Subversion Repositories HelenOS

Rev

Rev 4581 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4581 Rev 4718
1
/*
1
/*
2
 * Copyright (c) 2009 Jiri Svoboda
2
 * Copyright (c) 2009 Jiri Svoboda
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup bd
29
/** @addtogroup bd
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief ATA disk driver
35
 * @brief ATA disk driver
36
 *
36
 *
37
 * This driver currently works only with CHS addressing and uses PIO.
37
 * This driver currently works only with CHS addressing and uses PIO.
38
 * Currently based on the (now obsolete) ANSI X3.221-1994 (ATA-1) standard.
38
 * Currently based on the (now obsolete) ANSI X3.221-1994 (ATA-1) standard.
39
 * At this point only reading is possible, not writing.
39
 * At this point only reading is possible, not writing.
40
 *
40
 *
41
 * The driver services a single controller which can have up to two disks
41
 * The driver services a single controller which can have up to two disks
42
 * attached.
42
 * attached.
43
 */
43
 */
44
 
44
 
45
#include <stdio.h>
45
#include <stdio.h>
46
#include <libarch/ddi.h>
46
#include <libarch/ddi.h>
47
#include <ddi.h>
47
#include <ddi.h>
48
#include <ipc/ipc.h>
48
#include <ipc/ipc.h>
49
#include <ipc/bd.h>
49
#include <ipc/bd.h>
50
#include <async.h>
50
#include <async.h>
51
#include <as.h>
51
#include <as.h>
52
#include <fibril_sync.h>
52
#include <fibril_sync.h>
53
#include <devmap.h>
53
#include <devmap.h>
54
#include <sys/types.h>
54
#include <sys/types.h>
55
#include <errno.h>
55
#include <errno.h>
56
#include <bool.h>
56
#include <bool.h>
-
 
57
#include <task.h>
57
 
58
 
58
#include "ata_bd.h"
59
#include "ata_bd.h"
59
 
60
 
60
#define NAME "ata_bd"
61
#define NAME "ata_bd"
61
 
62
 
62
static const size_t block_size = 512;
63
static const size_t block_size = 512;
63
static size_t comm_size;
64
static size_t comm_size;
64
 
65
 
65
static uintptr_t cmd_physical = 0x1f0;
66
static uintptr_t cmd_physical = 0x1f0;
66
static uintptr_t ctl_physical = 0x170;
67
static uintptr_t ctl_physical = 0x170;
67
static ata_cmd_t *cmd;
68
static ata_cmd_t *cmd;
68
static ata_ctl_t *ctl;
69
static ata_ctl_t *ctl;
69
 
70
 
70
/** Per-disk state. */
71
/** Per-disk state. */
71
static disk_t disk[MAX_DISKS];
72
static disk_t disk[MAX_DISKS];
72
 
73
 
73
static int ata_bd_init(void);
74
static int ata_bd_init(void);
74
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
75
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
75
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
76
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
76
    void *buf);
77
    void *buf);
77
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
78
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
78
    void *buf);
79
    void *buf);
79
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
80
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
80
    const void *buf);
81
    const void *buf);
81
static int drive_identify(int drive_id, disk_t *d);
82
static int drive_identify(int drive_id, disk_t *d);
82
 
83
 
83
int main(int argc, char **argv)
84
int main(int argc, char **argv)
84
{
85
{
85
    uint8_t status;
86
    uint8_t status;
86
    char name[16];
87
    char name[16];
87
    int i, rc;
88
    int i, rc;
88
    int n_disks;
89
    int n_disks;
89
 
90
 
90
    printf(NAME ": ATA disk driver\n");
91
    printf(NAME ": ATA disk driver\n");
91
 
92
 
92
    printf("I/O address 0x%x\n", cmd_physical);
93
    printf("I/O address 0x%x\n", cmd_physical);
93
 
94
 
94
    if (ata_bd_init() != EOK)
95
    if (ata_bd_init() != EOK)
95
        return -1;
96
        return -1;
96
 
97
 
97
    /* Put drives to reset, disable interrupts. */
98
    /* Put drives to reset, disable interrupts. */
98
    printf("Reset drives...\n");
99
    printf("Reset drives... ");
-
 
