Subversion Repositories HelenOS

Rev

Rev 2131 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2131 Rev 2307
1
/*
1
/*
2
 * Copyright (c) 2001-2004 Jakub Jermar
2
 * Copyright (c) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup ia32   
29
/** @addtogroup ia32   
30
 * @{
30
 * @{
31
 */
31
 */
32
/** @file
32
/** @file
33
 */
33
 */
34
 
34
 
35
#include <arch/pm.h>
35
#include <arch/pm.h>
36
#include <config.h>
36
#include <config.h>
37
#include <arch/types.h>
37
#include <arch/types.h>
38
#include <arch/interrupt.h>
38
#include <arch/interrupt.h>
39
#include <arch/asm.h>
39
#include <arch/asm.h>
40
#include <arch/context.h>
40
#include <arch/context.h>
41
#include <panic.h>
41
#include <panic.h>
42
#include <arch/mm/page.h>
42
#include <arch/mm/page.h>
43
#include <mm/slab.h>
43
#include <mm/slab.h>
44
#include <memstr.h>
44
#include <memstr.h>
45
#include <arch/boot/boot.h>
45
#include <arch/boot/boot.h>
46
#include <interrupt.h>
46
#include <interrupt.h>
47
 
47
 
48
/*
48
/*
49
 * Early ia32 configuration functions and data structures.
49
 * Early ia32 configuration functions and data structures.
50
 */
50
 */
51
 
51
 
52
/*
52
/*
53
 * We have no use for segmentation so we set up flat mode. In this
53
 * We have no use for segmentation so we set up flat mode. In this
54
 * mode, we use, for each privilege level, two segments spanning the
54
 * mode, we use, for each privilege level, two segments spanning the
55
 * whole memory. One is for code and one is for data.
55
 * whole memory. One is for code and one is for data.
56
 *
56
 *
57
 * One is for GS register which holds pointer to the TLS thread
57
 * One is for GS register which holds pointer to the TLS thread
58
 * structure in it's base.
58
 * structure in it's base.
59
 */
59
 */
60
descriptor_t gdt[GDT_ITEMS] = {
60
descriptor_t gdt[GDT_ITEMS] = {
61
    /* NULL descriptor */
61
    /* NULL descriptor */
62
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
62
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
63
    /* KTEXT descriptor */
63
    /* KTEXT descriptor */
64
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
64
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
65
    /* KDATA descriptor */
65
    /* KDATA descriptor */
66
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
66
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
67
    /* UTEXT descriptor */
67
    /* UTEXT descriptor */
68
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
68
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
69
    /* UDATA descriptor */
69
    /* UDATA descriptor */
70
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
70
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
71
    /* TSS descriptor - set up will be completed later */
71
    /* TSS descriptor - set up will be completed later */
72
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
72
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
73
    /* TLS descriptor */
73
    /* TLS descriptor */
74
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
74
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
75
    /* VESA Init descriptor */
75
    /* VESA Init descriptor */
76
#ifdef CONFIG_FB
76
#ifdef CONFIG_FB
77
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
77
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
78
#endif  
78
#endif  
79
};
79
};
80
 
80
 
81
static idescriptor_t idt[IDT_ITEMS];
81
static idescriptor_t idt[IDT_ITEMS];
82
 
82
 
83
static tss_t tss;
83
static tss_t tss;
84
 
84
 
85
tss_t *tss_p = NULL;
85
tss_t *tss_p = NULL;
86
 
86
 
87
/* gdtr is changed by kmp before next CPU is initialized */
87
/* gdtr is changed by kmp before next CPU is initialized */
88
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
88
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
89
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
89
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
90
 
90
 
91
void gdt_setbase(descriptor_t *d, uintptr_t base)
91
void gdt_setbase(descriptor_t *d, uintptr_t base)
92
{
92
{
93
    d->base_0_15 = base & 0xffff;
93
    d->base_0_15 = base & 0xffff;
94
    d->base_16_23 = ((base) >> 16) & 0xff;
94
    d->base_16_23 = ((base) >> 16) & 0xff;
95
    d->base_24_31 = ((base) >> 24) & 0xff;
95
    d->base_24_31 = ((base) >> 24) & 0xff;
96
}
96
}
97
 
