Subversion Repositories HelenOS

Rev

Rev 4545 | Rev 4621 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 4545 Rev 4557
1
/*
1
/*
2
 * Copyright (c) 2009 Jiri Svoboda
2
 * Copyright (c) 2009 Jiri Svoboda
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup bd
29
/** @addtogroup bd
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief ATA disk driver
35
 * @brief ATA disk driver
36
 *
36
 *
37
 * This driver currently works only with CHS addressing and uses PIO.
37
 * This driver currently works only with CHS addressing and uses PIO.
38
 * Currently based on the (now obsolete) ANSI X3.221-1994 (ATA-1) standard.
38
 * Currently based on the (now obsolete) ANSI X3.221-1994 (ATA-1) standard.
39
 * At this point only reading is possible, not writing.
39
 * At this point only reading is possible, not writing.
-
 
40
 *
-
 
41
 * The driver services a single controller which can have up to two disks
-
 
42
 * attached.
40
 */
43
 */
41
 
44
 
42
#include <stdio.h>
45
#include <stdio.h>
43
#include <libarch/ddi.h>
46
#include <libarch/ddi.h>
44
#include <ddi.h>
47
#include <ddi.h>
45
#include <ipc/ipc.h>
48
#include <ipc/ipc.h>
46
#include <ipc/bd.h>
49
#include <ipc/bd.h>
47
#include <async.h>
50
#include <async.h>
48
#include <as.h>
51
#include <as.h>
49
#include <futex.h>
52
#include <fibril_sync.h>
50
#include <devmap.h>
53
#include <devmap.h>
51
#include <sys/types.h>
54
#include <sys/types.h>
52
#include <errno.h>
55
#include <errno.h>
53
#include <bool.h>
56
#include <bool.h>
54
 
57
 
55
#include "ata_bd.h"
58
#include "ata_bd.h"
56
 
59
 
57
#define NAME "ata_bd"
60
#define NAME "ata_bd"
58
 
61
 
59
static const size_t block_size = 512;
62
static const size_t block_size = 512;
60
static size_t comm_size;
63
static size_t comm_size;
61
 
64
 
62
static uintptr_t cmd_physical = 0x1f0;
65
static uintptr_t cmd_physical = 0x1f0;
63
static uintptr_t ctl_physical = 0x170;
66
static uintptr_t ctl_physical = 0x170;
64
static ata_cmd_t *cmd;
67
static ata_cmd_t *cmd;
65
static ata_ctl_t *ctl;
68
static ata_ctl_t *ctl;
66
 
69
 
67
static dev_handle_t dev_handle[MAX_DISKS];
70
/** Per-disk state. */
68
 
-
 
69
static atomic_t dev_futex = FUTEX_INITIALIZER;
-
 
70
 
-
 
71
static disk_t disk[MAX_DISKS];
71
static disk_t disk[MAX_DISKS];
72
 
72
 
73
static int ata_bd_init(void);
73
static int ata_bd_init(void);
74
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
74
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall);
75
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
75
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t offset, size_t size,
76
    void *buf);
76
    void *buf);
77
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
77
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
78
    void *buf);
78
    void *buf);
79
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
79
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
80
    const void *buf);
80
    const void *buf);
81
static int drive_identify(int drive_id, disk_t *d);
81
static int drive_identify(int drive_id, disk_t *d);
82
 
82
 
83
int main(int argc, char **argv)
83
int main(int argc, char **argv)
84
{
84
{
85
    uint8_t status;
85
    uint8_t status;
86
    char name[16];
86
    char name[16];
87
    int i, rc;
87
    int i, rc;
88
    int n_disks;
88
    int n_disks;
89
 
89
 
90
    printf(NAME ": ATA disk driver\n");
90
    printf(NAME ": ATA disk driver\n");
91
 
91
 
92
    printf("cmd_physical = 0x%x\n", cmd_physical);
92
    printf("I/O address 0x%x\n", cmd_physical);
93
    printf("ctl_physical = 0x%x\n", ctl_physical);
-
 
94
 
93
 
95
    if (ata_bd_init() != EOK)
94
    if (ata_bd_init() != EOK)
96
        return -1;
95
        return -1;
97
 
