846
        unsigned int i;
846
        unsigned int i;
847
       
847
       
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
849
        for (i = 0; i < node->keys; i++) {
849
        for (i = 0; i < node->keys; i++) {
850
            uintptr_t b = node->key[i];
850
            uintptr_t b = node->key[i];
851
            count_t j;
851
            count_t j;
852
            pte_t *pte;
852
            pte_t *pte;
853
           
853
           
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
855
                page_table_lock(as, false);
855
                page_table_lock(as, false);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
                ASSERT(pte && PTE_VALID(pte) &&
857
                ASSERT(pte && PTE_VALID(pte) &&
858
                    PTE_PRESENT(pte));
858
                    PTE_PRESENT(pte));
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
860
 
861
                /* Remove old mapping */
861
                /* Remove old mapping */
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
863
                page_table_unlock(as, false);
863
                page_table_unlock(as, false);
864
            }
864
            }
865
        }
865
        }
866
    }
866
    }
867
 
867
 
868
    /*
868
    /*
869
     * Finish TLB shootdown sequence.
869
     * Finish TLB shootdown sequence.
870
     */
870
     */
871
 
871
 
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
873
    /*
873
    /*
874
     * Invalidate potential software translation caches (e.g. TSB on
874
     * Invalidate potential software translation caches (e.g. TSB on
875
     * sparc64).
875
     * sparc64).
876
     */
876
     */
877
    as_invalidate_translation_cache(as, area->base, area->pages);
877
    as_invalidate_translation_cache(as, area->base, area->pages);
878
    tlb_shootdown_finalize();
878
    tlb_shootdown_finalize();
879
 
879
 
880
    /*
880
    /*
881
     * Set the new flags.
881
     * Set the new flags.
882
     */
882
     */
883
    area->flags = flags;
883
    area->flags = flags;
884
 
884
 
885
    /*
885
    /*
886
     * Map pages back in with new flags. This step is kept separate
886
     * Map pages back in with new flags. This step is kept separate
887
     * so that the memory area could not be accesed with both the old and
887
     * so that the memory area could not be accesed with both the old and
888
     * the new flags at once.
888
     * the new flags at once.
889
     */
889
     */
890
    frame_idx = 0;
890
    frame_idx = 0;
891
 
891
 
892
    for (cur = area->used_space.leaf_head.next;
892
    for (cur = area->used_space.leaf_head.next;
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
894
        btree_node_t *node;
894
        btree_node_t *node;
895
        unsigned int i;
895
        unsigned int i;
896
       
896
       
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
898
        for (i = 0; i < node->keys; i++) {
898
        for (i = 0; i < node->keys; i++) {
899
            uintptr_t b = node->key[i];
899
            uintptr_t b = node->key[i];
900
            count_t j;
900
            count_t j;
901
           
901
           
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
903
                page_table_lock(as, false);
903
                page_table_lock(as, false);
904
 
904
 
905
                /* Insert the new mapping */
905
                /* Insert the new mapping */
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
907
                    old_frame[frame_idx++], page_flags);
907
                    old_frame[frame_idx++], page_flags);
908
 
908
 
909
                page_table_unlock(as, false);
909
                page_table_unlock(as, false);
910
            }
910
            }
911
        }
911
        }
912
    }
912
    }
913
 
913
 
914
    free(old_frame);
914
    free(old_frame);
915
 
915
 
916
    mutex_unlock(&area->lock);
916
    mutex_unlock(&area->lock);
917
    mutex_unlock(&as->lock);
917
    mutex_unlock(&as->lock);
918
    interrupts_restore(ipl);
918
    interrupts_restore(ipl);
919
 
919
 
920
    return 0;
920
    return 0;
921
}
921
}
922
 
922
 
923
 
923
 
924
/** Handle page fault within the current address space.
924
/** Handle page fault within the current address space.
925
 *
925
 *
926
 * This is the high-level page fault handler. It decides whether the page fault
926
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
928
 * the page fault.
929
 *
929
 *
930
 * Interrupts are assumed disabled.
930
 * Interrupts are assumed disabled.
931
 *
931
 *
932
 * @param page      Faulting page.
932
 * @param page      Faulting page.
933
 * @param access    Access mode that caused the page fault (i.e.
933
 * @param access    Access mode that caused the page fault (i.e.
934
 *          read/write/exec).
934
 *          read/write/exec).
935
 * @param istate    Pointer to the interrupted state.
935
 * @param istate    Pointer to the interrupted state.
936
 *
936
 *
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 *          or copy_from_uspace().
939
 *          or copy_from_uspace().
940
 */
940
 */
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
942
{
942
{
943
    pte_t *pte;
943
    pte_t *pte;
944
    as_area_t *area;
944
    as_area_t *area;
945
   
945
   
946
    if (!THREAD)
946
    if (!THREAD)
947
        return AS_PF_FAULT;
947
        return AS_PF_FAULT;
948
       
948
       
949
    ASSERT(AS);
949
    ASSERT(AS);
950
 
950
 
951
    mutex_lock(&AS->lock);
951
    mutex_lock(&AS->lock);
952
    area = find_area_and_lock(AS, page);   
952
    area = find_area_and_lock(AS, page);   
953
    if (!area) {
953
    if (!area) {
954
        /*
954
        /*
955
         * No area contained mapping for 'page'.
955
         * No area contained mapping for 'page'.
956
         * Signal page fault to low-level handler.
956
         * Signal page fault to low-level handler.
957
         */
957
         */
958
        mutex_unlock(&AS->lock);
958
        mutex_unlock(&AS->lock);
959
        goto page_fault;
959
        goto page_fault;
960
    }
960
    }
961
 
961
 
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
        /*
963
        /*
964
         * The address space area is not fully initialized.
964
         * The address space area is not fully initialized.
965
         * Avoid possible race by returning error.
965
         * Avoid possible race by returning error.
966
         */
966
         */
967
        mutex_unlock(&area->lock);
967
        mutex_unlock(&area->lock);
968
        mutex_unlock(&AS->lock);
968
        mutex_unlock(&AS->lock);
969
        goto page_fault;       
969
        goto page_fault;       
970
    }
970
    }
971
 
971
 
972
    if (!area->backend || !area->backend->page_fault) {
972
    if (!area->backend || !area->backend->page_fault) {
973
        /*
973
        /*
974
         * The address space area is not backed by any backend
974
         * The address space area is not backed by any backend
975
         * or the backend cannot handle page faults.
975
         * or the backend cannot handle page faults.
976
         */
976
         */
977
        mutex_unlock(&area->lock);
977
        mutex_unlock(&area->lock);
978
        mutex_unlock(&AS->lock);
978
        mutex_unlock(&AS->lock);
979
        goto page_fault;       
979
        goto page_fault;       
980
    }
980
    }
981
 
981
 
982
    page_table_lock(AS, false);
982
    page_table_lock(AS, false);
983
   
983
   
984
    /*
984
    /*
985
     * To avoid race condition between two page faults on the same address,
985
     * To avoid race condition between two page faults on the same address,
986
     * we need to make sure the mapping has not been already inserted.
986
     * we need to make sure the mapping has not been already inserted.
987
     */
987
     */
988
    if ((pte = page_mapping_find(AS, page))) {
988
    if ((pte = page_mapping_find(AS, page))) {
989
        if (PTE_PRESENT(pte)) {
989
        if (PTE_PRESENT(pte)) {
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
993
                page_table_unlock(AS, false);
993
                page_table_unlock(AS, false);
994
                mutex_unlock(&area->lock);
994
                mutex_unlock(&area->lock);
995
                mutex_unlock(&AS->lock);
995
                mutex_unlock(&AS->lock);
996
                return AS_PF_OK;
996
                return AS_PF_OK;
997
            }
997
            }
998
        }
998
        }
999
    }
999
    }
1000
   
1000
   
1001
    /*
1001
    /*
1002
     * Resort to the backend page fault handler.
1002
     * Resort to the backend page fault handler.
1003
     */
1003
     */
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1005
        page_table_unlock(AS, false);
1005
        page_table_unlock(AS, false);
1006
        mutex_unlock(&area->lock);
1006
        mutex_unlock(&area->lock);
1007
        mutex_unlock(&AS->lock);
1007
        mutex_unlock(&AS->lock);
1008
        goto page_fault;
1008
        goto page_fault;
1009
    }
1009
    }
1010
   
