Subversion Repositories HelenOS-doc

Rev

Rev 27 | Rev 35 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 27 Rev 34
Line 3... Line 3...
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <section>
7
  <section>
8
    <!-- VM -->
-
 
9
 
-
 
10
    <title>Virtual memory management</title>
8
    <title>Virtual memory management</title>
11
 
9
 
12
    <section>
10
    <section>
13
      <title>Address spaces</title>
11
      <title>Address spaces</title>
14
 
12
 
15
      <para></para>
13
      <para />
16
    </section>
14
    </section>
17
 
15
 
18
    <section>
16
    <section>
19
      <title>Virtual address translation</title>
17
      <title>Virtual address translation</title>
20
 
18
 
21
      <para></para>
19
      <para />
22
    </section>
20
    </section>
-
 
21
 
-
 
22
    <para>Page tables. 4 level hierarchical and hash directly supported. B+
-
 
23
    Tree can be implemented.</para>
-
 
24
 
-
 
25
    <para>For paging there is an abstract layer</para>
-
 
26
 
-
 
27
    <para>TLB shootdown implementation (update TLB upon mapping
-
 
28
    update/remove). TLB shootdown ASID/ASID:PAGE/ALL. TLB shootdown requests
-
 
29
    can come in asynchroniously so there is a cache of TLB shootdown requests.
-
 
30
    Upon cache overflow TLB shootdown ALL is executed</para>
-
 
31
 
-
 
32
    <para>Address spaces. Address space area (B+ tree). Only for uspace. Set
-
 
33
    of syscalls (shrink/extend etc). Special address space area type - device
-
 
34
    - prohibits shrink/extend syscalls to call on it. Address space has link
-
 
35
    to mapping tables (hierarchical - per Address space, hash - global
-
 
36
    tables).</para>
23
  </section>
37
  </section>
24
 
38
 
25
  <!-- End of VM -->
39
  <!-- End of VM -->
26
 
40
 
27
  <section>
41
  <section>
Line 30... Line 44...
30
    <title>Physical memory management</title>
44
    <title>Physical memory management</title>
31
 
45
 
32
    <section id="zones_and_frames">
46
    <section id="zones_and_frames">
33
      <title>Zones and frames</title>
47
      <title>Zones and frames</title>
34
 
48
 
35
      <para>
-
 
36
      <!--graphic fileref="images/mm2.png" /-->
-
 
37
     
-
 
38
      <!--graphic fileref="images/buddy_alloc.svg" format="SVG" /-->
49
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
39
     
-
 
40
     
-
 
41
      </para>
-
 
42
 
50
 
43
      <para>On some architectures not whole physical memory is available for
51
      <para>On some architectures not whole physical memory is available for
44
      conventional usage. This limitations require from kernel to maintain a
52
      conventional usage. This limitations require from kernel to maintain a
45
      table of available and unavailable ranges of physical memory addresses.
53
      table of available and unavailable ranges of physical memory addresses.
46
      Main idea of zones is in creating memory zone entity, that is a
54
      Main idea of zones is in creating memory zone entity, that is a
Line 95... Line 103...
95
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
103
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
96
            </listitem>
104
            </listitem>
97
          </itemizedlist></para>
105
          </itemizedlist></para>
98
      </formalpara>
106
      </formalpara>
99
    </section>
107
    </section>
100
  </section>
-
 
101
 
-
 
102
  <section id="buddy_allocator">
-
 
103
    <title>Buddy allocator</title>
-
 
104
 
-
 
105
    <section>
-
 
106
      <title>Overview</title>
-
 
107
 
-
 
108
      <para>In buddy allocator, memory is broken down into power-of-two sized
-
 
109
      naturally aligned blocks. These blocks are organized in an array of
-
 
110
      lists in which list with index i contains all unallocated blocks of the
-
 
111
      size <mathphrase>2<superscript>i</superscript></mathphrase>. The index i
-
 
112
      is called the order of block. Should there be two adjacent equally sized
-
 
113
      blocks in list <mathphrase>i</mathphrase> (i.e. buddies), the buddy
-
 
114
      allocator would coalesce them and put the resulting block in list
-
 
115
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
-
 
116
      be naturally aligned. Similarily, when the allocator is asked to
-
 
117
      allocate a block of size
-
 
118
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
-
 
119
      to satisfy the request from list with index i. If the request cannot be
-
 