96
 
98
    /* Put drives to reset, disable interrupts. */
97
    /* Put drives to reset, disable interrupts. */
99
    printf("Reset drives...\n");
98
    printf("Reset drives...\n");
100
    pio_write_8(&ctl->device_control, DCR_SRST);
99
    pio_write_8(&ctl->device_control, DCR_SRST);
101
    /* FIXME: Find out how to do this properly. */
100
    /* FIXME: Find out how to do this properly. */
102
    async_usleep(100);
101
    async_usleep(100);
103
    pio_write_8(&ctl->device_control, 0);
102
    pio_write_8(&ctl->device_control, 0);
104
 
103
 
105
    do {
104
    do {
106
        status = pio_read_8(&cmd->status);
105
        status = pio_read_8(&cmd->status);
107
    } while ((status & SR_BSY) != 0);
106
    } while ((status & SR_BSY) != 0);
108
    printf("Done\n");
107
    printf("Done\n");
109
 
108
 
110
    printf("Status = 0x%x\n", pio_read_8(&cmd->status));
109
    printf("Status = 0x%x\n", pio_read_8(&cmd->status));
111
 
110
 
112
    (void) drive_identify(0, &disk[0]);
111
    (void) drive_identify(0, &disk[0]);
113
    (void) drive_identify(1, &disk[1]);
112
    (void) drive_identify(1, &disk[1]);
114
 
113
 
115
    n_disks = 0;
114
    n_disks = 0;
116
 
115
 
117
    for (i = 0; i < MAX_DISKS; i++) {
116
    for (i = 0; i < MAX_DISKS; i++) {
118
        /* Skip unattached drives. */
117
        /* Skip unattached drives. */
119
        if (disk[i].present == false)
118
        if (disk[i].present == false)
120
            continue;
119
            continue;
121
 
120
 
122
        snprintf(name, 16, "disk%d", i);
121
        snprintf(name, 16, "disk%d", i);
123
        rc = devmap_device_register(name, &dev_handle[i]);
122
        rc = devmap_device_register(name, &disk[i].dev_handle);
124
        if (rc != EOK) {
123
        if (rc != EOK) {
125
            devmap_hangup_phone(DEVMAP_DRIVER);
124
            devmap_hangup_phone(DEVMAP_DRIVER);
126
            printf(NAME ": Unable to register device %s.\n",
125
            printf(NAME ": Unable to register device %s.\n",
127
                name);
126
                name);
128
            return rc;
127
            return rc;
129
        }
128
        }
130
        ++n_disks;
129
        ++n_disks;
131
    }
130
    }
132
 
131
 
133
    if (n_disks == 0) {
132
    if (n_disks == 0) {
134
        printf("No disks detected.\n");
133
        printf("No disks detected.\n");
135
        return -1;
134
        return -1;
136
    }
135
    }
137
 
136
 
138
    printf(NAME ": Accepting connections\n");
137
    printf(NAME ": Accepting connections\n");
139
    async_manager();
138
    async_manager();
140
 
139
 
141
    /* Not reached */
140
    /* Not reached */
142
    return 0;
141
    return 0;
143
}
142
}
144
 
143
 
145
static int drive_identify(int disk_id, disk_t *d)
144
static int drive_identify(int disk_id, disk_t *d)
146
{
145
{
147
    uint16_t data;
146
    uint16_t data;
148
    uint8_t status;
147
    uint8_t status;
149
    size_t i;
148
    size_t i;
150
 
149
 
151
    printf("Identify drive %d\n", disk_id);
150
    printf("Identify drive %d\n", disk_id);
152
    pio_write_8(&cmd->drive_head, ((disk_id != 0) ? DHR_DRV : 0));
151
    pio_write_8(&cmd->drive_head, ((disk_id != 0) ? DHR_DRV : 0));
153
    async_usleep(100);
152
    async_usleep(100);
154
    pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE);
153
    pio_write_8(&cmd->command, CMD_IDENTIFY_DRIVE);
155
 
154
 
156
    status = pio_read_8(&cmd->status);
155
    status = pio_read_8(&cmd->status);
157
    printf("Status = 0x%x\n", status);
156
    printf("Status = 0x%x\n", status);
158
 
157
 
159
    d->present = false;
158
    d->present = false;
160
 
159
 
161
    /*
160
    /*
162
     * Detect if drive is present. This is Qemu only! Need to
161
     * Detect if drive is present. This is Qemu only! Need to
163
     * do the right thing to work with real drives.
162
     * do the right thing to work with real drives.
164
     */
163
     */
165
    if ((status & SR_DRDY) == 0) {
164
    if ((status & SR_DRDY) == 0) {
166
        printf("None attached.\n");
165
        printf("None attached.\n");
167
        return ENOENT;
166
        return ENOENT;
168
    }
167
    }
169
 
