Subversion Repositories HelenOS

Rev

Rev 2019 | Rev 2022 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2019 Rev 2021
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <test.h>
29
#include <test.h>
30
#include <mm/slab.h>
30
#include <mm/slab.h>
31
#include <print.h>
31
#include <print.h>
32
#include <proc/thread.h>
32
#include <proc/thread.h>
33
#include <arch.h>
33
#include <arch.h>
34
#include <panic.h>
34
#include <panic.h>
35
#include <mm/frame.h>
35
#include <mm/frame.h>
36
#include <memstr.h>
36
#include <memstr.h>
37
#include <synch/condvar.h>
37
#include <synch/condvar.h>
38
#include <synch/mutex.h>
38
#include <synch/mutex.h>
39
 
39
 
40
#ifdef CONFIG_BENCH
40
#ifdef CONFIG_BENCH
41
#include <arch/cycle.h>
41
#include <arch/cycle.h>
42
#endif
42
#endif
43
 
43
 
44
#define ITEM_SIZE 256
44
#define ITEM_SIZE 256
45
 
45
 
46
/** Fill memory with 2 caches, when allocation fails,
46
/** Fill memory with 2 caches, when allocation fails,
47
 *  free one of the caches. We should have everything in magazines,
47
 *  free one of the caches. We should have everything in magazines,
48
 *  now allocation should clean magazines and allow for full allocation.
48
 *  now allocation should clean magazines and allow for full allocation.
49
 */
49
 */
50
static void totalmemtest(void)
50
static void totalmemtest(void)
51
{
51
{
52
    slab_cache_t *cache1;
52
    slab_cache_t *cache1;
53
    slab_cache_t *cache2;
53
    slab_cache_t *cache2;
54
    int i;
54
    int i;
55
 
55
 
56
    void *data1, *data2;
56
    void *data1, *data2;
57
    void *olddata1=NULL, *olddata2=NULL;
57
    void *olddata1=NULL, *olddata2=NULL;
58
   
58
   
59
    cache1 = slab_cache_create("cache1_tst", ITEM_SIZE, 0, NULL, NULL, 0);
59
    cache1 = slab_cache_create("cache1_tst", ITEM_SIZE, 0, NULL, NULL, 0);
60
    cache2 = slab_cache_create("cache2_tst", ITEM_SIZE, 0, NULL, NULL, 0);
60
    cache2 = slab_cache_create("cache2_tst", ITEM_SIZE, 0, NULL, NULL, 0);
61
 
61
 
62
    printf("Allocating...");
62
    printf("Allocating...");
63
    /* Use atomic alloc, so that we find end of memory */
63
    /* Use atomic alloc, so that we find end of memory */
64
    do {
64
    do {
65
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
65
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
66
        data2 = slab_alloc(cache2, FRAME_ATOMIC);
66
        data2 = slab_alloc(cache2, FRAME_ATOMIC);
67
        if (!data1 || !data2) {
67
        if (!data1 || !data2) {
68
            if (data1)
68
            if (data1)
69
                slab_free(cache1,data1);
69
                slab_free(cache1,data1);
70
            if (data2)
70
            if (data2)
71
                slab_free(cache2,data2);
71
                slab_free(cache2,data2);
72
            break;
72
            break;
73
        }
73
        }
74
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
74
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
75
        memsetb((uintptr_t)data2, ITEM_SIZE, 0);
75
        memsetb((uintptr_t)data2, ITEM_SIZE, 0);
76
        *((void **)data1) = olddata1;
76
        *((void **)data1) = olddata1;
77
        *((void **)data2) = olddata2;
77
        *((void **)data2) = olddata2;
78
        olddata1 = data1;
78
        olddata1 = data1;
79
        olddata2 = data2;
79
        olddata2 = data2;
80
    }while(1);
80
    }while(1);
81
    printf("done.\n");
81
    printf("done.\n");
82
    /* We do not have memory - now deallocate cache2 */
82
    /* We do not have memory - now deallocate cache2 */
83
    printf("Deallocating cache2...");
83
    printf("Deallocating cache2...");
84
    while (olddata2) {
84
    while (olddata2) {
85
        data2 = *((void **)olddata2);
85
        data2 = *((void **)olddata2);
86
        slab_free(cache2, olddata2);
86
        slab_free(cache2, olddata2);
87
        olddata2 = data2;
87
        olddata2 = data2;
88
    }
88
    }
89
    printf("done.\n");
89
    printf("done.\n");
90
 
