Subversion Repositories HelenOS

Rev

Rev 3240 | Rev 3384 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3240 Rev 3383
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int aflags);
114
static int area_flags_to_page_flags(int aflags);
115
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
115
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
116
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
116
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
117
    as_area_t *avoid_area);
117
    as_area_t *avoid_area);
118
static void sh_info_remove_reference(share_info_t *sh_info);
118
static void sh_info_remove_reference(share_info_t *sh_info);
119
 
119
 
120
static int as_constructor(void *obj, int flags)
120
static int as_constructor(void *obj, int flags)
121
{
121
{
122
    as_t *as = (as_t *) obj;
122
    as_t *as = (as_t *) obj;
123
    int rc;
123
    int rc;
124
 
124
 
125
    link_initialize(&as->inactive_as_with_asid_link);
125
    link_initialize(&as->inactive_as_with_asid_link);
126
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
127
   
127
   
128
    rc = as_constructor_arch(as, flags);
128
    rc = as_constructor_arch(as, flags);
129
   
129
   
130
    return rc;
130
    return rc;
131
}
131
}
132
 
132
 
133
static int as_destructor(void *obj)
133
static int as_destructor(void *obj)
134
{
134
{
135
    as_t *as = (as_t *) obj;
135
    as_t *as = (as_t *) obj;
136
 
136
 
137
    return as_destructor_arch(as);
137
    return as_destructor_arch(as);
138
}
138
}
139
 
139
 
140
/** Initialize address space subsystem. */
140
/** Initialize address space subsystem. */
141
void as_init(void)
141
void as_init(void)
142
{
142
{
143
    as_arch_init();
143
    as_arch_init();
144
 
144
 
145
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
146
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
147
   
147
   
148
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
149
    if (!AS_KERNEL)
149
    if (!AS_KERNEL)
150
        panic("can't create kernel address space\n");
150
        panic("can't create kernel address space\n");
151
   
151
   
152
}
152
}
153
 
153
 
154
/** Create address space.
154
/** Create address space.
155
 *
155
 *
156
 * @param flags Flags that influence way in wich the address space is created.
156
 * @param flags Flags that influence way in wich the address space is created.
157
 */
157
 */
158
as_t *as_create(int flags)
158
as_t *as_create(int flags)
159
{
159
{
160
    as_t *as;
160
    as_t *as;
161
 
161
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
164
   
164
   
165
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
166
   
166
   
167
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
169
    else
169
    else
170
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
171
   
171
   
172
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
176
#else
176
#else
177
    page_table_create(flags);
177
    page_table_create(flags);
178
#endif
178
#endif
179
 
179
 
180
    return as;
180
    return as;
181
}
181
}
182
 
182
 
183
/** Destroy adress space.
183
/** Destroy adress space.
184
 *
184
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
187
 *
187
 *
188
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
189
 */
189
 */
190
void as_destroy(as_t *as)
190
void as_destroy(as_t *as)
191
{
191
{
192
    ipl_t ipl;
192
    ipl_t ipl;
193
    bool cond;
193
    bool cond;
194
    DEADLOCK_PROBE_INIT(p_asidlock);
194
    DEADLOCK_PROBE_INIT(p_asidlock);
195
 
195
 
196
    ASSERT(atomic_get(&as->refcount) == 0);
196
    ASSERT(atomic_get(&as->refcount) == 0);
197
   
197
   
198
    /*
198
    /*
199
     * Since there is no reference to this area,
199
     * Since there is no reference to this area,
200
     * it is safe not to lock its mutex.
200
     * it is safe not to lock its mutex.
201
     */
201
     */
202
 
202
 
203
    /*
203
    /*
204
     * We need to avoid deadlock between TLB shootdown and asidlock.
204
     * We need to avoid deadlock between TLB shootdown and asidlock.
205
     * We therefore try to take asid conditionally and if we don't succeed,
205
     * We therefore try to take asid conditionally and if we don't succeed,
206
     * we enable interrupts and try again. This is done while preemption is
206
     * we enable interrupts and try again. This is done while preemption is
207
     * disabled to prevent nested context switches. We also depend on the
207
     * disabled to prevent nested context switches. We also depend on the
208
     * fact that so far no spinlocks are held.
208
     * fact that so far no spinlocks are held.
209
     */
209
     */
210
    preemption_disable();
210
    preemption_disable();
211
    ipl = interrupts_read();
211
    ipl = interrupts_read();
212
retry:
212
retry:
213
    interrupts_disable();
213
    interrupts_disable();
214
    if (!spinlock_trylock(&asidlock)) {
214
    if (!spinlock_trylock(&asidlock)) {
215
        interrupts_enable();
215
        interrupts_enable();
216
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
216
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
217
        goto retry;
217
        goto retry;
218
    }
218
    }
219
    preemption_enable();    /* Interrupts disabled, enable preemption */
219
    preemption_enable();    /* Interrupts disabled, enable preemption */
220
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
220
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
221
        if (as != AS && as->cpu_refcount == 0)
221
        if (as != AS && as->cpu_refcount == 0)
222
            list_remove(&as->inactive_as_with_asid_link);
222
            list_remove(&as->inactive_as_with_asid_link);
223
        asid_put(as->asid);
223
        asid_put(as->asid);
224
    }
224
    }
225
    spinlock_unlock(&asidlock);
225
    spinlock_unlock(&asidlock);
226
 
226
 
227
    /*
227
    /*
228
     * Destroy address space areas of the address space.
228
     * Destroy address space areas of the address space.
229
     * The B+tree must be walked carefully because it is
229
     * The B+tree must be walked carefully because it is
230
     * also being destroyed.
230
     * also being destroyed.
231
     */
231
     */
232
    for (cond = true; cond; ) {
232
    for (cond = true; cond; ) {
233
        btree_node_t *node;
233
        btree_node_t *node;
234
 
234
 
235
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
235
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
236
        node = list_get_instance(as->as_area_btree.leaf_head.next,
236
        node = list_get_instance(as->as_area_btree.leaf_head.next,
237
            btree_node_t, leaf_link);
237
            btree_node_t, leaf_link);
238
 
238
 
239
        if ((cond = node->keys)) {
239
        if ((cond = node->keys)) {
240
            as_area_destroy(as, node->key[0]);
240
            as_area_destroy(as, node->key[0]);
241
        }
241
        }
242
    }
242
    }
243
 
243
 
244
    btree_destroy(&as->as_area_btree);
244
    btree_destroy(&as->as_area_btree);
245
#ifdef AS_PAGE_TABLE
245
#ifdef AS_PAGE_TABLE
246
    page_table_destroy(as->genarch.page_table);
246
    page_table_destroy(as->genarch.page_table);
247
#else
247
#else
248
    page_table_destroy(NULL);
248
    page_table_destroy(NULL);
249
#endif
249
#endif
250
 
250
 
251
    interrupts_restore(ipl);
251
    interrupts_restore(ipl);
252
 
252
 
253
    slab_free(as_slab, as);
253
    slab_free(as_slab, as);
254
}
254
}
255
 
255
 
256
/** Create address space area of common attributes.
256
/** Create address space area of common attributes.
257
 *
257
 *
258
 * The created address space area is added to the target address space.
258
 * The created address space area is added to the target address space.
259
 *
259
 *
260
 * @param as Target address space.
260
 * @param as Target address space.
261
 * @param flags Flags of the area memory.
261
 * @param flags Flags of the area memory.
262
 * @param size Size of area.
262
 * @param size Size of area.
263
 * @param base Base address of area.
263
 * @param base Base address of area.
264
 * @param attrs Attributes of the area.
264
 * @param attrs Attributes of the area.
265
 * @param backend Address space area backend. NULL if no backend is used.
265
 * @param backend Address space area backend. NULL if no backend is used.
266
 * @param backend_data NULL or a pointer to an array holding two void *.
266
 * @param backend_data NULL or a pointer to an array holding two void *.
267
 *
267
 *
268
 * @return Address space area on success or NULL on failure.
268
 * @return Address space area on success or NULL on failure.
269
 */
269
 */
270
as_area_t *
270
as_area_t *
271
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
271
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
272
           mem_backend_t *backend, mem_backend_data_t *backend_data)
272
           mem_backend_t *backend, mem_backend_data_t *backend_data)
273
{
273
{
274
    ipl_t ipl;
274
    ipl_t ipl;
275
    as_area_t *a;
275
    as_area_t *a;
276
   
276
   
277
    if (base % PAGE_SIZE)
277
    if (base % PAGE_SIZE)
278
        return NULL;
278
        return NULL;
279
 
279
 
280
    if (!size)
280
    if (!size)
281
        return NULL;
281
        return NULL;
282
 
282
 
283
    /* Writeable executable areas are not supported. */
283
    /* Writeable executable areas are not supported. */
284
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
284
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
285
        return NULL;
285
        return NULL;
286
   
286
   
287
    ipl = interrupts_disable();
287
    ipl = interrupts_disable();
288
    mutex_lock(&as->lock);
288
    mutex_lock(&as->lock);
289
   
289
   
290
    if (!check_area_conflicts(as, base, size, NULL)) {
290
    if (!check_area_conflicts(as, base, size, NULL)) {
291
        mutex_unlock(&as->lock);
291
        mutex_unlock(&as->lock);
292
        interrupts_restore(ipl);
292
        interrupts_restore(ipl);
293
        return NULL;
293
        return NULL;
294
    }
294
    }
295
   
295
   
296
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
296
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
297
 
297
 
298
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
298
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
299
   
299
   
300
    a->as = as;
300
    a->as = as;
301
    a->flags = flags;
301
    a->flags = flags;
302
    a->attributes = attrs;
302
    a->attributes = attrs;
303
    a->pages = SIZE2FRAMES(size);
303
    a->pages = SIZE2FRAMES(size);
304
    a->base = base;
304
    a->base = base;
305
    a->sh_info = NULL;
305
    a->sh_info = NULL;
306
    a->backend = backend;
306
    a->backend = backend;
307
    if (backend_data)
307
    if (backend_data)
308
        a->backend_data = *backend_data;
308
        a->backend_data = *backend_data;
309
    else
309
    else
310
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
310
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
311
 
311
 
312
    btree_create(&a->used_space);
312
    btree_create(&a->used_space);
313
   
313
   
314
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
314
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
315
 
315
 
316
    mutex_unlock(&as->lock);
316
    mutex_unlock(&as->lock);
317
    interrupts_restore(ipl);
317
    interrupts_restore(ipl);
318
 
318
 
319
    return a;
319
    return a;
320
}
320
}
321
 
321
 
322
/** Find address space area and change it.
322
/** Find address space area and change it.
323
 *
323
 *
324
 * @param as Address space.
324
 * @param as Address space.
325
 * @param address Virtual address belonging to the area to be changed. Must be
325
 * @param address Virtual address belonging to the area to be changed. Must be
326
 *     page-aligned.
326
 *     page-aligned.
327
 * @param size New size of the virtual memory block starting at address.
327
 * @param size New size of the virtual memory block starting at address.
328
 * @param flags Flags influencing the remap operation. Currently unused.
328
 * @param flags Flags influencing the remap operation. Currently unused.
329
 *
329
 *
330
 * @return Zero on success or a value from @ref errno.h otherwise.
330
 * @return Zero on success or a value from @ref errno.h otherwise.
331
 */
331
 */
332
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
332
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
333
{
333
{
334
    as_area_t *area;
334
    as_area_t *area;
335
    ipl_t ipl;
335
    ipl_t ipl;
336
    size_t pages;
336
    size_t pages;
337
   
337
   
338
    ipl = interrupts_disable();
338
    ipl = interrupts_disable();
339
    mutex_lock(&as->lock);
339
    mutex_lock(&as->lock);
340
   
340
   
341
    /*
341
    /*
342
     * Locate the area.
342
     * Locate the area.
343
     */
343
     */
344
    area = find_area_and_lock(as, address);
344
    area = find_area_and_lock(as, address);
345
    if (!area) {
345
    if (!area) {
346
        mutex_unlock(&as->lock);
346
        mutex_unlock(&as->lock);
347
        interrupts_restore(ipl);
347
        interrupts_restore(ipl);
348
        return ENOENT;
348
        return ENOENT;
349
    }
349
    }
350
 
350
 
351
    if (area->backend == &phys_backend) {
351
    if (area->backend == &phys_backend) {
352
        /*
352
        /*
353
         * Remapping of address space areas associated
353
         * Remapping of address space areas associated
354
         * with memory mapped devices is not supported.
354
         * with memory mapped devices is not supported.
355
         */
355
         */
356
        mutex_unlock(&area->lock);
356
        mutex_unlock(&area->lock);
357
        mutex_unlock(&as->lock);
357
        mutex_unlock(&as->lock);
358
        interrupts_restore(ipl);
358
        interrupts_restore(ipl);
359
        return ENOTSUP;
359
        return ENOTSUP;
360
    }
360
    }
361
    if (area->sh_info) {
361
    if (area->sh_info) {
362
        /*
362
        /*
363
         * Remapping of shared address space areas
363
         * Remapping of shared address space areas
364
         * is not supported.
364
         * is not supported.
365
         */
365
         */
366
        mutex_unlock(&area->lock);
366
        mutex_unlock(&area->lock);
367
        mutex_unlock(&as->lock);
367
        mutex_unlock(&as->lock);
368
        interrupts_restore(ipl);
368
        interrupts_restore(ipl);
369
        return ENOTSUP;
369
        return ENOTSUP;
370
    }
370
    }
371
 