168
 
170
    for (i = 0; i < block_size / 2; i++) {
169
    for (i = 0; i < block_size / 2; i++) {
171
        do {
170
        do {
172
            status = pio_read_8(&cmd->status);
171
            status = pio_read_8(&cmd->status);
173
        } while ((status & SR_DRDY) == 0);
172
        } while ((status & SR_DRDY) == 0);
174
 
173
 
175
        data = pio_read_16(&cmd->data_port);
174
        data = pio_read_16(&cmd->data_port);
176
 
175
 
177
        switch (i) {
176
        switch (i) {
178
        case 1: d->cylinders = data; break;
177
        case 1: d->cylinders = data; break;
179
        case 3: d->heads = data; break;
178
        case 3: d->heads = data; break;
180
        case 6: d->sectors = data; break;
179
        case 6: d->sectors = data; break;
181
        }
180
        }
182
    }
181
    }
183
 
182
 
184
    printf("\n\nStatus = 0x%x\n", pio_read_8(&cmd->status));
-
 
185
 
-
 
186
    d->blocks = d->cylinders * d->heads * d->sectors;
183
    d->blocks = d->cylinders * d->heads * d->sectors;
187
 
184
 
188
    printf("Geometry: %u cylinders, %u heads, %u sectors\n",
185
    printf("Geometry: %u cylinders, %u heads, %u sectors\n",
189
        d->cylinders, d->heads, d->sectors);
186
        d->cylinders, d->heads, d->sectors);
190
 
187
 
191
    d->present = true;
188
    d->present = true;
-
 
189
    fibril_mutex_initialize(&d->lock);
192
 
190
 
193
    return EOK;
191
    return EOK;
194
}
192
}
195
 
193
 
196
static int ata_bd_init(void)
194
static int ata_bd_init(void)
197
{
195
{
198
    void *vaddr;
196
    void *vaddr;
199
    int rc;
197
    int rc;
200
 
198
 
201
    rc = devmap_driver_register(NAME, ata_bd_connection);
199
    rc = devmap_driver_register(NAME, ata_bd_connection);
202
    if (rc < 0) {
200
    if (rc < 0) {
203
        printf(NAME ": Unable to register driver.\n");
201
        printf(NAME ": Unable to register driver.\n");
204
        return rc;
202
        return rc;
205
    }
203
    }
206
 
204
 
207
    rc = pio_enable((void *) cmd_physical, sizeof(ata_cmd_t), &vaddr);
205
    rc = pio_enable((void *) cmd_physical, sizeof(ata_cmd_t), &vaddr);
208
    if (rc != EOK) {
206
    if (rc != EOK) {
209
        printf(NAME ": Could not initialize device I/O space.\n");
207
        printf(NAME ": Could not initialize device I/O space.\n");
210
        return rc;
208
        return rc;
211
    }
209
    }
212
 
210
 
213
    cmd = vaddr;
211
    cmd = vaddr;
214
 
212
 
215
    rc = pio_enable((void *) ctl_physical, sizeof(ata_ctl_t), &vaddr);
213
    rc = pio_enable((void *) ctl_physical, sizeof(ata_ctl_t), &vaddr);
216
    if (rc != EOK) {
214
    if (rc != EOK) {
217
        printf(NAME ": Could not initialize device I/O space.\n");
215
        printf(NAME ": Could not initialize device I/O space.\n");
218
        return rc;
216
        return rc;
219
    }
217
    }
220
 
218
 
221
    ctl = vaddr;
219
    ctl = vaddr;
222
 
220
 
223
 
221
 
224
    return EOK;
222
    return EOK;
225
}
223
}
226
 
224
 
227
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall)
225
static void ata_bd_connection(ipc_callid_t iid, ipc_call_t *icall)
228
{
226
{
229
    void *fs_va = NULL;
227
    void *fs_va = NULL;
230
    ipc_callid_t callid;
228
    ipc_callid_t callid;
231
    ipc_call_t call;
229
    ipc_call_t call;
232
    ipcarg_t method;
230
    ipcarg_t method;
233
    dev_handle_t dh;
231
    dev_handle_t dh;
234
    int flags;
232
    int flags;
235
    int retval;
233
    int retval;
236
    off_t idx;
234
    off_t idx;
237
    size_t size;
235
    size_t size;
238
    int disk_id, i;
236
    int disk_id, i;
239
 