97
 
98
void gdt_setlimit(descriptor_t *d, uint32_t limit)
98
void gdt_setlimit(descriptor_t *d, uint32_t limit)
99
{
99
{
100
    d->limit_0_15 = limit & 0xffff;
100
    d->limit_0_15 = limit & 0xffff;
101
    d->limit_16_19 = (limit >> 16) & 0xf;
101
    d->limit_16_19 = (limit >> 16) & 0xf;
102
}
102
}
103
 
103
 
104
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
104
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
105
{
105
{
106
    /*
106
    /*
107
     * Offset is a linear address.
107
     * Offset is a linear address.
108
     */
108
     */
109
    d->offset_0_15 = offset & 0xffff;
109
    d->offset_0_15 = offset & 0xffff;
110
    d->offset_16_31 = offset >> 16;
110
    d->offset_16_31 = offset >> 16;
111
}
111
}
112
 
112
 
113
void tss_initialize(tss_t *t)
113
void tss_initialize(tss_t *t)
114
{
114
{
115
    memsetb((uintptr_t) t, sizeof(struct tss), 0);
115
    memsetb((uintptr_t) t, sizeof(struct tss), 0);
116
}
116
}
117
 
117
 
118
/*
118
/*
119
 * This function takes care of proper setup of IDT and IDTR.
119
 * This function takes care of proper setup of IDT and IDTR.
120
 */
120
 */
121
void idt_init(void)
121
void idt_init(void)
122
{
122
{
123
    idescriptor_t *d;
123
    idescriptor_t *d;
124
    int i;
124
    unsigned int i;
125
 
125
 
126
    for (i = 0; i < IDT_ITEMS; i++) {
126
    for (i = 0; i < IDT_ITEMS; i++) {
127
        d = &idt[i];
127
        d = &idt[i];
128
 
128
 
129
        d->unused = 0;
129
        d->unused = 0;
130
        d->selector = selector(KTEXT_DES);
130
        d->selector = selector(KTEXT_DES);
131
 
131
 
132
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
132
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
133
 
133
 
134
        if (i == VECTOR_SYSCALL) {
134
        if (i == VECTOR_SYSCALL) {
135
            /*
135
            /*
136
             * The syscall interrupt gate must be calleable from userland.
136
             * The syscall interrupt gate must be calleable from userland.
137
             */
137
             */
138
            d->access |= DPL_USER;
138
            d->access |= DPL_USER;
139
        }
139
        }
140
       
140
       
141
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) + i * interrupt_handler_size);
141
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) + i * interrupt_handler_size);
142
    }
142
    }
143
}
143
}
144
 
144
 
145
 
145
 
146
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
146
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
147
static void clean_IOPL_NT_flags(void)
147
static void clean_IOPL_NT_flags(void)
148
{
148
{
149
    asm volatile (
149
    asm volatile (
150
        "pushfl\n"
150
        "pushfl\n"
151
        "pop %%eax\n"
151
        "pop %%eax\n"
152
        "and $0xffff8fff, %%eax\n"
152
        "and $0xffff8fff, %%eax\n"
153
        "push %%eax\n"
153
        "push %%eax\n"
154
        "popfl\n"
154
        "popfl\n"
155
        : : : "eax"
155
        : : : "eax"
156
    );
156
    );
157
}
157
}
158
 
158
 
159
/* Clean AM(18) flag in CR0 register */
159
/* Clean AM(18) flag in CR0 register */
160
static void clean_AM_flag(void)
160
static void clean_AM_flag(void)
161
{
161
{
162
    asm volatile (
162
    asm volatile (
163
        "mov %%cr0, %%eax\n"
163
        "mov %%cr0, %%eax\n"
164
        "and $0xfffbffff, %%eax\n"
164
        "and $0xfffbffff, %%eax\n"
165
        "mov %%eax, %%cr0\n"
165
        "mov %%eax, %%cr0\n"
166
        : : : "eax"
166
        : : : "eax"
167
    );
167
    );
168
}
168
}
169
 
169
 
170
void pm_init(void)
170
void pm_init(void)
171
{
171
{
172
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
172
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
173
    ptr_16_32_t idtr;
173
    ptr_16_32_t idtr;
174
 
