Subversion Repositories HelenOS

Rev

Rev 1888 | Rev 2040 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1888 Rev 2030
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericproc
29
/** @addtogroup genericproc
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Scheduler and load balancing.
35
 * @brief   Scheduler and load balancing.
36
 *
36
 *
37
 * This file contains the scheduler and kcpulb kernel thread which
37
 * This file contains the scheduler and kcpulb kernel thread which
38
 * performs load-balancing of per-CPU run queues.
38
 * performs load-balancing of per-CPU run queues.
39
 */
39
 */
40
 
40
 
41
#include <proc/scheduler.h>
41
#include <proc/scheduler.h>
42
#include <proc/thread.h>
42
#include <proc/thread.h>
43
#include <proc/task.h>
43
#include <proc/task.h>
44
#include <mm/frame.h>
44
#include <mm/frame.h>
45
#include <mm/page.h>
45
#include <mm/page.h>
46
#include <mm/as.h>
46
#include <mm/as.h>
47
#include <time/delay.h>
47
#include <time/delay.h>
48
#include <arch/asm.h>
48
#include <arch/asm.h>
49
#include <arch/faddr.h>
49
#include <arch/faddr.h>
-
 
50
#include <arch/cycle.h>
50
#include <atomic.h>
51
#include <atomic.h>
51
#include <synch/spinlock.h>
52
#include <synch/spinlock.h>
52
#include <config.h>
53
#include <config.h>
53
#include <context.h>
54
#include <context.h>
54
#include <func.h>
55
#include <func.h>
55
#include <arch.h>
56
#include <arch.h>
56
#include <adt/list.h>
57
#include <adt/list.h>
57
#include <panic.h>
58
#include <panic.h>
58
#include <typedefs.h>
59
#include <typedefs.h>
59
#include <cpu.h>
60
#include <cpu.h>
60
#include <print.h>
61
#include <print.h>
61
#include <debug.h>
62
#include <debug.h>
62
 
63
 
63
static void before_task_runs(void);
64
static void before_task_runs(void);
64
static void before_thread_runs(void);
65
static void before_thread_runs(void);
65
static void after_thread_ran(void);
66
static void after_thread_ran(void);
66
static void scheduler_separated_stack(void);
67
static void scheduler_separated_stack(void);
67
 
68
 
68
atomic_t nrdy;  /**< Number of ready threads in the system. */
69
atomic_t nrdy;  /**< Number of ready threads in the system. */
69
 
70
 
70
/** Carry out actions before new task runs. */
71
/** Carry out actions before new task runs. */
71
void before_task_runs(void)
72
void before_task_runs(void)
72
{
73
{
73
    before_task_runs_arch();
74
    before_task_runs_arch();
74
}
75
}
75
 
76
 
76
/** Take actions before new thread runs.
77
/** Take actions before new thread runs.
77
 *
78
 *
78
 * Perform actions that need to be
79
 * Perform actions that need to be
79
 * taken before the newly selected
80
 * taken before the newly selected
80
 * tread is passed control.
81
 * tread is passed control.
81
 *
82
 *
82
 * THREAD->lock is locked on entry
83
 * THREAD->lock is locked on entry
83
 *
84
 *
84
 */
85
 */
85
void before_thread_runs(void)
86
void before_thread_runs(void)
86
{
87
{
87
    before_thread_runs_arch();
88
    before_thread_runs_arch();
88
#ifdef CONFIG_FPU_LAZY
89
#ifdef CONFIG_FPU_LAZY
89
    if(THREAD == CPU->fpu_owner)
90
    if(THREAD == CPU->fpu_owner)
90
        fpu_enable();
91
        fpu_enable();
91
    else
92
    else
92
        fpu_disable();
93
        fpu_disable();
93
#else
94
#else
94
    fpu_enable();
95
    fpu_enable();
95
    if (THREAD->fpu_context_exists)
96
    if (THREAD->fpu_context_exists)
96
        fpu_context_restore(THREAD->saved_fpu_context);
97
        fpu_context_restore(THREAD->saved_fpu_context);
97
    else {
98
    else {
98
        fpu_init();
99
        fpu_init();
99
        THREAD->fpu_context_exists = 1;
100
        THREAD->fpu_context_exists = 1;
100
    }
101
    }
101
#endif
102
#endif
102
}
103
}
103
 
104
 
104
/** Take actions after THREAD had run.
105
/** Take actions after THREAD had run.
105
 *
106
 *
106
 * Perform actions that need to be
107
 * Perform actions that need to be
107
 * taken after the running thread
108
 * taken after the running thread
108
 * had been preempted by the scheduler.
109
 * had been preempted by the scheduler.
109
 *
110
 *
110
 * THREAD->lock is locked on entry
111
 * THREAD->lock is locked on entry
111
 *
112
 *
112
 */
113
 */
113
void after_thread_ran(void)
114
void after_thread_ran(void)
114
{
115
{
115
    after_thread_ran_arch();
116
    after_thread_ran_arch();
116
}
117
}
117
 
