Subversion Repositories HelenOS

Rev

Rev 4345 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4345 Rev 4346
1
/*
1
/*
2
 * Copyright (c) 2001-2004 Jakub Jermar
2
 * Copyright (c) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup ia32
29
/** @addtogroup ia32
30
 * @{
30
 * @{
31
 */
31
 */
32
/** @file
32
/** @file
33
 */
33
 */
34
 
34
 
35
#include <arch/pm.h>
35
#include <arch/pm.h>
36
#include <config.h>
36
#include <config.h>
37
#include <arch/types.h>
37
#include <arch/types.h>
38
#include <arch/interrupt.h>
38
#include <arch/interrupt.h>
39
#include <arch/asm.h>
39
#include <arch/asm.h>
40
#include <arch/context.h>
40
#include <arch/context.h>
41
#include <panic.h>
41
#include <panic.h>
42
#include <arch/mm/page.h>
42
#include <arch/mm/page.h>
43
#include <mm/slab.h>
43
#include <mm/slab.h>
44
#include <memstr.h>
44
#include <memstr.h>
45
#include <arch/boot/boot.h>
45
#include <arch/boot/boot.h>
46
#include <interrupt.h>
46
#include <interrupt.h>
47
 
47
 
48
/*
48
/*
49
 * Early ia32 configuration functions and data structures.
49
 * Early ia32 configuration functions and data structures.
50
 */
50
 */
51
 
51
 
52
/*
52
/*
53
 * We have no use for segmentation so we set up flat mode. In this
53
 * We have no use for segmentation so we set up flat mode. In this
54
 * mode, we use, for each privilege level, two segments spanning the
54
 * mode, we use, for each privilege level, two segments spanning the
55
 * whole memory. One is for code and one is for data.
55
 * whole memory. One is for code and one is for data.
56
 *
56
 *
57
 * One is for GS register which holds pointer to the TLS thread
57
 * One is for GS register which holds pointer to the TLS thread
58
 * structure in it's base.
58
 * structure in it's base.
59
 */
59
 */
60
descriptor_t gdt[GDT_ITEMS] = {
60
descriptor_t gdt[GDT_ITEMS] = {
61
    /* NULL descriptor */
61
    /* NULL descriptor */
62
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
62
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
63
    /* KTEXT descriptor */
63
    /* KTEXT descriptor */
64
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
64
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
65
    /* KDATA descriptor */
65
    /* KDATA descriptor */
66
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
66
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
67
    /* UTEXT descriptor */
67
    /* UTEXT descriptor */
68
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
68
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
69
    /* UDATA descriptor */
69
    /* UDATA descriptor */
70
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
70
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
71
    /* TSS descriptor - set up will be completed later */
71
    /* TSS descriptor - set up will be completed later */
72
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
72
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
73
    /* TLS descriptor */
73
    /* TLS descriptor */
74
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
74
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
75
    /* VESA Init descriptor */
75
    /* VESA Init descriptor */
76
#ifdef CONFIG_FB
76
#ifdef CONFIG_FB
77
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
77
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
78
#endif  
78
#endif  
79
};
79
};
80
 
80
 
81
static idescriptor_t idt[IDT_ITEMS];
81
static idescriptor_t idt[IDT_ITEMS];
82
 
82
 
83
static tss_t tss;
83
static tss_t tss;
84
 
84
 
85
tss_t *tss_p = NULL;
85
tss_t *tss_p = NULL;
86
 
86
 
87
/* gdtr is changed by kmp before next CPU is initialized */
87
/* gdtr is changed by kmp before next CPU is initialized */
88
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
88
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
89
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
89
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
90
 
90
 
91
void gdt_setbase(descriptor_t *d, uintptr_t base)
91
void gdt_setbase(descriptor_t *d, uintptr_t base)
92
{
92
{
93
    d->base_0_15 = base & 0xffff;
93
    d->base_0_15 = base & 0xffff;
94
    d->base_16_23 = ((base) >> 16) & 0xff;
94
    d->base_16_23 = ((base) >> 16) & 0xff;
95
    d->base_24_31 = ((base) >> 24) & 0xff;
95
    d->base_24_31 = ((base) >> 24) & 0xff;
96
}
96
}
97
 
97
 
98
void gdt_setlimit(descriptor_t *d, uint32_t limit)
98
void gdt_setlimit(descriptor_t *d, uint32_t limit)
99
{
99
{
100
    d->limit_0_15 = limit & 0xffff;
100
    d->limit_0_15 = limit & 0xffff;
101
    d->limit_16_19 = (limit >> 16) & 0xf;
101
    d->limit_16_19 = (limit >> 16) & 0xf;
102
}
102
}
103
 