1010
   
1011
    page_table_unlock(AS, false);
1011
    page_table_unlock(AS, false);
1012
    mutex_unlock(&area->lock);
1012
    mutex_unlock(&area->lock);
1013
    mutex_unlock(&AS->lock);
1013
    mutex_unlock(&AS->lock);
1014
    return AS_PF_OK;
1014
    return AS_PF_OK;
1015
 
1015
 
1016
page_fault:
1016
page_fault:
1017
    if (THREAD->in_copy_from_uspace) {
1017
    if (THREAD->in_copy_from_uspace) {
1018
        THREAD->in_copy_from_uspace = false;
1018
        THREAD->in_copy_from_uspace = false;
1019
        istate_set_retaddr(istate,
1019
        istate_set_retaddr(istate,
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1021
    } else if (THREAD->in_copy_to_uspace) {
1021
    } else if (THREAD->in_copy_to_uspace) {
1022
        THREAD->in_copy_to_uspace = false;
1022
        THREAD->in_copy_to_uspace = false;
1023
        istate_set_retaddr(istate,
1023
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1025
    } else {
1025
    } else {
1026
        return AS_PF_FAULT;
1026
        return AS_PF_FAULT;
1027
    }
1027
    }
1028
 
1028
 
1029
    return AS_PF_DEFER;
1029
    return AS_PF_DEFER;
1030
}
1030
}
1031
 
1031
 
1032
/** Switch address spaces.
1032
/** Switch address spaces.
1033
 *
1033
 *
1034
 * Note that this function cannot sleep as it is essentially a part of
1034
 * Note that this function cannot sleep as it is essentially a part of
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1036
 * thing which is forbidden in this context is locking the address space.
1037
 *
1037
 *
1038
 * When this function is enetered, no spinlocks may be held.
1038
 * When this function is enetered, no spinlocks may be held.
1039
 *
1039
 *
1040
 * @param old       Old address space or NULL.
1040
 * @param old       Old address space or NULL.
1041
 * @param new       New address space.
1041
 * @param new       New address space.
1042
 */
1042
 */
1043
void as_switch(as_t *old_as, as_t *new_as)
1043
void as_switch(as_t *old_as, as_t *new_as)
1044
{
1044
{
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1046
    preemption_disable();
1046
    preemption_disable();
1047
retry:
1047
retry:
1048
    (void) interrupts_disable();
1048
    (void) interrupts_disable();
1049
    if (!spinlock_trylock(&asidlock)) {
1049
    if (!spinlock_trylock(&asidlock)) {
1050
        /*
1050
        /*
1051
         * Avoid deadlock with TLB shootdown.
1051
         * Avoid deadlock with TLB shootdown.
1052
         * We can enable interrupts here because
1052
         * We can enable interrupts here because
1053
         * preemption is disabled. We should not be
1053
         * preemption is disabled. We should not be
1054
         * holding any other lock.
1054
         * holding any other lock.
1055
         */
1055
         */
1056
        (void) interrupts_enable();
1056
        (void) interrupts_enable();
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
        goto retry;
1058
        goto retry;
1059
    }
1059
    }
1060
    preemption_enable();
1060
    preemption_enable();
1061
 
1061
 
1062
    /*
1062
    /*
1063
     * First, take care of the old address space.
1063
     * First, take care of the old address space.
1064
     */
1064
     */
1065
    if (old_as) {
1065
    if (old_as) {
1066
        ASSERT(old_as->cpu_refcount);
1066
        ASSERT(old_as->cpu_refcount);
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1068
            /*
1068
            /*
1069
             * The old address space is no longer active on
1069
             * The old address space is no longer active on
1070
             * any processor. It can be appended to the
1070
             * any processor. It can be appended to the
1071
             * list of inactive address spaces with assigned
1071
             * list of inactive address spaces with assigned
1072
             * ASID.
1072
             * ASID.
1073
             */
1073
             */
1074
            ASSERT(old_as->asid != ASID_INVALID);
1074
            ASSERT(old_as->asid != ASID_INVALID);
1075
            list_append(&old_as->inactive_as_with_asid_link,
1075
            list_append(&old_as->inactive_as_with_asid_link,
1076
                &inactive_as_with_asid_head);
1076
                &inactive_as_with_asid_head);
1077
        }
1077
        }
1078
 
1078
 
1079
        /*
1079
        /*
1080
         * Perform architecture-specific tasks when the address space
1080
         * Perform architecture-specific tasks when the address space
1081
         * is being removed from the CPU.
1081
         * is being removed from the CPU.
1082
         */
1082
         */
1083
        as_deinstall_arch(old_as);
1083
        as_deinstall_arch(old_as);
1084
    }
1084
    }
1085
 
1085
 
1086
    /*
1086
    /*
1087
     * Second, prepare the new address space.
1087
     * Second, prepare the new address space.
1088
     */
1088
     */
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1090
        if (new_as->asid != ASID_INVALID)
1090
        if (new_as->asid != ASID_INVALID)
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1092
        else
1092
        else
1093
            new_as->asid = asid_get();
1093
            new_as->asid = asid_get();
1094
    }
1094
    }
1095
#ifdef AS_PAGE_TABLE
1095
#ifdef AS_PAGE_TABLE
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
1097
#endif
1098
   
1098
   
1099
    /*
1099
    /*
1100
     * Perform architecture-specific steps.
1100
     * Perform architecture-specific steps.
1101
     * (e.g. write ASID to hardware register etc.)
1101
     * (e.g. write ASID to hardware register etc.)
1102
     */
1102
     */
1103
    as_install_arch(new_as);
1103
    as_install_arch(new_as);
1104
 
1104
 
1105
    spinlock_unlock(&asidlock);
1105
    spinlock_unlock(&asidlock);
1106
   
1106
   
1107
    AS = new_as;
1107
    AS = new_as;
1108
}
1108
}
1109
 
1109
 
1110
/** Convert address space area flags to page flags.
1110
/** Convert address space area flags to page flags.
1111
 *
1111
 *
1112
 * @param aflags    Flags of some address space area.
1112
 * @param aflags    Flags of some address space area.
1113
 *
1113
 *
1114
 * @return      Flags to be passed to page_mapping_insert().
1114
 * @return      Flags to be passed to page_mapping_insert().
1115
 */
1115
 */
1116
int area_flags_to_page_flags(int aflags)
1116
int area_flags_to_page_flags(int aflags)
1117
{
1117
{
1118
    int flags;
1118
    int flags;
1119
 
1119
 
1120
    flags = PAGE_USER | PAGE_PRESENT;
1120
    flags = PAGE_USER | PAGE_PRESENT;
1121
   
1121
   
1122
    if (aflags & AS_AREA_READ)
1122
    if (aflags & AS_AREA_READ)
1123
        flags |= PAGE_READ;
1123
        flags |= PAGE_READ;
1124
       
1124
       
1125
    if (aflags & AS_AREA_WRITE)
1125
    if (aflags & AS_AREA_WRITE)
1126
        flags |= PAGE_WRITE;
1126
        flags |= PAGE_WRITE;
1127
   
1127
   
1128
    if (aflags & AS_AREA_EXEC)
1128
    if (aflags & AS_AREA_EXEC)
1129
        flags |= PAGE_EXEC;
1129
        flags |= PAGE_EXEC;
1130
   
1130
   
1131
    if (aflags & AS_AREA_CACHEABLE)
1131
    if (aflags & AS_AREA_CACHEABLE)
1132
        flags |= PAGE_CACHEABLE;
1132
        flags |= PAGE_CACHEABLE;
1133
       
1133
       
1134
    return flags;
1134
    return flags;
1135
}
1135
}
1136
 
1136
 
1137
/** Compute flags for virtual address translation subsytem.
1137
/** Compute flags for virtual address translation subsytem.
1138
 *
1138
 *
1139
 * The address space area must be locked.
1139
 * The address space area must be locked.
1140
 * Interrupts must be disabled.
1140
 * Interrupts must be disabled.
1141
 *
1141
 *
1142
 * @param a     Address space area.
1142
 * @param a     Address space area.
1143
 *
1143
 *
1144
 * @return      Flags to be used in page_mapping_insert().
1144
 * @return      Flags to be used in page_mapping_insert().
1145
 */
1145
 */
1146
int as_area_get_flags(as_area_t *a)
1146
int as_area_get_flags(as_area_t *a)
1147
{
1147
{
1148
    return area_flags_to_page_flags(a->flags);
1148
    return area_flags_to_page_flags(a->flags);
1149
}
1149
}
1150
 