120
      satisfied (i.e. the list i is empty), the buddy allocator will try to
-
 
121
      allocate and split larger block from list with index i + 1. Both of
-
 
122
      these algorithms are recursive. The recursion ends either when there are
-
 
123
      no blocks to coalesce in the former case or when there are no blocks
-
 
124
      that can be split in the latter case.</para>
-
 
125
 
-
 
126
      <!--graphic fileref="images/mm1.png" format="EPS" /-->
-
 
127
 
-
 
128
      <para>This approach greatly reduces external fragmentation of memory and
-
 
129
      helps in allocating bigger continuous blocks of memory aligned to their
-
 
130
      size. On the other hand, the buddy allocator suffers increased internal
-
 
131
      fragmentation of memory and is not suitable for general kernel
-
 
132
      allocations. This purpose is better addressed by the <link
-
 
133
      linkend="slab">slab allocator</link>.</para>
-
 
134
    </section>
-
 
135
 
-
 
136
    <section>
-
 
137
      <title>Implementation</title>
-
 
138
 
-
 
139
      <para>The buddy allocator is, in fact, an abstract framework wich can be
-
 
140
      easily specialized to serve one particular task. It knows nothing about
-
 
141
      the nature of memory it helps to allocate. In order to beat the lack of
-
 
142
      this knowledge, the buddy allocator exports an interface that each of
-
 
143
      its clients is required to implement. When supplied an implementation of
-
 
144
      this interface, the buddy allocator can use specialized external
-
 
145
      functions to find buddy for a block, split and coalesce blocks,
-
 
146
      manipulate block order and mark blocks busy or available. For precize
-
 
147
      documentation of this interface, refer to <link linkend="???">HelenOS
-
 
148
      Generic Kernel Reference Manual</link>.</para>
-
 
149
 
-
 
150
      <formalpara>
-
 
151
        <title>Data organization</title>
-
 
152
 
-
 
153
        <para>Each entity allocable by the buddy allocator is required to
-
 
154
        contain space for storing block order number and a link variable used
-
 
155
        to interconnect blocks within the same order.</para>
-
 
156
 
-
 
157
        <para>Whatever entities are allocated by the buddy allocator, the
-
 
158
        first entity within a block is used to represent the entire block. The
-
 
159
        first entity keeps the order of the whole block. Other entities within
-
 
160
        the block are assigned the magic value
-
 
161
        <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
-
 
162
        for effective identification of buddies in one-dimensional array
-
 
163
        because the entity that represents a potential buddy cannot be
-
 
164
        associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it is
-
 
165
        associated with <constant>BUDDY_INNER_BLOCK</constant> then it is not
-
 
166
        a buddy).</para>
-
 
167
      </formalpara>
-
 
168
 
-
 
169
      <formalpara>
-
 
170
        <title>Data organization</title>
-
 
171
 
-
 
172
        <para>Buddy allocator always uses first frame to represent frame
-
 
173
        block. This frame contains <varname>buddy_order</varname> variable to
-
 
174
        provide information about the block size it actually represents (
-
 
175
        <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
-
 
176
        frames block). Other frames in block have this value set to magic
-
 
177
        <constant>BUDDY_INNER_BLOCK</constant> that is much greater than buddy
-
 
178
        <varname>max_order</varname> value.</para>
-
 
179
 
108
 
180
        <para>Each <varname>frame_t</varname> also contains pointer member to
-
 
181
        hold frame structure in the linked list inside one order.</para>
109
    <section id="buddy_allocator">
182
      </formalpara>
110
      <title>Buddy allocator</title>
183
 
111
 
184
      <formalpara>
112
      <section>
185
        <title>Allocation algorithm</title>
113
        <title>Overview</title>
186
 
114
 
-
 
115
        <para>In buddy allocator, memory is broken down into power-of-two
-
 
116
        sized naturally aligned blocks. These blocks are organized in an array
-
 