371
 
372
    pages = SIZE2FRAMES((address - area->base) + size);
372
    pages = SIZE2FRAMES((address - area->base) + size);
373
    if (!pages) {
373
    if (!pages) {
374
        /*
374
        /*
375
         * Zero size address space areas are not allowed.
375
         * Zero size address space areas are not allowed.
376
         */
376
         */
377
        mutex_unlock(&area->lock);
377
        mutex_unlock(&area->lock);
378
        mutex_unlock(&as->lock);
378
        mutex_unlock(&as->lock);
379
        interrupts_restore(ipl);
379
        interrupts_restore(ipl);
380
        return EPERM;
380
        return EPERM;
381
    }
381
    }
382
   
382
   
383
    if (pages < area->pages) {
383
    if (pages < area->pages) {
384
        bool cond;
384
        bool cond;
385
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
385
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
386
 
386
 
387
        /*
387
        /*
388
         * Shrinking the area.
388
         * Shrinking the area.
389
         * No need to check for overlaps.
389
         * No need to check for overlaps.
390
         */
390
         */
391
 
391
 
392
        /*
392
        /*
393
         * Start TLB shootdown sequence.
393
         * Start TLB shootdown sequence.
394
         */
394
         */
395
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
395
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
396
            pages * PAGE_SIZE, area->pages - pages);
396
            pages * PAGE_SIZE, area->pages - pages);
397
 
397
 
398
        /*
398
        /*
399
         * Remove frames belonging to used space starting from
399
         * Remove frames belonging to used space starting from
400
         * the highest addresses downwards until an overlap with
400
         * the highest addresses downwards until an overlap with
401
         * the resized address space area is found. Note that this
401
         * the resized address space area is found. Note that this
402
         * is also the right way to remove part of the used_space
402
         * is also the right way to remove part of the used_space
403
         * B+tree leaf list.
403
         * B+tree leaf list.
404
         */    
404
         */    
405
        for (cond = true; cond;) {
405
        for (cond = true; cond;) {
406
            btree_node_t *node;
406
            btree_node_t *node;
407
       
407
       
408
            ASSERT(!list_empty(&area->used_space.leaf_head));
408
            ASSERT(!list_empty(&area->used_space.leaf_head));
409
            node =
409
            node =
410
                list_get_instance(area->used_space.leaf_head.prev,
410
                list_get_instance(area->used_space.leaf_head.prev,
411
                btree_node_t, leaf_link);
411
                btree_node_t, leaf_link);
412
            if ((cond = (bool) node->keys)) {
412
            if ((cond = (bool) node->keys)) {
413
                uintptr_t b = node->key[node->keys - 1];
413
                uintptr_t b = node->key[node->keys - 1];
414
                count_t c =
414
                count_t c =
415
                    (count_t) node->value[node->keys - 1];
415
                    (count_t) node->value[node->keys - 1];
416
                unsigned int i = 0;
416
                unsigned int i = 0;
417
           
417
           
418
                if (overlaps(b, c * PAGE_SIZE, area->base,
418
                if (overlaps(b, c * PAGE_SIZE, area->base,
419
                    pages * PAGE_SIZE)) {
419
                    pages * PAGE_SIZE)) {
420
                   
420
                   
421
                    if (b + c * PAGE_SIZE <= start_free) {
421
                    if (b + c * PAGE_SIZE <= start_free) {
422
                        /*
422
                        /*
423
                         * The whole interval fits
423
                         * The whole interval fits
424
                         * completely in the resized
424
                         * completely in the resized
425
                         * address space area.
425
                         * address space area.
426
                         */
426
                         */
427
                        break;
427
                        break;
428
                    }
428
                    }
429
       
429
       
430
                    /*
430
                    /*
431
                     * Part of the interval corresponding
431
                     * Part of the interval corresponding
432
                     * to b and c overlaps with the resized
432
                     * to b and c overlaps with the resized
433
                     * address space area.
433
                     * address space area.
434
                     */
434
                     */
435
       
435
       
436
                    cond = false;   /* we are almost done */
436
                    cond = false;   /* we are almost done */
437
                    i = (start_free - b) >> PAGE_WIDTH;
437
                    i = (start_free - b) >> PAGE_WIDTH;
438
                    if (!used_space_remove(area, start_free, c - i))
438
                    if (!used_space_remove(area, start_free, c - i))
439
                        panic("Could not remove used space.\n");
439
                        panic("Could not remove used space.\n");
440
                } else {
440
                } else {
441
                    /*
441
                    /*
442
                     * The interval of used space can be
442
                     * The interval of used space can be
443
                     * completely removed.
443
                     * completely removed.
444
                     */
444
                     */
445
                    if (!used_space_remove(area, b, c))
445
                    if (!used_space_remove(area, b, c))
446
                        panic("Could not remove used space.\n");
446
                        panic("Could not remove used space.\n");
447
                }
447
                }
448
           
448
           
449
                for (; i < c; i++) {
449
                for (; i < c; i++) {
450
                    pte_t *pte;
450
                    pte_t *pte;
451
           
451
           
452
                    page_table_lock(as, false);
452
                    page_table_lock(as, false);
453
                    pte = page_mapping_find(as, b +
453
                    pte = page_mapping_find(as, b +
454
                        i * PAGE_SIZE);
454
                        i * PAGE_SIZE);
455
                    ASSERT(pte && PTE_VALID(pte) &&
455
                    ASSERT(pte && PTE_VALID(pte) &&
456
                        PTE_PRESENT(pte));
456
                        PTE_PRESENT(pte));
457
                    if (area->backend &&
457
                    if (area->backend &&
458
                        area->backend->frame_free) {
458
                        area->backend->frame_free) {
459
                        area->backend->frame_free(area,
459
                        area->backend->frame_free(area,
460
                            b + i * PAGE_SIZE,
460
                            b + i * PAGE_SIZE,
461
                            PTE_GET_FRAME(pte));
461
                            PTE_GET_FRAME(pte));
462
                    }
462
                    }
463
                    page_mapping_remove(as, b +
463
                    page_mapping_remove(as, b +
464
                        i * PAGE_SIZE);
464
                        i * PAGE_SIZE);
465
                    page_table_unlock(as, false);
465
                    page_table_unlock(as, false);
466
                }
466
                }
467
            }
467
            }
468
        }
468
        }
469
 
469
 
470
        /*
470
        /*
471
         * Finish TLB shootdown sequence.
471
         * Finish TLB shootdown sequence.
472
         */
472
         */
473
 
473
 
474
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
474
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
475
            area->pages - pages);
475
            area->pages - pages);
476
        /*
476
        /*
477
         * Invalidate software translation caches (e.g. TSB on sparc64).
477
         * Invalidate software translation caches (e.g. TSB on sparc64).
478
         */
478
         */
479
        as_invalidate_translation_cache(as, area->base +
479
        as_invalidate_translation_cache(as, area->base +
480
            pages * PAGE_SIZE, area->pages - pages);
480
            pages * PAGE_SIZE, area->pages - pages);
481
        tlb_shootdown_finalize();
481
        tlb_shootdown_finalize();
482
       
482
       
483
    } else {
483
    } else {
484
        /*
484
        /*
485
         * Growing the area.
485
         * Growing the area.
486
         * Check for overlaps with other address space areas.
486
         * Check for overlaps with other address space areas.
487
         */
487
         */
488
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
488
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
489
            area)) {
489
            area)) {
490
            mutex_unlock(&area->lock);
490
            mutex_unlock(&area->lock);
491
            mutex_unlock(&as->lock);       
491
            mutex_unlock(&as->lock);       
492
            interrupts_restore(ipl);
492
            interrupts_restore(ipl);
493
            return EADDRNOTAVAIL;
493
            return EADDRNOTAVAIL;
494
        }
494
        }
495
    }
495
    }
496
 
496
 
497
    area->pages = pages;
497
    area->pages = pages;
498
   
498
   
499
    mutex_unlock(&area->lock);
499
    mutex_unlock(&area->lock);
500
    mutex_unlock(&as->lock);
500
    mutex_unlock(&as->lock);
501
    interrupts_restore(ipl);
501
    interrupts_restore(ipl);
502
 
502
 
503
    return 0;
503
    return 0;
504
}
504
}
505
 
505
 
506
/** Destroy address space area.
506
/** Destroy address space area.
507
 *
507
 *
508
 * @param as Address space.
508
 * @param as Address space.
509
 * @param address Address withing the area to be deleted.
509
 * @param address Address withing the area to be deleted.
510
 *
510
 *
511
 * @return Zero on success or a value from @ref errno.h on failure.
511
 * @return Zero on success or a value from @ref errno.h on failure.
512
 */
512
 */
513
int as_area_destroy(as_t *as, uintptr_t address)
513
int as_area_destroy(as_t *as, uintptr_t address)
514
{
514
{
515
    as_area_t *area;
515
    as_area_t *area;
516
    uintptr_t base;
516
    uintptr_t base;
517
    link_t *cur;
517
    link_t *cur;
518
    ipl_t ipl;
518
    ipl_t ipl;
519
 
519
 
520
    ipl = interrupts_disable();
520
    ipl = interrupts_disable();
521
    mutex_lock(&as->lock);
521
    mutex_lock(&as->lock);
522
 
522
 
523
    area = find_area_and_lock(as, address);
523
    area = find_area_and_lock(as, address);
524
    if (!area) {
524
    if (!area) {
525
        mutex_unlock(&as->lock);
525
        mutex_unlock(&as->lock);
526
        interrupts_restore(ipl);
526
        interrupts_restore(ipl);
527
        return ENOENT;
527
        return ENOENT;
528
    }
528
    }
529
 
529
 
530
    base = area->base;
530
    base = area->base;
531
 
531
 
532
    /*
532
    /*
533
     * Start TLB shootdown sequence.
533
     * Start TLB shootdown sequence.
534
     */
534
     */
535
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
535
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
536
 
536
 
537
    /*
537
    /*
538
     * Visit only the pages mapped by used_space B+tree.
538
     * Visit only the pages mapped by used_space B+tree.
539
     */
539
     */
540
    for (cur = area->used_space.leaf_head.next;
540
    for (cur = area->used_space.leaf_head.next;
541
        cur != &area->used_space.leaf_head; cur = cur->next) {
541
        cur != &area->used_space.leaf_head; cur = cur->next) {
542
        btree_node_t *node;
542
        btree_node_t *node;
543
        unsigned int i;
543
        unsigned int i;
544
       
544
       
545
        node = list_get_instance(cur, btree_node_t, leaf_link);
545
        node = list_get_instance(cur, btree_node_t, leaf_link);
546
        for (i = 0; i < node->keys; i++) {
546
        for (i = 0; i < node->keys; i++) {
547
            uintptr_t b = node->key[i];
547
            uintptr_t b = node->key[i];
548
            count_t j;
548
            count_t j;
549
            pte_t *pte;
549
            pte_t *pte;
550
           
550
           
551
            for (j = 0; j < (count_t) node->value[i]; j++) {
551
            for (j = 0; j < (count_t) node->value[i]; j++) {
552
                page_table_lock(as, false);
552
                page_table_lock(as, false);
553
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
553
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
554
                ASSERT(pte && PTE_VALID(pte) &&
554
                ASSERT(pte && PTE_VALID(pte) &&
555
                    PTE_PRESENT(pte));
555
                    PTE_PRESENT(pte));
556
                if (area->backend &&
556
                if (area->backend &&
557
                    area->backend->frame_free) {
557
                    area->backend->frame_free) {
558
                    area->backend->frame_free(area, b +
558
                    area->backend->frame_free(area, b +
559
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
559
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
560
                }
560
                }
561
                page_mapping_remove(as, b + j * PAGE_SIZE);            
561
                page_mapping_remove(as, b + j * PAGE_SIZE);            
562
                page_table_unlock(as, false);
562
                page_table_unlock(as, false);
563
            }
563
            }
564
        }
564
        }
565
    }
565
    }
566
 
566
 
567
    /*
567
    /*
568
     * Finish TLB shootdown sequence.
568
     * Finish TLB shootdown sequence.
569
     */
569
     */
570
 
570
 
571
    tlb_invalidate_pages(as->asid, area->base, area->pages);
571
    tlb_invalidate_pages(as->asid, area->base, area->pages);
572
    /*
572
    /*
573
     * Invalidate potential software translation caches (e.g. TSB on
573
     * Invalidate potential software translation caches (e.g. TSB on
574
     * sparc64).
574
     * sparc64).
575
     */
575
     */
576
    as_invalidate_translation_cache(as, area->base, area->pages);
576
    as_invalidate_translation_cache(as, area->base, area->pages);
577
    tlb_shootdown_finalize();
577
    tlb_shootdown_finalize();
578
   
578
   
579
    btree_destroy(&area->used_space);
579
    btree_destroy(&area->used_space);
580
 
580
 
581
    area->attributes |= AS_AREA_ATTR_PARTIAL;
581
    area->attributes |= AS_AREA_ATTR_PARTIAL;
582
   
582
   
583
    if (area->sh_info)
583
    if (area->sh_info)
584
        sh_info_remove_reference(area->sh_info);
584
        sh_info_remove_reference(area->sh_info);
585
       
585
       
586
    mutex_unlock(&area->lock);
586
    mutex_unlock(&area->lock);
587
 
587
 
588
    /*
588
    /*
589
     * Remove the empty area from address space.
589
     * Remove the empty area from address space.
590
     */
590
     */
591
    btree_remove(&as->as_area_btree, base, NULL);
591
    btree_remove(&as->as_area_btree, base, NULL);
592
   