1150
 
1151
/** Create page table.
1151
/** Create page table.
1152
 *
1152
 *
1153
 * Depending on architecture, create either address space private or global page
1153
 * Depending on architecture, create either address space private or global page
1154
 * table.
1154
 * table.
1155
 *
1155
 *
1156
 * @param flags     Flags saying whether the page table is for the kernel
1156
 * @param flags     Flags saying whether the page table is for the kernel
1157
 *          address space.
1157
 *          address space.
1158
 *
1158
 *
1159
 * @return      First entry of the page table.
1159
 * @return      First entry of the page table.
1160
 */
1160
 */
1161
pte_t *page_table_create(int flags)
1161
pte_t *page_table_create(int flags)
1162
{
1162
{
1163
    ASSERT(as_operations);
1163
    ASSERT(as_operations);
1164
    ASSERT(as_operations->page_table_create);
1164
    ASSERT(as_operations->page_table_create);
1165
   
1165
   
1166
    return as_operations->page_table_create(flags);
1166
    return as_operations->page_table_create(flags);
1167
}
1167
}
1168
 
1168
 
1169
/** Destroy page table.
1169
/** Destroy page table.
1170
 *
1170
 *
1171
 * Destroy page table in architecture specific way.
1171
 * Destroy page table in architecture specific way.
1172
 *
1172
 *
1173
 * @param page_table    Physical address of PTL0.
1173
 * @param page_table    Physical address of PTL0.
1174
 */
1174
 */
1175
void page_table_destroy(pte_t *page_table)
1175
void page_table_destroy(pte_t *page_table)
1176
{
1176
{
1177
    ASSERT(as_operations);
1177
    ASSERT(as_operations);
1178
    ASSERT(as_operations->page_table_destroy);
1178
    ASSERT(as_operations->page_table_destroy);
1179
   
1179
   
1180
    as_operations->page_table_destroy(page_table);
1180
    as_operations->page_table_destroy(page_table);
1181
}
1181
}
1182
 
1182
 
1183
/** Lock page table.
1183
/** Lock page table.
1184
 *
1184
 *
1185
 * This function should be called before any page_mapping_insert(),
1185
 * This function should be called before any page_mapping_insert(),
1186
 * page_mapping_remove() and page_mapping_find().
1186
 * page_mapping_remove() and page_mapping_find().
1187
 *
1187
 *
1188
 * Locking order is such that address space areas must be locked
1188
 * Locking order is such that address space areas must be locked
1189
 * prior to this call. Address space can be locked prior to this
1189
 * prior to this call. Address space can be locked prior to this
1190
 * call in which case the lock argument is false.
1190
 * call in which case the lock argument is false.
1191
 *
1191
 *
1192
 * @param as        Address space.
1192
 * @param as        Address space.
1193
 * @param lock      If false, do not attempt to lock as->lock.
1193
 * @param lock      If false, do not attempt to lock as->lock.
1194
 */
1194
 */
1195
void page_table_lock(as_t *as, bool lock)
1195
void page_table_lock(as_t *as, bool lock)
1196
{
1196
{
1197
    ASSERT(as_operations);
1197
    ASSERT(as_operations);
1198
    ASSERT(as_operations->page_table_lock);
1198
    ASSERT(as_operations->page_table_lock);
1199
   
1199
   
1200
    as_operations->page_table_lock(as, lock);
1200
    as_operations->page_table_lock(as, lock);
1201
}
1201
}
1202
 
1202
 
1203
/** Unlock page table.
1203
/** Unlock page table.
1204
 *
1204
 *
1205
 * @param as        Address space.
1205
 * @param as        Address space.
1206
 * @param unlock    If false, do not attempt to unlock as->lock.
1206
 * @param unlock    If false, do not attempt to unlock as->lock.
1207
 */
1207
 */
1208
void page_table_unlock(as_t *as, bool unlock)
1208
void page_table_unlock(as_t *as, bool unlock)
1209
{
1209
{
1210
    ASSERT(as_operations);
1210
    ASSERT(as_operations);
1211
    ASSERT(as_operations->page_table_unlock);
1211
    ASSERT(as_operations->page_table_unlock);
1212
   
1212
   
1213
    as_operations->page_table_unlock(as, unlock);
1213
    as_operations->page_table_unlock(as, unlock);
1214
}
1214
}
1215
 
1215
 
1216
 
1216
 
1217
/** Find address space area and lock it.
1217
/** Find address space area and lock it.
1218
 *
1218
 *
1219
 * The address space must be locked and interrupts must be disabled.
1219
 * The address space must be locked and interrupts must be disabled.
1220
 *
1220
 *
1221
 * @param as        Address space.
1221
 * @param as        Address space.
1222
 * @param va        Virtual address.
1222
 * @param va        Virtual address.
1223
 *
1223
 *
1224
 * @return      Locked address space area containing va on success or
1224
 * @return      Locked address space area containing va on success or
1225
 *          NULL on failure.
1225
 *          NULL on failure.
1226
 */
1226
 */
1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1227
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1228
{
1228
{
1229
    as_area_t *a;
1229
    as_area_t *a;
1230
    btree_node_t *leaf, *lnode;
1230
    btree_node_t *leaf, *lnode;
1231
    unsigned int i;
1231
    unsigned int i;
1232
   
1232
   
1233
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1233
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1234
    if (a) {
1234
    if (a) {
1235
        /* va is the base address of an address space area */
1235
        /* va is the base address of an address space area */
1236
        mutex_lock(&a->lock);
1236
        mutex_lock(&a->lock);
1237
        return a;
1237
        return a;
1238
    }
1238
    }
1239
   
1239
   
1240
    /*
1240
    /*
1241
     * Search the leaf node and the righmost record of its left neighbour
1241
     * Search the leaf node and the righmost record of its left neighbour
1242
     * to find out whether this is a miss or va belongs to an address
1242
     * to find out whether this is a miss or va belongs to an address
1243
     * space area found there.
1243
     * space area found there.
1244
     */
1244
     */
1245
   
1245
   
1246
    /* First, search the leaf node itself. */
1246
    /* First, search the leaf node itself. */
1247
    for (i = 0; i < leaf->keys; i++) {
1247
    for (i = 0; i < leaf->keys; i++) {
1248
        a = (as_area_t *) leaf->value[i];
1248
        a = (as_area_t *) leaf->value[i];
1249
        mutex_lock(&a->lock);
1249
        mutex_lock(&a->lock);
1250
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1250
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1251
            return a;
1251
            return a;
1252
        }
1252
        }
1253
        mutex_unlock(&a->lock);
1253
        mutex_unlock(&a->lock);
1254
    }
1254
    }
1255
 
1255
 
1256
    /*
1256
    /*
1257
     * Second, locate the left neighbour and test its last record.
1257
     * Second, locate the left neighbour and test its last record.
1258
     * Because of its position in the B+tree, it must have base < va.
1258
     * Because of its position in the B+tree, it must have base < va.
1259
     */
1259
     */
1260
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1260
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1261
    if (lnode) {
1261
    if (lnode) {
1262
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1262
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1263
        mutex_lock(&a->lock);
1263
        mutex_lock(&a->lock);
1264
        if (va < a->base + a->pages * PAGE_SIZE) {
1264
        if (va < a->base + a->pages * PAGE_SIZE) {
1265
            return a;
1265
            return a;
1266
        }
1266
        }
1267
        mutex_unlock(&a->lock);
1267
        mutex_unlock(&a->lock);
1268
    }
1268
    }
1269
 
1269
 
1270
    return NULL;
1270
    return NULL;
1271
}
1271
}
1272
 
1272
 
1273
/** Check area conflicts with other areas.
1273
/** Check area conflicts with other areas.
1274
 *
1274
 *
1275
 * The address space must be locked and interrupts must be disabled.
1275
 * The address space must be locked and interrupts must be disabled.
1276
 *
1276
 *
1277
 * @param as        Address space.
1277
 * @param as        Address space.
1278
 * @param va        Starting virtual address of the area being tested.
1278
 * @param va        Starting virtual address of the area being tested.
1279
 * @param size      Size of the area being tested.
1279
 * @param size      Size of the area being tested.
1280
 * @param avoid_area    Do not touch this area.
1280
 * @param avoid_area    Do not touch this area.
1281
 *
1281
 *
1282
 * @return      True if there is no conflict, false otherwise.
1282
 * @return      True if there is no conflict, false otherwise.
1283
 */
1283
 */
1284
bool
1284
bool
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1285
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1286
{
1286
{
1287
    as_area_t *a;
1287
    as_area_t *a;
1288
    btree_node_t *leaf, *node;
1288
    btree_node_t *leaf, *node;
1289
    unsigned int i;
1289
    unsigned int i;
1290
   