117
        of lists in which list with index i contains all unallocated blocks of
187
        <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
118
        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
188
        frames block allocation request, allocator checks if there are any
119
        index i is called the order of block. Should there be two adjacent
189
        blocks available at the order list <varname>i</varname>. If yes,
120
        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
-
 
121
        buddies), the buddy allocator would coalesce them and put the
-
 
122
        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
190
        removes block from order list and returns its address. If no,
123
        the resulting block would be naturally aligned. Similarily, when the
191
        recursively allocates
124
        allocator is asked to allocate a block of size
192
        <mathphrase>2<superscript>i+1</superscript></mathphrase> frame block,
125
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
-
 
126
        to satisfy the request from list with index i. If the request cannot
-
 
127
        be satisfied (i.e. the list i is empty), the buddy allocator will try
-
 
128
        to allocate and split larger block from list with index i + 1. Both of
-
 
129
        these algorithms are recursive. The recursion ends either when there
-
 
130
        are no blocks to coalesce in the former case or when there are no
193
        splits it into two
131
        blocks that can be split in the latter case.</para>
-
 
132
 
-
 
133
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
-
 
134
 
194
        <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
135
        <para>This approach greatly reduces external fragmentation of memory
-
 
136
        and helps in allocating bigger continuous blocks of memory aligned to
195
        Then adds one of the blocks to the <varname>i</varname> order list and
137
        their size. On the other hand, the buddy allocator suffers increased
-
 
138
        internal fragmentation of memory and is not suitable for general
-
 
139
        kernel allocations. This purpose is better addressed by the <link
196
        returns address of another.</para>
140
        linkend="slab">slab allocator</link>.</para>
197
      </formalpara>
141
      </section>
198
 
142
 
199
      <formalpara>
143
      <section>
200
        <title>Deallocation algorithm</title>
144
        <title>Implementation</title>
201
 
145
 
-
 
146
        <para>The buddy allocator is, in fact, an abstract framework wich can
-
 
147
        be easily specialized to serve one particular task. It knows nothing
-
 
148
        about the nature of memory it helps to allocate. In order to beat the
-
 
149
        lack of this knowledge, the buddy allocator exports an interface that
-
 
150
        each of its clients is required to implement. When supplied an
-
 
151
        implementation of this interface, the buddy allocator can use
-
 
152
        specialized external functions to find buddy for a block, split and
-
 
153
        coalesce blocks, manipulate block order and mark blocks busy or
-
 
154
        available. For precize documentation of this interface, refer to <link
-
 
155
        linkend="???">HelenOS Generic Kernel Reference Manual</link>.</para>
-
 
156
 
-
 
157
        <formalpara>
-
 
158
          <title>Data organization</title>
-
 
159
 
-
 
160
          <para>Each entity allocable by the buddy allocator is required to
-
 
161
          contain space for storing block order number and a link variable
-
 
162
          used to interconnect blocks within the same order.</para>
-
 
163
 
-
 
164
          <para>Whatever entities are allocated by the buddy allocator, the
-
 
165
          first entity within a block is used to represent the entire block.
-
 
166
          The first entity keeps the order of the whole block. Other entities
-
 
167
          within the block are assigned the magic value
-
 
168
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
-
 
169
          for effective identification of buddies in one-dimensional array
-
 
170
          because the entity that represents a potential buddy cannot be
-
 
171
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
-
 
172
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
-
 
173
          not a buddy).</para>
-
 
174
 
-
 
175
          <para>Buddy allocator always uses first frame to represent frame
-
 
176
          block. This frame contains <varname>buddy_order</varname> variable
-
 
177
          to provide information about the block size it actually represents (
-
 
178
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
-
 
179
          frames block). Other frames in block have this value set to magic
-
 
180
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
-
 
181
          buddy <varname>max_order</varname> value.</para>
-
 
182
 
-
 
183
          <para>Each <varname>frame_t</varname> also contains pointer member
-
 
184
          to hold frame structure in the linked list inside one order.</para>
-
 
185
        </formalpara>
-
 
186
 
-
 
187
        <formalpara>
-
 
188
          <title>Allocation algorithm</title>
-
 
189
 
-
 
190
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
-
 
191
          frames block allocation request, allocator checks if there are any
-
 