118
 
118
#ifdef CONFIG_FPU_LAZY
119
#ifdef CONFIG_FPU_LAZY
119
void scheduler_fpu_lazy_request(void)
120
void scheduler_fpu_lazy_request(void)
120
{
121
{
121
restart:
122
restart:
122
    fpu_enable();
123
    fpu_enable();
123
    spinlock_lock(&CPU->lock);
124
    spinlock_lock(&CPU->lock);
124
 
125
 
125
    /* Save old context */
126
    /* Save old context */
126
    if (CPU->fpu_owner != NULL) {  
127
    if (CPU->fpu_owner != NULL) {  
127
        spinlock_lock(&CPU->fpu_owner->lock);
128
        spinlock_lock(&CPU->fpu_owner->lock);
128
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
129
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
129
        /* don't prevent migration */
130
        /* don't prevent migration */
130
        CPU->fpu_owner->fpu_context_engaged = 0;
131
        CPU->fpu_owner->fpu_context_engaged = 0;
131
        spinlock_unlock(&CPU->fpu_owner->lock);
132
        spinlock_unlock(&CPU->fpu_owner->lock);
132
        CPU->fpu_owner = NULL;
133
        CPU->fpu_owner = NULL;
133
    }
134
    }
134
 
135
 
135
    spinlock_lock(&THREAD->lock);
136
    spinlock_lock(&THREAD->lock);
136
    if (THREAD->fpu_context_exists) {
137
    if (THREAD->fpu_context_exists) {
137
        fpu_context_restore(THREAD->saved_fpu_context);
138
        fpu_context_restore(THREAD->saved_fpu_context);
138
    } else {
139
    } else {
139
        /* Allocate FPU context */
140
        /* Allocate FPU context */
140
        if (!THREAD->saved_fpu_context) {
141
        if (!THREAD->saved_fpu_context) {
141
            /* Might sleep */
142
            /* Might sleep */
142
            spinlock_unlock(&THREAD->lock);
143
            spinlock_unlock(&THREAD->lock);
143
            spinlock_unlock(&CPU->lock);
144
            spinlock_unlock(&CPU->lock);
144
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
145
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab, 0);
145
            /* We may have switched CPUs during slab_alloc */
146
            /* We may have switched CPUs during slab_alloc */
146
            goto restart;
147
            goto restart;
147
        }
148
        }
148
        fpu_init();
149
        fpu_init();
149
        THREAD->fpu_context_exists = 1;
150
        THREAD->fpu_context_exists = 1;
150
    }
151
    }
151
    CPU->fpu_owner = THREAD;
152
    CPU->fpu_owner = THREAD;
152
    THREAD->fpu_context_engaged = 1;
153
    THREAD->fpu_context_engaged = 1;
153
    spinlock_unlock(&THREAD->lock);
154
    spinlock_unlock(&THREAD->lock);
154
 
155
 
155
    spinlock_unlock(&CPU->lock);
156
    spinlock_unlock(&CPU->lock);
156
}
157
}
157
#endif
158
#endif
158
 
159
 
159
/** Initialize scheduler
160
/** Initialize scheduler
160
 *
161
 *
161
 * Initialize kernel scheduler.
162
 * Initialize kernel scheduler.
162
 *
163
 *
163
 */
164
 */
164
void scheduler_init(void)
165
void scheduler_init(void)
165
{
166
{
166
}
167
}
167
 
168
 
168
/** Get thread to be scheduled
169
/** Get thread to be scheduled
169
 *
170
 *
170
 * Get the optimal thread to be scheduled
171
 * Get the optimal thread to be scheduled
171
 * according to thread accounting and scheduler
172
 * according to thread accounting and scheduler
172
 * policy.
173
 * policy.
173
 *
174
 *
174
 * @return Thread to be scheduled.
175
 * @return Thread to be scheduled.
175
 *
176
 *
176
 */
177
 */
177
static thread_t *find_best_thread(void)
178
static thread_t *find_best_thread(void)
178
{
179
{
179
    thread_t *t;
180
    thread_t *t;
180
    runq_t *r;
181
    runq_t *r;
181
    int i;
182
    int i;
182
 
183
 
183
    ASSERT(CPU != NULL);
184
    ASSERT(CPU != NULL);
184
 
185
 
185
loop:
186
loop:
186
    interrupts_enable();
187
    interrupts_enable();
187
   
188
   
188
    if (atomic_get(&CPU->nrdy) == 0) {
189
    if (atomic_get(&CPU->nrdy) == 0) {
189
        /*
190
        /*
190
         * For there was nothing to run, the CPU goes to sleep
191
         * For there was nothing to run, the CPU goes to sleep
191
         * until a hardware interrupt or an IPI comes.
192
         * until a hardware interrupt or an IPI comes.
192
         * This improves energy saving and hyperthreading.
193
         * This improves energy saving and hyperthreading.
193
         */
194
         */
194
 
195
 
195
        /*
196
        /*
196
         * An interrupt might occur right now and wake up a thread.
197
         * An interrupt might occur right now and wake up a thread.
197
         * In such case, the CPU will continue to go to sleep
198
         * In such case, the CPU will continue to go to sleep
198
         * even though there is a runnable thread.
199
         * even though there is a runnable thread.
199
         */
200
         */
200
 