103
 
104
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
104
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
105
{
105
{
106
    /*
106
    /*
107
     * Offset is a linear address.
107
     * Offset is a linear address.
108
     */
108
     */
109
    d->offset_0_15 = offset & 0xffff;
109
    d->offset_0_15 = offset & 0xffff;
110
    d->offset_16_31 = offset >> 16;
110
    d->offset_16_31 = offset >> 16;
111
}
111
}
112
 
112
 
113
void tss_initialize(tss_t *t)
113
void tss_initialize(tss_t *t)
114
{
114
{
115
    memsetb(t, sizeof(struct tss), 0);
115
    memsetb(t, sizeof(tss_t), 0);
116
}
116
}
117
 
117
 
118
/*
118
/*
119
 * This function takes care of proper setup of IDT and IDTR.
119
 * This function takes care of proper setup of IDT and IDTR.
120
 */
120
 */
121
void idt_init(void)
121
void idt_init(void)
122
{
122
{
123
    idescriptor_t *d;
123
    idescriptor_t *d;
124
    unsigned int i;
124
    unsigned int i;
125
 
125
 
126
    for (i = 0; i < IDT_ITEMS; i++) {
126
    for (i = 0; i < IDT_ITEMS; i++) {
127
        d = &idt[i];
127
        d = &idt[i];
128
 
128
 
129
        d->unused = 0;
129
        d->unused = 0;
130
        d->selector = selector(KTEXT_DES);
130
        d->selector = gdtselector(KTEXT_DES);
131
 
131
 
132
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
132
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
133
 
133
 
134
        if (i == VECTOR_SYSCALL) {
134
        if (i == VECTOR_SYSCALL) {
135
            /*
135
            /*
136
             * The syscall interrupt gate must be calleable from
136
             * The syscall interrupt gate must be calleable from
137
             * userland.
137
             * userland.
138
             */
138
             */
139
            d->access |= DPL_USER;
139
            d->access |= DPL_USER;
140
        }
140
        }
141
       
141
       
142
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) +
142
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) +
143
            i * interrupt_handler_size);
143
            i * interrupt_handler_size);
144
    }
144
    }
145
}
145
}
146
 
146
 
147
 
147
 
148
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
148
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
149
static void clean_IOPL_NT_flags(void)
149
static void clean_IOPL_NT_flags(void)
150
{
150
{
151
    asm volatile (
151
    asm volatile (
152
        "pushfl\n"
152
        "pushfl\n"
153
        "pop %%eax\n"
153
        "pop %%eax\n"
154
        "and $0xffff8fff, %%eax\n"
154
        "and $0xffff8fff, %%eax\n"
155
        "push %%eax\n"
155
        "push %%eax\n"
156
        "popfl\n"
156
        "popfl\n"
157
        ::: "eax"
157
        ::: "eax"
158
    );
158
    );
159
}
159
}
160
 
160
 
161
/* Clean AM(18) flag in CR0 register */
161
/* Clean AM(18) flag in CR0 register */
162
static void clean_AM_flag(void)
162
static void clean_AM_flag(void)
163
{
163
{
164
    asm volatile (
164
    asm volatile (
165
        "mov %%cr0, %%eax\n"
165
        "mov %%cr0, %%eax\n"
166
        "and $0xfffbffff, %%eax\n"
166
        "and $0xfffbffff, %%eax\n"
167
        "mov %%eax, %%cr0\n"
167
        "mov %%eax, %%cr0\n"
168
        ::: "eax"
168
        ::: "eax"
169
    );
169
    );
170
}
170
}
171
 
171
 
172
void pm_init(void)
172
void pm_init(void)
173
{
173
{
174
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
174
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
175
    ptr_16_32_t idtr;
175
    ptr_16_32_t idtr;
176
 
176
 
177
    /*
177
    /*
178
     * Update addresses in GDT and IDT to their virtual counterparts.
178
     * Update addresses in GDT and IDT to their virtual counterparts.
179
     */
179
     */
180
    idtr.limit = sizeof(idt);
180
    idtr.limit = sizeof(idt);
181
    idtr.base = (uintptr_t) idt;
181
    idtr.base = (uintptr_t) idt;
182
    gdtr_load(&gdtr);
182
    gdtr_load(&gdtr);
183
    idtr_load(&idtr);
183
    idtr_load(&idtr);
184
   