192
          blocks available at the order list <varname>i</varname>. If yes,
-
 
193
          removes block from order list and returns its address. If no,
-
 
194
          recursively allocates
-
 
195
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
-
 
196
          block, splits it into two
-
 
197
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
-
 
198
          Then adds one of the blocks to the <varname>i</varname> order list
-
 
199
          and returns address of another.</para>
-
 
200
        </formalpara>
-
 
201
 
-
 
202
        <formalpara>
-
 
203
          <title>Deallocation algorithm</title>
-
 
204
 
202
        <para>Check if block has so called buddy (another free
205
          <para>Check if block has so called buddy (another free
203
        <mathphrase>2<superscript>i</superscript></mathphrase> frame block
206
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
204
        that can be linked with freed block into the
207
          that can be linked with freed block into the
205
        <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
208
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
206
        Technically, buddy is a odd/even block for even/odd block
209
          Technically, buddy is a odd/even block for even/odd block
207
        respectively. Plus we can put an extra requirement, that resulting
210
          respectively. Plus we can put an extra requirement, that resulting
208
        block must be aligned to its size. This requirement guarantees natural
211
          block must be aligned to its size. This requirement guarantees
209
        block alignment for the blocks coming out the allocation
212
          natural block alignment for the blocks coming out the allocation
210
        system.</para>
213
          system.</para>
211
 
214
 
212
        <para>Using direct pointer arithmetics,
215
          <para>Using direct pointer arithmetics,
213
        <varname>frame_t::ref_count</varname> and
216
          <varname>frame_t::ref_count</varname> and
214
        <varname>frame_t::buddy_order</varname> variables, finding buddy is
217
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
215
        done at constant time.</para>
218
          done at constant time.</para>
216
      </formalpara>
219
        </formalpara>
-
 
220
      </section>
217
    </section>
221
    </section>
218
 
222
 
219
    <section id="slab">
223
    <section id="slab">
220
      <title>Slab allocator</title>
224
      <title>Slab allocator</title>
221
 
225
 
222
      <section>
226
      <section>
223
        <title>Introduction</title>
227
        <title>Overview</title>
-
 
228
 
-
 
229
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
-
 
230
        piece of memory, usually made of several physically contiguous
-
 
231
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
-
 
232
        of one or more slabs.</termdef></para>
224
 
233
 
225
        <para>The majority of memory allocation requests in the kernel are for
234
        <para>The majority of memory allocation requests in the kernel are for
226
        small, frequently used data structures. For this purpose the slab
235
        small, frequently used data structures. For this purpose the slab
227
        allocator is a perfect solution. The basic idea behind a slab
236
        allocator is a perfect solution. The basic idea behind the slab
228
        allocator is to have lists of commonly used objects available packed
237
        allocator is to have lists of commonly used objects available packed
229
        into pages. This avoids the overhead of allocating and destroying
238
        into pages. This avoids the overhead of allocating and destroying
230
        commonly used types of objects such as inodes, threads, virtual memory
239
        commonly used types of objects such threads, virtual memory structures
231
        structures etc.</para>
-
 
232
 
-
 
233
        <para>Original slab allocator locking mechanism has become a
240
        etc. Also due to the exact allocated size matching, slab allocation
234
        significant preformance bottleneck on SMP architectures. <termdef>Slab
-
 
235
        SMP perfromance bottleneck was resolved by introducing a per-CPU
-
 
236
        caching scheme called as <glossterm>magazine
-
 
237
        layer</glossterm></termdef>.</para>
241
        completely eliminates internal fragmentation issue.</para>
238
      </section>
242
      </section>
239
 
243
 
240
      <section>
244
      <section>
241
        <title>Implementation details (needs revision)</title>
245
        <title>Implementation</title>
242
 
246
 
243
        <para>The SLAB allocator is closely modelled after <ulink
247
        <para>The SLAB allocator is closely modelled after <ulink
244
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
248
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
245
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
249
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
246
        with the following exceptions: <itemizedlist>
250
        with the following exceptions: <itemizedlist>
Line 256... Line 260...
256
            <listitem>
260
            <listitem>
257
               - cache coloring
261
               - cache coloring
258
            </listitem>
262
            </listitem>
259
 