90
 
91
    printf("Allocating to cache1...\n");
91
    printf("Allocating to cache1...\n");
92
    for (i=0; i<30; i++) {
92
    for (i=0; i<30; i++) {
93
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
93
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
94
        if (!data1) {
94
        if (!data1) {
95
            panic("Incorrect memory size - use another test.");
95
            panic("Incorrect memory size - use another test.");
96
        }
96
        }
97
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
97
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
98
        *((void **)data1) = olddata1;
98
        *((void **)data1) = olddata1;
99
        olddata1 = data1;
99
        olddata1 = data1;
100
    }
100
    }
101
    while (1) {
101
    while (1) {
102
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
102
        data1 = slab_alloc(cache1, FRAME_ATOMIC);
103
        if (!data1) {
103
        if (!data1) {
104
            break;
104
            break;
105
        }
105
        }
106
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
106
        memsetb((uintptr_t)data1, ITEM_SIZE, 0);
107
        *((void **)data1) = olddata1;
107
        *((void **)data1) = olddata1;
108
        olddata1 = data1;
108
        olddata1 = data1;
109
    }
109
    }
110
    printf("Deallocating cache1...");
110
    printf("Deallocating cache1...");
111
    while (olddata1) {
111
    while (olddata1) {
112
        data1 = *((void **)olddata1);
112
        data1 = *((void **)olddata1);
113
        slab_free(cache1, olddata1);
113
        slab_free(cache1, olddata1);
114
        olddata1 = data1;
114
        olddata1 = data1;
115
    }
115
    }
116
    printf("done.\n");
116
    printf("done.\n");
117
    slab_print_list();
117
    slab_print_list();
118
    slab_cache_destroy(cache1);
118
    slab_cache_destroy(cache1);
119
    slab_cache_destroy(cache2);
119
    slab_cache_destroy(cache2);
120
}
120
}
121
 
121
 
122
slab_cache_t *thr_cache;
122
slab_cache_t *thr_cache;
123
semaphore_t thr_sem;
123
semaphore_t thr_sem;
124
condvar_t thread_starter;
124
condvar_t thread_starter;
125
mutex_t starter_mutex;
125
mutex_t starter_mutex;
126
 
126
 
127
#define THREADS 8
127
#define THREADS 8
128
 
128
 
129
static void slabtest(void *priv)
129
static void slabtest(void *priv)
130
{
130
{
131
    void *data=NULL, *new;
131
    void *data=NULL, *new;
132
 
132
 
133
    thread_detach(THREAD);
133
    thread_detach(THREAD);
134
 
134
 
135
    mutex_lock(&starter_mutex);
135
    mutex_lock(&starter_mutex);
136
    condvar_wait(&thread_starter,&starter_mutex);
136
    condvar_wait(&thread_starter,&starter_mutex);
137
    mutex_unlock(&starter_mutex);
137
    mutex_unlock(&starter_mutex);
138
       
138
       
139
    printf("Starting thread #%d...\n",THREAD->tid);
139
    printf("Starting thread #%d...\n",THREAD->tid);
140
 
140
 
141
    /* Alloc all */
141
    /* Alloc all */
142
    printf("Thread #%d allocating...\n", THREAD->tid);
142
    printf("Thread #%d allocating...\n", THREAD->tid);
143
    while (1) {
143
    while (1) {
144
        /* Call with atomic to detect end of memory */
144
        /* Call with atomic to detect end of memory */
145
        new = slab_alloc(thr_cache, FRAME_ATOMIC);
145
        new = slab_alloc(thr_cache, FRAME_ATOMIC);
146
        if (!new)
146
        if (!new)
147
            break;
147
            break;
148
        *((void **)new) = data;
148
        *((void **)new) = data;
149
        data = new;
149
        data = new;
150
    }
150
    }
151
    printf("Thread #%d releasing...\n", THREAD->tid);
151
    printf("Thread #%d releasing...\n", THREAD->tid);
152
    while (data) {
152
    while (data) {
153
        new = *((void **)data);
153
        new = *((void **)data);
154
        *((void **)data) = NULL;
154
        *((void **)data) = NULL;
155
        slab_free(thr_cache, data);
155
        slab_free(thr_cache, data);
156
        data = new;
156
        data = new;
157
    }
157
    }
158
    printf("Thread #%d allocating...\n", THREAD->tid);
158
    printf("Thread #%d allocating...\n", THREAD->tid);
159
    while (1) {
159
    while (1) {
160
        /* Call with atomic to detect end of memory */
160
        /* Call with atomic to detect end of memory */
161
        new = slab_alloc(thr_cache, FRAME_ATOMIC);
161
        new = slab_alloc(thr_cache, FRAME_ATOMIC);
162
        if (!new)
162
        if (!new)
163
            break;
163
            break;
164
        *((void **)new) = data;
164
        *((void **)new) = data;
165
        data = new;
165
        data = new;
166
    }
166
    }
167
    printf("Thread #%d releasing...\n", THREAD->tid);
167
    printf("Thread #%d releasing...\n", THREAD->tid);
168
    while (data) {
168
    while (data) {
169
        new = *((void **)data);
169
        new = *((void **)data);
170
        *((void **)data) = NULL;
170
        *((void **)data) = NULL;
171
        slab_free(thr_cache, data);
171
        slab_free(thr_cache, data);
172
        data = new;
172
        data = new;
173
    }
173
    }
174
 
