Subversion Repositories HelenOS

Rev

Rev 2450 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2450 Rev 2461
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * Copyright (C) 2007 Vojtech Mencl
3
 * Copyright (C) 2007 Vojtech Mencl
4
 * All rights reserved.
4
 * All rights reserved.
5
 *
5
 *
6
 * Redistribution and use in source and binary forms, with or without
6
 * Redistribution and use in source and binary forms, with or without
7
 * modification, are permitted provided that the following conditions
7
 * modification, are permitted provided that the following conditions
8
 * are met:
8
 * are met:
9
 *
9
 *
10
 * - Redistributions of source code must retain the above copyright
10
 * - Redistributions of source code must retain the above copyright
11
 *   notice, this list of conditions and the following disclaimer.
11
 *   notice, this list of conditions and the following disclaimer.
12
 * - Redistributions in binary form must reproduce the above copyright
12
 * - Redistributions in binary form must reproduce the above copyright
13
 *   notice, this list of conditions and the following disclaimer in the
13
 *   notice, this list of conditions and the following disclaimer in the
14
 *   documentation and/or other materials provided with the distribution.
14
 *   documentation and/or other materials provided with the distribution.
15
 * - The name of the author may not be used to endorse or promote products
15
 * - The name of the author may not be used to endorse or promote products
16
 *   derived from this software without specific prior written permission.
16
 *   derived from this software without specific prior written permission.
17
 *
17
 *
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
 */
28
 */
29
 
29
 
30
/** @addtogroup time
30
/** @addtogroup time
31
 * @{
31
 * @{
32
 */
32
 */
33
 
33
 
34
/**
34
/**
35
 * @file
35
 * @file
36
 * @brief   High-level clock interrupt handler.
36
 * @brief   High-level clock interrupt handler.
37
 *
37
 *
38
 * This file contains the clock() function which is the source
38
 * This file contains the clock() function which is the source
39
 * of preemption. It is also responsible for executing expired
39
 * of preemption. It is also responsible for executing expired
40
 * timeouts.
40
 * timeouts.
41
 */
41
 */
42
 
42
 
43
#include <time/clock.h>
43
#include <time/clock.h>
44
#include <time/timeout.h>
44
#include <time/timeout.h>
45
#include <config.h>
45
#include <config.h>
46
#include <synch/spinlock.h>
46
#include <synch/spinlock.h>
47
#include <synch/waitq.h>
47
#include <synch/waitq.h>
48
#include <func.h>
48
#include <func.h>
49
#include <proc/scheduler.h>
49
#include <proc/scheduler.h>
50
#include <cpu.h>
50
#include <cpu.h>
51
#include <arch.h>
51
#include <arch.h>
52
#include <adt/list.h>
52
#include <adt/list.h>
53
#include <atomic.h>
53
#include <atomic.h>
54
#include <proc/thread.h>
54
#include <proc/thread.h>
55
#include <sysinfo/sysinfo.h>
55
#include <sysinfo/sysinfo.h>
56
#include <arch/barrier.h>
56
#include <arch/barrier.h>
57
#include <mm/frame.h>
57
#include <mm/frame.h>
58
#include <ddi/ddi.h>
58
#include <ddi/ddi.h>
59
#if defined CONFIG_TIMEOUT_AVL_TREE || defined CONFIG_TIMEOUT_EXTAVL_TREE
-
 
60
#include <arch/asm.h>
-
 
61
#include <arch/types.h>
-
 
62
#include <panic.h>
-
 
-
 
59
 
63
#endif
60
 
64
/* Pointer to variable with uptime */
61
/* Pointer to variable with uptime */
65
uptime_t *uptime;
62
uptime_t *uptime;
66
 
63
 
67
/** Physical memory area of the real time clock */
64
/** Physical memory area of the real time clock */
68
static parea_t clock_parea;
65
static parea_t clock_parea;
69
 
66
 
70
/* Variable holding fragment of second, so that we would update
67
/* Variable holding fragment of second, so that we would update
71
 * seconds correctly
68
 * seconds correctly
72
 */
69
 */
73
static unative_t secfrag = 0;
70
static unative_t secfrag = 0;
74
 