201
 
201
         cpu_sleep();
202
         cpu_sleep();
202
         goto loop;
203
         goto loop;
203
    }
204
    }
204
 
205
 
205
    interrupts_disable();
206
    interrupts_disable();
206
   
207
   
207
    for (i = 0; i<RQ_COUNT; i++) {
208
    for (i = 0; i<RQ_COUNT; i++) {
208
        r = &CPU->rq[i];
209
        r = &CPU->rq[i];
209
        spinlock_lock(&r->lock);
210
        spinlock_lock(&r->lock);
210
        if (r->n == 0) {
211
        if (r->n == 0) {
211
            /*
212
            /*
212
             * If this queue is empty, try a lower-priority queue.
213
             * If this queue is empty, try a lower-priority queue.
213
             */
214
             */
214
            spinlock_unlock(&r->lock);
215
            spinlock_unlock(&r->lock);
215
            continue;
216
            continue;
216
        }
217
        }
217
 
218
 
218
        atomic_dec(&CPU->nrdy);
219
        atomic_dec(&CPU->nrdy);
219
        atomic_dec(&nrdy);
220
        atomic_dec(&nrdy);
220
        r->n--;
221
        r->n--;
221
 
222
 
222
        /*
223
        /*
223
         * Take the first thread from the queue.
224
         * Take the first thread from the queue.
224
         */
225
         */
225
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
226
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
226
        list_remove(&t->rq_link);
227
        list_remove(&t->rq_link);
227
 
228
 
228
        spinlock_unlock(&r->lock);
229
        spinlock_unlock(&r->lock);
229
 
230
 
230
        spinlock_lock(&t->lock);
231
        spinlock_lock(&t->lock);
231
        t->cpu = CPU;
232
        t->cpu = CPU;
232
 
233
 
233
        t->ticks = us2ticks((i+1)*10000);
234
        t->ticks = us2ticks((i+1)*10000);
234
        t->priority = i;    /* correct rq index */
235
        t->priority = i;    /* correct rq index */
235
 
236
 
236
        /*
237
        /*
237
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
238
         * Clear the THREAD_FLAG_STOLEN flag so that t can be migrated
238
         * when load balancing needs emerge.
239
         * when load balancing needs emerge.
239
         */
240
         */
240
        t->flags &= ~THREAD_FLAG_STOLEN;
241
        t->flags &= ~THREAD_FLAG_STOLEN;
241
        spinlock_unlock(&t->lock);
242
        spinlock_unlock(&t->lock);
242
 
243
 
243
        return t;
244
        return t;
244
    }
245
    }
245
    goto loop;
246
    goto loop;
246
 
247
 
247
}
248
}
248
 
249
 
249
/** Prevent rq starvation
250
/** Prevent rq starvation
250
 *
251
 *
251
 * Prevent low priority threads from starving in rq's.
252
 * Prevent low priority threads from starving in rq's.
252
 *
253
 *
253
 * When the function decides to relink rq's, it reconnects
254
 * When the function decides to relink rq's, it reconnects
254
 * respective pointers so that in result threads with 'pri'
255
 * respective pointers so that in result threads with 'pri'
255
 * greater or equal start are moved to a higher-priority queue.
256
 * greater or equal start are moved to a higher-priority queue.
256
 *
257
 *
257
 * @param start Threshold priority.
258
 * @param start Threshold priority.
258
 *
259
 *
259
 */
260
 */
260
static void relink_rq(int start)
261
static void relink_rq(int start)
261
{
262
{
262
    link_t head;
263
    link_t head;
263
    runq_t *r;
264
    runq_t *r;
264
    int i, n;
265
    int i, n;
265
 
266
 
266
    list_initialize(&head);
267
    list_initialize(&head);
267
    spinlock_lock(&CPU->lock);
268
    spinlock_lock(&CPU->lock);
268
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
269
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
269
        for (i = start; i<RQ_COUNT-1; i++) {
270
        for (i = start; i<RQ_COUNT-1; i++) {
270
            /* remember and empty rq[i + 1] */
271
            /* remember and empty rq[i + 1] */
271
            r = &CPU->rq[i + 1];
272
            r = &CPU->rq[i + 1];
272
            spinlock_lock(&r->lock);
273
            spinlock_lock(&r->lock);
273
            list_concat(&head, &r->rq_head);
274
            list_concat(&head, &r->rq_head);
274
            n = r->n;
275
            n = r->n;
275
            r->n = 0;
276
            r->n = 0;
276
            spinlock_unlock(&r->lock);
277
            spinlock_unlock(&r->lock);
277
       
278
       
278
            /* append rq[i + 1] to rq[i] */
279
            /* append rq[i + 1] to rq[i] */
279
            r = &CPU->rq[i];
280
            r = &CPU->rq[i];
280
            spinlock_lock(&r->lock);
281
            spinlock_lock(&r->lock);
281
            list_concat(&r->rq_head, &head);
282
            list_concat(&r->rq_head, &head);
282
            r->n += n;
283
            r->n += n;
283
            spinlock_unlock(&r->lock);
284
            spinlock_unlock(&r->lock);
284
        }
285
        }
285
        CPU->needs_relink = 0;
286
        CPU->needs_relink = 0;
286
    }
287
    }
287
    spinlock_unlock(&CPU->lock);
288
    spinlock_unlock(&CPU->lock);
288
 