592
   
593
    free(area);
593
    free(area);
594
   
594
   
595
    mutex_unlock(&as->lock);
595
    mutex_unlock(&as->lock);
596
    interrupts_restore(ipl);
596
    interrupts_restore(ipl);
597
    return 0;
597
    return 0;
598
}
598
}
599
 
599
 
600
/** Share address space area with another or the same address space.
600
/** Share address space area with another or the same address space.
601
 *
601
 *
602
 * Address space area mapping is shared with a new address space area.
602
 * Address space area mapping is shared with a new address space area.
603
 * If the source address space area has not been shared so far,
603
 * If the source address space area has not been shared so far,
604
 * a new sh_info is created. The new address space area simply gets the
604
 * a new sh_info is created. The new address space area simply gets the
605
 * sh_info of the source area. The process of duplicating the
605
 * sh_info of the source area. The process of duplicating the
606
 * mapping is done through the backend share function.
606
 * mapping is done through the backend share function.
607
 *
607
 *
608
 * @param src_as Pointer to source address space.
608
 * @param src_as Pointer to source address space.
609
 * @param src_base Base address of the source address space area.
609
 * @param src_base Base address of the source address space area.
610
 * @param acc_size Expected size of the source area.
610
 * @param acc_size Expected size of the source area.
611
 * @param dst_as Pointer to destination address space.
611
 * @param dst_as Pointer to destination address space.
612
 * @param dst_base Target base address.
612
 * @param dst_base Target base address.
613
 * @param dst_flags_mask Destination address space area flags mask.
613
 * @param dst_flags_mask Destination address space area flags mask.
614
 *
614
 *
615
 * @return Zero on success or ENOENT if there is no such task or if there is no
615
 * @return Zero on success or ENOENT if there is no such task or if there is no
616
 * such address space area, EPERM if there was a problem in accepting the area
616
 * such address space area, EPERM if there was a problem in accepting the area
617
 * or ENOMEM if there was a problem in allocating destination address space
617
 * or ENOMEM if there was a problem in allocating destination address space
618
 * area. ENOTSUP is returned if the address space area backend does not support
618
 * area. ENOTSUP is returned if the address space area backend does not support
619
 * sharing.
619
 * sharing.
620
 */
620
 */
621
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
621
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
622
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
622
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
623
{
623
{
624
    ipl_t ipl;
624
    ipl_t ipl;
625
    int src_flags;
625
    int src_flags;
626
    size_t src_size;
626
    size_t src_size;
627
    as_area_t *src_area, *dst_area;
627
    as_area_t *src_area, *dst_area;
628
    share_info_t *sh_info;
628
    share_info_t *sh_info;
629
    mem_backend_t *src_backend;
629
    mem_backend_t *src_backend;
630
    mem_backend_data_t src_backend_data;
630
    mem_backend_data_t src_backend_data;
631
   
631
   
632
    ipl = interrupts_disable();
632
    ipl = interrupts_disable();
633
    mutex_lock(&src_as->lock);
633
    mutex_lock(&src_as->lock);
634
    src_area = find_area_and_lock(src_as, src_base);
634
    src_area = find_area_and_lock(src_as, src_base);
635
    if (!src_area) {
635
    if (!src_area) {
636
        /*
636
        /*
637
         * Could not find the source address space area.
637
         * Could not find the source address space area.
638
         */
638
         */
639
        mutex_unlock(&src_as->lock);
639
        mutex_unlock(&src_as->lock);
640
        interrupts_restore(ipl);
640
        interrupts_restore(ipl);
641
        return ENOENT;
641
        return ENOENT;
642
    }
642
    }
643
 
643
 
644
    if (!src_area->backend || !src_area->backend->share) {
644
    if (!src_area->backend || !src_area->backend->share) {
645
        /*
645
        /*
646
         * There is no backend or the backend does not
646
         * There is no backend or the backend does not
647
         * know how to share the area.
647
         * know how to share the area.
648
         */
648
         */
649
        mutex_unlock(&src_area->lock);
649
        mutex_unlock(&src_area->lock);
650
        mutex_unlock(&src_as->lock);
650
        mutex_unlock(&src_as->lock);
651
        interrupts_restore(ipl);
651
        interrupts_restore(ipl);
652
        return ENOTSUP;
652
        return ENOTSUP;
653
    }
653
    }
654
   
654
   
655
    src_size = src_area->pages * PAGE_SIZE;
655
    src_size = src_area->pages * PAGE_SIZE;
656
    src_flags = src_area->flags;
656
    src_flags = src_area->flags;
657
    src_backend = src_area->backend;
657
    src_backend = src_area->backend;
658
    src_backend_data = src_area->backend_data;
658
    src_backend_data = src_area->backend_data;
659
 
659
 
660
    /* Share the cacheable flag from the original mapping */
660
    /* Share the cacheable flag from the original mapping */
661
    if (src_flags & AS_AREA_CACHEABLE)
661
    if (src_flags & AS_AREA_CACHEABLE)
662
        dst_flags_mask |= AS_AREA_CACHEABLE;
662
        dst_flags_mask |= AS_AREA_CACHEABLE;
663
 
663
 
664
    if (src_size != acc_size ||
664
    if (src_size != acc_size ||
665
        (src_flags & dst_flags_mask) != dst_flags_mask) {
665
        (src_flags & dst_flags_mask) != dst_flags_mask) {
666
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
669
        return EPERM;
669
        return EPERM;
670
    }
670
    }
671
 
671
 
672
    /*
672
    /*
673
     * Now we are committed to sharing the area.
673
     * Now we are committed to sharing the area.
674
     * First, prepare the area for sharing.
674
     * First, prepare the area for sharing.
675
     * Then it will be safe to unlock it.
675
     * Then it will be safe to unlock it.
676
     */
676
     */
677
    sh_info = src_area->sh_info;
677
    sh_info = src_area->sh_info;
678
    if (!sh_info) {
678
    if (!sh_info) {
679
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
679
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
680
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
680
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
681
        sh_info->refcount = 2;
681
        sh_info->refcount = 2;
682
        btree_create(&sh_info->pagemap);
682
        btree_create(&sh_info->pagemap);
683
        src_area->sh_info = sh_info;
683
        src_area->sh_info = sh_info;
684
        /*
684
        /*
685
         * Call the backend to setup sharing.
685
         * Call the backend to setup sharing.
686
         */
686
         */
687
        src_area->backend->share(src_area);
687
        src_area->backend->share(src_area);
688
    } else {
688
    } else {
689
        mutex_lock(&sh_info->lock);
689
        mutex_lock(&sh_info->lock);
690
        sh_info->refcount++;
690
        sh_info->refcount++;
691
        mutex_unlock(&sh_info->lock);
691
        mutex_unlock(&sh_info->lock);
692
    }
692
    }
693
 
693
 
694
    mutex_unlock(&src_area->lock);
694
    mutex_unlock(&src_area->lock);
695
    mutex_unlock(&src_as->lock);
695
    mutex_unlock(&src_as->lock);
696
 
696
 
697
    /*
697
    /*
698
     * Create copy of the source address space area.
698
     * Create copy of the source address space area.
699
     * The destination area is created with AS_AREA_ATTR_PARTIAL
699
     * The destination area is created with AS_AREA_ATTR_PARTIAL
700
     * attribute set which prevents race condition with
700
     * attribute set which prevents race condition with
701
     * preliminary as_page_fault() calls.
701
     * preliminary as_page_fault() calls.
702
     * The flags of the source area are masked against dst_flags_mask
702
     * The flags of the source area are masked against dst_flags_mask
703
     * to support sharing in less privileged mode.
703
     * to support sharing in less privileged mode.
704
     */
704
     */
705
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
705
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
706
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
706
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
707
    if (!dst_area) {
707
    if (!dst_area) {
708
        /*
708
        /*
709
         * Destination address space area could not be created.
709
         * Destination address space area could not be created.
710
         */
710
         */
711
        sh_info_remove_reference(sh_info);
711
        sh_info_remove_reference(sh_info);
712
       
712
       
713
        interrupts_restore(ipl);
713
        interrupts_restore(ipl);
714
        return ENOMEM;
714
        return ENOMEM;
715
    }
715
    }
716
 
716
 
717
    /*
717
    /*
718
     * Now the destination address space area has been
718
     * Now the destination address space area has been
719
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
719
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
720
     * attribute and set the sh_info.
720
     * attribute and set the sh_info.
721
     */
721
     */
722
    mutex_lock(&dst_as->lock); 
722
    mutex_lock(&dst_as->lock); 
723
    mutex_lock(&dst_area->lock);
723
    mutex_lock(&dst_area->lock);
724
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
724
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
725
    dst_area->sh_info = sh_info;
725
    dst_area->sh_info = sh_info;
726
    mutex_unlock(&dst_area->lock);
726
    mutex_unlock(&dst_area->lock);
727
    mutex_unlock(&dst_as->lock);   
727
    mutex_unlock(&dst_as->lock);   
728
 
728
 
729
    interrupts_restore(ipl);
729
    interrupts_restore(ipl);
730
   
730
   
731
    return 0;
731
    return 0;
732
}
732
}
733
 
733
 
734
/** Check access mode for address space area.
734
/** Check access mode for address space area.
735
 *
735
 *
736
 * The address space area must be locked prior to this call.
736
 * The address space area must be locked prior to this call.
737
 *
737
 *
738
 * @param area Address space area.
738
 * @param area Address space area.
739
 * @param access Access mode.
739
 * @param access Access mode.
740
 *
740
 *
741
 * @return False if access violates area's permissions, true otherwise.
741
 * @return False if access violates area's permissions, true otherwise.
742
 */
742
 */
743
bool as_area_check_access(as_area_t *area, pf_access_t access)
743
bool as_area_check_access(as_area_t *area, pf_access_t access)
744
{
744
{
745
    int flagmap[] = {
745
    int flagmap[] = {
746
        [PF_ACCESS_READ] = AS_AREA_READ,
746
        [PF_ACCESS_READ] = AS_AREA_READ,
747
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
747
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
748
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
748
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
749
    };
749
    };
750
 
750
 
751
    if (!(area->flags & flagmap[access]))
751
    if (!(area->flags & flagmap[access]))
752
        return false;
752
        return false;
753
   
753
   
754
    return true;
754
    return true;
755
}
755
}
756
 
756
 
757
/** Change adress area flags.
757
/** Change adress area flags.
758
 *
758
 *
759
 * The idea is to have the same data, but with a different access mode.
759
 * The idea is to have the same data, but with a different access mode.
760
 * This is needed e.g. for writing code into memory and then executing it.
760
 * This is needed e.g. for writing code into memory and then executing it.
761
 * In order for this to work properly, this may copy the data
761
 * In order for this to work properly, this may copy the data
762
 * into private anonymous memory (unless it's already there).
762
 * into private anonymous memory (unless it's already there).
763
 *
763
 *
764
 * @param as Address space.
764
 * @param as Address space.
765
 * @param flags Flags of the area memory.
765
 * @param flags Flags of the area memory.
766
 * @param address Address withing the area to be changed.
766
 * @param address Address withing the area to be changed.
767
 *
767
 *
768
 * @return Zero on success or a value from @ref errno.h on failure.
768
 * @return Zero on success or a value from @ref errno.h on failure.
769
 */
769
 */
770
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
770
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
771
{
771
{
772
    as_area_t *area;
772
    as_area_t *area;
773
    uintptr_t base;
773
    uintptr_t base;
774
    link_t *cur;
774
    link_t *cur;
775
    ipl_t ipl;
775
    ipl_t ipl;
776
    int page_flags;
776
    int page_flags;
777
    uintptr_t *old_frame;
777
    uintptr_t *old_frame;
778
    index_t frame_idx;
778
    index_t frame_idx;
779
    count_t used_pages;
779
    count_t used_pages;
780
 
780
 
781
    /* Flags for the new memory mapping */
781
    /* Flags for the new memory mapping */
782
    page_flags = area_flags_to_page_flags(flags);
782
    page_flags = area_flags_to_page_flags(flags);
783
 
783
 
784
    ipl = interrupts_disable();
784
    ipl = interrupts_disable();
785
    mutex_lock(&as->lock);
785
    mutex_lock(&as->lock);
786
 
786
 
787
    area = find_area_and_lock(as, address);
787
    area = find_area_and_lock(as, address);
788
    if (!area) {
788
    if (!area) {
789
        mutex_unlock(&as->lock);
789
        mutex_unlock(&as->lock);
790
        interrupts_restore(ipl);
790
        interrupts_restore(ipl);
791
        return ENOENT;
791
        return ENOENT;
792
    }
792
    }
793
 
793
 
794
    if (area->sh_info || area->backend != &anon_backend) {
794
    if (area->sh_info || area->backend != &anon_backend) {
795
        /* Copying shared areas not supported yet */
795
        /* Copying shared areas not supported yet */
796
        /* Copying non-anonymous memory not supported yet */
796
        /* Copying non-anonymous memory not supported yet */
797
        mutex_unlock(&area->lock);
797
        mutex_unlock(&area->lock);
798
        mutex_unlock(&as->lock);
798
        mutex_unlock(&as->lock);
799
        interrupts_restore(ipl);
799
        interrupts_restore(ipl);
800
        return ENOTSUP;
800
        return ENOTSUP;
801
    }
801
    }
802
 
802
 
803
    base = area->base;
803
    base = area->base;
804
 
804
 
805
    /*
805
    /*
806
     * Compute total number of used pages in the used_space B+tree
806
     * Compute total number of used pages in the used_space B+tree
807
     */
807
     */
808
    used_pages = 0;
808
    used_pages = 0;
809
 