184
   
185
    /*
185
    /*
186
     * Each CPU has its private GDT and TSS.
186
     * Each CPU has its private GDT and TSS.
187
     * All CPUs share one IDT.
187
     * All CPUs share one IDT.
188
     */
188
     */
189
 
189
 
190
    if (config.cpu_active == 1) {
190
    if (config.cpu_active == 1) {
191
        idt_init();
191
        idt_init();
192
        /*
192
        /*
193
         * NOTE: bootstrap CPU has statically allocated TSS, because
193
         * NOTE: bootstrap CPU has statically allocated TSS, because
194
         * the heap hasn't been initialized so far.
194
         * the heap hasn't been initialized so far.
195
         */
195
         */
196
        tss_p = &tss;
196
        tss_p = &tss;
197
    }
197
    }
198
    else {
198
    else {
199
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
199
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
200
        if (!tss_p)
200
        if (!tss_p)
201
            panic("Cannot allocate TSS.");
201
            panic("Cannot allocate TSS.");
202
    }
202
    }
203
 
203
 
204
    tss_initialize(tss_p);
204
    tss_initialize(tss_p);
205
   
205
   
206
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
206
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
207
    gdt_p[TSS_DES].special = 1;
207
    gdt_p[TSS_DES].special = 1;
208
    gdt_p[TSS_DES].granularity = 0;
208
    gdt_p[TSS_DES].granularity = 0;
209
   
209
   
210
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
210
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
211
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
211
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
212
 
212
 
213
    /*
213
    /*
214
     * As of this moment, the current CPU has its own GDT pointing
214
     * As of this moment, the current CPU has its own GDT pointing
215
     * to its own TSS. We just need to load the TR register.
215
     * to its own TSS. We just need to load the TR register.
216
     */
216
     */
217
    tr_load(selector(TSS_DES));
217
    tr_load(gdtselector(TSS_DES));
218
   
218
   
219
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
219
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
220
    clean_AM_flag();          /* Disable alignment check */
220
    clean_AM_flag();          /* Disable alignment check */
221
}
221
}
222
 
222
 
223
void set_tls_desc(uintptr_t tls)
223
void set_tls_desc(uintptr_t tls)
224
{
224
{
225
    ptr_16_32_t cpugdtr;
225
    ptr_16_32_t cpugdtr;
226
    descriptor_t *gdt_p;
226
    descriptor_t *gdt_p;
227
 
227
 
228
    gdtr_store(&cpugdtr);
228
    gdtr_store(&cpugdtr);
229
    gdt_p = (descriptor_t *) cpugdtr.base;
229
    gdt_p = (descriptor_t *) cpugdtr.base;
230
    gdt_setbase(&gdt_p[TLS_DES], tls);
230
    gdt_setbase(&gdt_p[TLS_DES], tls);
231
    /* Reload gdt register to update GS in CPU */
231
    /* Reload gdt register to update GS in CPU */
232
    gdtr_load(&cpugdtr);
232
    gdtr_load(&cpugdtr);
233
}
233
}
234
 
234
 
235
/* Reboot the machine by initiating
235
/* Reboot the machine by initiating
236
 * a triple fault
236
 * a triple fault
237
 */
237
 */
238
void arch_reboot(void)
238
void arch_reboot(void)
239
{
239
{
240
    preemption_disable();
240
    preemption_disable();
241
    ipl_t ipl = interrupts_disable();
241
    ipl_t ipl = interrupts_disable();
242
   
242
   
243
    memsetb(idt, sizeof(idt), 0);
243
    memsetb(idt, sizeof(idt), 0);
244
   
244
   
245
    ptr_16_32_t idtr;
245
    ptr_16_32_t idtr;
246
    idtr.limit = sizeof(idt);
246
    idtr.limit = sizeof(idt);
247
    idtr.base = (uintptr_t) idt;
247
    idtr.base = (uintptr_t) idt;
248
    idtr_load(&idtr);
248
    idtr_load(&idtr);
249
   
249
   
250
    interrupts_restore(ipl);
250
    interrupts_restore(ipl);
251
    asm volatile (
251
    asm volatile (
252
        "int $0x03\n"
252
        "int $0x03\n"
253
        "cli\n"
253
        "cli\n"
254
        "hlt\n"
254
        "hlt\n"
255
    );
255
    );
256
}
256
}
257
 
257
 
258
/** @}
258
/** @}
259
 */
259
 */
260
 
260