100
    fflush(stdout);
-
 
101
 
99
    pio_write_8(&ctl->device_control, DCR_SRST);
102
    pio_write_8(&ctl->device_control, DCR_SRST);
100
    /* FIXME: Find out how to do this properly. */
103
    /* FIXME: Find out how to do this properly. */
101
    async_usleep(100);
104
    async_usleep(100);
102
    pio_write_8(&ctl->device_control, 0);
105
    pio_write_8(&ctl->device_control, 0);
103
 
106
 
104
    do {
107
    do {
105
        status = pio_read_8(&cmd->status);
108
        status = pio_read_8(&cmd->status);
106
    } while ((status & SR_BSY) != 0);
109
    } while ((status & SR_BSY) != 0);
107
    printf("Done\n");
110
    printf("Done\n");
108
 
111
 
109
    printf("Status = 0x%x\n", pio_read_8(&cmd->status));
-
 
110
 
-
 
111
    (void) drive_identify(0, &disk[0]);
112
    (void) drive_identify(0, &disk[0]);
112
    (void) drive_identify(1, &disk[1]);
113
    (void) drive_identify(1, &disk[1]);
113
 
114
 
114
    n_disks = 0;
115
    n_disks = 0;
115
 
116
 
116
    for (i = 0; i < MAX_DISKS; i++) {
117
    for (i = 0; i < MAX_DISKS; i++) {
117
        /* Skip unattached drives. */
118
        /* Skip unattached drives. */
118
        if (disk[i].present == false)
119
        if (disk[i].present == false)
119
            continue;
120
            continue;
120
 
121
 
121
        snprintf(name, 16, "disk%d", i);
122
        snprintf(name, 16, "disk%d", i);
122
        rc = devmap_device_register(name, &disk[i].dev_handle);
123
        rc = devmap_device_register(name, &disk[i].dev_handle);
123
        if (rc != EOK) {
124
        if (rc != EOK) {
124
            devmap_hangup_phone(DEVMAP_DRIVER);
125
            devmap_hangup_phone(DEVMAP_DRIVER);
125
            printf(NAME ": Unable to register device %s.\n",
126
            printf(NAME ": Unable to register device %s.\n",
126
                name);
127
                name);
127
            return rc;
128
            return rc;
128
        }
129
        }
129
        ++n_disks;
130
        ++n_disks;
130
    }
131
    }
131
 
132
 
132
    if (n_disks == 0) {
133
    if (n_disks == 0) {
133
        printf("No disks detected.\n");
134
        printf("No disks detected.\n");
134
        return -1;
135
        return -1;
135
    }
136
    }
136
 
137
 
137
    printf(NAME ": Accepting connections\n");
138
    printf(NAME ": Accepting connections\n");
-
 
139
    task_retval(0);
138
    async_manager();
140
    async_manager();
139
 
141
 
140
    /* Not reached */
142
    /* Not reached */
141
    return 0;
143
    return 0;
142
}
144
}
143
 
145
 
144
static int drive_identify(int disk_id, disk_t *d)
146
static int drive_identify(int disk_id, disk_t *d)
145
{
147
{
146
    uint16_t data;
148
    uint16_t data;
147
    uint8_t status;
149
    uint8_t status;
148
    size_t i;
150
    size_t i;
149
 
151
 
150
    printf("Identify drive %d\n", disk_id);
152
    printf("Identify drive %d... ", disk_id);
-
 
153
    fflush(stdout);
-
 
154
 
151
    pio_write_8(&cmd->drive_head, ((disk_id != 0) ? DHR_DRV : 0));
155
    pio_write_8(&cmd->drive_head, ((disk_id != 0) ? DHR_DRV : 0));
152
    async_usleep(100);
156
    async_usleep(100);
153
    pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE);
157
    pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE);
154
 
158
 
155
    status = pio_read_8(&cmd->status);
159
    status = pio_read_8(&cmd->status);
156
    printf("Status = 0x%x\n", status);
-
 
157
 
160
 
158
    d->present = false;
161
    d->present = false;
159
 
162
 
160
    /*
163
    /*
161
     * Detect if drive is present. This is Qemu only! Need to
164
     * Detect if drive is present. This is Qemu only! Need to
162
     * do the right thing to work with real drives.
165
     * do the right thing to work with real drives.
163
     */
166
     */
164
    if ((status & SR_DRDY) == 0) {
167
    if ((status & SR_DRDY) == 0) {
165
        printf("None attached.\n");
168
        printf("None attached.\n");
166
        return ENOENT;
169
        return ENOENT;
167
    }
170
    }
168
 