1290
   
1291
    /*
1291
    /*
1292
     * We don't want any area to have conflicts with NULL page.
1292
     * We don't want any area to have conflicts with NULL page.
1293
     */
1293
     */
1294
    if (overlaps(va, size, NULL, PAGE_SIZE))
1294
    if (overlaps(va, size, NULL, PAGE_SIZE))
1295
        return false;
1295
        return false;
1296
   
1296
   
1297
    /*
1297
    /*
1298
     * The leaf node is found in O(log n), where n is proportional to
1298
     * The leaf node is found in O(log n), where n is proportional to
1299
     * the number of address space areas belonging to as.
1299
     * the number of address space areas belonging to as.
1300
     * The check for conflicts is then attempted on the rightmost
1300
     * The check for conflicts is then attempted on the rightmost
1301
     * record in the left neighbour, the leftmost record in the right
1301
     * record in the left neighbour, the leftmost record in the right
1302
     * neighbour and all records in the leaf node itself.
1302
     * neighbour and all records in the leaf node itself.
1303
     */
1303
     */
1304
   
1304
   
1305
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1305
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1306
        if (a != avoid_area)
1306
        if (a != avoid_area)
1307
            return false;
1307
            return false;
1308
    }
1308
    }
1309
   
1309
   
1310
    /* First, check the two border cases. */
1310
    /* First, check the two border cases. */
1311
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1311
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1312
        a = (as_area_t *) node->value[node->keys - 1];
1312
        a = (as_area_t *) node->value[node->keys - 1];
1313
        mutex_lock(&a->lock);
1313
        mutex_lock(&a->lock);
1314
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1314
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1315
            mutex_unlock(&a->lock);
1315
            mutex_unlock(&a->lock);
1316
            return false;
1316
            return false;
1317
        }
1317
        }
1318
        mutex_unlock(&a->lock);
1318
        mutex_unlock(&a->lock);
1319
    }
1319
    }
1320
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1320
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1321
    if (node) {
1321
    if (node) {
1322
        a = (as_area_t *) node->value[0];
1322
        a = (as_area_t *) node->value[0];
1323
        mutex_lock(&a->lock);
1323
        mutex_lock(&a->lock);
1324
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1324
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1325
            mutex_unlock(&a->lock);
1325
            mutex_unlock(&a->lock);
1326
            return false;
1326
            return false;
1327
        }
1327
        }
1328
        mutex_unlock(&a->lock);
1328
        mutex_unlock(&a->lock);
1329
    }
1329
    }
1330
   
1330
   
1331
    /* Second, check the leaf node. */
1331
    /* Second, check the leaf node. */
1332
    for (i = 0; i < leaf->keys; i++) {
1332
    for (i = 0; i < leaf->keys; i++) {
1333
        a = (as_area_t *) leaf->value[i];
1333
        a = (as_area_t *) leaf->value[i];
1334
   
1334
   
1335
        if (a == avoid_area)
1335
        if (a == avoid_area)
1336
            continue;
1336
            continue;
1337
   
1337
   
1338
        mutex_lock(&a->lock);
1338
        mutex_lock(&a->lock);
1339
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1339
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1340
            mutex_unlock(&a->lock);
1340
            mutex_unlock(&a->lock);
1341
            return false;
1341
            return false;
1342
        }
1342
        }
1343
        mutex_unlock(&a->lock);
1343
        mutex_unlock(&a->lock);
1344
    }
1344
    }
1345
 
1345
 
1346
    /*
1346
    /*
1347
     * So far, the area does not conflict with other areas.
1347
     * So far, the area does not conflict with other areas.
1348
     * Check if it doesn't conflict with kernel address space.
1348
     * Check if it doesn't conflict with kernel address space.
1349
     */  
1349
     */  
1350
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1350
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1351
        return !overlaps(va, size,
1351
        return !overlaps(va, size,
1352
            KERNEL_ADDRESS_SPACE_START,
1352
            KERNEL_ADDRESS_SPACE_START,
1353
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1353
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1354
    }
1354
    }
1355
 
1355
 
1356
    return true;
1356
    return true;
1357
}
1357
}
1358
 
1358
 
1359
/** Return size of the address space area with given base.
1359
/** Return size of the address space area with given base.
1360
 *
1360
 *
1361
 * @param base      Arbitrary address insede the address space area.
1361
 * @param base      Arbitrary address insede the address space area.
1362
 *
1362
 *
1363
 * @return      Size of the address space area in bytes or zero if it
1363
 * @return      Size of the address space area in bytes or zero if it
1364
 *          does not exist.
1364
 *          does not exist.
1365
 */
1365
 */
1366
size_t as_area_get_size(uintptr_t base)
1366
size_t as_area_get_size(uintptr_t base)
1367
{
1367
{
1368
    ipl_t ipl;
1368
    ipl_t ipl;
1369
    as_area_t *src_area;
1369
    as_area_t *src_area;
1370
    size_t size;
1370
    size_t size;
1371
 
1371
 
1372
    ipl = interrupts_disable();
1372
    ipl = interrupts_disable();
1373
    src_area = find_area_and_lock(AS, base);
1373
    src_area = find_area_and_lock(AS, base);
1374
    if (src_area) {
1374
    if (src_area) {
1375
        size = src_area->pages * PAGE_SIZE;
1375
        size = src_area->pages * PAGE_SIZE;
1376
        mutex_unlock(&src_area->lock);
1376
        mutex_unlock(&src_area->lock);
1377
    } else {
1377
    } else {
1378
        size = 0;
1378
        size = 0;
1379
    }
1379
    }
1380
    interrupts_restore(ipl);
1380
    interrupts_restore(ipl);
1381
    return size;
1381
    return size;
1382
}
1382
}
1383
 
1383
 
1384
/** Mark portion of address space area as used.
1384
/** Mark portion of address space area as used.
1385
 *
1385
 *
1386
 * The address space area must be already locked.
1386
 * The address space area must be already locked.
1387
 *
1387
 *
1388
 * @param a     Address space area.
1388
 * @param a     Address space area.
1389
 * @param page      First page to be marked.
1389
 * @param page      First page to be marked.
1390
 * @param count     Number of page to be marked.
1390
 * @param count     Number of page to be marked.
1391
 *
1391
 *
1392
 * @return      Zero on failure and non-zero on success.
1392
 * @return      Zero on failure and non-zero on success.
1393
 */
1393
 */
1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1394
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1395
{
1395
{
1396
    btree_node_t *leaf, *node;
1396
    btree_node_t *leaf, *node;
1397
    count_t pages;
1397
    count_t pages;
1398
    unsigned int i;
1398
    unsigned int i;
1399
 
1399
 
1400
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1400
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1401
    ASSERT(count);
1401
    ASSERT(count);
1402
 
1402
 
1403
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1403
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1404
    if (pages) {
1404
    if (pages) {
1405
        /*
1405
        /*
1406
         * We hit the beginning of some used space.
1406
         * We hit the beginning of some used space.
1407
         */
1407
         */
1408
        return 0;
1408
        return 0;
1409
    }
1409
    }
1410
 
1410
 
1411
    if (!leaf->keys) {
1411
    if (!leaf->keys) {
1412
        btree_insert(&a->used_space, page, (void *) count, leaf);
1412
        btree_insert(&a->used_space, page, (void *) count, leaf);
1413
        return 1;
1413
        return 1;
1414
    }
1414
    }
1415
 
1415
 
1416
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1416
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1417
    if (node) {
1417
    if (node) {
1418
        uintptr_t left_pg = node->key[node->keys - 1];
1418
        uintptr_t left_pg = node->key[node->keys - 1];
1419
        uintptr_t right_pg = leaf->key[0];
1419
        uintptr_t right_pg = leaf->key[0];
1420
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1420
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1421
        count_t right_cnt = (count_t) leaf->value[0];
1421
        count_t right_cnt = (count_t) leaf->value[0];
1422
       
1422
       
1423
        /*
1423
        /*
1424
         * Examine the possibility that the interval fits
1424
         * Examine the possibility that the interval fits
1425
         * somewhere between the rightmost interval of
1425
         * somewhere between the rightmost interval of
1426
         * the left neigbour and the first interval of the leaf.
1426
         * the left neigbour and the first interval of the leaf.
1427
         */
1427
         */
1428
         