237
 
240
    /* Get the device handle. */
238
    /* Get the device handle. */
241
    dh = IPC_GET_ARG1(*icall);
239
    dh = IPC_GET_ARG1(*icall);
242
 
240
 
243
    /* Determine which disk device is the client connecting to. */
241
    /* Determine which disk device is the client connecting to. */
244
    disk_id = -1;
242
    disk_id = -1;
245
    for (i = 0; i < MAX_DISKS; i++)
243
    for (i = 0; i < MAX_DISKS; i++)
246
        if (dev_handle[i] == dh)
244
        if (disk[i].dev_handle == dh)
247
            disk_id = i;
245
            disk_id = i;
248
 
246
 
249
    if (disk_id < 0 || disk[disk_id].present == false) {
247
    if (disk_id < 0 || disk[disk_id].present == false) {
250
        ipc_answer_0(iid, EINVAL);
248
        ipc_answer_0(iid, EINVAL);
251
        return;
249
        return;
252
    }
250
    }
253
 
251
 
254
    /* Answer the IPC_M_CONNECT_ME_TO call. */
252
    /* Answer the IPC_M_CONNECT_ME_TO call. */
255
    ipc_answer_0(iid, EOK);
253
    ipc_answer_0(iid, EOK);
256
 
254
 
257
    if (!ipc_share_out_receive(&callid, &comm_size, &flags)) {
255
    if (!ipc_share_out_receive(&callid, &comm_size, &flags)) {
258
        ipc_answer_0(callid, EHANGUP);
256
        ipc_answer_0(callid, EHANGUP);
259
        return;
257
        return;
260
    }
258
    }
261
 
259
 
262
    fs_va = as_get_mappable_page(comm_size);
260
    fs_va = as_get_mappable_page(comm_size);
263
    if (fs_va == NULL) {
261
    if (fs_va == NULL) {
264
        ipc_answer_0(callid, EHANGUP);
262
        ipc_answer_0(callid, EHANGUP);
265
        return;
263
        return;
266
    }
264
    }
267
 
265
 
268
    (void) ipc_share_out_finalize(callid, fs_va);
266
    (void) ipc_share_out_finalize(callid, fs_va);
269
 
267
 
270
    while (1) {
268
    while (1) {
271
        callid = async_get_call(&call);
269
        callid = async_get_call(&call);
272
        method = IPC_GET_METHOD(call);
270
        method = IPC_GET_METHOD(call);
273
        switch (method) {
271
        switch (method) {
274
        case IPC_M_PHONE_HUNGUP:
272
        case IPC_M_PHONE_HUNGUP:
275
            /* The other side has hung up. */
273
            /* The other side has hung up. */
276
            ipc_answer_0(callid, EOK);
274
            ipc_answer_0(callid, EOK);
277
            return;
275
            return;
278
        case BD_READ_BLOCK:
276
        case BD_READ_BLOCK:
279
        case BD_WRITE_BLOCK:
277
        case BD_WRITE_BLOCK:
280
            idx = IPC_GET_ARG1(call);
278
            idx = IPC_GET_ARG1(call);
281
            size = IPC_GET_ARG2(call);
279
            size = IPC_GET_ARG2(call);
282
            if (size > comm_size) {
280
            if (size > comm_size) {
283
                retval = EINVAL;
281
                retval = EINVAL;
284
                break;
282
                break;
285
            }
283
            }
286
            retval = ata_bd_rdwr(disk_id, method, idx,
284
            retval = ata_bd_rdwr(disk_id, method, idx,
287
                size, fs_va);
285
                size, fs_va);
288
            break;
286
            break;
289
        default:
287
        default:
290
            retval = EINVAL;
288
            retval = EINVAL;
291
            break;
289
            break;
292
        }
290
        }
293
        ipc_answer_0(callid, retval);
291
        ipc_answer_0(callid, retval);
294
    }
292
    }
295
}
293
}
296
 
294
 
297
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, size_t size,
295
static int ata_bd_rdwr(int disk_id, ipcarg_t method, off_t blk_idx, size_t size,
298
    void *buf)
296
    void *buf)
299
{
297
{
300
    int rc;
298
    int rc;
301
    size_t now;
299
    size_t now;
302
 