174
 
175
 
175
 
176
    printf("Thread #%d finished\n", THREAD->tid);
176
    printf("Thread #%d finished\n", THREAD->tid);
177
    slab_print_list();
177
    slab_print_list();
178
    semaphore_up(&thr_sem);
178
    semaphore_up(&thr_sem);
179
}
179
}
180
 
180
 
181
 
181
 
182
static void multitest(int size)
182
static void multitest(int size)
183
{
183
{
184
    /* Start 8 threads that just allocate as much as possible,
184
    /* Start 8 threads that just allocate as much as possible,
185
     * then release everything, then again allocate, then release
185
     * then release everything, then again allocate, then release
186
     */
186
     */
187
    thread_t *t;
187
    thread_t *t;
188
    int i;
188
    int i;
189
 
189
 
190
    printf("Running stress test with size %d\n", size);
190
    printf("Running stress test with size %d\n", size);
191
    condvar_initialize(&thread_starter);
191
    condvar_initialize(&thread_starter);
192
    mutex_initialize(&starter_mutex);
192
    mutex_initialize(&starter_mutex);
193
 
193
 
194
    thr_cache = slab_cache_create("thread_cache", size, 0,
194
    thr_cache = slab_cache_create("thread_cache", size, 0,
195
                      NULL, NULL,
195
                      NULL, NULL,
196
                      0);
196
                      0);
197
    semaphore_initialize(&thr_sem,0);
197
    semaphore_initialize(&thr_sem,0);
198
    for (i=0; i<THREADS; i++) {  
198
    for (i=0; i<THREADS; i++) {  
199
        if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest")))
199
        if (!(t = thread_create(slabtest, NULL, TASK, 0, "slabtest")))
200
            panic("could not create thread\n");
200
            panic("could not create thread\n");
201
        thread_ready(t);
201
        thread_ready(t);
202
    }
202
    }
203
    thread_sleep(1);
203
    thread_sleep(1);
204
    condvar_broadcast(&thread_starter);
204
    condvar_broadcast(&thread_starter);
205
 
205
 
206
    for (i=0; i<THREADS; i++)
206
    for (i=0; i<THREADS; i++)
207
        semaphore_down(&thr_sem);
207
        semaphore_down(&thr_sem);
208
   
208
   
209
    slab_cache_destroy(thr_cache);
209
    slab_cache_destroy(thr_cache);
210
    printf("Stress test complete.\n");
210
    printf("Stress test complete.\n");
211
}
211
}
212
 
212
 
213
void test(void)
213
void test_slab2(void)
214
{
214
{
215
#ifdef CONFIG_BENCH
215
#ifdef CONFIG_BENCH
216
    uint64_t t0 = get_cycle();
216
    uint64_t t0 = get_cycle();
217
#endif
217
#endif
218
 
218
 
219
    printf("Running reclaim single-thread test .. pass1\n");
219
    printf("Running reclaim single-thread test .. pass1\n");
220
    totalmemtest();
220
    totalmemtest();
221
    printf("Running reclaim single-thread test .. pass2\n");
221
    printf("Running reclaim single-thread test .. pass2\n");
222
    totalmemtest();
222
    totalmemtest();
223
    printf("Reclaim test OK.\n");
223
    printf("Reclaim test OK.\n");
224
 
224
 
225
    multitest(128);
225
    multitest(128);
226
    multitest(2048);
226
    multitest(2048);
227
    multitest(8192);
227
    multitest(8192);
228
    printf("All done.\n");
228
    printf("All done.\n");
229
 
229
 
230
#ifdef CONFIG_BENCH
230
#ifdef CONFIG_BENCH
231
    uint64_t dt = get_cycle() - t0;
231
    uint64_t dt = get_cycle() - t0;
232
    printf("Time: %.*d cycles\n", sizeof(dt) * 2, dt);
232
    printf("Time: %.*d cycles\n", sizeof(dt) * 2, dt);
233
#endif
233
#endif
234
}
234
}
235
 
235