171
 
169
    for (i = 0; i < block_size / 2; i++) {
172
    for (i = 0; i < block_size / 2; i++) {
170
        do {
173
        do {
171
            status = pio_read_8(&cmd->status);
174
            status = pio_read_8(&cmd->status);
172
        } while ((status & SR_DRDY) == 0);
175
        } while ((status & SR_DRDY) == 0);
173
 
176
 
174
        data = pio_read_16(&cmd->data_port);
177
        data = pio_read_16(&cmd->data_port);
175
 
178
 
176
        switch (i) {
179
        switch (i) {
177
        case 1: d->cylinders = data; break;
180
        case 1: d->cylinders = data; break;
178
        case 3: d->heads = data; break;
181
        case 3: d->heads = data; break;
179
        case 6: d->sectors = data; break;
182
        case 6: d->sectors = data; break;
180
        }
183
        }
181
    }
184
    }
182
 
185
 
183
    d->blocks = d->cylinders * d->heads * d->sectors;
186
    d->blocks = d->cylinders * d->heads * d->sectors;
184
 
187
 
185
    printf("Geometry: %u cylinders, %u heads, %u sectors\n",
188
    printf("Geometry: %u cylinders, %u heads, %u sectors\n",
186
        d->cylinders, d->heads, d->sectors);
189
        d->cylinders, d->heads, d->sectors);
187
 
190
 
188
    d->present = true;
191
    d->present = true;
189
    fibril_mutex_initialize(&d->lock);
192
    fibril_mutex_initialize(&d->lock);
190
 
193
 
191
    return EOK;
194
    return EOK;
192
}
195
}
193
 
196
 
194
static int ata_bd_init(void)
197
static int ata_bd_init(void)
195
{
198
{
196
    void *vaddr;
199
    void *vaddr;
197
    int rc;
200
    int rc;
198
 
201
 
199
    rc = devmap_driver_register(NAME, ata_bd_connection);
202
    rc = devmap_driver_register(NAME, ata_bd_connection);
200
    if (rc < 0) {
203
    if (rc < 0) {
201
        printf(NAME ": Unable to register driver.\n");
204
        printf(NAME ": Unable to register driver.\n");
202
        return rc;
205
        return rc;
203
    }
206
    }
204
 
207
 
205
    rc = pio_enable((void *) cmd_physical, sizeof(ata_cmd_t), &vaddr);
208
    rc = pio_enable((void *) cmd_physical, sizeof(ata_cmd_t), &vaddr);
206
    if (rc != EOK) {
209
    if (rc != EOK) {
207
        printf(NAME ": Could not initialize device I/O space.\n");
210
        printf(NAME ": Could not initialize device I/O space.\n");
208
        return rc;
211
        return rc;
209
    }
212
    }
210
 
213
 
211
    cmd = vaddr;
214
    cmd = vaddr;
212
 
215
 
213
    rc = pio_enable((void *) ctl_physical, sizeof(ata_ctl_t), &vaddr);
216
    rc = pio_enable((void *) ctl_physical, sizeof(ata_ctl_t), &vaddr);
214
    if (rc != EOK) {
217
    if (rc != EOK) {
215
        printf(NAME ": Could not initialize device I/O space.\n");
218
        printf(NAME ": Could not initialize device I/O space.\n");
216
        return rc;
219
        return rc;
217
    }
220
    }
218
 
221
 
219
    ctl = vaddr;
222
    ctl = vaddr;
220
 
223
 
221
 
224
 
222
    return EOK;
225
    return EOK;
223
}
226
}
224
 
227
 
225
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall)
228
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall)
226
{
229
{
227
    void *fs_va = NULL;
230
    void *fs_va = NULL;
228
    ipc_callid_t callid;
231
    ipc_callid_t callid;
229
    ipc_call_t call;
232
    ipc_call_t call;
230
    ipcarg_t method;
233
    ipcarg_t method;
231
    dev_handle_t dh;
234
    dev_handle_t dh;
232
    int flags;
235
    int flags;
233
    int retval;
236
    int retval;
234
    off_t idx;
237
    off_t idx;
235
    size_t size;
238
    size_t size;
236
    int disk_id, i;
239
    int disk_id, i;
237
 