289
 
289
}
290
}
290
 
291
 
291
/** The scheduler
292
/** The scheduler
292
 *
293
 *
293
 * The thread scheduling procedure.
294
 * The thread scheduling procedure.
294
 * Passes control directly to
295
 * Passes control directly to
295
 * scheduler_separated_stack().
296
 * scheduler_separated_stack().
296
 *
297
 *
297
 */
298
 */
298
void scheduler(void)
299
void scheduler(void)
299
{
300
{
300
    volatile ipl_t ipl;
301
    volatile ipl_t ipl;
301
 
302
 
302
    ASSERT(CPU != NULL);
303
    ASSERT(CPU != NULL);
303
 
304
 
304
    ipl = interrupts_disable();
305
    ipl = interrupts_disable();
305
 
306
 
306
    if (atomic_get(&haltstate))
307
    if (atomic_get(&haltstate))
307
        halt();
308
        halt();
308
   
309
   
309
    if (THREAD) {
310
    if (THREAD) {
310
        spinlock_lock(&THREAD->lock);
311
        spinlock_lock(&THREAD->lock);
-
 
312
       
-
 
313
        /* Update thread accounting */
-
 
314
        THREAD->cycles += get_cycle() - THREAD->last_cycle;
-
 
315
       
311
#ifndef CONFIG_FPU_LAZY
316
#ifndef CONFIG_FPU_LAZY
312
        fpu_context_save(THREAD->saved_fpu_context);
317
        fpu_context_save(THREAD->saved_fpu_context);
313
#endif
318
#endif
314
        if (!context_save(&THREAD->saved_context)) {
319
        if (!context_save(&THREAD->saved_context)) {
315
            /*
320
            /*
316
             * This is the place where threads leave scheduler();
321
             * This is the place where threads leave scheduler();
317
             */
322
             */
-
 
323
           
-
 
324
            /* Save current CPU cycle */
-
 
325
            THREAD->last_cycle = get_cycle();
-
 
326
           
318
            spinlock_unlock(&THREAD->lock);
327
            spinlock_unlock(&THREAD->lock);
319
            interrupts_restore(THREAD->saved_context.ipl);
328
            interrupts_restore(THREAD->saved_context.ipl);
320
           
329
           
321
            return;
330
            return;
322
        }
331
        }
323
 
332
 
324
        /*
333
        /*
325
         * Interrupt priority level of preempted thread is recorded here
334
         * Interrupt priority level of preempted thread is recorded here
326
         * to facilitate scheduler() invocations from interrupts_disable()'d
335
         * to facilitate scheduler() invocations from interrupts_disable()'d
327
         * code (e.g. waitq_sleep_timeout()).
336
         * code (e.g. waitq_sleep_timeout()).
328
         */
337
         */
329
        THREAD->saved_context.ipl = ipl;
338
        THREAD->saved_context.ipl = ipl;
330
    }
339
    }
331
 
340
 
332
    /*
341
    /*
333
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
342
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
334
     * and preemption counter. At this point THE could be coming either
343
     * and preemption counter. At this point THE could be coming either
335
     * from THREAD's or CPU's stack.
344
     * from THREAD's or CPU's stack.
336
     */
345
     */
337
    the_copy(THE, (the_t *) CPU->stack);
346
    the_copy(THE, (the_t *) CPU->stack);
338
 
347
 
339
    /*
348
    /*
340
     * We may not keep the old stack.
349
     * We may not keep the old stack.
341
     * Reason: If we kept the old stack and got blocked, for instance, in
350
     * Reason: If we kept the old stack and got blocked, for instance, in
342
     * find_best_thread(), the old thread could get rescheduled by another
351
     * find_best_thread(), the old thread could get rescheduled by another
343
     * CPU and overwrite the part of its own stack that was also used by
352
     * CPU and overwrite the part of its own stack that was also used by
344
     * the scheduler on this CPU.
353
     * the scheduler on this CPU.
345
     *
354
     *
346
     * Moreover, we have to bypass the compiler-generated POP sequence
355
     * Moreover, we have to bypass the compiler-generated POP sequence
347
     * which is fooled by SP being set to the very top of the stack.
356
     * which is fooled by SP being set to the very top of the stack.
348
     * Therefore the scheduler() function continues in
357
     * Therefore the scheduler() function continues in
349
     * scheduler_separated_stack().
358
     * scheduler_separated_stack().
350
     */
359
     */
351
    context_save(&CPU->saved_context);
360
    context_save(&CPU->saved_context);
352
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
361
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack),
353
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
362
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
354
    context_restore(&CPU->saved_context);
363
    context_restore(&CPU->saved_context);
355
    /* not reached */
364
    /* not reached */
356
}
365
}
357
 