71
 
75
/** Initialize realtime clock counter
72
/** Initialize realtime clock counter
76
 *
73
 *
77
 * The applications (and sometimes kernel) need to access accurate
74
 * The applications (and sometimes kernel) need to access accurate
78
 * information about realtime data. We allocate 1 page with these
75
 * information about realtime data. We allocate 1 page with these
79
 * data and update it periodically.
76
 * data and update it periodically.
80
 */
77
 */
81
void clock_counter_init(void)
78
void clock_counter_init(void)
82
{
79
{
83
    void *faddr;
80
    void *faddr;
84
 
81
 
85
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
82
    faddr = frame_alloc(ONE_FRAME, FRAME_ATOMIC);
86
    if (!faddr)
83
    if (!faddr)
87
        panic("Cannot allocate page for clock");
84
        panic("Cannot allocate page for clock");
88
   
85
   
89
    uptime = (uptime_t *) PA2KA(faddr);
86
    uptime = (uptime_t *) PA2KA(faddr);
90
   
87
   
91
    uptime->seconds1 = 0;
88
    uptime->seconds1 = 0;
92
    uptime->seconds2 = 0;
89
    uptime->seconds2 = 0;
93
    uptime->useconds = 0;
90
    uptime->useconds = 0;
94
 
91
 
95
    clock_parea.pbase = (uintptr_t) faddr;
92
    clock_parea.pbase = (uintptr_t) faddr;
96
    clock_parea.vbase = (uintptr_t) uptime;
93
    clock_parea.vbase = (uintptr_t) uptime;
97
    clock_parea.frames = 1;
94
    clock_parea.frames = 1;
98
    clock_parea.cacheable = true;
95
    clock_parea.cacheable = true;
99
    ddi_parea_register(&clock_parea);
96
    ddi_parea_register(&clock_parea);
100
 
97
 
101
    /*
98
    /*
102
     * Prepare information for the userspace so that it can successfully
99
     * Prepare information for the userspace so that it can successfully
103
     * physmem_map() the clock_parea.
100
     * physmem_map() the clock_parea.
104
     */
101
     */
105
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
102
    sysinfo_set_item_val("clock.cacheable", NULL, (unative_t) true);
106
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
103
    sysinfo_set_item_val("clock.faddr", NULL, (unative_t) faddr);
107
}
104
}
108
 
105
 
109
 
106
 
110
/** Update public counters
107
/** Update public counters
111
 *
108
 *
112
 * Update it only on first processor
109
 * Update it only on first processor
113
 * TODO: Do we really need so many write barriers?
110
 * TODO: Do we really need so many write barriers?
114
 */
111
 */
115
static void clock_update_counters(void)
112
static void clock_update_counters(void)
116
{
113
{
117
    if (CPU->id == 0) {
114
    if (CPU->id == 0) {
118
        secfrag += 1000000 / HZ;
115
        secfrag += 1000000 / HZ;
119
        if (secfrag >= 1000000) {
116
        if (secfrag >= 1000000) {
120
            secfrag -= 1000000;
117
            secfrag -= 1000000;
121
            uptime->seconds1++;
118
            uptime->seconds1++;
122
            write_barrier();
119
            write_barrier();
123
            uptime->useconds = secfrag;
120
            uptime->useconds = secfrag;
124
            write_barrier();
121
            write_barrier();
125
            uptime->seconds2 = uptime->seconds1;
122
            uptime->seconds2 = uptime->seconds1;
126
        } else
123
        } else
127
            uptime->useconds += 1000000 / HZ;
124
            uptime->useconds += 1000000 / HZ;
128
    }
125
    }
129
}
126
}
130
 
127
 
131
#if defined CONFIG_TIMEOUT_AVL_TREE
128
#if defined CONFIG_TIMEOUT_AVL_TREE
132
 
129
 
133
/** Clock routine
130
/** Clock routine
134
 *
131
 *
135
 * Clock routine executed from clock interrupt handler
132
 * Clock routine executed from clock interrupt handler
136
 * (assuming interrupts_disable()'d). Runs expired timeouts
133
 * (assuming interrupts_disable()'d). Runs expired timeouts
137
 * and preemptive scheduling.
134
 * and preemptive scheduling.
138
 *
135
 *
139
 */
136
 */
140
void clock(void)
137
void clock(void)
141
{
138
{
142
    timeout_t *h;
139
    timeout_t *h;
143
    timeout_handler_t f;
140
    timeout_handler_t f;
144
    void *arg;
141
    void *arg;
145
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
142
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
146
    uint64_t i = CPU->timeout_active_tree.base;
143
    uint64_t i = CPU->timeout_active_tree.base;
147
    uint64_t last_clock_tick = i + missed_clock_ticks;
144
    uint64_t last_clock_tick = i + missed_clock_ticks;
148
    avltree_node_t *expnode;
145
    avltree_node_t *expnode;
149
 