240
 
238
    /* Get the device handle. */
241
    /* Get the device handle. */
239
    dh = IPC_GET_ARG1(*icall);
242
    dh = IPC_GET_ARG1(*icall);
240
 
243
 
241
    /* Determine which disk device is the client connecting to. */
244
    /* Determine which disk device is the client connecting to. */
242
    disk_id = -1;
245
    disk_id = -1;
243
    for (i = 0; i < MAX_DISKS; i++)
246
    for (i = 0; i < MAX_DISKS; i++)
244
        if (disk[i].dev_handle == dh)
247
        if (disk[i].dev_handle == dh)
245
            disk_id = i;
248
            disk_id = i;
246
 
249
 
247
    if (disk_id < 0 || disk[disk_id].present == false) {
250
    if (disk_id < 0 || disk[disk_id].present == false) {
248
        ipc_answer_0(iid, EINVAL);
251
        ipc_answer_0(iid, EINVAL);
249
        return;
252
        return;
250
    }
253
    }
251
 
254
 
252
    /* Answer the IPC_M_CONNECT_ME_TO call. */
255
    /* Answer the IPC_M_CONNECT_ME_TO call. */
253
    ipc_answer_0(iid, EOK);
256
    ipc_answer_0(iid, EOK);
254
 
257
 
255
    if (!ipc_share_out_receive(&callid, &comm_size, &flags)) {
258
    if (!ipc_share_out_receive(&callid, &comm_size, &flags)) {
256
        ipc_answer_0(callid, EHANGUP);
259
        ipc_answer_0(callid, EHANGUP);
257
        return;
260
        return;
258
    }
261
    }
259
 
262
 
260
    fs_va = as_get_mappable_page(comm_size);
263
    fs_va = as_get_mappable_page(comm_size);
261
    if (fs_va == NULL) {
264
    if (fs_va == NULL) {
262
        ipc_answer_0(callid, EHANGUP);
265
        ipc_answer_0(callid, EHANGUP);
263
        return;
266
        return;
264
    }
267
    }
265
 
268
 
266
    (void) ipc_share_out_finalize(callid, fs_va);
269
    (void) ipc_share_out_finalize(callid, fs_va);
267
 
270
 
268
    while (1) {
271
    while (1) {
269
        callid = async_get_call(&call);
272
        callid = async_get_call(&call);
270
        method = IPC_GET_METHOD(call);
273
        method = IPC_GET_METHOD(call);
271
        switch (method) {
274
        switch (method) {
272
        case IPC_M_PHONE_HUNGUP:
275
        case IPC_M_PHONE_HUNGUP:
273
            /* The other side has hung up. */
276
            /* The other side has hung up. */
274
            ipc_answer_0(callid, EOK);
277
            ipc_answer_0(callid, EOK);
275
            return;
278
            return;
276
        case BD_READ_BLOCK:
279
        case BD_READ_BLOCK:
277
        case BD_WRITE_BLOCK:
280
        case BD_WRITE_BLOCK:
278
            idx = IPC_GET_ARG1(call);
281
            idx = IPC_GET_ARG1(call);
279
            size = IPC_GET_ARG2(call);
282
            size = IPC_GET_ARG2(call);
280
            if (size > comm_size) {
283
            if (size > comm_size) {
281
                retval = EINVAL;
284
                retval = EINVAL;
282
                break;
285
                break;
283
            }
286
            }
284
            retval = ata_bd_rdwr(disk_id, method, idx,
287
            retval = ata_bd_rdwr(disk_id, method, idx,
285
                size, fs_va);
288
                size, fs_va);
286
            break;
289
            break;
287
        default:
290
        default:
288
            retval = EINVAL;
291
            retval = EINVAL;
289
            break;
292
            break;
290
        }
293
        }
291
        ipc_answer_0(callid, retval);
294
        ipc_answer_0(callid, retval);
292
    }
295
    }
293
}
296
}
294
 
297
 
295
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, size_t size,
298
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, size_t size,
296
    void *buf)
299
    void *buf)
297
{
300
{
298
    int rc;
301
    int rc;
299
    size_t now;
302
    size_t now;
300
 
303
 
301
    while (size > 0) {
304
    while (size > 0) {
302
        now = size < block_size ? size : block_size;
305
        now = size < block_size ? size : block_size;
303
        if (now != block_size)
306
        if (now != block_size)
304
            return EINVAL;
307
            return EINVAL;
305
 
