Subversion Repositories HelenOS

Rev

Rev 3022 | Go to most recent revision | Show entire file | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3022 Rev 4055
Line 34... Line 34...
34
#include <balloc.h>
34
#include <balloc.h>
35
#include <ofw.h>
35
#include <ofw.h>
36
#include <ofw_tree.h>
36
#include <ofw_tree.h>
37
#include "ofwarch.h"
37
#include "ofwarch.h"
38
#include <align.h>
38
#include <align.h>
-
 
39
#include <macros.h>
-
 
40
#include <string.h>
39
 
41
 
40
bootinfo_t bootinfo;
42
bootinfo_t bootinfo;
-
 
43
 
41
component_t components[COMPONENTS];
44
component_t components[COMPONENTS];
42
 
45
 
43
char *release = RELEASE;
46
char *release = STRING(RELEASE);
44
 
47
 
45
#ifdef REVISION
48
#ifdef REVISION
46
    char *revision = ", revision " REVISION;
49
    char *revision = ", revision " STRING(REVISION);
47
#else
50
#else
48
    char *revision = "";
51
    char *revision = "";
49
#endif
52
#endif
50
 
53
 
51
#ifdef TIMESTAMP
54
#ifdef TIMESTAMP
52
    char *timestamp = "\nBuilt on " TIMESTAMP;
55
    char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
53
#else
56
#else
54
    char *timestamp = "";
57
    char *timestamp = "";
55
#endif
58
#endif
56
 
59
 
-
 
60
/** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
-
 
61
uint8_t subarchitecture;
-
 
62
 
-
 
63
/**
-
 
64
 * mask of the MID field inside the ICBUS_CONFIG register shifted by
-
 
65
 * MID_SHIFT bits to the right
-
 
66
 */
-
 
67
uint16_t mid_mask;
-
 
68
 
57
/** Print version information. */
69
/** Print version information. */
58
static void version_print(void)
70
static void version_print(void)
59
{
71
{
60
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\nCopyright (c) 2006 HelenOS project\n", release, revision, timestamp);
72
    printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
-
 
73
        "Copyright (c) 2006 HelenOS project\n",
-
 
74
        release, revision, timestamp);
-
 
75
}
-
 
76
 
-
 
77
/* the lowest ID (read from the VER register) of some US3 CPU model */
-
 
78
#define FIRST_US3_CPU   0x14
-
 
79
 
-
 
80
/* the greatest ID (read from the VER register) of some US3 CPU model */
-
 
81
#define LAST_US3_CPU    0x19
-
 
82
 
-
 
83
/* UltraSPARC IIIi processor implementation code */
-
 
84
#define US_IIIi_CODE    0x15
-
 
85
 
-
 
86
/**
-
 
87
 * Sets the global variables "subarchitecture" and "mid_mask" to
-
 
88
 * correct values.
-
 
89
 */
-
 
90
static void detect_subarchitecture(void)
-
 
91
{
-
 
92
    uint64_t v;
-
 
93
    asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
-
 
94
   
-
 
95
    v = (v << 16) >> 48;
-
 
96
    if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
-
 
97
        subarchitecture = SUBARCH_US3;
-
 
98
        if (v == US_IIIi_CODE)
-
 
99
            mid_mask = (1 << 5) - 1;
-
 
100
        else
-
 
101
            mid_mask = (1 << 10) - 1;
-
 
102
    } else if (v < FIRST_US3_CPU) {
-
 
103
        subarchitecture = SUBARCH_US;
-
 
104
        mid_mask = (1 << 5) - 1;
-
 
105
    } else {
-
 
106
        printf("\nThis CPU is not supported by HelenOS.");
-
 
107
    }
61
}
108
}
62
 
109
 
63
void bootstrap(void)
110
void bootstrap(void)
64
{
111
{
-
 
112
    void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
-
 
113
    void *balloc_base;
-
 
114
    unsigned int top = 0;
-
 
115
    int i, j;
-
 
116
 
65
    version_print();
117
    version_print();
66
   
118
   
-
 
119
    detect_subarchitecture();
67
    init_components(components);
120
    init_components(components);
68
 
121
 
69
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
122
    if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
70
        printf("Error: unable to get start of physical memory.\n");
123
        printf("Error: unable to get start of physical memory.\n");
71
        halt();
124
        halt();
Line 73... Line 126...
73
 
126
 
74
    if (!ofw_memmap(&bootinfo.memmap)) {
127
    if (!ofw_memmap(&bootinfo.memmap)) {
75
        printf("Error: unable to get memory map, halting.\n");
128
        printf("Error: unable to get memory map, halting.\n");
76
        halt();
129
        halt();
77
    }
130
    }
78
   