263
 
260
            <listitem>
264
            <listitem>
261
               - dynamic magazine growing (different magazine sizes are already supported, but we would need to adjust allocation strategy)
265
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
262
            </listitem>
266
            </listitem>
263
          </itemizedlist></para>
267
          </itemizedlist></para>
264
 
268
 
265
        <para>The SLAB allocator supports per-CPU caches ('magazines') to
-
 
266
        facilitate good SMP scaling.</para>
-
 
267
 
-
 
268
        <para>When a new object is being allocated, it is first checked, if it
-
 
269
        is available in CPU-bound magazine. If it is not found there, it is
-
 
270
        allocated from CPU-shared SLAB - if partial full is found, it is used,
-
 
271
        otherwise a new one is allocated.</para>
-
 
272
 
-
 
273
        <para>When an object is being deallocated, it is put to CPU-bound
-
 
274
        magazine. If there is no such magazine, new one is allocated (if it
-
 
275
        fails, the object is deallocated into SLAB). If the magazine is full,
-
 
276
        it is put into cpu-shared list of magazines and new one is
-
 
277
        allocated.</para>
-
 
278
 
-
 
279
        <para>The CPU-bound magazine is actually a pair of magazines to avoid
-
 
280
        thrashing when somebody is allocating/deallocating 1 item at the
-
 
281
        magazine size boundary. LIFO order is enforced, which should avoid
-
 
282
        fragmentation as much as possible.</para>
-
 
283
 
-
 
284
        <para>Every cache contains list of full slabs and list of partialy
-
 
285
        full slabs. Empty SLABS are immediately freed (thrashing will be
-
 
286
        avoided because of magazines).</para>
-
 
287
 
-
 
288
        <para>The SLAB information structure is kept inside the data area, if
-
 
289
        possible. The cache can be marked that it should not use magazines.
-
 
290
        This is used only for SLAB related caches to avoid deadlocks and
-
 
291
        infinite recursion (the SLAB allocator uses itself for allocating all
-
 
292
        it's control structures).</para>
-
 
293
 
-
 
294
        <para>The SLAB allocator allocates lots of space and does not free it.
-
 
295
        When frame allocator fails to allocate the frame, it calls
-
 
296
        slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
-
 
297
        The light reclaim releases slabs from cpu-shared magazine-list, until
-
 
298
        at least 1 slab is deallocated in each cache (this algorithm should
-
 
299
        probably change). The brutal reclaim removes all cached objects, even
-
 
300
        from CPU-bound magazines.</para>
-
 
301
 
-
 
302
        <para>TODO: <itemizedlist>
-
 
303
            <listitem>
269
        <section>
304
               For better CPU-scaling the magazine allocation strategy should be extended. Currently, if the cache does not have magazine, it asks for non-cpu cached magazine cache to provide one. It might be feasible to add cpu-cached magazine cache (which would allocate it's magazines from non-cpu-cached mag. cache). This would provide a nice per-cpu buffer. The other possibility is to use the per-cache 'empty-magazine-list', which decreases competing for 1 per-system magazine cache.
270
          <title>Magazine layer</title>
305
            </listitem>
-
 
306
 
271
 
-
 
272
          <para>Due to the extensive bottleneck on SMP architures, caused by
-
 
273
          global SLAB locking mechanism, making processing of all slab
-
 
274
          allocation requests serialized, a new layer was introduced to the
-
 
275
          classic slab allocator design. Slab allocator was extended to
-
 
276
          support per-CPU caches 'magazines' to achieve good SMP scaling.
-
 
277
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
-
 
278
          a per-CPU caching scheme called as <glossterm>magazine
-
 
279
          layer</glossterm></termdef>.</para>
-
 
280
 
-
 
281
          <para>Magazine is a N-element cache of objects, so each magazine can
-
 
282
          satisfy N allocations. Magazine behaves like a automatic weapon
-
 
283
          magazine (LIFO, stack), so the allocation/deallocation become simple
-
 
284
          push/pop pointer operation. Trick is that CPU does not access global
-
 
285
          slab allocator data during the allocation from its magazine, thus
-
 