308
 
306
        if (method == BD_READ_BLOCK)
309
        if (method == BD_READ_BLOCK)
307
            rc = ata_bd_read_block(disk_id, blk_idx, 1, buf);
310
            rc = ata_bd_read_block(disk_id, blk_idx, 1, buf);
308
        else
311
        else
309
            rc = ata_bd_write_block(disk_id, blk_idx, 1, buf);
312
            rc = ata_bd_write_block(disk_id, blk_idx, 1, buf);
310
 
313
 
311
        if (rc != EOK)
314
        if (rc != EOK)
312
            return rc;
315
            return rc;
313
 
316
 
314
        buf += block_size;
317
        buf += block_size;
315
        blk_idx++;
318
        blk_idx++;
316
 
319
 
317
        if (size > block_size)
320
        if (size > block_size)
318
            size -= block_size;
321
            size -= block_size;
319
        else
322
        else
320
            size = 0;
323
            size = 0;
321
    }
324
    }
322
 
325
 
323
    return EOK;
326
    return EOK;
324
}
327
}
325
 
328
 
326
 
329
 
327
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
330
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
328
    void *buf)
331
    void *buf)
329
{
332
{
330
    size_t i;
333
    size_t i;
331
    uint16_t data;
334
    uint16_t data;
332
    uint8_t status;
335
    uint8_t status;
333
    uint64_t c, h, s;
336
    uint64_t c, h, s;
334
    uint64_t idx;
337
    uint64_t idx;
335
    uint8_t drv_head;
338
    uint8_t drv_head;
336
    disk_t *d;
339
    disk_t *d;
337
 
340
 
338
    d = &disk[disk_id];
341
    d = &disk[disk_id];
339
 
342
 
340
    /* Check device bounds. */
343
    /* Check device bounds. */
341
    if (blk_idx >= d->blocks)
344
    if (blk_idx >= d->blocks)
342
        return EINVAL;
345
        return EINVAL;
343
 
346
 
344
    /* Compute CHS. */
347
    /* Compute CHS. */
345
    c = blk_idx / (d->heads * d->sectors);
348
    c = blk_idx / (d->heads * d->sectors);
346
    idx = blk_idx % (d->heads * d->sectors);
349
    idx = blk_idx % (d->heads * d->sectors);
347
 
350
 
348
    h = idx / d->sectors;
351
    h = idx / d->sectors;
349
    s = 1 + (idx % d->sectors);
352
    s = 1 + (idx % d->sectors);
350
 
353
 
351
    /* New value for Drive/Head register */
354
    /* New value for Drive/Head register */
352
    drv_head =
355
    drv_head =
353
        ((disk_id != 0) ? DHR_DRV : 0) |
356
        ((disk_id != 0) ? DHR_DRV : 0) |
354
        (h & 0x0f);
357
        (h & 0x0f);
355
 
358
 
356
    fibril_mutex_lock(&d->lock);
359
    fibril_mutex_lock(&d->lock);
357
 
360
 
358
    /* Program a Read Sectors operation. */
361
    /* Program a Read Sectors operation. */
359
 
362
 
360
    pio_write_8(&cmd->drive_head, drv_head);
363
    pio_write_8(&cmd->drive_head, drv_head);
361
    pio_write_8(&cmd->sector_count, 1);
364
    pio_write_8(&cmd->sector_count, 1);
362
    pio_write_8(&cmd->sector_number, s);
365
    pio_write_8(&cmd->sector_number, s);
363
    pio_write_8(&cmd->cylinder_low, c & 0xff);
366
    pio_write_8(&cmd->cylinder_low, c & 0xff);
364
    pio_write_8(&cmd->cylinder_high, c >> 16);
367
    pio_write_8(&cmd->cylinder_high, c >> 16);
365
    pio_write_8(&cmd->command, CMD_READ_SECTORS);
368
    pio_write_8(&cmd->command, CMD_READ_SECTORS);
366
 
369
 
367
    /* Read data from the disk buffer. */
370
    /* Read data from the disk buffer. */
368
 
371
 
369
    for (i = 0; i < block_size / 2; i++) {
372
    for (i = 0; i < block_size / 2; i++) {
370
        do {
373
        do {
371
            status = pio_read_8(&cmd->status);
374
            status = pio_read_8(&cmd->status);
372
        } while ((status & SR_DRDY) == 0);
375
        } while ((status & SR_DRDY) == 0);
373
 