809
 
810
    for (cur = area->used_space.leaf_head.next;
810
    for (cur = area->used_space.leaf_head.next;
811
        cur != &area->used_space.leaf_head; cur = cur->next) {
811
        cur != &area->used_space.leaf_head; cur = cur->next) {
812
        btree_node_t *node;
812
        btree_node_t *node;
813
        unsigned int i;
813
        unsigned int i;
814
       
814
       
815
        node = list_get_instance(cur, btree_node_t, leaf_link);
815
        node = list_get_instance(cur, btree_node_t, leaf_link);
816
        for (i = 0; i < node->keys; i++) {
816
        for (i = 0; i < node->keys; i++) {
817
            used_pages += (count_t) node->value[i];
817
            used_pages += (count_t) node->value[i];
818
        }
818
        }
819
    }
819
    }
820
 
820
 
821
    /* An array for storing frame numbers */
821
    /* An array for storing frame numbers */
822
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
822
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
823
 
823
 
824
    /*
824
    /*
825
     * Start TLB shootdown sequence.
825
     * Start TLB shootdown sequence.
826
     */
826
     */
827
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
827
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
828
 
828
 
829
    /*
829
    /*
830
     * Remove used pages from page tables and remember their frame
830
     * Remove used pages from page tables and remember their frame
831
     * numbers.
831
     * numbers.
832
     */
832
     */
833
    frame_idx = 0;
833
    frame_idx = 0;
834
 
834
 
835
    for (cur = area->used_space.leaf_head.next;
835
    for (cur = area->used_space.leaf_head.next;
836
        cur != &area->used_space.leaf_head; cur = cur->next) {
836
        cur != &area->used_space.leaf_head; cur = cur->next) {
837
        btree_node_t *node;
837
        btree_node_t *node;
838
        unsigned int i;
838
        unsigned int i;
839
       
839
       
840
        node = list_get_instance(cur, btree_node_t, leaf_link);
840
        node = list_get_instance(cur, btree_node_t, leaf_link);
841
        for (i = 0; i < node->keys; i++) {
841
        for (i = 0; i < node->keys; i++) {
842
            uintptr_t b = node->key[i];
842
            uintptr_t b = node->key[i];
843
            count_t j;
843
            count_t j;
844
            pte_t *pte;
844
            pte_t *pte;
845
           
845
           
846
            for (j = 0; j < (count_t) node->value[i]; j++) {
846
            for (j = 0; j < (count_t) node->value[i]; j++) {
847
                page_table_lock(as, false);
847
                page_table_lock(as, false);
848
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
848
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
849
                ASSERT(pte && PTE_VALID(pte) &&
849
                ASSERT(pte && PTE_VALID(pte) &&
850
                    PTE_PRESENT(pte));
850
                    PTE_PRESENT(pte));
851
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
851
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
852
 
852
 
853
                /* Remove old mapping */
853
                /* Remove old mapping */
854
                page_mapping_remove(as, b + j * PAGE_SIZE);
854
                page_mapping_remove(as, b + j * PAGE_SIZE);
855
                page_table_unlock(as, false);
855
                page_table_unlock(as, false);
856
            }
856
            }
857
        }
857
        }
858
    }
858
    }
859
 
859
 
860
    /*
860
    /*
861
     * Finish TLB shootdown sequence.
861
     * Finish TLB shootdown sequence.
862
     */
862
     */
863
 
863
 
864
    tlb_invalidate_pages(as->asid, area->base, area->pages);
864
    tlb_invalidate_pages(as->asid, area->base, area->pages);
865
    /*
865
    /*
866
     * Invalidate potential software translation caches (e.g. TSB on
866
     * Invalidate potential software translation caches (e.g. TSB on
867
     * sparc64).
867
     * sparc64).
868
     */
868
     */
869
    as_invalidate_translation_cache(as, area->base, area->pages);
869
    as_invalidate_translation_cache(as, area->base, area->pages);
870
    tlb_shootdown_finalize();
870
    tlb_shootdown_finalize();
871
 
871
 
872
    /*
872
    /*
-
 
873
     * Set the new flags.
-
 
874
     */
-
 
875
    area->flags = flags;
-
 
876
 
-
 
877
    /*
873
     * Map pages back in with new flags. This step is kept separate
878
     * Map pages back in with new flags. This step is kept separate
874
     * so that there's no instant when the memory area could be
879
     * so that there's no instant when the memory area could be
875
     * accesed with both the old and the new flags at once.
880
     * accesed with both the old and the new flags at once.
876
     */
881
     */
877
    frame_idx = 0;
882
    frame_idx = 0;
878
 
883
 
879
    for (cur = area->used_space.leaf_head.next;
884
    for (cur = area->used_space.leaf_head.next;
880
        cur != &area->used_space.leaf_head; cur = cur->next) {
885
        cur != &area->used_space.leaf_head; cur = cur->next) {
881
        btree_node_t *node;
886
        btree_node_t *node;
882
        unsigned int i;
887
        unsigned int i;
883
       
888
       
884
        node = list_get_instance(cur, btree_node_t, leaf_link);
889
        node = list_get_instance(cur, btree_node_t, leaf_link);
885
        for (i = 0; i < node->keys; i++) {
890
        for (i = 0; i < node->keys; i++) {
886
            uintptr_t b = node->key[i];
891
            uintptr_t b = node->key[i];
887
            count_t j;
892
            count_t j;
888
           
893
           
889
            for (j = 0; j < (count_t) node->value[i]; j++) {
894
            for (j = 0; j < (count_t) node->value[i]; j++) {
890
                page_table_lock(as, false);
895
                page_table_lock(as, false);
891
 
896
 
892
                /* Insert the new mapping */
897
                /* Insert the new mapping */
893
                page_mapping_insert(as, b + j * PAGE_SIZE,
898
                page_mapping_insert(as, b + j * PAGE_SIZE,
894
                    old_frame[frame_idx++], page_flags);
899
                    old_frame[frame_idx++], page_flags);
895
 
900
 
896
                page_table_unlock(as, false);
901
                page_table_unlock(as, false);
897
            }
902
            }
898
        }
903
        }
899
    }
904
    }
900
 
905
 
901
    free(old_frame);
906
    free(old_frame);
902
 
907
 
903
    mutex_unlock(&area->lock);
908
    mutex_unlock(&area->lock);
904
    mutex_unlock(&as->lock);
909
    mutex_unlock(&as->lock);
905
    interrupts_restore(ipl);
910
    interrupts_restore(ipl);
906
 
911
 
907
    return 0;
912
    return 0;
908
}
913
}
909
 
914
 
910
 
915
 
911
/** Handle page fault within the current address space.
916
/** Handle page fault within the current address space.
912
 *
917
 *
913
 * This is the high-level page fault handler. It decides
918
 * This is the high-level page fault handler. It decides
914
 * whether the page fault can be resolved by any backend
919
 * whether the page fault can be resolved by any backend
915
 * and if so, it invokes the backend to resolve the page
920
 * and if so, it invokes the backend to resolve the page
916
 * fault.
921
 * fault.
917
 *
922
 *
918
 * Interrupts are assumed disabled.
923
 * Interrupts are assumed disabled.
919
 *
924
 *
920
 * @param page Faulting page.
925
 * @param page Faulting page.
921
 * @param access Access mode that caused the fault (i.e. read/write/exec).
926
 * @param access Access mode that caused the fault (i.e. read/write/exec).
922
 * @param istate Pointer to interrupted state.
927
 * @param istate Pointer to interrupted state.
923
 *
928
 *
924
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
929
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
925
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
930
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
926
 */
931
 */
927
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
932
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
928
{
933
{
929
    pte_t *pte;
934
    pte_t *pte;
930
    as_area_t *area;
935
    as_area_t *area;
931
   
936
   
932
    if (!THREAD)
937
    if (!THREAD)
933
        return AS_PF_FAULT;
938
        return AS_PF_FAULT;
934
       
939
       
935
    ASSERT(AS);
940
    ASSERT(AS);
936
 
941
 
937
    mutex_lock(&AS->lock);
942
    mutex_lock(&AS->lock);
938
    area = find_area_and_lock(AS, page);   
943
    area = find_area_and_lock(AS, page);   
939
    if (!area) {
944
    if (!area) {
940
        /*
945
        /*
941
         * No area contained mapping for 'page'.
946
         * No area contained mapping for 'page'.
942
         * Signal page fault to low-level handler.
947
         * Signal page fault to low-level handler.
943
         */
948
         */
944
        mutex_unlock(&AS->lock);
949
        mutex_unlock(&AS->lock);
945
        goto page_fault;
950
        goto page_fault;
946
    }
951
    }
947
 
952
 
948
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
953
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
949
        /*
954
        /*
950
         * The address space area is not fully initialized.
955
         * The address space area is not fully initialized.
951
         * Avoid possible race by returning error.
956
         * Avoid possible race by returning error.
952
         */
957
         */
953
        mutex_unlock(&area->lock);
958
        mutex_unlock(&area->lock);
954
        mutex_unlock(&AS->lock);
959
        mutex_unlock(&AS->lock);
955
        goto page_fault;       
960
        goto page_fault;       
956
    }
961
    }
957
 
962
 
958
    if (!area->backend || !area->backend->page_fault) {
963
    if (!area->backend || !area->backend->page_fault) {
959
        /*
964
        /*
960
         * The address space area is not backed by any backend
965
         * The address space area is not backed by any backend
961
         * or the backend cannot handle page faults.
966
         * or the backend cannot handle page faults.
962
         */
967
         */
963
        mutex_unlock(&area->lock);
968
        mutex_unlock(&area->lock);
964
        mutex_unlock(&AS->lock);
969
        mutex_unlock(&AS->lock);
965
        goto page_fault;       
970
        goto page_fault;       
966
    }
971
    }
967
 
972
 
968
    page_table_lock(AS, false);
973
    page_table_lock(AS, false);
969
   
974
   
970
    /*
975
    /*
971
     * To avoid race condition between two page faults
976
     * To avoid race condition between two page faults
972
     * on the same address, we need to make sure
977
     * on the same address, we need to make sure
973
     * the mapping has not been already inserted.
978
     * the mapping has not been already inserted.
974
     */
979
     */
975
    if ((pte = page_mapping_find(AS, page))) {
980
    if ((pte = page_mapping_find(AS, page))) {
976
        if (PTE_PRESENT(pte)) {
981
        if (PTE_PRESENT(pte)) {
977
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
982
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
978
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
983
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
979
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
984
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
980
                page_table_unlock(AS, false);
985
                page_table_unlock(AS, false);
981
                mutex_unlock(&area->lock);
986
                mutex_unlock(&area->lock);
982
                mutex_unlock(&AS->lock);
987
                mutex_unlock(&AS->lock);
983
                return AS_PF_OK;
988
                return AS_PF_OK;
984
            }
989
            }
985
        }
990
        }
986
    }
991
    }
987
   
992
   
988
    /*
993
    /*
989
     * Resort to the backend page fault handler.
994
     * Resort to the backend page fault handler.
990
     */
995
     */
991
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
996
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
992
        page_table_unlock(AS, false);
997
        page_table_unlock(AS, false);
993
        mutex_unlock(&area->lock);
998
        mutex_unlock(&area->lock);
994
        mutex_unlock(&AS->lock);
999
        mutex_unlock(&AS->lock);
995
        goto page_fault;
1000
        goto page_fault;
996
    }
1001
    }
997
   
1002
   
998
    page_table_unlock(AS, false);
1003
    page_table_unlock(AS, false);
999
    mutex_unlock(&area->lock);
1004
    mutex_unlock(&area->lock);
1000
    mutex_unlock(&AS->lock);
1005
    mutex_unlock(&AS->lock);
1001
    return AS_PF_OK;
1006
    return AS_PF_OK;
1002
 
1007
 
1003
page_fault:
1008
page_fault:
1004
    if (THREAD->in_copy_from_uspace) {
1009
    if (THREAD->in_copy_from_uspace) {
1005
        THREAD->in_copy_from_uspace = false;
1010
        THREAD->in_copy_from_uspace = false;
1006
        istate_set_retaddr(istate,
1011
        istate_set_retaddr(istate,
1007
            (uintptr_t) &memcpy_from_uspace_failover_address);
1012
            (uintptr_t) &memcpy_from_uspace_failover_address);
1008
    } else if (THREAD->in_copy_to_uspace) {
1013
    } else if (THREAD->in_copy_to_uspace) {
1009
        THREAD->in_copy_to_uspace = false;
1014
        THREAD->in_copy_to_uspace = false;
1010
        istate_set_retaddr(istate,
1015
        istate_set_retaddr(istate,
1011
            (uintptr_t) &memcpy_to_uspace_failover_address);
1016
            (uintptr_t) &memcpy_to_uspace_failover_address);
1012
    } else {
1017
    } else {
1013
        return AS_PF_FAULT;
1018
        return AS_PF_FAULT;
1014
    }
1019
    }
1015
 