286
          making possible parallel allocations between CPUs.</para>
-
 
287
 
-
 
288
          <para>Implementation also requires adding another feature as the
-
 
289
          CPU-bound magazine is actually a pair of magazines to avoid
-
 
290
          thrashing when during allocation/deallocatiion of 1 item at the
-
 
291
          magazine size boundary. LIFO order is enforced, which should avoid
-
 
292
          fragmentation as much as possible.</para>
-
 
293
 
-
 
294
          <para>Another important entity of magazine layer is a full magazine
-
 
295
          depot, that stores full magazines which are used by any of the CPU
-
 
296
          magazine caches to reload active CPU magazine. Magazine depot can be
-
 
297
          pre-filled with full magazines during initialization, but in current
-
 
298
          implementation it is filled during object deallocation, when CPU
-
 
299
          magazine becomes full.</para>
-
 
300
 
-
 
301
          <para>Slab allocator control structures are allocated from special
-
 
302
          slabs, that are marked by special flag, indicating that it should
-
 
303
          not be used for slab magazine layer. This is done to avoid possible
-
 
304
          infinite recursions and deadlock during conventional slab allocaiton
-
 
305
          requests.</para>
-
 
306
        </section>
-
 
307
 
-
 
308
        <section>
-
 
309
          <title>Allocation/deallocation</title>
-
 
310
 
-
 
311
          <para>Every cache contains list of full slabs and list of partialy
-
 
312
          full slabs. Empty slabs are immediately freed (thrashing will be
-
 
313
          avoided because of magazines).</para>
-
 
314
 
-
 
315
          <para>The SLAB allocator allocates lots of space and does not free
-
 
316
          it. When frame allocator fails to allocate the frame, it calls
-
 
317
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
-
 
318
          The light reclaim releases slabs from cpu-shared magazine-list,
-
 
319
          until at least 1 slab is deallocated in each cache (this algorithm
-
 
320
          should probably change). The brutal reclaim removes all cached
-
 
321
          objects, even from CPU-bound magazines.</para>
-
 
322
 
307
            <listitem>
323
          <formalpara>
-
 
324
            <title>Allocation</title>
-
 
325
 
-
 
326
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
-
 
327
            request, slab allocator first of all checks availability of memory
-
 
328
            in local CPU-bound magazine. If it is there, we would just "pop"
-
 
329
            the CPU magazine and return the pointer to object.</para>
-
 
330
 
-
 
331
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
-
 
332
            empty, allocator will attempt to reload magazin, swapping it with
-
 
333
            second CPU magazine and returns to the first step.</para>
-
 
334
 
-
 
335
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
-
 
336
            when both CPU-bound magazines are empty, which makes allocator to
-
 
337
            access shared full-magazines depot to reload CPU-bound magazines.
-
 
338
            If reload is succesful (meaning there are full magazines in depot)
-
 
339
            algoritm continues at Step 1.</para>
-
 
340
 
-
 
341
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
308
               - it might be good to add granularity of locks even to slab level, we could then try_spinlock over all partial slabs and thus improve scalability even on slab level
342
            In this step object is allocated from the conventional slab layer
-
 
343
            and pointer is returned.</para>
309
            </listitem>
344
          </formalpara>
-
 
345
 
-
 
346
          <formalpara>
-
 
347
            <title>Deallocation</title>
-
 
348
 
-
 
349
            <para><emphasis>Step 1.</emphasis> During deallocation request,
-
 
350
            slab allocator will check if the local CPU-bound magazine is not
-
 
351
            full. In this case we will just push the pointer to this
310
          </itemizedlist></para>
352
            magazine.</para>
-
 
353
 
-
 
354
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
-
 
355
            full, allocator will attempt to reload magazin, swapping it with
-
 
356
            second CPU magazine and returns to the first step.</para>
-
 
357
 
-
 
358
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
-
 
359
            when both CPU-bound magazines are full, which makes allocator to
-
 
360
            access shared full-magazines depot to put one of the magazines to
-
 
361
            the depot and creating new empty magazine. Algoritm continues at
-
 
362
            Step 1.</para>
-
 
363
          </formalpara>
-
 
364
        </section>
311
      </section>
365
      </section>
312
    </section>
366
    </section>
313
 
367
 
314
    <!-- End of Physmem -->
368
    <!-- End of Physmem -->
315
  </section>
369
  </section>