300
 
303
    while (size > 0) {
301
    while (size > 0) {
304
        now = size < block_size ? size : block_size;
302
        now = size < block_size ? size : block_size;
305
        if (now != block_size)
303
        if (now != block_size)
306
            return EINVAL;
304
            return EINVAL;
307
 
305
 
308
        if (method == BD_READ_BLOCK)
306
        if (method == BD_READ_BLOCK)
309
            rc = ata_bd_read_block(disk_id, blk_idx, 1, buf);
307
            rc = ata_bd_read_block(disk_id, blk_idx, 1, buf);
310
        else
308
        else
311
            rc = ata_bd_write_block(disk_id, blk_idx, 1, buf);
309
            rc = ata_bd_write_block(disk_id, blk_idx, 1, buf);
312
 
310
 
313
        if (rc != EOK)
311
        if (rc != EOK)
314
            return rc;
312
            return rc;
315
 
313
 
316
        buf += block_size;
314
        buf += block_size;
317
        blk_idx++;
315
        blk_idx++;
318
 
316
 
319
        if (size > block_size)
317
        if (size > block_size)
320
            size -= block_size;
318
            size -= block_size;
321
        else
319
        else
322
            size = 0;
320
            size = 0;
323
    }
321
    }
324
 
322
 
325
    return EOK;
323
    return EOK;
326
}
324
}
327
 
325
 
328
 
326
 
329
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
327
static int ata_bd_read_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
330
    void *buf)
328
    void *buf)
331
{
329
{
332
    size_t i;
330
    size_t i;
333
    uint16_t data;
331
    uint16_t data;
334
    uint8_t status;
332
    uint8_t status;
335
    uint64_t c, h, s;
333
    uint64_t c, h, s;
336
    uint64_t idx;
334
    uint64_t idx;
337
    uint8_t drv_head;
335
    uint8_t drv_head;
338
    disk_t *d;
336
    disk_t *d;
339
 
337
 
340
    d = &disk[disk_id];
338
    d = &disk[disk_id];
341
 
339
 
342
    /* Check device bounds. */
340
    /* Check device bounds. */
343
    if (blk_idx >= d->blocks)
341
    if (blk_idx >= d->blocks)
344
        return EINVAL;
342
        return EINVAL;
345
 
343
 
346
    /* Compute CHS. */
344
    /* Compute CHS. */
347
    c = blk_idx / (d->heads * d->sectors);
345
    c = blk_idx / (d->heads * d->sectors);
348
    idx = blk_idx % (d->heads * d->sectors);
346
    idx = blk_idx % (d->heads * d->sectors);
349
 
347
 
350
    h = idx / d->sectors;
348
    h = idx / d->sectors;
351
    s = 1 + (idx % d->sectors);
349
    s = 1 + (idx % d->sectors);
352
 
350
 
353
    /* New value for Drive/Head register */
351
    /* New value for Drive/Head register */
354
    drv_head =
352
    drv_head =
355
        ((disk_id != 0) ? DHR_DRV : 0) |
353
        ((disk_id != 0) ? DHR_DRV : 0) |
356
        (h & 0x0f);
354
        (h & 0x0f);
357
 
355
 
358
    futex_down(&dev_futex);
356
    fibril_mutex_lock(&d->lock);
359
 
357
 
360
    /* Program a Read Sectors operation. */
358
    /* Program a Read Sectors operation. */
361
 
359
 
362
    pio_write_8(&cmd->drive_head, drv_head);
360
    pio_write_8(&cmd->drive_head, drv_head);
363
    pio_write_8(&cmd->sector_count, 1);
361
    pio_write_8(&cmd->sector_count, 1);
364
    pio_write_8(&cmd->sector_number, s);
362
    pio_write_8(&cmd->sector_number, s);
365
    pio_write_8(&cmd->cylinder_low, c & 0xff);
363
    pio_write_8(&cmd->cylinder_low, c & 0xff);
366
    pio_write_8(&cmd->cylinder_high, c >> 16);
364
    pio_write_8(&cmd->cylinder_high, c >> 16);
367
    pio_write_8(&cmd->command, CMD_READ_SECTORS);
365
    pio_write_8(&cmd->command, CMD_READ_SECTORS);
368
 
366
 
369
    /* Read data from the disk buffer. */
367
    /* Read data from the disk buffer. */
370
 
368
 
371
    for (i = 0; i < block_size / 2; i++) {
369
    for (i = 0; i < block_size / 2; i++) {
372
        do {
370
        do {
373
            status = pio_read_8(&cmd->status);
371
            status = pio_read_8(&cmd->status);
374
        } while ((status & SR_DRDY) == 0);
372
        } while ((status & SR_DRDY) == 0);
375
 