1428
         
1429
        if (page >= right_pg) {
1429
        if (page >= right_pg) {
1430
            /* Do nothing. */
1430
            /* Do nothing. */
1431
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1431
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1432
            left_cnt * PAGE_SIZE)) {
1432
            left_cnt * PAGE_SIZE)) {
1433
            /* The interval intersects with the left interval. */
1433
            /* The interval intersects with the left interval. */
1434
            return 0;
1434
            return 0;
1435
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1435
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1436
            right_cnt * PAGE_SIZE)) {
1436
            right_cnt * PAGE_SIZE)) {
1437
            /* The interval intersects with the right interval. */
1437
            /* The interval intersects with the right interval. */
1438
            return 0;          
1438
            return 0;          
1439
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1439
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1440
            (page + count * PAGE_SIZE == right_pg)) {
1440
            (page + count * PAGE_SIZE == right_pg)) {
1441
            /*
1441
            /*
1442
             * The interval can be added by merging the two already
1442
             * The interval can be added by merging the two already
1443
             * present intervals.
1443
             * present intervals.
1444
             */
1444
             */
1445
            node->value[node->keys - 1] += count + right_cnt;
1445
            node->value[node->keys - 1] += count + right_cnt;
1446
            btree_remove(&a->used_space, right_pg, leaf);
1446
            btree_remove(&a->used_space, right_pg, leaf);
1447
            return 1;
1447
            return 1;
1448
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1448
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1449
            /*
1449
            /*
1450
             * The interval can be added by simply growing the left
1450
             * The interval can be added by simply growing the left
1451
             * interval.
1451
             * interval.
1452
             */
1452
             */
1453
            node->value[node->keys - 1] += count;
1453
            node->value[node->keys - 1] += count;
1454
            return 1;
1454
            return 1;
1455
        } else if (page + count * PAGE_SIZE == right_pg) {
1455
        } else if (page + count * PAGE_SIZE == right_pg) {
1456
            /*
1456
            /*
1457
             * The interval can be addded by simply moving base of
1457
             * The interval can be addded by simply moving base of
1458
             * the right interval down and increasing its size
1458
             * the right interval down and increasing its size
1459
             * accordingly.
1459
             * accordingly.
1460
             */
1460
             */
1461
            leaf->value[0] += count;
1461
            leaf->value[0] += count;
1462
            leaf->key[0] = page;
1462
            leaf->key[0] = page;
1463
            return 1;
1463
            return 1;
1464
        } else {
1464
        } else {
1465
            /*
1465
            /*
1466
             * The interval is between both neigbouring intervals,
1466
             * The interval is between both neigbouring intervals,
1467
             * but cannot be merged with any of them.
1467
             * but cannot be merged with any of them.
1468
             */
1468
             */
1469
            btree_insert(&a->used_space, page, (void *) count,
1469
            btree_insert(&a->used_space, page, (void *) count,
1470
                leaf);
1470
                leaf);
1471
            return 1;
1471
            return 1;
1472
        }
1472
        }
1473
    } else if (page < leaf->key[0]) {
1473
    } else if (page < leaf->key[0]) {
1474
        uintptr_t right_pg = leaf->key[0];
1474
        uintptr_t right_pg = leaf->key[0];
1475
        count_t right_cnt = (count_t) leaf->value[0];
1475
        count_t right_cnt = (count_t) leaf->value[0];
1476
   
1476
   
1477
        /*
1477
        /*
1478
         * Investigate the border case in which the left neighbour does
1478
         * Investigate the border case in which the left neighbour does
1479
         * not exist but the interval fits from the left.
1479
         * not exist but the interval fits from the left.
1480
         */
1480
         */
1481
         
1481
         
1482
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1482
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1483
            right_cnt * PAGE_SIZE)) {
1483
            right_cnt * PAGE_SIZE)) {
1484
            /* The interval intersects with the right interval. */
1484
            /* The interval intersects with the right interval. */
1485
            return 0;
1485
            return 0;
1486
        } else if (page + count * PAGE_SIZE == right_pg) {
1486
        } else if (page + count * PAGE_SIZE == right_pg) {
1487
            /*
1487
            /*
1488
             * The interval can be added by moving the base of the
1488
             * The interval can be added by moving the base of the
1489
             * right interval down and increasing its size
1489
             * right interval down and increasing its size
1490
             * accordingly.
1490
             * accordingly.
1491
             */
1491
             */
1492
            leaf->key[0] = page;
1492
            leaf->key[0] = page;
1493
            leaf->value[0] += count;
1493
            leaf->value[0] += count;
1494
            return 1;
1494
            return 1;
1495
        } else {
1495
        } else {
1496
            /*
1496
            /*
1497
             * The interval doesn't adjoin with the right interval.
1497
             * The interval doesn't adjoin with the right interval.
1498
             * It must be added individually.
1498
             * It must be added individually.
1499
             */
1499
             */
1500
            btree_insert(&a->used_space, page, (void *) count,
1500
            btree_insert(&a->used_space, page, (void *) count,
1501
                leaf);
1501
                leaf);
1502
            return 1;
1502
            return 1;
1503
        }
1503
        }
1504
    }
1504
    }
1505
 
1505
 
1506
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1506
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1507
    if (node) {
1507
    if (node) {
1508
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1508
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1509
        uintptr_t right_pg = node->key[0];
1509
        uintptr_t right_pg = node->key[0];
1510
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1510
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1511
        count_t right_cnt = (count_t) node->value[0];
1511
        count_t right_cnt = (count_t) node->value[0];
1512
       
1512
       
1513
        /*
1513
        /*
1514
         * Examine the possibility that the interval fits
1514
         * Examine the possibility that the interval fits
1515
         * somewhere between the leftmost interval of
1515
         * somewhere between the leftmost interval of
1516
         * the right neigbour and the last interval of the leaf.
1516
         * the right neigbour and the last interval of the leaf.
1517
         */
1517
         */
1518
 
1518
 
1519
        if (page < left_pg) {
1519
        if (page < left_pg) {
1520
            /* Do nothing. */
1520
            /* Do nothing. */
1521
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1521
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1522
            left_cnt * PAGE_SIZE)) {
1522
            left_cnt * PAGE_SIZE)) {
1523
            /* The interval intersects with the left interval. */
1523
            /* The interval intersects with the left interval. */
1524
            return 0;
1524
            return 0;
1525
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1525
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1526
            right_cnt * PAGE_SIZE)) {
1526
            right_cnt * PAGE_SIZE)) {
1527
            /* The interval intersects with the right interval. */
1527
            /* The interval intersects with the right interval. */
1528
            return 0;          
1528
            return 0;          
1529
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1529
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1530
            (page + count * PAGE_SIZE == right_pg)) {
1530
            (page + count * PAGE_SIZE == right_pg)) {
1531
            /*
1531
            /*
1532
             * The interval can be added by merging the two already
1532
             * The interval can be added by merging the two already
1533
             * present intervals.
1533
             * present intervals.
1534
             * */
1534
             * */
1535
            leaf->value[leaf->keys - 1] += count + right_cnt;
1535
            leaf->value[leaf->keys - 1] += count + right_cnt;
1536
            btree_remove(&a->used_space, right_pg, node);
1536
            btree_remove(&a->used_space, right_pg, node);
1537
            return 1;
1537
            return 1;
1538
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1538
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1539
            /*
1539
            /*
1540
             * The interval can be added by simply growing the left
1540
             * The interval can be added by simply growing the left
1541
             * interval.
1541
             * interval.
1542
             * */
1542
             * */
1543
            leaf->value[leaf->keys - 1] +=  count;
1543
            leaf->value[leaf->keys - 1] +=  count;
1544
            return 1;
1544
            return 1;
1545
        } else if (page + count * PAGE_SIZE == right_pg) {
1545
        } else if (page + count * PAGE_SIZE == right_pg) {
1546
            /*
1546
            /*
1547
             * The interval can be addded by simply moving base of
1547
             * The interval can be addded by simply moving base of
1548
             * the right interval down and increasing its size
1548
             * the right interval down and increasing its size
1549
             * accordingly.
1549
             * accordingly.
1550
             */
1550
             */
1551
            node->value[0] += count;
1551
            node->value[0] += count;
1552
            node->key[0] = page;
1552
            node->key[0] = page;
1553
            return 1;
1553
            return 1;
1554
        } else {
1554
        } else {
1555
            /*
1555
            /*
1556
             * The interval is between both neigbouring intervals,
1556
             * The interval is between both neigbouring intervals,
1557
             * but cannot be merged with any of them.
1557
             * but cannot be merged with any of them.
1558
             */
1558
             */
1559
            btree_insert(&a->used_space, page, (void *) count,
1559
            btree_insert(&a->used_space, page, (void *) count,
1560
                leaf);
1560
                leaf);
1561
            return 1;
1561
            return 1;
1562
        }
1562
        }
1563
    } else if (page >= leaf->key[leaf->keys - 1]) {
1563
    } else if (page >= leaf->key[leaf->keys - 1]) {
1564
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1564
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1565
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1565
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1566
   