366
 
358
/** Scheduler stack switch wrapper
367
/** Scheduler stack switch wrapper
359
 *
368
 *
360
 * Second part of the scheduler() function
369
 * Second part of the scheduler() function
361
 * using new stack. Handling the actual context
370
 * using new stack. Handling the actual context
362
 * switch to a new thread.
371
 * switch to a new thread.
363
 *
372
 *
364
 * Assume THREAD->lock is held.
373
 * Assume THREAD->lock is held.
365
 */
374
 */
366
void scheduler_separated_stack(void)
375
void scheduler_separated_stack(void)
367
{
376
{
368
    int priority;
377
    int priority;
369
   
378
   
370
    ASSERT(CPU != NULL);
379
    ASSERT(CPU != NULL);
371
   
380
   
372
    if (THREAD) {
381
    if (THREAD) {
373
        /* must be run after the switch to scheduler stack */
382
        /* must be run after the switch to scheduler stack */
374
        after_thread_ran();
383
        after_thread_ran();
375
 
384
 
376
        switch (THREAD->state) {
385
        switch (THREAD->state) {
377
        case Running:
386
        case Running:
378
            spinlock_unlock(&THREAD->lock);
387
            spinlock_unlock(&THREAD->lock);
379
            thread_ready(THREAD);
388
            thread_ready(THREAD);
380
            break;
389
            break;
381
 
390
 
382
        case Exiting:
391
        case Exiting:
383
repeat:
392
repeat:
384
                if (THREAD->detached) {
393
                if (THREAD->detached) {
385
                thread_destroy(THREAD);
394
                thread_destroy(THREAD);
386
            } else {
395
            } else {
387
                /*
396
                /*
388
                 * The thread structure is kept allocated until somebody
397
                 * The thread structure is kept allocated until somebody
389
                 * calls thread_detach() on it.
398
                 * calls thread_detach() on it.
390
                 */
399
                 */
391
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
400
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
392
                    /*
401
                    /*
393
                     * Avoid deadlock.
402
                     * Avoid deadlock.
394
                     */
403
                     */
395
                    spinlock_unlock(&THREAD->lock);
404
                    spinlock_unlock(&THREAD->lock);
396
                    delay(10);
405
                    delay(10);
397
                    spinlock_lock(&THREAD->lock);
406
                    spinlock_lock(&THREAD->lock);
398
                    goto repeat;
407
                    goto repeat;
399
                }
408
                }
400
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
409
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
401
                spinlock_unlock(&THREAD->join_wq.lock);
410
                spinlock_unlock(&THREAD->join_wq.lock);
402
               
411
               
403
                THREAD->state = Undead;
412
                THREAD->state = Undead;
404
                spinlock_unlock(&THREAD->lock);
413
                spinlock_unlock(&THREAD->lock);
405
            }
414
            }
406
            break;
415
            break;
407
           
416
           
408
        case Sleeping:
417
        case Sleeping:
409
            /*
418
            /*
410
             * Prefer the thread after it's woken up.
419
             * Prefer the thread after it's woken up.
411
             */
420
             */
412
            THREAD->priority = -1;
421
            THREAD->priority = -1;
413
 
422
 
414
            /*
423
            /*
415
             * We need to release wq->lock which we locked in waitq_sleep().
424
             * We need to release wq->lock which we locked in waitq_sleep().
416
             * Address of wq->lock is kept in THREAD->sleep_queue.
425
             * Address of wq->lock is kept in THREAD->sleep_queue.
417
             */
426
             */
418
            spinlock_unlock(&THREAD->sleep_queue->lock);
427
            spinlock_unlock(&THREAD->sleep_queue->lock);
419
 
428
 
420
            /*
429
            /*
421
             * Check for possible requests for out-of-context invocation.
430
             * Check for possible requests for out-of-context invocation.
422
             */
431
             */
423
            if (THREAD->call_me) {
432
            if (THREAD->call_me) {
424
                THREAD->call_me(THREAD->call_me_with);
433
                THREAD->call_me(THREAD->call_me_with);
425
                THREAD->call_me = NULL;
434
                THREAD->call_me = NULL;
426
                THREAD->call_me_with = NULL;
435
                THREAD->call_me_with = NULL;
427
            }
436
            }
428
 
437
 
429
            spinlock_unlock(&THREAD->lock);
438
            spinlock_unlock(&THREAD->lock);
430
 
439
 
431
            break;
440
            break;
432
 
441
 
433
        default:
442
        default:
434
            /*
443
            /*
435
             * Entering state is unexpected.
444
             * Entering state is unexpected.
436
             */
445
             */
437
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
446
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
438
            break;
447
            break;
439
        }
448
        }
440
 
449
 
441
        THREAD = NULL;
450
        THREAD = NULL;
442
    }
451
    }
443
 
452
 
444
    THREAD = find_best_thread();
453
    THREAD = find_best_thread();
445
   
454
   
446
    spinlock_lock(&THREAD->lock);
455
    spinlock_lock(&THREAD->lock);
447
    priority = THREAD->priority;
456
    priority = THREAD->priority;
448
    spinlock_unlock(&THREAD->lock);
457
    spinlock_unlock(&THREAD->lock);
449
 