174
 
175
    /*
175
    /*
176
     * Update addresses in GDT and IDT to their virtual counterparts.
176
     * Update addresses in GDT and IDT to their virtual counterparts.
177
     */
177
     */
178
    idtr.limit = sizeof(idt);
178
    idtr.limit = sizeof(idt);
179
    idtr.base = (uintptr_t) idt;
179
    idtr.base = (uintptr_t) idt;
180
    gdtr_load(&gdtr);
180
    gdtr_load(&gdtr);
181
    idtr_load(&idtr);
181
    idtr_load(&idtr);
182
   
182
   
183
    /*
183
    /*
184
     * Each CPU has its private GDT and TSS.
184
     * Each CPU has its private GDT and TSS.
185
     * All CPUs share one IDT.
185
     * All CPUs share one IDT.
186
     */
186
     */
187
 
187
 
188
    if (config.cpu_active == 1) {
188
    if (config.cpu_active == 1) {
189
        idt_init();
189
        idt_init();
190
        /*
190
        /*
191
         * NOTE: bootstrap CPU has statically allocated TSS, because
191
         * NOTE: bootstrap CPU has statically allocated TSS, because
192
         * the heap hasn't been initialized so far.
192
         * the heap hasn't been initialized so far.
193
         */
193
         */
194
        tss_p = &tss;
194
        tss_p = &tss;
195
    }
195
    }
196
    else {
196
    else {
197
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
197
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
198
        if (!tss_p)
198
        if (!tss_p)
199
            panic("could not allocate TSS\n");
199
            panic("could not allocate TSS\n");
200
    }
200
    }
201
 
201
 
202
    tss_initialize(tss_p);
202
    tss_initialize(tss_p);
203
   
203
   
204
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
204
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
205
    gdt_p[TSS_DES].special = 1;
205
    gdt_p[TSS_DES].special = 1;
206
    gdt_p[TSS_DES].granularity = 0;
206
    gdt_p[TSS_DES].granularity = 0;
207
   
207
   
208
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
208
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
209
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
209
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
210
 
210
 
211
    /*
211
    /*
212
     * As of this moment, the current CPU has its own GDT pointing
212
     * As of this moment, the current CPU has its own GDT pointing
213
     * to its own TSS. We just need to load the TR register.
213
     * to its own TSS. We just need to load the TR register.
214
     */
214
     */
215
    tr_load(selector(TSS_DES));
215
    tr_load(selector(TSS_DES));
216
   
216
   
217
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
217
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
218
    clean_AM_flag();          /* Disable alignment check */
218
    clean_AM_flag();          /* Disable alignment check */
219
}
219
}
220
 
220
 
221
void set_tls_desc(uintptr_t tls)
221
void set_tls_desc(uintptr_t tls)
222
{
222
{
223
    ptr_16_32_t cpugdtr;
223
    ptr_16_32_t cpugdtr;
224
    descriptor_t *gdt_p;
224
    descriptor_t *gdt_p;
225
 
225
 
226
    gdtr_store(&cpugdtr);
226
    gdtr_store(&cpugdtr);
227
    gdt_p = (descriptor_t *) cpugdtr.base;
227
    gdt_p = (descriptor_t *) cpugdtr.base;
228
    gdt_setbase(&gdt_p[TLS_DES], tls);
228
    gdt_setbase(&gdt_p[TLS_DES], tls);
229
    /* Reload gdt register to update GS in CPU */
229
    /* Reload gdt register to update GS in CPU */
230
    gdtr_load(&cpugdtr);
230
    gdtr_load(&cpugdtr);
231
}
231
}
-
 
232
 
-
 
233
/* Reboot the machine by initiating
-
 
234
 * a triple fault
-
 
235
 */
-
 
236
void arch_reboot(void)
-
 
237
{
-
 
238
    preemption_disable();
-
 
239
    ipl_t ipl = interrupts_disable();
-
 
240
   
-
 
241
    memsetb((uintptr_t) idt, sizeof(idt), 0);
-
 
242
   
-
 
243
    ptr_16_32_t idtr;
-
 
244
    idtr.limit = sizeof(idt);
-
 
245
    idtr.base = (uintptr_t) idt;
-
 
246
    idtr_load(&idtr);
-
 
247
   
-
 
248
    interrupts_restore(ipl);
-
 
249
    asm volatile (
-
 
250
        "int $0x03\n"
-
 
251
        "cli\n"
-
 
252
        "hlt\n"
-
 
253
    );
-
 
254
}
232
 
255
 
233
/** @}
256
/** @}
234
 */
257
 */
235
 
258