376
 
374
        data = pio_read_16(&cmd->data_port);
377
        data = pio_read_16(&cmd->data_port);
375
        ((uint16_t *) buf)[i] = data;
378
        ((uint16_t *) buf)[i] = data;
376
    }
379
    }
377
 
380
 
378
    fibril_mutex_unlock(&d->lock);
381
    fibril_mutex_unlock(&d->lock);
379
    return EOK;
382
    return EOK;
380
}
383
}
381
 
384
 
382
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
385
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
383
    const void *buf)
386
    const void *buf)
384
{
387
{
385
    size_t i;
388
    size_t i;
386
    uint8_t status;
389
    uint8_t status;
387
    uint64_t c, h, s;
390
    uint64_t c, h, s;
388
    uint64_t idx;
391
    uint64_t idx;
389
    uint8_t drv_head;
392
    uint8_t drv_head;
390
    disk_t *d;
393
    disk_t *d;
391
 
394
 
392
    d = &disk[disk_id];
395
    d = &disk[disk_id];
393
 
396
 
394
    /* Check device bounds. */
397
    /* Check device bounds. */
395
    if (blk_idx >= d->blocks)
398
    if (blk_idx >= d->blocks)
396
        return EINVAL;
399
        return EINVAL;
397
 
400
 
398
    /* Compute CHS. */
401
    /* Compute CHS. */
399
    c = blk_idx / (d->heads * d->sectors);
402
    c = blk_idx / (d->heads * d->sectors);
400
    idx = blk_idx % (d->heads * d->sectors);
403
    idx = blk_idx % (d->heads * d->sectors);
401
 
404
 
402
    h = idx / d->sectors;
405
    h = idx / d->sectors;
403
    s = 1 + (idx % d->sectors);
406
    s = 1 + (idx % d->sectors);
404
 
407
 
405
    /* New value for Drive/Head register */
408
    /* New value for Drive/Head register */
406
    drv_head =
409
    drv_head =
407
        ((disk_id != 0) ? DHR_DRV : 0) |
410
        ((disk_id != 0) ? DHR_DRV : 0) |
408
        (h & 0x0f);
411
        (h & 0x0f);
409
 
412
 
410
    fibril_mutex_lock(&d->lock);
413
    fibril_mutex_lock(&d->lock);
411
 
414
 
412
    /* Program a Read Sectors operation. */
415
    /* Program a Read Sectors operation. */
413
 
416
 
414
    pio_write_8(&cmd->drive_head, drv_head);
417
    pio_write_8(&cmd->drive_head, drv_head);
415
    pio_write_8(&cmd->sector_count, 1);
418
    pio_write_8(&cmd->sector_count, 1);
416
    pio_write_8(&cmd->sector_number, s);
419
    pio_write_8(&cmd->sector_number, s);
417
    pio_write_8(&cmd->cylinder_low, c & 0xff);
420
    pio_write_8(&cmd->cylinder_low, c & 0xff);
418
    pio_write_8(&cmd->cylinder_high, c >> 16);
421
    pio_write_8(&cmd->cylinder_high, c >> 16);
419
    pio_write_8(&cmd->command, CMD_WRITE_SECTORS);
422
    pio_write_8(&cmd->command, CMD_WRITE_SECTORS);
420
 
423
 
421
    /* Write data to the disk buffer. */
424
    /* Write data to the disk buffer. */
422
 
425
 
423
    for (i = 0; i < block_size / 2; i++) {
426
    for (i = 0; i < block_size / 2; i++) {
424
        do {
427
        do {
425
            status = pio_read_8(&cmd->status);
428
            status = pio_read_8(&cmd->status);
426
        } while ((status & SR_DRDY) == 0);
429
        } while ((status & SR_DRDY) == 0);
427
 
430
 
428
        pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]);
431
        pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]);
429
    }
432
    }
430
 
433
 
431
    fibril_mutex_unlock(&d->lock);
434
    fibril_mutex_unlock(&d->lock);
432
    return EOK;
435
    return EOK;
433
}
436
}
434
 
437
 
435
 
438
 
436
/**
439
/**
437
 * @}
440
 * @}
438
 */
441
 */
439
 
442