1020
 
1016
    return AS_PF_DEFER;
1021
    return AS_PF_DEFER;
1017
}
1022
}
1018
 
1023
 
1019
/** Switch address spaces.
1024
/** Switch address spaces.
1020
 *
1025
 *
1021
 * Note that this function cannot sleep as it is essentially a part of
1026
 * Note that this function cannot sleep as it is essentially a part of
1022
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1027
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1023
 * thing which is forbidden in this context is locking the address space.
1028
 * thing which is forbidden in this context is locking the address space.
1024
 *
1029
 *
1025
 * When this function is enetered, no spinlocks may be held.
1030
 * When this function is enetered, no spinlocks may be held.
1026
 *
1031
 *
1027
 * @param old Old address space or NULL.
1032
 * @param old Old address space or NULL.
1028
 * @param new New address space.
1033
 * @param new New address space.
1029
 */
1034
 */
1030
void as_switch(as_t *old_as, as_t *new_as)
1035
void as_switch(as_t *old_as, as_t *new_as)
1031
{
1036
{
1032
    DEADLOCK_PROBE_INIT(p_asidlock);
1037
    DEADLOCK_PROBE_INIT(p_asidlock);
1033
    preemption_disable();
1038
    preemption_disable();
1034
retry:
1039
retry:
1035
    (void) interrupts_disable();
1040
    (void) interrupts_disable();
1036
    if (!spinlock_trylock(&asidlock)) {
1041
    if (!spinlock_trylock(&asidlock)) {
1037
        /*
1042
        /*
1038
         * Avoid deadlock with TLB shootdown.
1043
         * Avoid deadlock with TLB shootdown.
1039
         * We can enable interrupts here because
1044
         * We can enable interrupts here because
1040
         * preemption is disabled. We should not be
1045
         * preemption is disabled. We should not be
1041
         * holding any other lock.
1046
         * holding any other lock.
1042
         */
1047
         */
1043
        (void) interrupts_enable();
1048
        (void) interrupts_enable();
1044
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1049
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1045
        goto retry;
1050
        goto retry;
1046
    }
1051
    }
1047
    preemption_enable();
1052
    preemption_enable();
1048
 
1053
 
1049
    /*
1054
    /*
1050
     * First, take care of the old address space.
1055
     * First, take care of the old address space.
1051
     */
1056
     */
1052
    if (old_as) {
1057
    if (old_as) {
1053
        ASSERT(old_as->cpu_refcount);
1058
        ASSERT(old_as->cpu_refcount);
1054
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1059
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1055
            /*
1060
            /*
1056
             * The old address space is no longer active on
1061
             * The old address space is no longer active on
1057
             * any processor. It can be appended to the
1062
             * any processor. It can be appended to the
1058
             * list of inactive address spaces with assigned
1063
             * list of inactive address spaces with assigned
1059
             * ASID.
1064
             * ASID.
1060
             */
1065
             */
1061
            ASSERT(old_as->asid != ASID_INVALID);
1066
            ASSERT(old_as->asid != ASID_INVALID);
1062
            list_append(&old_as->inactive_as_with_asid_link,
1067
            list_append(&old_as->inactive_as_with_asid_link,
1063
                &inactive_as_with_asid_head);
1068
                &inactive_as_with_asid_head);
1064
        }
1069
        }
1065
 
1070
 
1066
        /*
1071
        /*
1067
         * Perform architecture-specific tasks when the address space
1072
         * Perform architecture-specific tasks when the address space
1068
         * is being removed from the CPU.
1073
         * is being removed from the CPU.
1069
         */
1074
         */
1070
        as_deinstall_arch(old_as);
1075
        as_deinstall_arch(old_as);
1071
    }
1076
    }
1072
 
1077
 
1073
    /*
1078
    /*
1074
     * Second, prepare the new address space.
1079
     * Second, prepare the new address space.
1075
     */
1080
     */
1076
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1081
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1077
        if (new_as->asid != ASID_INVALID)
1082
        if (new_as->asid != ASID_INVALID)
1078
            list_remove(&new_as->inactive_as_with_asid_link);
1083
            list_remove(&new_as->inactive_as_with_asid_link);
1079
        else
1084
        else
1080
            new_as->asid = asid_get();
1085
            new_as->asid = asid_get();
1081
    }
1086
    }
1082
#ifdef AS_PAGE_TABLE
1087
#ifdef AS_PAGE_TABLE
1083
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1088
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1084
#endif
1089
#endif
1085
   
1090
   
1086
    /*
1091
    /*
1087
     * Perform architecture-specific steps.
1092
     * Perform architecture-specific steps.
1088
     * (e.g. write ASID to hardware register etc.)
1093
     * (e.g. write ASID to hardware register etc.)
1089
     */
1094
     */
1090
    as_install_arch(new_as);
1095
    as_install_arch(new_as);
1091
 
1096
 
1092
    spinlock_unlock(&asidlock);
1097
    spinlock_unlock(&asidlock);
1093
   
1098
   
1094
    AS = new_as;
1099
    AS = new_as;
1095
}
1100
}
1096
 
1101
 
1097
/** Convert address space area flags to page flags.
1102
/** Convert address space area flags to page flags.
1098
 *
1103
 *
1099
 * @param aflags Flags of some address space area.
1104
 * @param aflags Flags of some address space area.
1100
 *
1105
 *
1101
 * @return Flags to be passed to page_mapping_insert().
1106
 * @return Flags to be passed to page_mapping_insert().
1102
 */
1107
 */
1103
int area_flags_to_page_flags(int aflags)
1108
int area_flags_to_page_flags(int aflags)
1104
{
1109
{
1105
    int flags;
1110
    int flags;
1106
 
1111
 
1107
    flags = PAGE_USER | PAGE_PRESENT;
1112
    flags = PAGE_USER | PAGE_PRESENT;
1108
   
1113
   
1109
    if (aflags & AS_AREA_READ)
1114
    if (aflags & AS_AREA_READ)
1110
        flags |= PAGE_READ;
1115
        flags |= PAGE_READ;
1111
       
1116
       
1112
    if (aflags & AS_AREA_WRITE)
1117
    if (aflags & AS_AREA_WRITE)
1113
        flags |= PAGE_WRITE;
1118
        flags |= PAGE_WRITE;
1114
   
1119
   
1115
    if (aflags & AS_AREA_EXEC)
1120
    if (aflags & AS_AREA_EXEC)
1116
        flags |= PAGE_EXEC;
1121
        flags |= PAGE_EXEC;
1117
   
1122
   
1118
    if (aflags & AS_AREA_CACHEABLE)
1123
    if (aflags & AS_AREA_CACHEABLE)
1119
        flags |= PAGE_CACHEABLE;
1124
        flags |= PAGE_CACHEABLE;
1120
       
1125
       
1121
    return flags;
1126
    return flags;
1122
}
1127
}
1123
 
1128
 
1124
/** Compute flags for virtual address translation subsytem.
1129
/** Compute flags for virtual address translation subsytem.
1125
 *
1130
 *
1126
 * The address space area must be locked.
1131
 * The address space area must be locked.
1127
 * Interrupts must be disabled.
1132
 * Interrupts must be disabled.
1128
 *
1133
 *
1129
 * @param a Address space area.
1134
 * @param a Address space area.
1130
 *
1135
 *
1131
 * @return Flags to be used in page_mapping_insert().
1136
 * @return Flags to be used in page_mapping_insert().
1132
 */
1137
 */
1133
int as_area_get_flags(as_area_t *a)
1138
int as_area_get_flags(as_area_t *a)
1134
{
1139
{
1135
    return area_flags_to_page_flags(a->flags);
1140
    return area_flags_to_page_flags(a->flags);
1136
}
1141
}
1137
 
1142
 
1138
/** Create page table.
1143
/** Create page table.
1139
 *
1144
 *
1140
 * Depending on architecture, create either address space
1145
 * Depending on architecture, create either address space
1141
 * private or global page table.
1146
 * private or global page table.
1142
 *
1147
 *
1143
 * @param flags Flags saying whether the page table is for kernel address space.
1148
 * @param flags Flags saying whether the page table is for kernel address space.
1144
 *
1149
 *
1145
 * @return First entry of the page table.
1150
 * @return First entry of the page table.
1146
 */
1151
 */
1147
pte_t *page_table_create(int flags)
1152
pte_t *page_table_create(int flags)
1148
{
1153
{
1149
    ASSERT(as_operations);
1154
    ASSERT(as_operations);
1150
    ASSERT(as_operations->page_table_create);
1155
    ASSERT(as_operations->page_table_create);
1151
   
1156
   
1152
    return as_operations->page_table_create(flags);
1157
    return as_operations->page_table_create(flags);
1153
}
1158
}
1154
 
1159
 
1155
/** Destroy page table.
1160
/** Destroy page table.
1156
 *
1161
 *
1157
 * Destroy page table in architecture specific way.
1162
 * Destroy page table in architecture specific way.
1158
 *
1163
 *
1159
 * @param page_table Physical address of PTL0.
1164
 * @param page_table Physical address of PTL0.
1160
 */
1165
 */
1161
void page_table_destroy(pte_t *page_table)
1166
void page_table_destroy(pte_t *page_table)
1162
{
1167
{
1163
    ASSERT(as_operations);
1168
    ASSERT(as_operations);
1164
    ASSERT(as_operations->page_table_destroy);
1169
    ASSERT(as_operations->page_table_destroy);
1165
   
1170
   
1166
    as_operations->page_table_destroy(page_table);
1171
    as_operations->page_table_destroy(page_table);
1167
}
1172
}
1168
 
1173
 
1169
/** Lock page table.
1174
/** Lock page table.
1170
 *
1175
 *
1171
 * This function should be called before any page_mapping_insert(),
1176
 * This function should be called before any page_mapping_insert(),
1172
 * page_mapping_remove() and page_mapping_find().
1177
 * page_mapping_remove() and page_mapping_find().
1173
 *
1178
 *
1174
 * Locking order is such that address space areas must be locked
1179
 * Locking order is such that address space areas must be locked
1175
 * prior to this call. Address space can be locked prior to this
1180
 * prior to this call. Address space can be locked prior to this
1176
 * call in which case the lock argument is false.
1181
 * call in which case the lock argument is false.
1177
 *
1182
 *
1178
 * @param as Address space.
1183
 * @param as Address space.
1179
 * @param lock If false, do not attempt to lock as->lock.
1184
 * @param lock If false, do not attempt to lock as->lock.
1180
 */
1185
 */
1181
void page_table_lock(as_t *as, bool lock)
1186
void page_table_lock(as_t *as, bool lock)
1182
{
1187
{
1183
    ASSERT(as_operations);
1188
    ASSERT(as_operations);
1184
    ASSERT(as_operations->page_table_lock);
1189
    ASSERT(as_operations->page_table_lock);
1185
   
1190
   
1186
    as_operations->page_table_lock(as, lock);
1191
    as_operations->page_table_lock(as, lock);
1187
}
1192
}
1188
 
1193
 
1189
/** Unlock page table.
1194
/** Unlock page table.
1190
 *
1195
 *
1191
 * @param as Address space.
1196
 * @param as Address space.
1192
 * @param unlock If false, do not attempt to unlock as->lock.
1197
 * @param unlock If false, do not attempt to unlock as->lock.
1193
 */
1198
 */
1194
void page_table_unlock(as_t *as, bool unlock)
1199
void page_table_unlock(as_t *as, bool unlock)
1195
{
1200
{
1196
    ASSERT(as_operations);
1201
    ASSERT(as_operations);
1197
    ASSERT(as_operations->page_table_unlock);
1202
    ASSERT(as_operations->page_table_unlock);
1198
   
1203
   
1199
    as_operations->page_table_unlock(as, unlock);
1204
    as_operations->page_table_unlock(as, unlock);
1200
}
1205
}
1201
 
1206
 
1202
 
1207
 
1203
/** Find address space area and lock it.
1208
/** Find address space area and lock it.
1204
 *
1209
 *
1205
 * The address space must be locked and interrupts must be disabled.
1210
 * The address space must be locked and interrupts must be disabled.
1206
 *
1211
 *
1207
 * @param as Address space.
1212
 * @param as Address space.
1208
 * @param va Virtual address.
1213
 * @param va Virtual address.
1209
 *
1214
 *
1210
 * @return Locked address space area containing va on success or NULL on
1215
 * @return Locked address space area containing va on success or NULL on
1211
 *     failure.
1216
 *     failure.
1212
 */
1217
 */
1213
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1218
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1214
{
1219
{
1215
    as_area_t *a;
1220
    as_area_t *a;
1216
    btree_node_t *leaf, *lnode;
1221
    btree_node_t *leaf, *lnode;
1217
    unsigned int i;
1222
    unsigned int i;
1218
   
1223
   
1219
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1224
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1220
    if (a) {
1225
    if (a) {
1221
        /* va is the base address of an address space area */
1226
        /* va is the base address of an address space area */
1222
        mutex_lock(&a->lock);
1227
        mutex_lock(&a->lock);
1223
        return a;
1228
        return a;
1224
    }
1229
    }
1225
   
1230
   
1226
    /*
1231
    /*
1227
     * Search the leaf node and the righmost record of its left neighbour
1232
     * Search the leaf node and the righmost record of its left neighbour
1228
     * to find out whether this is a miss or va belongs to an address
1233
     * to find out whether this is a miss or va belongs to an address
1229
     * space area found there.
1234
     * space area found there.
1230
     */
1235
     */
1231
   
1236
   
1232
    /* First, search the leaf node itself. */
1237
    /* First, search the leaf node itself. */
1233
    for (i = 0; i < leaf->keys; i++) {
1238
    for (i = 0; i < leaf->keys; i++) {
1234
        a = (as_area_t *) leaf->value[i];
1239
        a = (as_area_t *) leaf->value[i];
1235
        mutex_lock(&a->lock);
1240
        mutex_lock(&a->lock);
1236
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1241
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1237
            return a;
1242
            return a;
1238
        }
1243
        }
1239
        mutex_unlock(&a->lock);
1244
        mutex_unlock(&a->lock);
1240
    }
1245
    }
1241
 