146
 
150
    /*
147
    /*
151
     * To avoid lock ordering problems,
148
     * To avoid lock ordering problems,
152
     * run all expired timeouts as you visit them.
149
     * run all expired timeouts as you visit them.
153
     */
150
     */
154
 
-
 
155
   
151
   
156
    for (; i <= last_clock_tick; i++) {
152
    for (; i <= last_clock_tick; i++) {
157
        clock_update_counters();
153
        clock_update_counters();
158
        spinlock_lock(&CPU->timeoutlock);
154
        spinlock_lock(&CPU->timeoutlock);
159
   
155
   
160
        /*
156
        /*
161
         * Check whether first timeout (with the smallest key in the tree) time out. If so perform
157
         * Check whether first timeout (with the smallest key in the tree) time out. If so perform
162
         * callback function and try next timeout (more timeouts can have same timeout).
158
         * callback function and try next timeout (more timeouts can have same timeout).
163
         */
159
         */
164
        while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) {
160
        while ((expnode = avltree_find_min(&CPU->timeout_active_tree)) != NULL) {
165
            h = avltree_get_instance(expnode,timeout_t,node);
161
            h = avltree_get_instance(expnode,timeout_t,node);
166
            spinlock_lock(&h->lock);
162
            spinlock_lock(&h->lock);
167
            if (expnode->key != i) {
163
            if (expnode->key != i) {
168
                /*
164
                /*
169
                 * Base is increased every for cycle.
165
                 * Base is increased every for cycle.
170
                 */
166
                 */
171
                (CPU->timeout_active_tree.base)++;
167
                (CPU->timeout_active_tree.base)++;
172
                spinlock_unlock(&h->lock);
168
                spinlock_unlock(&h->lock);
173
                break;
169
                break;
174
            }
170
            }
175
           
171
           
176
            /*
172
            /*
177
             * Delete minimal key from the tree and repair tree structure in
173
             * Delete minimal key from the tree and repair tree structure in
178
             * logarithmic time.
174
             * logarithmic time.
179
             */
175
             */
180
            avltree_delete_min(&CPU->timeout_active_tree);
176
            avltree_delete_min(&CPU->timeout_active_tree);
181
 