458
 
450
    relink_rq(priority);       
459
    relink_rq(priority);       
451
 
460
 
452
    /*
461
    /*
453
     * If both the old and the new task are the same, lots of work is avoided.
462
     * If both the old and the new task are the same, lots of work is avoided.
454
     */
463
     */
455
    if (TASK != THREAD->task) {
464
    if (TASK != THREAD->task) {
456
        as_t *as1 = NULL;
465
        as_t *as1 = NULL;
457
        as_t *as2;
466
        as_t *as2;
458
 
467
 
459
        if (TASK) {
468
        if (TASK) {
460
            spinlock_lock(&TASK->lock);
469
            spinlock_lock(&TASK->lock);
461
            as1 = TASK->as;
470
            as1 = TASK->as;
462
            spinlock_unlock(&TASK->lock);
471
            spinlock_unlock(&TASK->lock);
463
        }
472
        }
464
 
473
 
465
        spinlock_lock(&THREAD->task->lock);
474
        spinlock_lock(&THREAD->task->lock);
466
        as2 = THREAD->task->as;
475
        as2 = THREAD->task->as;
467
        spinlock_unlock(&THREAD->task->lock);
476
        spinlock_unlock(&THREAD->task->lock);
468
       
477
       
469
        /*
478
        /*
470
         * Note that it is possible for two tasks to share one address space.
479
         * Note that it is possible for two tasks to share one address space.
471
         */
480
         */
472
        if (as1 != as2) {
481
        if (as1 != as2) {
473
            /*
482
            /*
474
             * Both tasks and address spaces are different.
483
             * Both tasks and address spaces are different.
475
             * Replace the old one with the new one.
484
             * Replace the old one with the new one.
476
             */
485
             */
477
            as_switch(as1, as2);
486
            as_switch(as1, as2);
478
        }
487
        }
479
        TASK = THREAD->task;
488
        TASK = THREAD->task;
480
        before_task_runs();
489
        before_task_runs();
481
    }
490
    }
482
 
491
 
483
    spinlock_lock(&THREAD->lock);  
492
    spinlock_lock(&THREAD->lock);  
484
    THREAD->state = Running;
493
    THREAD->state = Running;
485
 
494
 
486
#ifdef SCHEDULER_VERBOSE
495
#ifdef SCHEDULER_VERBOSE
487
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
496
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n",
488
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
497
        CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
489
#endif  
498
#endif  
490
 
499
 
491
    /*
500
    /*
492
     * Some architectures provide late kernel PA2KA(identity)
501
     * Some architectures provide late kernel PA2KA(identity)
493
     * mapping in a page fault handler. However, the page fault
502
     * mapping in a page fault handler. However, the page fault
494
     * handler uses the kernel stack of the running thread and
503
     * handler uses the kernel stack of the running thread and
495
     * therefore cannot be used to map it. The kernel stack, if
504
     * therefore cannot be used to map it. The kernel stack, if
496
     * necessary, is to be mapped in before_thread_runs(). This
505
     * necessary, is to be mapped in before_thread_runs(). This
497
     * function must be executed before the switch to the new stack.
506
     * function must be executed before the switch to the new stack.
498
     */
507
     */
499
    before_thread_runs();
508
    before_thread_runs();
500
 
509
 
501
    /*
510
    /*
502
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
511
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
503
     */
512
     */
504
    the_copy(THE, (the_t *) THREAD->kstack);
513
    the_copy(THE, (the_t *) THREAD->kstack);
505
   
514
   
506
    context_restore(&THREAD->saved_context);
515
    context_restore(&THREAD->saved_context);
507
    /* not reached */
516
    /* not reached */
508
}
517
}
509
 
518
 
510
#ifdef CONFIG_SMP
519
#ifdef CONFIG_SMP
511
/** Load balancing thread
520
/** Load balancing thread
512
 *
521
 *
513
 * SMP load balancing thread, supervising thread supplies
522
 * SMP load balancing thread, supervising thread supplies
514
 * for the CPU it's wired to.
523
 * for the CPU it's wired to.
515
 *
524
 *
516
 * @param arg Generic thread argument (unused).
525
 * @param arg Generic thread argument (unused).
517
 *
526
 *
518
 */
527
 */
519
void kcpulb(void *arg)
528
void kcpulb(void *arg)
520
{
529
{
521
    thread_t *t;
530
    thread_t *t;
522
    int count, average, i, j, k = 0;
531
    int count, average, i, j, k = 0;
523
    ipl_t ipl;
532
    ipl_t ipl;
524
 
533
 
525
    /*
534
    /*
526
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
535
     * Detach kcpulb as nobody will call thread_join_timeout() on it.
527
     */
536
     */
528
    thread_detach(THREAD);
537
    thread_detach(THREAD);
529
   
538
   
530
loop:
539
loop:
531
    /*
540
    /*
532
     * Work in 1s intervals.
541
     * Work in 1s intervals.
533
     */
542
     */
534
    thread_sleep(1);
543
    thread_sleep(1);
535
 