1566
   
1567
        /*
1567
        /*
1568
         * Investigate the border case in which the right neighbour
1568
         * Investigate the border case in which the right neighbour
1569
         * does not exist but the interval fits from the right.
1569
         * does not exist but the interval fits from the right.
1570
         */
1570
         */
1571
         
1571
         
1572
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1572
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1573
            left_cnt * PAGE_SIZE)) {
1573
            left_cnt * PAGE_SIZE)) {
1574
            /* The interval intersects with the left interval. */
1574
            /* The interval intersects with the left interval. */
1575
            return 0;
1575
            return 0;
1576
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1576
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1577
            /*
1577
            /*
1578
             * The interval can be added by growing the left
1578
             * The interval can be added by growing the left
1579
             * interval.
1579
             * interval.
1580
             */
1580
             */
1581
            leaf->value[leaf->keys - 1] += count;
1581
            leaf->value[leaf->keys - 1] += count;
1582
            return 1;
1582
            return 1;
1583
        } else {
1583
        } else {
1584
            /*
1584
            /*
1585
             * The interval doesn't adjoin with the left interval.
1585
             * The interval doesn't adjoin with the left interval.
1586
             * It must be added individually.
1586
             * It must be added individually.
1587
             */
1587
             */
1588
            btree_insert(&a->used_space, page, (void *) count,
1588
            btree_insert(&a->used_space, page, (void *) count,
1589
                leaf);
1589
                leaf);
1590
            return 1;
1590
            return 1;
1591
        }
1591
        }
1592
    }
1592
    }
1593
   
1593
   
1594
    /*
1594
    /*
1595
     * Note that if the algorithm made it thus far, the interval can fit
1595
     * Note that if the algorithm made it thus far, the interval can fit
1596
     * only between two other intervals of the leaf. The two border cases
1596
     * only between two other intervals of the leaf. The two border cases
1597
     * were already resolved.
1597
     * were already resolved.
1598
     */
1598
     */
1599
    for (i = 1; i < leaf->keys; i++) {
1599
    for (i = 1; i < leaf->keys; i++) {
1600
        if (page < leaf->key[i]) {
1600
        if (page < leaf->key[i]) {
1601
            uintptr_t left_pg = leaf->key[i - 1];
1601
            uintptr_t left_pg = leaf->key[i - 1];
1602
            uintptr_t right_pg = leaf->key[i];
1602
            uintptr_t right_pg = leaf->key[i];
1603
            count_t left_cnt = (count_t) leaf->value[i - 1];
1603
            count_t left_cnt = (count_t) leaf->value[i - 1];
1604
            count_t right_cnt = (count_t) leaf->value[i];
1604
            count_t right_cnt = (count_t) leaf->value[i];
1605
 
1605
 
1606
            /*
1606
            /*
1607
             * The interval fits between left_pg and right_pg.
1607
             * The interval fits between left_pg and right_pg.
1608
             */
1608
             */
1609
 
1609
 
1610
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1610
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1611
                left_cnt * PAGE_SIZE)) {
1611
                left_cnt * PAGE_SIZE)) {
1612
                /*
1612
                /*
1613
                 * The interval intersects with the left
1613
                 * The interval intersects with the left
1614
                 * interval.
1614
                 * interval.
1615
                 */
1615
                 */
1616
                return 0;
1616
                return 0;
1617
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1617
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1618
                right_cnt * PAGE_SIZE)) {
1618
                right_cnt * PAGE_SIZE)) {
1619
                /*
1619
                /*
1620
                 * The interval intersects with the right
1620
                 * The interval intersects with the right
1621
                 * interval.
1621
                 * interval.
1622
                 */
1622
                 */
1623
                return 0;          
1623
                return 0;          
1624
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1624
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1625
                (page + count * PAGE_SIZE == right_pg)) {
1625
                (page + count * PAGE_SIZE == right_pg)) {
1626
                /*
1626
                /*
1627
                 * The interval can be added by merging the two
1627
                 * The interval can be added by merging the two
1628
                 * already present intervals.
1628
                 * already present intervals.
1629
                 */
1629
                 */
1630
                leaf->value[i - 1] += count + right_cnt;
1630
                leaf->value[i - 1] += count + right_cnt;
1631
                btree_remove(&a->used_space, right_pg, leaf);
1631
                btree_remove(&a->used_space, right_pg, leaf);
1632
                return 1;
1632
                return 1;
1633
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1633
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1634
                /*
1634
                /*
1635
                 * The interval can be added by simply growing
1635
                 * The interval can be added by simply growing
1636
                 * the left interval.
1636
                 * the left interval.
1637
                 */
1637
                 */
1638
                leaf->value[i - 1] += count;
1638
                leaf->value[i - 1] += count;
1639
                return 1;
1639
                return 1;
1640
            } else if (page + count * PAGE_SIZE == right_pg) {
1640
            } else if (page + count * PAGE_SIZE == right_pg) {
1641
                /*
1641
                /*
1642
                     * The interval can be addded by simply moving
1642
                     * The interval can be addded by simply moving
1643
                 * base of the right interval down and
1643
                 * base of the right interval down and
1644
                 * increasing its size accordingly.
1644
                 * increasing its size accordingly.
1645
                 */
1645
                 */
1646
                leaf->value[i] += count;
1646
                leaf->value[i] += count;
1647
                leaf->key[i] = page;
1647
                leaf->key[i] = page;
1648
                return 1;
1648
                return 1;
1649
            } else {
1649
            } else {
1650
                /*
1650
                /*
1651
                 * The interval is between both neigbouring
1651
                 * The interval is between both neigbouring
1652
                 * intervals, but cannot be merged with any of
1652
                 * intervals, but cannot be merged with any of
1653
                 * them.
1653
                 * them.
1654
                 */
1654
                 */
1655
                btree_insert(&a->used_space, page,
1655
                btree_insert(&a->used_space, page,
1656
                    (void *) count, leaf);
1656
                    (void *) count, leaf);
1657
                return 1;
1657
                return 1;
1658
            }
1658
            }
1659
        }
1659
        }
1660
    }
1660
    }
1661
 
1661
 
1662
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1662
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1663
        "space at %p.\n", count, page);
1663
        "space at %p.\n", count, page);
1664
}
1664
}
1665
 
1665
 
1666
/** Mark portion of address space area as unused.
1666
/** Mark portion of address space area as unused.
1667
 *
1667
 *
1668
 * The address space area must be already locked.
1668
 * The address space area must be already locked.
1669
 *
1669
 *
1670
 * @param a     Address space area.
1670
 * @param a     Address space area.
1671
 * @param page      First page to be marked.
1671
 * @param page      First page to be marked.
1672
 * @param count     Number of page to be marked.
1672
 * @param count     Number of page to be marked.
1673
 *
1673
 *
1674
 * @return      Zero on failure and non-zero on success.
1674
 * @return      Zero on failure and non-zero on success.
1675
 */
1675
 */
1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1676
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1677
{
1677
{
1678
    btree_node_t *leaf, *node;
1678
    btree_node_t *leaf, *node;
1679
    count_t pages;
1679
    count_t pages;
1680
    unsigned int i;
1680
    unsigned int i;
1681
 
1681
 
1682
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1682
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1683
    ASSERT(count);
1683
    ASSERT(count);
1684
 