177
 
-
 
178
            f = h->handler;
-
 
179
            arg = h->arg;
-
 
180
            timeout_reinitialize(h);
-
 
181
            spinlock_unlock(&h->lock); 
-
 
182
            spinlock_unlock(&CPU->timeoutlock);
-
 
183
 
-
 
184
            f(arg);
-
 
185
 
-
 
186
            spinlock_lock(&CPU->timeoutlock);
-
 
187
        }
-
 
188
        spinlock_unlock(&CPU->timeoutlock);
-
 
189
    }
-
 
190
 
-
 
191
    CPU->missed_clock_ticks = 0;
-
 
192
 
-
 
193
    /*
-
 
194
     * Do CPU usage accounting and find out whether to preempt THREAD.
-
 
195
     */
-
 
196
    if (THREAD) {
-
 
197
        uint64_t ticks;
-
 
198
       
-
 
199
        spinlock_lock(&CPU->lock);
-
 
200
        CPU->needs_relink += 1 + missed_clock_ticks;
-
 
201
        spinlock_unlock(&CPU->lock);   
-
 
202
   
-
 
203
        spinlock_lock(&THREAD->lock);
-
 
204
        if ((ticks = THREAD->ticks)) {
-
 
205
            if (ticks >= 1 + missed_clock_ticks)
-
 
206
                THREAD->ticks -= 1 + missed_clock_ticks;
-
 
207
            else
-
 
208
                THREAD->ticks = 0;
-
 
209
        }
-
 
210
        spinlock_unlock(&THREAD->lock);
-
 
211
       
-
 
212
        if (!ticks && !PREEMPTION_DISABLED) {
-
 
213
            scheduler();
-
 
214
        }
-
 
215
    }
-
 
216
}
-
 
217
 
-
 
218
#elif defined CONFIG_TIMEOUT_FAVL_TREE
-
 
219
 
-
 
220
/** Clock routine
-
 
221
 *
-
 
222
 * Clock routine executed from clock interrupt handler
-
 
223
 * (assuming interrupts_disable()'d). Runs expired timeouts
-
 
224
 * and preemptive scheduling.
-
 
225
 *
-
 
226
 */
-
 
227
void clock(void)
-
 
228
{
-
 
229
    timeout_t *h;
-
 
230
    timeout_handler_t f;
-
 
231
    void *arg;
-
 
232
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
-
 
233
    uint64_t i = CPU->timeout_active_tree.base;
-
 
234
    uint64_t last_clock_tick = i + missed_clock_ticks;
-
 
235
    favltree_node_t *expnode;
-
 
236
 
-
 
237
    /*
-
 
238
     * To avoid lock ordering problems,
-
 
239
     * run all expired timeouts as you visit them.
-
 
240
     */
-
 
241
   
-
 
242
    for (; i <= last_clock_tick; i++) {
-
 
243
        clock_update_counters();
-
 
244
        spinlock_lock(&CPU->timeoutlock);
-
 
245
   
-
 
246
        /*
-
 
247
         * Check whether first timeout (with the smallest key in the tree) time out. If so perform
-
 
248
         * callback function and try next timeout (more timeouts can have same timeout).
-
 
249
         * Function favltree_find_min works in contant time.
-
 
250
         */
-
 
251
        while ((expnode = favltree_find_min(&CPU->timeout_active_tree)) != NULL) {
-
 
252
            h = favltree_get_instance(expnode,timeout_t,node);
-
 
253
            spinlock_lock(&h->lock);
-
 
254
            if (expnode->key != i) {
-
 
255
                /*
-
 
256
                 * Base is increased every for cycle.
-
 
257
                 */
-
 
258
                (CPU->timeout_active_tree.base)++;
-
 
259
                spinlock_unlock(&h->lock);
-
 
260
                break;
-
 
261
            }
-
 
262
           
-
 
263
            /*
-
 
264
             * Delete minimal key from the tree and repair tree structure in
-
 
265
             * logarithmic time.
-
 
266
             */
-
 
267
            favltree_delete_min(&CPU->timeout_active_tree);
-
 
268
 
182
            f = h->handler;
269
            f = h->handler;
183
            arg = h->arg;
270
            arg = h->arg;
184
            timeout_reinitialize(h);
271
            timeout_reinitialize(h);
185
            spinlock_unlock(&h->lock); 
272
            spinlock_unlock(&h->lock); 
186
            spinlock_unlock(&CPU->timeoutlock);
273
            spinlock_unlock(&CPU->timeoutlock);
187
 
274
 
188
            f(arg);
275
            f(arg);
189
 
276
 
190
            spinlock_lock(&CPU->timeoutlock);
277
            spinlock_lock(&CPU->timeoutlock);
191
        }
278
        }
192
        spinlock_unlock(&CPU->timeoutlock);
279
        spinlock_unlock(&CPU->timeoutlock);
193
    }
280
    }
194
 
281
 
195
    CPU->missed_clock_ticks = 0;
282
    CPU->missed_clock_ticks = 0;
196
 
283
 
197
    /*
284
    /*
198
     * Do CPU usage accounting and find out whether to preempt THREAD.
285
     * Do CPU usage accounting and find out whether to preempt THREAD.
199
     */
286
     */
200
    if (THREAD) {
287
    if (THREAD) {
201
        uint64_t ticks;
288
        uint64_t ticks;
202
       
289
       
203
        spinlock_lock(&CPU->lock);
290
        spinlock_lock(&CPU->lock);
204
        CPU->needs_relink += 1 + missed_clock_ticks;
291
        CPU->needs_relink += 1 + missed_clock_ticks;
205
        spinlock_unlock(&CPU->lock);   
292
        spinlock_unlock(&CPU->lock);   
206
   