544
 
536
not_satisfied:
545
not_satisfied:
537
    /*
546
    /*
538
     * Calculate the number of threads that will be migrated/stolen from
547
     * Calculate the number of threads that will be migrated/stolen from
539
     * other CPU's. Note that situation can have changed between two
548
     * other CPU's. Note that situation can have changed between two
540
     * passes. Each time get the most up to date counts.
549
     * passes. Each time get the most up to date counts.
541
     */
550
     */
542
    average = atomic_get(&nrdy) / config.cpu_active + 1;
551
    average = atomic_get(&nrdy) / config.cpu_active + 1;
543
    count = average - atomic_get(&CPU->nrdy);
552
    count = average - atomic_get(&CPU->nrdy);
544
 
553
 
545
    if (count <= 0)
554
    if (count <= 0)
546
        goto satisfied;
555
        goto satisfied;
547
 
556
 
548
    /*
557
    /*
549
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
558
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
550
     */
559
     */
551
    for (j=RQ_COUNT-1; j >= 0; j--) {
560
    for (j=RQ_COUNT-1; j >= 0; j--) {
552
        for (i=0; i < config.cpu_active; i++) {
561
        for (i=0; i < config.cpu_active; i++) {
553
            link_t *l;
562
            link_t *l;
554
            runq_t *r;
563
            runq_t *r;
555
            cpu_t *cpu;
564
            cpu_t *cpu;
556
 
565
 
557
            cpu = &cpus[(i + k) % config.cpu_active];
566
            cpu = &cpus[(i + k) % config.cpu_active];
558
 
567
 
559
            /*
568
            /*
560
             * Not interested in ourselves.
569
             * Not interested in ourselves.
561
             * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
570
             * Doesn't require interrupt disabling for kcpulb has THREAD_FLAG_WIRED.
562
             */
571
             */
563
            if (CPU == cpu)
572
            if (CPU == cpu)
564
                continue;
573
                continue;
565
            if (atomic_get(&cpu->nrdy) <= average)
574
            if (atomic_get(&cpu->nrdy) <= average)
566
                continue;
575
                continue;
567
 
576
 
568
            ipl = interrupts_disable();
577
            ipl = interrupts_disable();
569
            r = &cpu->rq[j];
578
            r = &cpu->rq[j];
570
            spinlock_lock(&r->lock);
579
            spinlock_lock(&r->lock);
571
            if (r->n == 0) {
580
            if (r->n == 0) {
572
                spinlock_unlock(&r->lock);
581
                spinlock_unlock(&r->lock);
573
                interrupts_restore(ipl);
582
                interrupts_restore(ipl);
574
                continue;
583
                continue;
575
            }
584
            }
576
       
585
       
577
            t = NULL;
586
            t = NULL;
578
            l = r->rq_head.prev;    /* search rq from the back */
587
            l = r->rq_head.prev;    /* search rq from the back */
579
            while (l != &r->rq_head) {
588
            while (l != &r->rq_head) {
580
                t = list_get_instance(l, thread_t, rq_link);
589
                t = list_get_instance(l, thread_t, rq_link);
581
                /*
590
                /*
582
                 * We don't want to steal CPU-wired threads neither threads already
591
                 * We don't want to steal CPU-wired threads neither threads already
583
                 * stolen. The latter prevents threads from migrating between CPU's
592
                 * stolen. The latter prevents threads from migrating between CPU's
584
                 * without ever being run. We don't want to steal threads whose FPU
593
                 * without ever being run. We don't want to steal threads whose FPU
585
                 * context is still in CPU.
594
                 * context is still in CPU.
586
                 */
595
                 */
587
                spinlock_lock(&t->lock);
596
                spinlock_lock(&t->lock);
588
                if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
597
                if ((!(t->flags & (THREAD_FLAG_WIRED | THREAD_FLAG_STOLEN))) &&
589
                    (!(t->fpu_context_engaged)) ) {
598
                    (!(t->fpu_context_engaged)) ) {
590
                    /*
599
                    /*
591
                     * Remove t from r.
600
                     * Remove t from r.
592
                     */
601
                     */
593
                    spinlock_unlock(&t->lock);
602
                    spinlock_unlock(&t->lock);
594
                   
603
                   
595
                    atomic_dec(&cpu->nrdy);
604
                    atomic_dec(&cpu->nrdy);
596
                    atomic_dec(&nrdy);
605
                    atomic_dec(&nrdy);
597
 
606
 
598
                    r->n--;
607
                    r->n--;
599
                    list_remove(&t->rq_link);
608
                    list_remove(&t->rq_link);
600
 
609
 
601
                    break;
610
                    break;
602
                }
611
                }
603
                spinlock_unlock(&t->lock);
612
                spinlock_unlock(&t->lock);
604
                l = l->prev;
613
                l = l->prev;
605
                t = NULL;
614
                t = NULL;
606
            }
615
            }
607
            spinlock_unlock(&r->lock);
616
            spinlock_unlock(&r->lock);
608
 