1246
 
1242
    /*
1247
    /*
1243
     * Second, locate the left neighbour and test its last record.
1248
     * Second, locate the left neighbour and test its last record.
1244
     * Because of its position in the B+tree, it must have base < va.
1249
     * Because of its position in the B+tree, it must have base < va.
1245
     */
1250
     */
1246
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1251
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1247
    if (lnode) {
1252
    if (lnode) {
1248
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1253
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1249
        mutex_lock(&a->lock);
1254
        mutex_lock(&a->lock);
1250
        if (va < a->base + a->pages * PAGE_SIZE) {
1255
        if (va < a->base + a->pages * PAGE_SIZE) {
1251
            return a;
1256
            return a;
1252
        }
1257
        }
1253
        mutex_unlock(&a->lock);
1258
        mutex_unlock(&a->lock);
1254
    }
1259
    }
1255
 
1260
 
1256
    return NULL;
1261
    return NULL;
1257
}
1262
}
1258
 
1263
 
1259
/** Check area conflicts with other areas.
1264
/** Check area conflicts with other areas.
1260
 *
1265
 *
1261
 * The address space must be locked and interrupts must be disabled.
1266
 * The address space must be locked and interrupts must be disabled.
1262
 *
1267
 *
1263
 * @param as Address space.
1268
 * @param as Address space.
1264
 * @param va Starting virtual address of the area being tested.
1269
 * @param va Starting virtual address of the area being tested.
1265
 * @param size Size of the area being tested.
1270
 * @param size Size of the area being tested.
1266
 * @param avoid_area Do not touch this area.
1271
 * @param avoid_area Do not touch this area.
1267
 *
1272
 *
1268
 * @return True if there is no conflict, false otherwise.
1273
 * @return True if there is no conflict, false otherwise.
1269
 */
1274
 */
1270
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1275
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1271
              as_area_t *avoid_area)
1276
              as_area_t *avoid_area)
1272
{
1277
{
1273
    as_area_t *a;
1278
    as_area_t *a;
1274
    btree_node_t *leaf, *node;
1279
    btree_node_t *leaf, *node;
1275
    unsigned int i;
1280
    unsigned int i;
1276
   
1281
   
1277
    /*
1282
    /*
1278
     * We don't want any area to have conflicts with NULL page.
1283
     * We don't want any area to have conflicts with NULL page.
1279
     */
1284
     */
1280
    if (overlaps(va, size, NULL, PAGE_SIZE))
1285
    if (overlaps(va, size, NULL, PAGE_SIZE))
1281
        return false;
1286
        return false;
1282
   
1287
   
1283
    /*
1288
    /*
1284
     * The leaf node is found in O(log n), where n is proportional to
1289
     * The leaf node is found in O(log n), where n is proportional to
1285
     * the number of address space areas belonging to as.
1290
     * the number of address space areas belonging to as.
1286
     * The check for conflicts is then attempted on the rightmost
1291
     * The check for conflicts is then attempted on the rightmost
1287
     * record in the left neighbour, the leftmost record in the right
1292
     * record in the left neighbour, the leftmost record in the right
1288
     * neighbour and all records in the leaf node itself.
1293
     * neighbour and all records in the leaf node itself.
1289
     */
1294
     */
1290
   
1295
   
1291
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1296
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1292
        if (a != avoid_area)
1297
        if (a != avoid_area)
1293
            return false;
1298
            return false;
1294
    }
1299
    }
1295
   
1300
   
1296
    /* First, check the two border cases. */
1301
    /* First, check the two border cases. */
1297
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1302
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1298
        a = (as_area_t *) node->value[node->keys - 1];
1303
        a = (as_area_t *) node->value[node->keys - 1];
1299
        mutex_lock(&a->lock);
1304
        mutex_lock(&a->lock);
1300
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1305
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1301
            mutex_unlock(&a->lock);
1306
            mutex_unlock(&a->lock);
1302
            return false;
1307
            return false;
1303
        }
1308
        }
1304
        mutex_unlock(&a->lock);
1309
        mutex_unlock(&a->lock);
1305
    }
1310
    }
1306
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1311
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1307
    if (node) {
1312
    if (node) {
1308
        a = (as_area_t *) node->value[0];
1313
        a = (as_area_t *) node->value[0];
1309
        mutex_lock(&a->lock);
1314
        mutex_lock(&a->lock);
1310
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1315
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1311
            mutex_unlock(&a->lock);
1316
            mutex_unlock(&a->lock);
1312
            return false;
1317
            return false;
1313
        }
1318
        }
1314
        mutex_unlock(&a->lock);
1319
        mutex_unlock(&a->lock);
1315
    }
1320
    }
1316
   
1321
   
1317
    /* Second, check the leaf node. */
1322
    /* Second, check the leaf node. */
1318
    for (i = 0; i < leaf->keys; i++) {
1323
    for (i = 0; i < leaf->keys; i++) {
1319
        a = (as_area_t *) leaf->value[i];
1324
        a = (as_area_t *) leaf->value[i];
1320
   
1325
   
1321
        if (a == avoid_area)
1326
        if (a == avoid_area)
1322
            continue;
1327
            continue;
1323
   
1328
   
1324
        mutex_lock(&a->lock);
1329
        mutex_lock(&a->lock);
1325
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1330
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1326
            mutex_unlock(&a->lock);
1331
            mutex_unlock(&a->lock);
1327
            return false;
1332
            return false;
1328
        }
1333
        }
1329
        mutex_unlock(&a->lock);
1334
        mutex_unlock(&a->lock);
1330
    }
1335
    }
1331
 
1336
 
1332
    /*
1337
    /*
1333
     * So far, the area does not conflict with other areas.
1338
     * So far, the area does not conflict with other areas.
1334
     * Check if it doesn't conflict with kernel address space.
1339
     * Check if it doesn't conflict with kernel address space.
1335
     */  
1340
     */  
1336
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1341
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1337
        return !overlaps(va, size,
1342
        return !overlaps(va, size,
1338
            KERNEL_ADDRESS_SPACE_START,
1343
            KERNEL_ADDRESS_SPACE_START,
1339
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1344
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1340
    }
1345
    }
1341
 
1346
 
1342
    return true;
1347
    return true;
1343
}
1348
}
1344
 
1349
 
1345
/** Return size of the address space area with given base.
1350
/** Return size of the address space area with given base.
1346
 *
1351
 *
1347
 * @param base      Arbitrary address insede the address space area.
1352
 * @param base      Arbitrary address insede the address space area.
1348
 *
1353
 *
1349
 * @return      Size of the address space area in bytes or zero if it
1354
 * @return      Size of the address space area in bytes or zero if it
1350
 *          does not exist.
1355
 *          does not exist.
1351
 */
1356
 */
1352
size_t as_area_get_size(uintptr_t base)
1357
size_t as_area_get_size(uintptr_t base)
1353
{
1358
{
1354
    ipl_t ipl;
1359
    ipl_t ipl;
1355
    as_area_t *src_area;
1360
    as_area_t *src_area;
1356
    size_t size;
1361
    size_t size;
1357
 
1362
 
1358
    ipl = interrupts_disable();
1363
    ipl = interrupts_disable();
1359
    src_area = find_area_and_lock(AS, base);
1364
    src_area = find_area_and_lock(AS, base);
1360
    if (src_area){
1365
    if (src_area){
1361
        size = src_area->pages * PAGE_SIZE;
1366
        size = src_area->pages * PAGE_SIZE;
1362
        mutex_unlock(&src_area->lock);
1367
        mutex_unlock(&src_area->lock);
1363
    } else {
1368
    } else {
1364
        size = 0;
1369
        size = 0;
1365
    }
1370
    }
1366
    interrupts_restore(ipl);
1371
    interrupts_restore(ipl);
1367
    return size;
1372
    return size;
1368
}
1373
}
1369
 
1374
 
1370
/** Mark portion of address space area as used.
1375
/** Mark portion of address space area as used.
1371
 *
1376
 *
1372
 * The address space area must be already locked.
1377
 * The address space area must be already locked.
1373
 *
1378
 *
1374
 * @param a Address space area.
1379
 * @param a Address space area.
1375
 * @param page First page to be marked.
1380
 * @param page First page to be marked.
1376
 * @param count Number of page to be marked.
1381
 * @param count Number of page to be marked.
1377
 *
1382
 *
1378
 * @return 0 on failure and 1 on success.
1383
 * @return 0 on failure and 1 on success.
1379
 */
1384
 */
1380
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1385
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1381
{
1386
{
1382
    btree_node_t *leaf, *node;
1387
    btree_node_t *leaf, *node;
1383
    count_t pages;
1388
    count_t pages;
1384
    unsigned int i;
1389
    unsigned int i;
1385
 
1390
 
1386
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1391
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1387
    ASSERT(count);
1392
    ASSERT(count);
1388
 
1393
 
1389
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1394
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1390
    if (pages) {
1395
    if (pages) {
1391
        /*
1396
        /*
1392
         * We hit the beginning of some used space.
1397
         * We hit the beginning of some used space.
1393
         */
1398
         */
1394
        return 0;
1399
        return 0;
1395
    }
1400
    }
1396
 
1401
 
1397
    if (!leaf->keys) {
1402
    if (!leaf->keys) {
1398
        btree_insert(&a->used_space, page, (void *) count, leaf);
1403
        btree_insert(&a->used_space, page, (void *) count, leaf);
1399
        return 1;
1404
        return 1;
1400
    }
1405
    }
1401
 
1406
 
1402
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1407
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1403
    if (node) {
1408
    if (node) {
1404
        uintptr_t left_pg = node->key[node->keys - 1];
1409
        uintptr_t left_pg = node->key[node->keys - 1];
1405
        uintptr_t right_pg = leaf->key[0];
1410
        uintptr_t right_pg = leaf->key[0];
1406
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1411
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1407
        count_t right_cnt = (count_t) leaf->value[0];
1412
        count_t right_cnt = (count_t) leaf->value[0];
1408
       
1413
       
1409
        /*
1414
        /*
1410
         * Examine the possibility that the interval fits
1415
         * Examine the possibility that the interval fits
1411
         * somewhere between the rightmost interval of
1416
         * somewhere between the rightmost interval of
1412
         * the left neigbour and the first interval of the leaf.
1417
         * the left neigbour and the first interval of the leaf.
1413
         */
1418
         */
1414
         
1419
         
1415
        if (page >= right_pg) {
1420
        if (page >= right_pg) {
1416
            /* Do nothing. */
1421
            /* Do nothing. */
1417
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1422
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1418
            left_cnt * PAGE_SIZE)) {
1423
            left_cnt * PAGE_SIZE)) {
1419
            /* The interval intersects with the left interval. */
1424
            /* The interval intersects with the left interval. */
1420
            return 0;
1425
            return 0;
1421
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1426
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1422
            right_cnt * PAGE_SIZE)) {
1427
            right_cnt * PAGE_SIZE)) {
1423
            /* The interval intersects with the right interval. */
1428
            /* The interval intersects with the right interval. */
1424
            return 0;          
1429
            return 0;          
1425
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1430
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1426
            (page + count * PAGE_SIZE == right_pg)) {
1431
            (page + count * PAGE_SIZE == right_pg)) {
1427
            /*
1432
            /*
1428
             * The interval can be added by merging the two already
1433
             * The interval can be added by merging the two already
1429
             * present intervals.
1434
             * present intervals.
1430
             */
1435
             */
1431
            node->value[node->keys - 1] += count + right_cnt;
1436
            node->value[node->keys - 1] += count + right_cnt;
1432
            btree_remove(&a->used_space, right_pg, leaf);
1437
            btree_remove(&a->used_space, right_pg, leaf);
1433
            return 1;
1438
            return 1;
1434
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1439
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1435
            /*
1440
            /*
1436
             * The interval can be added by simply growing the left
1441
             * The interval can be added by simply growing the left
1437
             * interval.
1442
             * interval.
1438
             */
1443
             */
1439
            node->value[node->keys - 1] += count;
1444
            node->value[node->keys - 1] += count;
1440
            return 1;
1445
            return 1;
1441
        } else if (page + count * PAGE_SIZE == right_pg) {
1446
        } else if (page + count * PAGE_SIZE == right_pg) {
1442
            /*
1447
            /*
1443
             * The interval can be addded by simply moving base of
1448
             * The interval can be addded by simply moving base of
1444
             * the right interval down and increasing its size
1449
             * the right interval down and increasing its size
1445
             * accordingly.
1450
             * accordingly.
1446
             */
1451
             */
1447
            leaf->value[0] += count;
1452
            leaf->value[0] += count;
1448
            leaf->key[0] = page;
1453
            leaf->key[0] = page;
1449
            return 1;
1454
            return 1;
1450
        } else {
1455
        } else {
1451
            /*
1456
            /*
1452
             * The interval is between both neigbouring intervals,
1457
             * The interval is between both neigbouring intervals,
1453
             * but cannot be merged with any of them.
1458
             * but cannot be merged with any of them.
1454
             */
1459
             */
1455
            btree_insert(&a->used_space, page, (void *) count,
1460
            btree_insert(&a->used_space, page, (void *) count,
1456
                leaf);
1461
                leaf);
1457
            return 1;
1462
            return 1;
1458
        }
1463
        }
1459
    } else if (page < leaf->key[0]) {
1464
    } else if (page < leaf->key[0]) {
1460
        uintptr_t right_pg = leaf->key[0];
1465
        uintptr_t right_pg = leaf->key[0];
1461
        count_t right_cnt = (count_t) leaf->value[0];
1466
        count_t right_cnt = (count_t) leaf->value[0];
1462
   