131
 
79
    if (bootinfo.memmap.total == 0) {
132
    if (bootinfo.memmap.total == 0) {
80
        printf("Error: no memory detected, halting.\n");
133
        printf("Error: no memory detected, halting.\n");
81
        halt();
134
        halt();
82
    }
135
    }
-
 
136
 
-
 
137
    /*
-
 
138
     * SILO for some reason adds 0x400000 and subtracts
-
 
139
     * bootinfo.physmem_start to/from silo_ramdisk_image.
-
 
140
     * We just need plain physical address so we fix it up.
-
 
141
     */
-
 
142
    if (silo_ramdisk_image) {
-
 
143
        silo_ramdisk_image += bootinfo.physmem_start;
-
 
144
        silo_ramdisk_image -= 0x400000;
-
 
145
        /* Install 1:1 mapping for the ramdisk. */
-
 
146
        if (ofw_map((void *)((uintptr_t) silo_ramdisk_image),
-
 
147
            (void *)((uintptr_t) silo_ramdisk_image),
-
 
148
            silo_ramdisk_size, -1) != 0) {
-
 
149
            printf("Failed to map ramdisk.\n");
-
 
150
            halt();
-
 
151
        }
-
 
152
    }
83
   
153
   
84
    printf("\nSystem info\n");
154
    printf("\nSystem info\n");
85
    printf(" memory: %dM starting at %P\n",
155
    printf(" memory: %dM starting at %P\n",
86
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
156
        bootinfo.memmap.total >> 20, bootinfo.physmem_start);
87
 
157
 
88
    printf("\nMemory statistics\n");
158
    printf("\nMemory statistics\n");
89
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
159
    printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
90
    printf(" %P: boot info structure\n", &bootinfo);
160
    printf(" %P: boot info structure\n", &bootinfo);
91
   
161
   
-
 
162
    /*
-
 
163
     * Figure out destination address for each component.
-
 
164
     * In this phase, we don't copy the components yet because we want to
-
 
165
     * to be careful not to overwrite anything, especially the components
-
 
166
     * which haven't been copied yet.
-
 
167
     */
92
    unsigned int i;
168
    bootinfo.taskmap.count = 0;
93
    for (i = 0; i < COMPONENTS; i++)
169
    for (i = 0; i < COMPONENTS; i++) {
94
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
170
        printf(" %P: %s image (size %d bytes)\n", components[i].start,
95
            components[i].name, components[i].size);
171
            components[i].name, components[i].size);
-
 
172
        top = ALIGN_UP(top, PAGE_SIZE);
-
 
173
        if (i > 0) {
-
 
174
            if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
-
 
175
                printf("Skipping superfluous components.\n");
-
 
176
                break;
-
 
177
            }
-
 
178
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
-
 
179
                base + top;
-
 
180
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
-
 
181
                components[i].size;
-
 
182
            strncpy(bootinfo.taskmap.tasks[
-
 
183
                bootinfo.taskmap.count].name, components[i].name,
-
 
184
                BOOTINFO_TASK_NAME_BUFLEN);
-
 
185
            bootinfo.taskmap.count++;
-
 
186
        }
-
 
187
        top += components[i].size;
-
 
188
    }
96
 
189
 
97
    void * base = (void *) KERNEL_VIRTUAL_ADDRESS;
190
    j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
98
    unsigned int top = 0;
-
 
99
 
191
 
100
    printf("\nCopying components\n");
192
    if (silo_ramdisk_image) {
-
 
193
        /* Treat the ramdisk as the last bootinfo task. */
101
    bootinfo.taskmap.count = 0;
194
        if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
102
    for (i = 0; i < COMPONENTS; i++) {
195
            printf("Skipping ramdisk.\n");
103
        printf(" %s...", components[i].name);
196
            goto skip_ramdisk;
-
 
197
        }
104
        top = ALIGN_UP(top, PAGE_SIZE);
198
        top = ALIGN_UP(top, PAGE_SIZE);
-
 
199
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
-
 
200
            base + top;
-
 
201
        bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
-
 
202
            silo_ramdisk_size;
-
 
203
        bootinfo.taskmap.count++;
-
 
204
        printf("\nCopying ramdisk...");
-
 
205
        /*
-
 
206
         * Claim and map the whole ramdisk as it may exceed the area
-
 
207
         * given to us by SILO.
-
 
208
         */
-
 
209
        (void) ofw_claim_phys(base + top, silo_ramdisk_size);
-
 
210
        (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
-
 
211
            silo_ramdisk_size, -1);
-
 
212
        memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
-
 
213
            silo_ramdisk_size);
-
 
214
        printf("done.\n");
-
 
215
        top += silo_ramdisk_size;
-
 
216
    }
-
 
217
skip_ramdisk:
-
 
218
 
-
 
219
    /*
-
 
220
     * Now we can proceed to copy the components. We do it in reverse order
-
 