617
 
609
            if (t) {
618
            if (t) {
610
                /*
619
                /*
611
                 * Ready t on local CPU
620
                 * Ready t on local CPU
612
                 */
621
                 */
613
                spinlock_lock(&t->lock);
622
                spinlock_lock(&t->lock);
614
#ifdef KCPULB_VERBOSE
623
#ifdef KCPULB_VERBOSE
615
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
624
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n",
616
                    CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
625
                    CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy),
617
                    atomic_get(&nrdy) / config.cpu_active);
626
                    atomic_get(&nrdy) / config.cpu_active);
618
#endif
627
#endif
619
                t->flags |= THREAD_FLAG_STOLEN;
628
                t->flags |= THREAD_FLAG_STOLEN;
620
                t->state = Entering;
629
                t->state = Entering;
621
                spinlock_unlock(&t->lock);
630
                spinlock_unlock(&t->lock);
622
   
631
   
623
                thread_ready(t);
632
                thread_ready(t);
624
 
633
 
625
                interrupts_restore(ipl);
634
                interrupts_restore(ipl);
626
   
635
   
627
                if (--count == 0)
636
                if (--count == 0)
628
                    goto satisfied;
637
                    goto satisfied;
629
                   
638
                   
630
                /*
639
                /*
631
                 * We are not satisfied yet, focus on another CPU next time.
640
                 * We are not satisfied yet, focus on another CPU next time.
632
                 */
641
                 */
633
                k++;
642
                k++;
634
               
643
               
635
                continue;
644
                continue;
636
            }
645
            }
637
            interrupts_restore(ipl);
646
            interrupts_restore(ipl);
638
        }
647
        }
639
    }
648
    }
640
 
649
 
641
    if (atomic_get(&CPU->nrdy)) {
650
    if (atomic_get(&CPU->nrdy)) {
642
        /*
651
        /*
643
         * Be a little bit light-weight and let migrated threads run.
652
         * Be a little bit light-weight and let migrated threads run.
644
         */
653
         */
645
        scheduler();
654
        scheduler();
646
    } else {
655
    } else {
647
        /*
656
        /*
648
         * We failed to migrate a single thread.
657
         * We failed to migrate a single thread.
649
         * Give up this turn.
658
         * Give up this turn.
650
         */
659
         */
651
        goto loop;
660
        goto loop;
652
    }
661
    }
653
       
662
       
654
    goto not_satisfied;
663
    goto not_satisfied;
655
 
664
 
656
satisfied:
665
satisfied:
657
    goto loop;
666
    goto loop;
658
}
667
}
659
 
668
 
660
#endif /* CONFIG_SMP */
669
#endif /* CONFIG_SMP */
661
 
670
 
662
 
671
 
663
/** Print information about threads & scheduler queues */
672
/** Print information about threads & scheduler queues */
664
void sched_print_list(void)
673
void sched_print_list(void)
665
{
674
{
666
    ipl_t ipl;
675
    ipl_t ipl;
667
    int cpu,i;
676
    int cpu,i;
668
    runq_t *r;
677
    runq_t *r;
669
    thread_t *t;
678
    thread_t *t;
670
    link_t *cur;
679
    link_t *cur;
671
 
680
 
672
    /* We are going to mess with scheduler structures,
681
    /* We are going to mess with scheduler structures,
673
     * let's not be interrupted */
682
     * let's not be interrupted */
674
    ipl = interrupts_disable();
683
    ipl = interrupts_disable();
675
    for (cpu=0;cpu < config.cpu_count; cpu++) {
684
    for (cpu=0;cpu < config.cpu_count; cpu++) {
676
 
685
 
677
        if (!cpus[cpu].active)
686
        if (!cpus[cpu].active)
678
            continue;
687
            continue;
679
 
688
 
680
        spinlock_lock(&cpus[cpu].lock);
689
        spinlock_lock(&cpus[cpu].lock);
681
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
690
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
682
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
691
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
683
       
692
       
684
        for (i=0; i<RQ_COUNT; i++) {
693
        for (i=0; i<RQ_COUNT; i++) {
685
            r = &cpus[cpu].rq[i];
694
            r = &cpus[cpu].rq[i];
686
            spinlock_lock(&r->lock);
695
            spinlock_lock(&r->lock);
687
            if (!r->n) {
696
            if (!r->n) {
688
                spinlock_unlock(&r->lock);
697
                spinlock_unlock(&r->lock);
689
                continue;
698
                continue;
690
            }
699
            }
691
            printf("\trq[%d]: ", i);
700
            printf("\trq[%d]: ", i);
692
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
701
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
693
                t = list_get_instance(cur, thread_t, rq_link);
702
                t = list_get_instance(cur, thread_t, rq_link);
694
                printf("%d(%s) ", t->tid,
703
                printf("%d(%s) ", t->tid,
695
                       thread_states[t->state]);
704
                       thread_states[t->state]);
696
            }
705
            }
697
            printf("\n");
706
            printf("\n");
698
            spinlock_unlock(&r->lock);
707
            spinlock_unlock(&r->lock);
699
        }
708
        }
700
        spinlock_unlock(&cpus[cpu].lock);
709
        spinlock_unlock(&cpus[cpu].lock);
701
    }
710
    }
702
   
711
   
703
    interrupts_restore(ipl);
712
    interrupts_restore(ipl);
704
}
713
}
705
 
714
 
706
/** @}
715
/** @}
707
 */
716
 */
708
 
717