293
   
207
        spinlock_lock(&THREAD->lock);
294
        spinlock_lock(&THREAD->lock);
208
        if ((ticks = THREAD->ticks)) {
295
        if ((ticks = THREAD->ticks)) {
209
            if (ticks >= 1 + missed_clock_ticks)
296
            if (ticks >= 1 + missed_clock_ticks)
210
                THREAD->ticks -= 1 + missed_clock_ticks;
297
                THREAD->ticks -= 1 + missed_clock_ticks;
211
            else
298
            else
212
                THREAD->ticks = 0;
299
                THREAD->ticks = 0;
213
        }
300
        }
214
        spinlock_unlock(&THREAD->lock);
301
        spinlock_unlock(&THREAD->lock);
215
       
302
       
216
        if (!ticks && !PREEMPTION_DISABLED) {
303
        if (!ticks && !PREEMPTION_DISABLED) {
217
            scheduler();
304
            scheduler();
218
        }
305
        }
219
    }
306
    }
220
}
307
}
221
 
308
 
222
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
309
#elif defined CONFIG_TIMEOUT_EXTAVL_TREE
223
 
310
 
224
/** Clock routine
311
/** Clock routine
225
 *
312
 *
226
 * Clock routine executed from clock interrupt handler
313
 * Clock routine executed from clock interrupt handler
227
 * (assuming interrupts_disable()'d). Runs expired timeouts
314
 * (assuming interrupts_disable()'d). Runs expired timeouts
228
 * and preemptive scheduling.
315
 * and preemptive scheduling.
229
 *
316
 *
230
 */
317
 */
231
void clock(void)
318
void clock(void)
232
{
319
{
233
    timeout_t *h;
320
    timeout_t *h;
234
    timeout_handler_t f;
321
    timeout_handler_t f;
235
    void *arg;
322
    void *arg;
236
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
323
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
237
    uint64_t i = CPU->timeout_active_tree.base;
324
    uint64_t i = CPU->timeout_active_tree.base;
238
    uint64_t last_clock_tick = i + missed_clock_ticks;
325
    uint64_t last_clock_tick = i + missed_clock_ticks;
239
    extavltree_node_t *expnode;
326
    extavltree_node_t *expnode;
240
    //ipl_t ipl;
327
    //ipl_t ipl;
241
 
328
 
242
    /*
329
    /*
243
     * To avoid lock ordering problems,
330
     * To avoid lock ordering problems,
244
     * run all expired timeouts as you visit them.
331
     * run all expired timeouts as you visit them.
245
     */
332
     */
246
 
333
 
247
    for (; i <= last_clock_tick; i++) {
334
    for (; i <= last_clock_tick; i++) {
248
        clock_update_counters();
335
        clock_update_counters();
249
        spinlock_lock(&CPU->timeoutlock);
336
        spinlock_lock(&CPU->timeoutlock);
250
       
337
       
251
        /*
338
        /*
252
         * Check whether first timeout in list time out. If so perform callback function and try
339
         * Check whether first timeout in list time out. If so perform callback function and try
253
         * next timeout (more timeouts can have same timeout).
340
         * next timeout (more timeouts can have same timeout).
254
         */
341
         */
255
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
342
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
256
            h = extavltree_get_instance(expnode,timeout_t,node);
343
            h = extavltree_get_instance(expnode,timeout_t,node);
257
            spinlock_lock(&h->lock);
344
            spinlock_lock(&h->lock);
258
            if (expnode->key != i) {
345
            if (expnode->key != i) {
259
                /*
346
                /*
260
                 * Base is increased every for cycle.
347
                 * Base is increased every for cycle.
261
                 */
348
                 */
262
                (CPU->timeout_active_tree.base)++;
349
                (CPU->timeout_active_tree.base)++;
263
                spinlock_unlock(&h->lock);
350
                spinlock_unlock(&h->lock);
264
                break;
351
                break;
265
            }
352
            }
266
           
353
           
267
            /*
354
            /*
268
             * Delete first node in the list and repair tree structure in
355
             * Delete first node in the list and repair tree structure in
269
             * constant time.
356
             * constant time.
270
             */
357
             */
271
            extavltree_delete_min(&CPU->timeout_active_tree);
358
            extavltree_delete_min(&CPU->timeout_active_tree);
272
 
359
 
273
            f = h->handler;
360
            f = h->handler;
274
            arg = h->arg;
361
            arg = h->arg;
275
            timeout_reinitialize(h);
362
            timeout_reinitialize(h);
276
            spinlock_unlock(&h->lock); 
363
            spinlock_unlock(&h->lock); 
277
            spinlock_unlock(&CPU->timeoutlock);
364
            spinlock_unlock(&CPU->timeoutlock);
278
 