1467
   
1463
        /*
1468
        /*
1464
         * Investigate the border case in which the left neighbour does
1469
         * Investigate the border case in which the left neighbour does
1465
         * not exist but the interval fits from the left.
1470
         * not exist but the interval fits from the left.
1466
         */
1471
         */
1467
         
1472
         
1468
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1473
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1469
            right_cnt * PAGE_SIZE)) {
1474
            right_cnt * PAGE_SIZE)) {
1470
            /* The interval intersects with the right interval. */
1475
            /* The interval intersects with the right interval. */
1471
            return 0;
1476
            return 0;
1472
        } else if (page + count * PAGE_SIZE == right_pg) {
1477
        } else if (page + count * PAGE_SIZE == right_pg) {
1473
            /*
1478
            /*
1474
             * The interval can be added by moving the base of the
1479
             * The interval can be added by moving the base of the
1475
             * right interval down and increasing its size
1480
             * right interval down and increasing its size
1476
             * accordingly.
1481
             * accordingly.
1477
             */
1482
             */
1478
            leaf->key[0] = page;
1483
            leaf->key[0] = page;
1479
            leaf->value[0] += count;
1484
            leaf->value[0] += count;
1480
            return 1;
1485
            return 1;
1481
        } else {
1486
        } else {
1482
            /*
1487
            /*
1483
             * The interval doesn't adjoin with the right interval.
1488
             * The interval doesn't adjoin with the right interval.
1484
             * It must be added individually.
1489
             * It must be added individually.
1485
             */
1490
             */
1486
            btree_insert(&a->used_space, page, (void *) count,
1491
            btree_insert(&a->used_space, page, (void *) count,
1487
                leaf);
1492
                leaf);
1488
            return 1;
1493
            return 1;
1489
        }
1494
        }
1490
    }
1495
    }
1491
 
1496
 
1492
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1497
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1493
    if (node) {
1498
    if (node) {
1494
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1499
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1495
        uintptr_t right_pg = node->key[0];
1500
        uintptr_t right_pg = node->key[0];
1496
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1501
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1497
        count_t right_cnt = (count_t) node->value[0];
1502
        count_t right_cnt = (count_t) node->value[0];
1498
       
1503
       
1499
        /*
1504
        /*
1500
         * Examine the possibility that the interval fits
1505
         * Examine the possibility that the interval fits
1501
         * somewhere between the leftmost interval of
1506
         * somewhere between the leftmost interval of
1502
         * the right neigbour and the last interval of the leaf.
1507
         * the right neigbour and the last interval of the leaf.
1503
         */
1508
         */
1504
 
1509
 
1505
        if (page < left_pg) {
1510
        if (page < left_pg) {
1506
            /* Do nothing. */
1511
            /* Do nothing. */
1507
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1512
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1508
            left_cnt * PAGE_SIZE)) {
1513
            left_cnt * PAGE_SIZE)) {
1509
            /* The interval intersects with the left interval. */
1514
            /* The interval intersects with the left interval. */
1510
            return 0;
1515
            return 0;
1511
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1516
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1512
            right_cnt * PAGE_SIZE)) {
1517
            right_cnt * PAGE_SIZE)) {
1513
            /* The interval intersects with the right interval. */
1518
            /* The interval intersects with the right interval. */
1514
            return 0;          
1519
            return 0;          
1515
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1520
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1516
            (page + count * PAGE_SIZE == right_pg)) {
1521
            (page + count * PAGE_SIZE == right_pg)) {
1517
            /*
1522
            /*
1518
             * The interval can be added by merging the two already
1523
             * The interval can be added by merging the two already
1519
             * present intervals.
1524
             * present intervals.
1520
             * */
1525
             * */
1521
            leaf->value[leaf->keys - 1] += count + right_cnt;
1526
            leaf->value[leaf->keys - 1] += count + right_cnt;
1522
            btree_remove(&a->used_space, right_pg, node);
1527
            btree_remove(&a->used_space, right_pg, node);
1523
            return 1;
1528
            return 1;
1524
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1529
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1525
            /*
1530
            /*
1526
             * The interval can be added by simply growing the left
1531
             * The interval can be added by simply growing the left
1527
             * interval.
1532
             * interval.
1528
             * */
1533
             * */
1529
            leaf->value[leaf->keys - 1] +=  count;
1534
            leaf->value[leaf->keys - 1] +=  count;
1530
            return 1;
1535
            return 1;
1531
        } else if (page + count * PAGE_SIZE == right_pg) {
1536
        } else if (page + count * PAGE_SIZE == right_pg) {
1532
            /*
1537
            /*
1533
             * The interval can be addded by simply moving base of
1538
             * The interval can be addded by simply moving base of
1534
             * the right interval down and increasing its size
1539
             * the right interval down and increasing its size
1535
             * accordingly.
1540
             * accordingly.
1536
             */
1541
             */
1537
            node->value[0] += count;
1542
            node->value[0] += count;
1538
            node->key[0] = page;
1543
            node->key[0] = page;
1539
            return 1;
1544
            return 1;
1540
        } else {
1545
        } else {
1541
            /*
1546
            /*
1542
             * The interval is between both neigbouring intervals,
1547
             * The interval is between both neigbouring intervals,
1543
             * but cannot be merged with any of them.
1548
             * but cannot be merged with any of them.
1544
             */
1549
             */
1545
            btree_insert(&a->used_space, page, (void *) count,
1550
            btree_insert(&a->used_space, page, (void *) count,
1546
                leaf);
1551
                leaf);
1547
            return 1;
1552
            return 1;
1548
        }
1553
        }
1549
    } else if (page >= leaf->key[leaf->keys - 1]) {
1554
    } else if (page >= leaf->key[leaf->keys - 1]) {
1550
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1555
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1551
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1556
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1552
   
1557
   
1553
        /*
1558
        /*
1554
         * Investigate the border case in which the right neighbour
1559
         * Investigate the border case in which the right neighbour
1555
         * does not exist but the interval fits from the right.
1560
         * does not exist but the interval fits from the right.
1556
         */
1561
         */
1557
         
1562
         
1558
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1563
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1559
            left_cnt * PAGE_SIZE)) {
1564
            left_cnt * PAGE_SIZE)) {
1560
            /* The interval intersects with the left interval. */
1565
            /* The interval intersects with the left interval. */
1561
            return 0;
1566
            return 0;
1562
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1567
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1563
            /*
1568
            /*
1564
             * The interval can be added by growing the left
1569
             * The interval can be added by growing the left
1565
             * interval.
1570
             * interval.
1566
             */
1571
             */
1567
            leaf->value[leaf->keys - 1] += count;
1572
            leaf->value[leaf->keys - 1] += count;
1568
            return 1;
1573
            return 1;
1569
        } else {
1574
        } else {
1570
            /*
1575
            /*
1571
             * The interval doesn't adjoin with the left interval.
1576
             * The interval doesn't adjoin with the left interval.
1572
             * It must be added individually.
1577
             * It must be added individually.
1573
             */
1578
             */
1574
            btree_insert(&a->used_space, page, (void *) count,
1579
            btree_insert(&a->used_space, page, (void *) count,
1575
                leaf);
1580
                leaf);
1576
            return 1;
1581
            return 1;
1577
        }
1582
        }
1578
    }
1583
    }
1579
   
1584
   
1580
    /*
1585
    /*
1581
     * Note that if the algorithm made it thus far, the interval can fit
1586
     * Note that if the algorithm made it thus far, the interval can fit
1582
     * only between two other intervals of the leaf. The two border cases
1587
     * only between two other intervals of the leaf. The two border cases
1583
     * were already resolved.
1588
     * were already resolved.
1584
     */
1589
     */
1585
    for (i = 1; i < leaf->keys; i++) {
1590
    for (i = 1; i < leaf->keys; i++) {
1586
        if (page < leaf->key[i]) {
1591
        if (page < leaf->key[i]) {
1587
            uintptr_t left_pg = leaf->key[i - 1];
1592
            uintptr_t left_pg = leaf->key[i - 1];
1588
            uintptr_t right_pg = leaf->key[i];
1593
            uintptr_t right_pg = leaf->key[i];
1589
            count_t left_cnt = (count_t) leaf->value[i - 1];
1594
            count_t left_cnt = (count_t) leaf->value[i - 1];
1590
            count_t right_cnt = (count_t) leaf->value[i];
1595
            count_t right_cnt = (count_t) leaf->value[i];
1591
 
1596
 
1592
            /*
1597
            /*
1593
             * The interval fits between left_pg and right_pg.
1598
             * The interval fits between left_pg and right_pg.
1594
             */
1599
             */
1595
 
1600
 
1596
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1601
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1597
                left_cnt * PAGE_SIZE)) {
1602
                left_cnt * PAGE_SIZE)) {
1598
                /*
1603
                /*
1599
                 * The interval intersects with the left
1604
                 * The interval intersects with the left
1600
                 * interval.
1605
                 * interval.
1601
                 */
1606
                 */
1602
                return 0;
1607
                return 0;
1603
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1608
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1604
                right_cnt * PAGE_SIZE)) {
1609
                right_cnt * PAGE_SIZE)) {
1605
                /*
1610
                /*
1606
                 * The interval intersects with the right
1611
                 * The interval intersects with the right
1607
                 * interval.
1612
                 * interval.
1608
                 */
1613
                 */
1609
                return 0;          
1614
                return 0;          
1610
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1615
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1611
                (page + count * PAGE_SIZE == right_pg)) {
1616
                (page + count * PAGE_SIZE == right_pg)) {
1612
                /*
1617
                /*
1613
                 * The interval can be added by merging the two
1618
                 * The interval can be added by merging the two
1614
                 * already present intervals.
1619
                 * already present intervals.
1615
                 */
1620
                 */
1616
                leaf->value[i - 1] += count + right_cnt;
1621
                leaf->value[i - 1] += count + right_cnt;
1617
                btree_remove(&a->used_space, right_pg, leaf);
1622
                btree_remove(&a->used_space, right_pg, leaf);
1618
                return 1;
1623
                return 1;
1619
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1624
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1620
                /*
1625
                /*
1621
                 * The interval can be added by simply growing
1626
                 * The interval can be added by simply growing
1622
                 * the left interval.
1627
                 * the left interval.
1623
                 */
1628
                 */
1624
                leaf->value[i - 1] += count;
1629
                leaf->value[i - 1] += count;
1625
                return 1;
1630
                return 1;
1626
            } else if (page + count * PAGE_SIZE == right_pg) {
1631
            } else if (page + count * PAGE_SIZE == right_pg) {
1627
                /*
1632
                /*
1628
                     * The interval can be addded by simply moving
1633
                     * The interval can be addded by simply moving
1629
                 * base of the right interval down and
1634
                 * base of the right interval down and
1630
                 * increasing its size accordingly.
1635
                 * increasing its size accordingly.
1631
                 */
1636
                 */
1632
                leaf->value[i] += count;
1637
                leaf->value[i] += count;
1633
                leaf->key[i] = page;
1638
                leaf->key[i] = page;
1634
                return 1;
1639
                return 1;
1635
            } else {
1640
            } else {
1636
                /*
1641
                /*
1637
                 * The interval is between both neigbouring
1642
                 * The interval is between both neigbouring
1638
                 * intervals, but cannot be merged with any of
1643
                 * intervals, but cannot be merged with any of
1639
                 * them.
1644
                 * them.
1640
                 */
1645
                 */
1641
                btree_insert(&a->used_space, page,
1646
                btree_insert(&a->used_space, page,
1642
                    (void *) count, leaf);
1647
                    (void *) count, leaf);
1643
                return 1;
1648
                return 1;
1644
            }
1649
            }
1645
        }
1650
        }
1646
    }
1651
    }
1647
 
1652
 
1648
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1653
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1649
        "%p.\n", count, page);
1654
        "%p.\n", count, page);
1650
}
1655
}
1651
 
1656
 
1652
/** Mark portion of address space area as unused.
1657
/** Mark portion of address space area as unused.
1653
 *
1658
 *
1654
 * The address space area must be already locked.
1659
 * The address space area must be already locked.
1655
 *
1660
 *
1656
 * @param a Address space area.
1661
 * @param a Address space area.
1657
 * @param page First page to be marked.
1662
 * @param page First page to be marked.
1658
 * @param count Number of page to be marked.
1663
 * @param count Number of page to be marked.
1659
 *
1664
 *
1660
 * @return 0 on failure and 1 on success.
1665
 * @return 0 on failure and 1 on success.
1661
 */
1666
 */
1662
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1667
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1663
{
1668
{
1664
    btree_node_t *leaf, *node;
1669
    btree_node_t *leaf, *node;
1665
    count_t pages;
1670
    count_t pages;
1666
    unsigned int i;
1671
    unsigned int i;
1667
 
1672
 
1668
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1673
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1669
    ASSERT(count);
1674
    ASSERT(count);
1670
 