221
     * so that we don't overwrite anything even if the components overlap
-
 
222
     * with base.
-
 
223
     */
-
 
224
    printf("\nCopying bootinfo tasks\n");
-
 
225
    for (i = COMPONENTS - 1; i > 0; i--, j--) {
-
 
226
        printf(" %s...", components[i].name);
105
 
227
 
106
        /*
228
        /*
107
         * At this point, we claim the physical memory that we are
229
         * At this point, we claim the physical memory that we are
108
         * going to use. We should be safe in case of the virtual
230
         * going to use. We should be safe in case of the virtual
109
         * address space because the OpenFirmware, according to its
231
         * address space because the OpenFirmware, according to its
110
         * SPARC binding, should restrict its use of virtual memory
232
         * SPARC binding, should restrict its use of virtual memory
111
         * to addresses from [0xffd00000; 0xffefffff] and
233
         * to addresses from [0xffd00000; 0xffefffff] and
112
         * [0xfe000000; 0xfeffffff].
234
         * [0xfe000000; 0xfeffffff].
-
 
235
         *
-
 
236
         * XXX We don't map this piece of memory. We simply rely on
-
 
237
         *     SILO to have it done for us already in this case.
113
         */
238
         */
114
        (void) ofw_claim_phys(bootinfo.physmem_start + base + top,
239
        (void) ofw_claim_phys(bootinfo.physmem_start +
-
 
240
            bootinfo.taskmap.tasks[j].addr,
115
            ALIGN_UP(components[i].size, PAGE_SIZE));
241
            ALIGN_UP(components[i].size, PAGE_SIZE));
116
           
242
           
117
        memcpy(base + top, components[i].start, components[i].size);
-
 
118
        if (i > 0) {
-
 
119
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
243
        memcpy((void *)bootinfo.taskmap.tasks[j].addr,
120
                base + top;
-
 
121
            bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
-
 
122
                components[i].size;
244
            components[i].start, components[i].size);
123
            bootinfo.taskmap.count++;
-
 
124
        }
-
 
125
        top += components[i].size;
-
 
126
        printf("done.\n");
245
        printf("done.\n");
127
    }
246
    }
128
 
247
 
-
 
248
    printf("\nCopying kernel...");
-
 
249
    (void) ofw_claim_phys(bootinfo.physmem_start + base,
-
 
250
        ALIGN_UP(components[0].size, PAGE_SIZE));
-
 
251
    memcpy(base, components[0].start, components[0].size);
-
 
252
    printf("done.\n");
-
 
253
 
129
    /*
254
    /*
130
     * Claim the physical memory for the boot allocator.
255
     * Claim and map the physical memory for the boot allocator.
131
     * Initialize the boot allocator.
256
     * Initialize the boot allocator.
132
     */
257
     */
-
 
258
    balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
133
    (void) ofw_claim_phys(bootinfo.physmem_start +
259
    (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
134
        base + ALIGN_UP(top, PAGE_SIZE), BALLOC_MAX_SIZE);
260
        BALLOC_MAX_SIZE);
135
    balloc_init(&bootinfo.ballocs, ALIGN_UP(((uintptr_t) base) + top,
261
    (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
136
        PAGE_SIZE));
262
        BALLOC_MAX_SIZE, -1);
-
 
263
    balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
137
 
264
 
138
    printf("\nCanonizing OpenFirmware device tree...");
265
    printf("\nCanonizing OpenFirmware device tree...");
139
    bootinfo.ofw_root = ofw_tree_build();
266
    bootinfo.ofw_root = ofw_tree_build();
140
    printf("done.\n");
267
    printf("done.\n");
141
 
268
 
142
#ifdef CONFIG_SMP
269
#ifdef CONFIG_AP
143
    printf("\nChecking for secondary processors...");
270
    printf("\nChecking for secondary processors...");
144
    if (!ofw_cpu())
271
    if (!ofw_cpu())
145
        printf("Error: unable to get CPU properties\n");
272
        printf("Error: unable to get CPU properties\n");
146
    printf("done.\n");
273
    printf("done.\n");
147
#endif
274
#endif
148
 
275
 
-
 
276
    ofw_setup_palette();
-
 
277
 
149
    printf("\nBooting the kernel...\n");
278
    printf("\nBooting the kernel...\n");
150
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
279
    jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
151
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
280
        bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
152
        sizeof(bootinfo));
281
        sizeof(bootinfo));
153
}
282
}
154
 
-