365
 
279
            f(arg);
366
            f(arg);
280
 
367
 
281
            spinlock_lock(&CPU->timeoutlock);
368
            spinlock_lock(&CPU->timeoutlock);
282
        }
369
        }
283
        spinlock_unlock(&CPU->timeoutlock);
370
        spinlock_unlock(&CPU->timeoutlock);
284
    }
371
    }
285
 
372
 
286
    CPU->missed_clock_ticks = 0;
373
    CPU->missed_clock_ticks = 0;
287
 
374
 
288
    /*
375
    /*
289
     * Do CPU usage accounting and find out whether to preempt THREAD.
376
     * Do CPU usage accounting and find out whether to preempt THREAD.
290
     */
377
     */
291
    if (THREAD) {
378
    if (THREAD) {
292
        uint64_t ticks;
379
        uint64_t ticks;
293
       
380
       
294
        spinlock_lock(&CPU->lock);
381
        spinlock_lock(&CPU->lock);
295
        CPU->needs_relink += 1 + missed_clock_ticks;
382
        CPU->needs_relink += 1 + missed_clock_ticks;
296
        spinlock_unlock(&CPU->lock);   
383
        spinlock_unlock(&CPU->lock);   
297
   
384
   
298
        spinlock_lock(&THREAD->lock);
385
        spinlock_lock(&THREAD->lock);
299
        if ((ticks = THREAD->ticks)) {
386
        if ((ticks = THREAD->ticks)) {
300
            if (ticks >= 1 + missed_clock_ticks)
387
            if (ticks >= 1 + missed_clock_ticks)
301
                THREAD->ticks -= 1 + missed_clock_ticks;
388
                THREAD->ticks -= 1 + missed_clock_ticks;
302
            else
389
            else
303
                THREAD->ticks = 0;
390
                THREAD->ticks = 0;
304
        }
391
        }
305
        spinlock_unlock(&THREAD->lock);
392
        spinlock_unlock(&THREAD->lock);
306
       
393
       
307
        if (!ticks && !PREEMPTION_DISABLED) {
394
        if (!ticks && !PREEMPTION_DISABLED) {
308
            scheduler();
395
            scheduler();
309
        }
396
        }
310
    }
397
    }
311
}
398
}
312
 
399
 
313
#elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
400
#elif defined CONFIG_TIMEOUT_EXTAVLREL_TREE
314
 
401
 
315
/** Clock routine
402
/** Clock routine
316
 *
403
 *
317
 * Clock routine executed from clock interrupt handler
404
 * Clock routine executed from clock interrupt handler
318
 * (assuming interrupts_disable()'d). Runs expired timeouts
405
 * (assuming interrupts_disable()'d). Runs expired timeouts
319
 * and preemptive scheduling.
406
 * and preemptive scheduling.
320
 *
407
 *
321
 */
408
 */
322
void clock(void)
409
void clock(void)
323
{
410
{
324
    extavlreltree_node_t *expnode;
411
    extavlreltree_node_t *expnode;
325
    timeout_t *h;
412
    timeout_t *h;
326
    timeout_handler_t f;
413
    timeout_handler_t f;
327
    void *arg;
414
    void *arg;
328
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
415
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
329
    int i;
416
    int i;
330
 
417
 
331
    /*
418
    /*
332
     * To avoid lock ordering problems,
419
     * To avoid lock ordering problems,
333
     * run all expired timeouts as you visit them.
420
     * run all expired timeouts as you visit them.
334
     */
421
     */
335
    for (i = 0; i <= missed_clock_ticks; i++) {
422
    for (i = 0; i <= missed_clock_ticks; i++) {
336
        clock_update_counters();
423
        clock_update_counters();
337
        spinlock_lock(&CPU->timeoutlock);
424
        spinlock_lock(&CPU->timeoutlock);
338
 