1684
 
1685
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1685
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1686
    if (pages) {
1686
    if (pages) {
1687
        /*
1687
        /*
1688
         * We are lucky, page is the beginning of some interval.
1688
         * We are lucky, page is the beginning of some interval.
1689
         */
1689
         */
1690
        if (count > pages) {
1690
        if (count > pages) {
1691
            return 0;
1691
            return 0;
1692
        } else if (count == pages) {
1692
        } else if (count == pages) {
1693
            btree_remove(&a->used_space, page, leaf);
1693
            btree_remove(&a->used_space, page, leaf);
1694
            return 1;
1694
            return 1;
1695
        } else {
1695
        } else {
1696
            /*
1696
            /*
1697
             * Find the respective interval.
1697
             * Find the respective interval.
1698
             * Decrease its size and relocate its start address.
1698
             * Decrease its size and relocate its start address.
1699
             */
1699
             */
1700
            for (i = 0; i < leaf->keys; i++) {
1700
            for (i = 0; i < leaf->keys; i++) {
1701
                if (leaf->key[i] == page) {
1701
                if (leaf->key[i] == page) {
1702
                    leaf->key[i] += count * PAGE_SIZE;
1702
                    leaf->key[i] += count * PAGE_SIZE;
1703
                    leaf->value[i] -= count;
1703
                    leaf->value[i] -= count;
1704
                    return 1;
1704
                    return 1;
1705
                }
1705
                }
1706
            }
1706
            }
1707
            goto error;
1707
            goto error;
1708
        }
1708
        }
1709
    }
1709
    }
1710
 
1710
 
1711
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1711
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1712
    if (node && page < leaf->key[0]) {
1712
    if (node && page < leaf->key[0]) {
1713
        uintptr_t left_pg = node->key[node->keys - 1];
1713
        uintptr_t left_pg = node->key[node->keys - 1];
1714
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1714
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1715
 
1715
 
1716
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1716
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1717
            count * PAGE_SIZE)) {
1717
            count * PAGE_SIZE)) {
1718
            if (page + count * PAGE_SIZE ==
1718
            if (page + count * PAGE_SIZE ==
1719
                left_pg + left_cnt * PAGE_SIZE) {
1719
                left_pg + left_cnt * PAGE_SIZE) {
1720
                /*
1720
                /*
1721
                 * The interval is contained in the rightmost
1721
                 * The interval is contained in the rightmost
1722
                 * interval of the left neighbour and can be
1722
                 * interval of the left neighbour and can be
1723
                 * removed by updating the size of the bigger
1723
                 * removed by updating the size of the bigger
1724
                 * interval.
1724
                 * interval.
1725
                 */
1725
                 */
1726
                node->value[node->keys - 1] -= count;
1726
                node->value[node->keys - 1] -= count;
1727
                return 1;
1727
                return 1;
1728
            } else if (page + count * PAGE_SIZE <
1728
            } else if (page + count * PAGE_SIZE <
1729
                left_pg + left_cnt*PAGE_SIZE) {
1729
                left_pg + left_cnt*PAGE_SIZE) {
1730
                count_t new_cnt;
1730
                count_t new_cnt;
1731
               
1731
               
1732
                /*
1732
                /*
1733
                 * The interval is contained in the rightmost
1733
                 * The interval is contained in the rightmost
1734
                 * interval of the left neighbour but its
1734
                 * interval of the left neighbour but its
1735
                 * removal requires both updating the size of
1735
                 * removal requires both updating the size of
1736
                 * the original interval and also inserting a
1736
                 * the original interval and also inserting a
1737
                 * new interval.
1737
                 * new interval.
1738
                 */
1738
                 */
1739
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1739
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1740
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1740
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1741
                node->value[node->keys - 1] -= count + new_cnt;
1741
                node->value[node->keys - 1] -= count + new_cnt;
1742
                btree_insert(&a->used_space, page +
1742
                btree_insert(&a->used_space, page +
1743
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1743
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1744
                return 1;
1744
                return 1;
1745
            }
1745
            }
1746
        }
1746
        }
1747
        return 0;
1747
        return 0;
1748
    } else if (page < leaf->key[0]) {
1748
    } else if (page < leaf->key[0]) {
1749
        return 0;
1749
        return 0;
1750
    }
1750
    }
1751
   
1751
   
1752
    if (page > leaf->key[leaf->keys - 1]) {
1752
    if (page > leaf->key[leaf->keys - 1]) {
1753
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1753
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1754
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1754
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1755
 
1755
 
1756
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1756
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1757
            count * PAGE_SIZE)) {
1757
            count * PAGE_SIZE)) {
1758
            if (page + count * PAGE_SIZE ==
1758
            if (page + count * PAGE_SIZE ==
1759
                left_pg + left_cnt * PAGE_SIZE) {
1759
                left_pg + left_cnt * PAGE_SIZE) {
1760
                /*
1760
                /*
1761
                 * The interval is contained in the rightmost
1761
                 * The interval is contained in the rightmost
1762
                 * interval of the leaf and can be removed by
1762
                 * interval of the leaf and can be removed by
1763
                 * updating the size of the bigger interval.
1763
                 * updating the size of the bigger interval.
1764
                 */
1764
                 */
1765
                leaf->value[leaf->keys - 1] -= count;
1765
                leaf->value[leaf->keys - 1] -= count;
1766
                return 1;
1766
                return 1;
1767
            } else if (page + count * PAGE_SIZE < left_pg +
1767
            } else if (page + count * PAGE_SIZE < left_pg +
1768
                left_cnt * PAGE_SIZE) {
1768
                left_cnt * PAGE_SIZE) {
1769
                count_t new_cnt;
1769
                count_t new_cnt;
1770
               
1770
               
1771
                /*
1771
                /*
1772
                 * The interval is contained in the rightmost
1772
                 * The interval is contained in the rightmost
1773
                 * interval of the leaf but its removal
1773
                 * interval of the leaf but its removal
1774
                 * requires both updating the size of the
1774
                 * requires both updating the size of the
1775
                 * original interval and also inserting a new
1775
                 * original interval and also inserting a new
1776
                 * interval.
1776
                 * interval.
1777
                 */
1777
                 */
1778
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1778
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1779
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1779
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1780
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1780
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1781
                btree_insert(&a->used_space, page +
1781
                btree_insert(&a->used_space, page +
1782
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1782
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1783
                return 1;
1783
                return 1;
1784
            }
1784
            }
1785
        }
1785
        }
1786
        return 0;
1786
        return 0;
1787
    }  
1787
    }  
1788
   
1788
   
1789
    /*
1789
    /*
1790
     * The border cases have been already resolved.
1790
     * The border cases have been already resolved.
1791
     * Now the interval can be only between intervals of the leaf.
1791
     * Now the interval can be only between intervals of the leaf.
1792
     */
1792
     */
1793
    for (i = 1; i < leaf->keys - 1; i++) {
1793
    for (i = 1; i < leaf->keys - 1; i++) {
1794
        if (page < leaf->key[i]) {
1794
        if (page < leaf->key[i]) {
1795
            uintptr_t left_pg = leaf->key[i - 1];
1795
            uintptr_t left_pg = leaf->key[i - 1];
1796
            count_t left_cnt = (count_t) leaf->value[i - 1];
1796
            count_t left_cnt = (count_t) leaf->value[i - 1];
1797
 
1797
 
1798
            /*
1798
            /*
1799
             * Now the interval is between intervals corresponding
1799
             * Now the interval is between intervals corresponding
1800
             * to (i - 1) and i.
1800
             * to (i - 1) and i.
1801
             */
1801
             */
1802
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1802
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1803
                count * PAGE_SIZE)) {
1803
                count * PAGE_SIZE)) {
1804
                if (page + count * PAGE_SIZE ==
1804
                if (page + count * PAGE_SIZE ==
1805
                    left_pg + left_cnt*PAGE_SIZE) {
1805
                    left_pg + left_cnt*PAGE_SIZE) {
1806
                    /*
1806
                    /*
1807
                     * The interval is contained in the
1807
                     * The interval is contained in the
1808
                     * interval (i - 1) of the leaf and can
1808
                     * interval (i - 1) of the leaf and can
1809
                     * be removed by updating the size of
1809
                     * be removed by updating the size of
1810
                     * the bigger interval.
1810
                     * the bigger interval.
1811
                     */
1811
                     */
1812
                    leaf->value[i - 1] -= count;
1812
                    leaf->value[i - 1] -= count;
1813
                    return 1;
1813
                    return 1;
1814
                } else if (page + count * PAGE_SIZE <
1814
                } else if (page + count * PAGE_SIZE <
1815
                    left_pg + left_cnt * PAGE_SIZE) {
1815
                    left_pg + left_cnt * PAGE_SIZE) {
1816
                    count_t new_cnt;
1816
                    count_t new_cnt;
1817
               