373
 
376
        data = pio_read_16(&cmd->data_port);
374
        data = pio_read_16(&cmd->data_port);
377
        ((uint16_t *) buf)[i] = data;
375
        ((uint16_t *) buf)[i] = data;
378
    }
376
    }
379
 
377
 
380
    futex_up(&dev_futex);
378
    fibril_mutex_unlock(&d->lock);
381
    return EOK;
379
    return EOK;
382
}
380
}
383
 
381
 
384
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
382
static int ata_bd_write_block(int disk_id, uint64_t blk_idx, size_t blk_cnt,
385
    const void *buf)
383
    const void *buf)
386
{
384
{
387
    size_t i;
385
    size_t i;
388
    uint8_t status;
386
    uint8_t status;
389
    uint64_t c, h, s;
387
    uint64_t c, h, s;
390
    uint64_t idx;
388
    uint64_t idx;
391
    uint8_t drv_head;
389
    uint8_t drv_head;
392
    disk_t *d;
390
    disk_t *d;
393
 
391
 
394
    d = &disk[disk_id];
392
    d = &disk[disk_id];
395
 
393
 
396
    /* Check device bounds. */
394
    /* Check device bounds. */
397
    if (blk_idx >= d->blocks)
395
    if (blk_idx >= d->blocks)
398
        return EINVAL;
396
        return EINVAL;
399
 
397
 
400
    /* Compute CHS. */
398
    /* Compute CHS. */
401
    c = blk_idx / (d->heads * d->sectors);
399
    c = blk_idx / (d->heads * d->sectors);
402
    idx = blk_idx % (d->heads * d->sectors);
400
    idx = blk_idx % (d->heads * d->sectors);
403
 
401
 
404
    h = idx / d->sectors;
402
    h = idx / d->sectors;
405
    s = 1 + (idx % d->sectors);
403
    s = 1 + (idx % d->sectors);
406
 
404
 
407
    /* New value for Drive/Head register */
405
    /* New value for Drive/Head register */
408
    drv_head =
406
    drv_head =
409
        ((disk_id != 0) ? DHR_DRV : 0) |
407
        ((disk_id != 0) ? DHR_DRV : 0) |
410
        (h & 0x0f);
408
        (h & 0x0f);
411
 
409
 
412
    futex_down(&dev_futex);
410
    fibril_mutex_lock(&d->lock);
413
 
411
 
414
    /* Program a Read Sectors operation. */
412
    /* Program a Read Sectors operation. */
415
 
413
 
416
    pio_write_8(&cmd->drive_head, drv_head);
414
    pio_write_8(&cmd->drive_head, drv_head);
417
    pio_write_8(&cmd->sector_count, 1);
415
    pio_write_8(&cmd->sector_count, 1);
418
    pio_write_8(&cmd->sector_number, s);
416
    pio_write_8(&cmd->sector_number, s);
419
    pio_write_8(&cmd->cylinder_low, c & 0xff);
417
    pio_write_8(&cmd->cylinder_low, c & 0xff);
420
    pio_write_8(&cmd->cylinder_high, c >> 16);
418
    pio_write_8(&cmd->cylinder_high, c >> 16);
421
    pio_write_8(&cmd->command, CMD_WRITE_SECTORS);
419
    pio_write_8(&cmd->command, CMD_WRITE_SECTORS);
422
 
420
 
423
    /* Write data to the disk buffer. */
421
    /* Write data to the disk buffer. */
424
 
422
 
425
    for (i = 0; i < block_size / 2; i++) {
423
    for (i = 0; i < block_size / 2; i++) {
426
        do {
424
        do {
427
            status = pio_read_8(&cmd->status);
425
            status = pio_read_8(&cmd->status);
428
        } while ((status & SR_DRDY) == 0);
426
        } while ((status & SR_DRDY) == 0);
429
 
427
 
430
        pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]);
428
        pio_write_16(&cmd->data_port, ((uint16_t *) buf)[i]);
431
    }
429
    }
432
 
430
 
433
    futex_up(&dev_futex);
431
    fibril_mutex_unlock(&d->lock);
434
    return EOK;
432
    return EOK;
435
}
433
}
436
 
434
 
437
 
435
 
438
/**
436
/**
439
 * @}
437
 * @}
440
 */
438
 */
441
 
439