425
 
339
        /*
426
        /*
340
         * Check whether first timeout in list time out. If so perform callback function and try
427
         * Check whether first timeout in list time out. If so perform callback function and try
341
         * next timeout (more timeouts can have same timeout).
428
         * next timeout (more timeouts can have same timeout).
342
         */
429
         */
343
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
430
        while ((expnode = CPU->timeout_active_tree.head.next) != &(CPU->timeout_active_tree.head)) {
344
            h = extavlreltree_get_instance(expnode,timeout_t,node);
431
            h = extavlreltree_get_instance(expnode,timeout_t,node);
345
            spinlock_lock(&h->lock);
432
            spinlock_lock(&h->lock);
346
            if (expnode->key != 0) {
433
            if (expnode->key != 0) {
347
                expnode->key--;
434
                expnode->key--;
348
                spinlock_unlock(&h->lock);
435
                spinlock_unlock(&h->lock);
349
                break;
436
                break;
350
            }
437
            }
351
           
438
           
352
            /*
439
            /*
353
             * Delete first node in the list and repair tree structure in
440
             * Delete first node in the list and repair tree structure in
354
             * constant time. Be careful of expnode's key, it must be 0!
441
             * constant time. Be careful of expnode's key, it must be 0!
355
             */
442
             */
356
            extavlreltree_delete_min(&CPU->timeout_active_tree);
443
            extavlreltree_delete_min(&CPU->timeout_active_tree);
357
           
444
           
358
            f = h->handler;
445
            f = h->handler;
359
            arg = h->arg;
446
            arg = h->arg;
360
            timeout_reinitialize(h);
447
            timeout_reinitialize(h);
361
            spinlock_unlock(&h->lock); 
448
            spinlock_unlock(&h->lock); 
362
            spinlock_unlock(&CPU->timeoutlock);
449
            spinlock_unlock(&CPU->timeoutlock);
363
 
450
 
364
            f(arg);
451
            f(arg);
365
 
452
 
366
            spinlock_lock(&CPU->timeoutlock);
453
            spinlock_lock(&CPU->timeoutlock);
367
        }
454
        }
368
        spinlock_unlock(&CPU->timeoutlock);
455
        spinlock_unlock(&CPU->timeoutlock);
369
    }
456
    }
370
    CPU->missed_clock_ticks = 0;
457
    CPU->missed_clock_ticks = 0;
371
 
458
 
372
    /*
459
    /*
373
     * Do CPU usage accounting and find out whether to preempt THREAD.
460
     * Do CPU usage accounting and find out whether to preempt THREAD.
374
     */
461
     */
375
 
462
 
376
    if (THREAD) {
463
    if (THREAD) {
377
        uint64_t ticks;
464
        uint64_t ticks;
378
       
465
       
379
        spinlock_lock(&CPU->lock);
466
        spinlock_lock(&CPU->lock);
380
        CPU->needs_relink += 1 + missed_clock_ticks;
467
        CPU->needs_relink += 1 + missed_clock_ticks;
381
        spinlock_unlock(&CPU->lock);   
468
        spinlock_unlock(&CPU->lock);   
382
   
469
   
383
        spinlock_lock(&THREAD->lock);
470
        spinlock_lock(&THREAD->lock);
384
        if ((ticks = THREAD->ticks)) {
471
        if ((ticks = THREAD->ticks)) {
385
            if (ticks >= 1 + missed_clock_ticks)
472
            if (ticks >= 1 + missed_clock_ticks)
386
                THREAD->ticks -= 1 + missed_clock_ticks;
473
                THREAD->ticks -= 1 + missed_clock_ticks;
387
            else
474
            else
388
                THREAD->ticks = 0;
475
                THREAD->ticks = 0;
389
        }
476
        }
390
        spinlock_unlock(&THREAD->lock);
477
        spinlock_unlock(&THREAD->lock);
391
       
478
       
392
        if (!ticks && !PREEMPTION_DISABLED) {
479
        if (!ticks && !PREEMPTION_DISABLED) {
393
            scheduler();
480
            scheduler();
394
        }
481
        }
395
    }
482
    }
396
}
483
}
397
 
484
 
398
 
485
 
399
 
486
 
400
#else
487
#else
401
 
488
 
402
 
489
 
403
/** Clock routine
490
/** Clock routine
404
 *
491
 *
405
 * Clock routine executed from clock interrupt handler
492
 * Clock routine executed from clock interrupt handler
406
 * (assuming interrupts_disable()'d). Runs expired timeouts
493
 * (assuming interrupts_disable()'d). Runs expired timeouts
407
 * and preemptive scheduling.
494
 * and preemptive scheduling.
408
 *
495
 *
409
 */
496
 */
410
void clock(void)
497
void clock(void)
411
{
498
{
412
    link_t *l;
499
    link_t *l;
413
    timeout_t *h;
500
    timeout_t *h;
414
    timeout_handler_t f;
501
    timeout_handler_t f;
415
    void *arg;
502
    void *arg;
416
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
503
    count_t missed_clock_ticks = CPU->missed_clock_ticks;
417
    int i;
504
    int i;
418
 