1817
               
1818
                    /*
1818
                    /*
1819
                     * The interval is contained in the
1819
                     * The interval is contained in the
1820
                     * interval (i - 1) of the leaf but its
1820
                     * interval (i - 1) of the leaf but its
1821
                     * removal requires both updating the
1821
                     * removal requires both updating the
1822
                     * size of the original interval and
1822
                     * size of the original interval and
1823
                     * also inserting a new interval.
1823
                     * also inserting a new interval.
1824
                     */
1824
                     */
1825
                    new_cnt = ((left_pg +
1825
                    new_cnt = ((left_pg +
1826
                        left_cnt * PAGE_SIZE) -
1826
                        left_cnt * PAGE_SIZE) -
1827
                        (page + count * PAGE_SIZE)) >>
1827
                        (page + count * PAGE_SIZE)) >>
1828
                        PAGE_WIDTH;
1828
                        PAGE_WIDTH;
1829
                    leaf->value[i - 1] -= count + new_cnt;
1829
                    leaf->value[i - 1] -= count + new_cnt;
1830
                    btree_insert(&a->used_space, page +
1830
                    btree_insert(&a->used_space, page +
1831
                        count * PAGE_SIZE, (void *) new_cnt,
1831
                        count * PAGE_SIZE, (void *) new_cnt,
1832
                        leaf);
1832
                        leaf);
1833
                    return 1;
1833
                    return 1;
1834
                }
1834
                }
1835
            }
1835
            }
1836
            return 0;
1836
            return 0;
1837
        }
1837
        }
1838
    }
1838
    }
1839
 
1839
 
1840
error:
1840
error:
1841
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1841
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1842
        "space from %p.\n", count, page);
1842
        "space from %p.\n", count, page);
1843
}
1843
}
1844
 
1844
 
1845
/** Remove reference to address space area share info.
1845
/** Remove reference to address space area share info.
1846
 *
1846
 *
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1847
 * If the reference count drops to 0, the sh_info is deallocated.
1848
 *
1848
 *
1849
 * @param sh_info   Pointer to address space area share info.
1849
 * @param sh_info   Pointer to address space area share info.
1850
 */
1850
 */
1851
void sh_info_remove_reference(share_info_t *sh_info)
1851
void sh_info_remove_reference(share_info_t *sh_info)
1852
{
1852
{
1853
    bool dealloc = false;
1853
    bool dealloc = false;
1854
 
1854
 
1855
    mutex_lock(&sh_info->lock);
1855
    mutex_lock(&sh_info->lock);
1856
    ASSERT(sh_info->refcount);
1856
    ASSERT(sh_info->refcount);
1857
    if (--sh_info->refcount == 0) {
1857
    if (--sh_info->refcount == 0) {
1858
        dealloc = true;
1858
        dealloc = true;
1859
        link_t *cur;
1859
        link_t *cur;
1860
       
1860
       
1861
        /*
1861
        /*
1862
         * Now walk carefully the pagemap B+tree and free/remove
1862
         * Now walk carefully the pagemap B+tree and free/remove
1863
         * reference from all frames found there.
1863
         * reference from all frames found there.
1864
         */
1864
         */
1865
        for (cur = sh_info->pagemap.leaf_head.next;
1865
        for (cur = sh_info->pagemap.leaf_head.next;
1866
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1866
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1867
            btree_node_t *node;
1867
            btree_node_t *node;
1868
            unsigned int i;
1868
            unsigned int i;
1869
           
1869
           
1870
            node = list_get_instance(cur, btree_node_t, leaf_link);
1870
            node = list_get_instance(cur, btree_node_t, leaf_link);
1871
            for (i = 0; i < node->keys; i++)
1871
            for (i = 0; i < node->keys; i++)
1872
                frame_free((uintptr_t) node->value[i]);
1872
                frame_free((uintptr_t) node->value[i]);
1873
        }
1873
        }
1874
       
1874
       
1875
    }
1875
    }
1876
    mutex_unlock(&sh_info->lock);
1876
    mutex_unlock(&sh_info->lock);
1877
   
1877
   
1878
    if (dealloc) {
1878
    if (dealloc) {
1879
        btree_destroy(&sh_info->pagemap);
1879
        btree_destroy(&sh_info->pagemap);
1880
        free(sh_info);
1880
        free(sh_info);
1881
    }
1881
    }
1882
}
1882
}
1883
 
1883
 
1884
/*
1884
/*
1885
 * Address space related syscalls.
1885
 * Address space related syscalls.
1886
 */
1886
 */
1887
 
1887
 
1888
/** Wrapper for as_area_create(). */
1888
/** Wrapper for as_area_create(). */
1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1889
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1890
{
1890
{
1891
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1891
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1892
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1892
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1893
        return (unative_t) address;
1893
        return (unative_t) address;
1894
    else
1894
    else
1895
        return (unative_t) -1;
1895
        return (unative_t) -1;
1896
}
1896
}
1897
 
1897
 
1898
/** Wrapper for as_area_resize(). */
1898
/** Wrapper for as_area_resize(). */
1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1899
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1900
{
1900
{
1901
    return (unative_t) as_area_resize(AS, address, size, 0);
1901
    return (unative_t) as_area_resize(AS, address, size, 0);
1902
}
1902
}
1903
 
1903
 
1904
/** Wrapper for as_area_change_flags(). */
1904
/** Wrapper for as_area_change_flags(). */
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1905
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1906
{
1906
{
1907
    return (unative_t) as_area_change_flags(AS, flags, address);
1907
    return (unative_t) as_area_change_flags(AS, flags, address);
1908
}
1908
}
1909
 
1909
 
1910
/** Wrapper for as_area_destroy(). */
1910
/** Wrapper for as_area_destroy(). */
1911
unative_t sys_as_area_destroy(uintptr_t address)
1911
unative_t sys_as_area_destroy(uintptr_t address)
1912
{
1912
{
1913
    return (unative_t) as_area_destroy(AS, address);
1913
    return (unative_t) as_area_destroy(AS, address);
1914
}
1914
}
1915
 
1915
 
1916
/** Print out information about address space.
1916
/** Print out information about address space.
1917
 *
1917
 *
1918
 * @param as        Address space.
1918
 * @param as        Address space.
1919
 */
1919
 */
1920
void as_print(as_t *as)
1920
void as_print(as_t *as)
1921
{
1921
{
1922
    ipl_t ipl;
1922
    ipl_t ipl;
1923
   
1923
   
1924
    ipl = interrupts_disable();
1924
    ipl = interrupts_disable();
1925
    mutex_lock(&as->lock);
1925
    mutex_lock(&as->lock);
1926
   
1926
   
1927
    /* print out info about address space areas */
1927
    /* print out info about address space areas */
1928
    link_t *cur;
1928
    link_t *cur;
1929
    for (cur = as->as_area_btree.leaf_head.next;
1929
    for (cur = as->as_area_btree.leaf_head.next;
1930
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1930
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1931
        btree_node_t *node;
1931
        btree_node_t *node;
1932
       
1932
       
1933
        node = list_get_instance(cur, btree_node_t, leaf_link);
1933
        node = list_get_instance(cur, btree_node_t, leaf_link);
1934
       
1934
       
1935
        unsigned int i;
1935
        unsigned int i;
1936
        for (i = 0; i < node->keys; i++) {
1936
        for (i = 0; i < node->keys; i++) {
1937
            as_area_t *area = node->value[i];
1937
            as_area_t *area = node->value[i];
1938
       
1938
       
1939
            mutex_lock(&area->lock);
1939
            mutex_lock(&area->lock);
1940
            printf("as_area: %p, base=%p, pages=%" PRIc
1940
            printf("as_area: %p, base=%p, pages=%" PRIc
1941
                " (%p - %p)\n", area, area->base, area->pages,
1941
                " (%p - %p)\n", area, area->base, area->pages,
1942
                area->base, area->base + FRAMES2SIZE(area->pages));
1942
                area->base, area->base + FRAMES2SIZE(area->pages));
1943
            mutex_unlock(&area->lock);
1943
            mutex_unlock(&area->lock);
1944
        }
1944
        }
1945
    }
1945
    }
1946
   
1946
   
1947
    mutex_unlock(&as->lock);
1947
    mutex_unlock(&as->lock);
1948
    interrupts_restore(ipl);
1948
    interrupts_restore(ipl);
1949
}
1949
}
1950
 
1950
 
1951
/** @}
1951
/** @}
1952
 */
1952
 */
1953
 
1953