505
 
419
    /*
506
    /*
420
     * To avoid lock ordering problems,
507
     * To avoid lock ordering problems,
421
     * run all expired timeouts as you visit them.
508
     * run all expired timeouts as you visit them.
422
     */
509
     */
423
    for (i = 0; i <= missed_clock_ticks; i++) {
510
    for (i = 0; i <= missed_clock_ticks; i++) {
424
        clock_update_counters();
511
        clock_update_counters();
425
        spinlock_lock(&CPU->timeoutlock);
512
        spinlock_lock(&CPU->timeoutlock);
426
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
513
        while ((l = CPU->timeout_active_head.next) != &CPU->timeout_active_head) {
427
            h = list_get_instance(l, timeout_t, link);
514
            h = list_get_instance(l, timeout_t, link);
428
            spinlock_lock(&h->lock);
515
            spinlock_lock(&h->lock);
429
            if (h->ticks-- != 0) {
516
            if (h->ticks-- != 0) {
430
                spinlock_unlock(&h->lock);
517
                spinlock_unlock(&h->lock);
431
                break;
518
                break;
432
            }
519
            }
433
            list_remove(l);
520
            list_remove(l);
434
            f = h->handler;
521
            f = h->handler;
435
            arg = h->arg;
522
            arg = h->arg;
436
            timeout_reinitialize(h);
523
            timeout_reinitialize(h);
437
            spinlock_unlock(&h->lock); 
524
            spinlock_unlock(&h->lock); 
438
            spinlock_unlock(&CPU->timeoutlock);
525
            spinlock_unlock(&CPU->timeoutlock);
439
 
526
 
440
            f(arg);
527
            f(arg);
441
 
528
 
442
            spinlock_lock(&CPU->timeoutlock);
529
            spinlock_lock(&CPU->timeoutlock);
443
        }
530
        }
444
        spinlock_unlock(&CPU->timeoutlock);
531
        spinlock_unlock(&CPU->timeoutlock);
445
    }
532
    }
446
    CPU->missed_clock_ticks = 0;
533
    CPU->missed_clock_ticks = 0;
447
 
534
 
448
    /*
535
    /*
449
     * Do CPU usage accounting and find out whether to preempt THREAD.
536
     * Do CPU usage accounting and find out whether to preempt THREAD.
450
     */
537
     */
451
 
538
 
452
    if (THREAD) {
539
    if (THREAD) {
453
        uint64_t ticks;
540
        uint64_t ticks;
454
       
541
       
455
        spinlock_lock(&CPU->lock);
542
        spinlock_lock(&CPU->lock);
456
        CPU->needs_relink += 1 + missed_clock_ticks;
543
        CPU->needs_relink += 1 + missed_clock_ticks;
457
        spinlock_unlock(&CPU->lock);   
544
        spinlock_unlock(&CPU->lock);   
458
   
545
   
459
        spinlock_lock(&THREAD->lock);
546
        spinlock_lock(&THREAD->lock);
460
        if ((ticks = THREAD->ticks)) {
547
        if ((ticks = THREAD->ticks)) {
461
            if (ticks >= 1 + missed_clock_ticks)
548
            if (ticks >= 1 + missed_clock_ticks)
462
                THREAD->ticks -= 1 + missed_clock_ticks;
549
                THREAD->ticks -= 1 + missed_clock_ticks;
463
            else
550
            else
464
                THREAD->ticks = 0;
551
                THREAD->ticks = 0;
465
        }
552
        }
466
        spinlock_unlock(&THREAD->lock);
553
        spinlock_unlock(&THREAD->lock);
467
       
554
       
468
        if (!ticks && !PREEMPTION_DISABLED) {
555
        if (!ticks && !PREEMPTION_DISABLED) {
469
            scheduler();
556
            scheduler();
470
        }
557
        }
471
    }
558
    }
472
}
559
}
473
 
560
 
474
#endif
561
#endif
475
/** @}
562
/** @}
476
 */
563
 */
477
 
564