1675
 
1671
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1676
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1672
    if (pages) {
1677
    if (pages) {
1673
        /*
1678
        /*
1674
         * We are lucky, page is the beginning of some interval.
1679
         * We are lucky, page is the beginning of some interval.
1675
         */
1680
         */
1676
        if (count > pages) {
1681
        if (count > pages) {
1677
            return 0;
1682
            return 0;
1678
        } else if (count == pages) {
1683
        } else if (count == pages) {
1679
            btree_remove(&a->used_space, page, leaf);
1684
            btree_remove(&a->used_space, page, leaf);
1680
            return 1;
1685
            return 1;
1681
        } else {
1686
        } else {
1682
            /*
1687
            /*
1683
             * Find the respective interval.
1688
             * Find the respective interval.
1684
             * Decrease its size and relocate its start address.
1689
             * Decrease its size and relocate its start address.
1685
             */
1690
             */
1686
            for (i = 0; i < leaf->keys; i++) {
1691
            for (i = 0; i < leaf->keys; i++) {
1687
                if (leaf->key[i] == page) {
1692
                if (leaf->key[i] == page) {
1688
                    leaf->key[i] += count * PAGE_SIZE;
1693
                    leaf->key[i] += count * PAGE_SIZE;
1689
                    leaf->value[i] -= count;
1694
                    leaf->value[i] -= count;
1690
                    return 1;
1695
                    return 1;
1691
                }
1696
                }
1692
            }
1697
            }
1693
            goto error;
1698
            goto error;
1694
        }
1699
        }
1695
    }
1700
    }
1696
 
1701
 
1697
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1702
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1698
    if (node && page < leaf->key[0]) {
1703
    if (node && page < leaf->key[0]) {
1699
        uintptr_t left_pg = node->key[node->keys - 1];
1704
        uintptr_t left_pg = node->key[node->keys - 1];
1700
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1705
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1701
 
1706
 
1702
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1707
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1703
            count * PAGE_SIZE)) {
1708
            count * PAGE_SIZE)) {
1704
            if (page + count * PAGE_SIZE ==
1709
            if (page + count * PAGE_SIZE ==
1705
                left_pg + left_cnt * PAGE_SIZE) {
1710
                left_pg + left_cnt * PAGE_SIZE) {
1706
                /*
1711
                /*
1707
                 * The interval is contained in the rightmost
1712
                 * The interval is contained in the rightmost
1708
                 * interval of the left neighbour and can be
1713
                 * interval of the left neighbour and can be
1709
                 * removed by updating the size of the bigger
1714
                 * removed by updating the size of the bigger
1710
                 * interval.
1715
                 * interval.
1711
                 */
1716
                 */
1712
                node->value[node->keys - 1] -= count;
1717
                node->value[node->keys - 1] -= count;
1713
                return 1;
1718
                return 1;
1714
            } else if (page + count * PAGE_SIZE <
1719
            } else if (page + count * PAGE_SIZE <
1715
                left_pg + left_cnt*PAGE_SIZE) {
1720
                left_pg + left_cnt*PAGE_SIZE) {
1716
                count_t new_cnt;
1721
                count_t new_cnt;
1717
               
1722
               
1718
                /*
1723
                /*
1719
                 * The interval is contained in the rightmost
1724
                 * The interval is contained in the rightmost
1720
                 * interval of the left neighbour but its
1725
                 * interval of the left neighbour but its
1721
                 * removal requires both updating the size of
1726
                 * removal requires both updating the size of
1722
                 * the original interval and also inserting a
1727
                 * the original interval and also inserting a
1723
                 * new interval.
1728
                 * new interval.
1724
                 */
1729
                 */
1725
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1730
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1726
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1731
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1727
                node->value[node->keys - 1] -= count + new_cnt;
1732
                node->value[node->keys - 1] -= count + new_cnt;
1728
                btree_insert(&a->used_space, page +
1733
                btree_insert(&a->used_space, page +
1729
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1734
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1730
                return 1;
1735
                return 1;
1731
            }
1736
            }
1732
        }
1737
        }
1733
        return 0;
1738
        return 0;
1734
    } else if (page < leaf->key[0]) {
1739
    } else if (page < leaf->key[0]) {
1735
        return 0;
1740
        return 0;
1736
    }
1741
    }
1737
   
1742
   
1738
    if (page > leaf->key[leaf->keys - 1]) {
1743
    if (page > leaf->key[leaf->keys - 1]) {
1739
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1744
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1740
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1745
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1741
 
1746
 
1742
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1747
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1743
            count * PAGE_SIZE)) {
1748
            count * PAGE_SIZE)) {
1744
            if (page + count * PAGE_SIZE ==
1749
            if (page + count * PAGE_SIZE ==
1745
                left_pg + left_cnt * PAGE_SIZE) {
1750
                left_pg + left_cnt * PAGE_SIZE) {
1746
                /*
1751
                /*
1747
                 * The interval is contained in the rightmost
1752
                 * The interval is contained in the rightmost
1748
                 * interval of the leaf and can be removed by
1753
                 * interval of the leaf and can be removed by
1749
                 * updating the size of the bigger interval.
1754
                 * updating the size of the bigger interval.
1750
                 */
1755
                 */
1751
                leaf->value[leaf->keys - 1] -= count;
1756
                leaf->value[leaf->keys - 1] -= count;
1752
                return 1;
1757
                return 1;
1753
            } else if (page + count * PAGE_SIZE < left_pg +
1758
            } else if (page + count * PAGE_SIZE < left_pg +
1754
                left_cnt * PAGE_SIZE) {
1759
                left_cnt * PAGE_SIZE) {
1755
                count_t new_cnt;
1760
                count_t new_cnt;
1756
               
1761
               
1757
                /*
1762
                /*
1758
                 * The interval is contained in the rightmost
1763
                 * The interval is contained in the rightmost
1759
                 * interval of the leaf but its removal
1764
                 * interval of the leaf but its removal
1760
                 * requires both updating the size of the
1765
                 * requires both updating the size of the
1761
                 * original interval and also inserting a new
1766
                 * original interval and also inserting a new
1762
                 * interval.
1767
                 * interval.
1763
                 */
1768
                 */
1764
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1769
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1765
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1770
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1766
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1771
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1767
                btree_insert(&a->used_space, page +
1772
                btree_insert(&a->used_space, page +
1768
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1773
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1769
                return 1;
1774
                return 1;
1770
            }
1775
            }
1771
        }
1776
        }
1772
        return 0;
1777
        return 0;
1773
    }  
1778
    }  
1774
   
1779
   
1775
    /*
1780
    /*
1776
     * The border cases have been already resolved.
1781
     * The border cases have been already resolved.
1777
     * Now the interval can be only between intervals of the leaf.
1782
     * Now the interval can be only between intervals of the leaf.
1778
     */
1783
     */
1779
    for (i = 1; i < leaf->keys - 1; i++) {
1784
    for (i = 1; i < leaf->keys - 1; i++) {
1780
        if (page < leaf->key[i]) {
1785
        if (page < leaf->key[i]) {
1781
            uintptr_t left_pg = leaf->key[i - 1];
1786
            uintptr_t left_pg = leaf->key[i - 1];
1782
            count_t left_cnt = (count_t) leaf->value[i - 1];
1787
            count_t left_cnt = (count_t) leaf->value[i - 1];
1783
 
1788
 
1784
            /*
1789
            /*
1785
             * Now the interval is between intervals corresponding
1790
             * Now the interval is between intervals corresponding
1786
             * to (i - 1) and i.
1791
             * to (i - 1) and i.
1787
             */
1792
             */
1788
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1793
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1789
                count * PAGE_SIZE)) {
1794
                count * PAGE_SIZE)) {
1790
                if (page + count * PAGE_SIZE ==
1795
                if (page + count * PAGE_SIZE ==
1791
                    left_pg + left_cnt*PAGE_SIZE) {
1796
                    left_pg + left_cnt*PAGE_SIZE) {
1792
                    /*
1797
                    /*
1793
                     * The interval is contained in the
1798
                     * The interval is contained in the
1794
                     * interval (i - 1) of the leaf and can
1799
                     * interval (i - 1) of the leaf and can
1795
                     * be removed by updating the size of
1800
                     * be removed by updating the size of
1796
                     * the bigger interval.
1801
                     * the bigger interval.
1797
                     */
1802
                     */
1798
                    leaf->value[i - 1] -= count;
1803
                    leaf->value[i - 1] -= count;
1799
                    return 1;
1804
                    return 1;
1800
                } else if (page + count * PAGE_SIZE <
1805
                } else if (page + count * PAGE_SIZE <
1801
                    left_pg + left_cnt * PAGE_SIZE) {
1806
                    left_pg + left_cnt * PAGE_SIZE) {
1802
                    count_t new_cnt;
1807
                    count_t new_cnt;
1803
               
1808
               
1804
                    /*
1809
                    /*
1805
                     * The interval is contained in the
1810
                     * The interval is contained in the
1806
                     * interval (i - 1) of the leaf but its
1811
                     * interval (i - 1) of the leaf but its
1807
                     * removal requires both updating the
1812
                     * removal requires both updating the
1808
                     * size of the original interval and
1813
                     * size of the original interval and
1809
                     * also inserting a new interval.
1814
                     * also inserting a new interval.
1810
                     */
1815
                     */
1811
                    new_cnt = ((left_pg +
1816
                    new_cnt = ((left_pg +
1812
                        left_cnt * PAGE_SIZE) -
1817
                        left_cnt * PAGE_SIZE) -
1813
                        (page + count * PAGE_SIZE)) >>
1818
                        (page + count * PAGE_SIZE)) >>
1814
                        PAGE_WIDTH;
1819
                        PAGE_WIDTH;
1815
                    leaf->value[i - 1] -= count + new_cnt;
1820
                    leaf->value[i - 1] -= count + new_cnt;
1816
                    btree_insert(&a->used_space, page +
1821
                    btree_insert(&a->used_space, page +
1817
                        count * PAGE_SIZE, (void *) new_cnt,
1822
                        count * PAGE_SIZE, (void *) new_cnt,
1818
                        leaf);
1823
                        leaf);
1819
                    return 1;
1824
                    return 1;
1820
                }
1825
                }
1821
            }
1826
            }
1822
            return 0;
1827
            return 0;
1823
        }
1828
        }
1824
    }
1829
    }
1825
 
1830
 
1826
error:
1831
error:
1827
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1832
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1828
        "from %p.\n", count, page);
1833
        "from %p.\n", count, page);
1829
}
1834
}
1830
 
1835
 
1831
/** Remove reference to address space area share info.
1836
/** Remove reference to address space area share info.
1832
 *
1837
 *
1833
 * If the reference count drops to 0, the sh_info is deallocated.
1838
 * If the reference count drops to 0, the sh_info is deallocated.
1834
 *
1839
 *
1835
 * @param sh_info Pointer to address space area share info.
1840
 * @param sh_info Pointer to address space area share info.
1836
 */
1841
 */
1837
void sh_info_remove_reference(share_info_t *sh_info)
1842
void sh_info_remove_reference(share_info_t *sh_info)
1838
{
1843
{
1839
    bool dealloc = false;
1844
    bool dealloc = false;
1840
 
1845
 
1841
    mutex_lock(&sh_info->lock);
1846
    mutex_lock(&sh_info->lock);
1842
    ASSERT(sh_info->refcount);
1847
    ASSERT(sh_info->refcount);
1843
    if (--sh_info->refcount == 0) {
1848
    if (--sh_info->refcount == 0) {
1844
        dealloc = true;
1849
        dealloc = true;
1845
        link_t *cur;
1850
        link_t *cur;
1846
       
1851
       
1847
        /*
1852
        /*
1848
         * Now walk carefully the pagemap B+tree and free/remove
1853
         * Now walk carefully the pagemap B+tree and free/remove
1849
         * reference from all frames found there.
1854
         * reference from all frames found there.
1850
         */
1855
         */
1851
        for (cur = sh_info->pagemap.leaf_head.next;
1856
        for (cur = sh_info->pagemap.leaf_head.next;
1852
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1857
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1853
            btree_node_t *node;
1858
            btree_node_t *node;
1854
            unsigned int i;
1859
            unsigned int i;
1855
           
1860
           
1856
            node = list_get_instance(cur, btree_node_t, leaf_link);
1861
            node = list_get_instance(cur, btree_node_t, leaf_link);
1857
            for (i = 0; i < node->keys; i++)
1862
            for (i = 0; i < node->keys; i++)
1858
                frame_free((uintptr_t) node->value[i]);
1863
                frame_free((uintptr_t) node->value[i]);
1859
        }
1864
        }
1860
       
1865
       
1861
    }
1866
    }
1862
    mutex_unlock(&sh_info->lock);
1867
    mutex_unlock(&sh_info->lock);
1863
   
1868
   
1864
    if (dealloc) {
1869
    if (dealloc) {
1865
        btree_destroy(&sh_info->pagemap);
1870
        btree_destroy(&sh_info->pagemap);
1866
        free(sh_info);
1871
        free(sh_info);
1867
    }
1872
    }
1868
}
1873
}
1869
 
1874
 
1870
/*
1875
/*
1871
 * Address space related syscalls.
1876
 * Address space related syscalls.
1872
 */
1877
 */
1873
 
1878
 
1874
/** Wrapper for as_area_create(). */
1879
/** Wrapper for as_area_create(). */
1875
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1880
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1876
{
1881
{
1877
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1882
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1878
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1883
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1879
        return (unative_t) address;
1884
        return (unative_t) address;
1880
    else
1885
    else
1881
        return (unative_t) -1;
1886
        return (unative_t) -1;
1882
}
1887
}
1883
 
1888
 
1884
/** Wrapper for as_area_resize(). */
1889
/** Wrapper for as_area_resize(). */
1885
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1890
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1886
{
1891
{
1887
    return (unative_t) as_area_resize(AS, address, size, 0);
1892
    return (unative_t) as_area_resize(AS, address, size, 0);
1888
}
1893
}
1889
 
1894
 
1890
/** Wrapper for as_area_change_flags(). */
1895
/** Wrapper for as_area_change_flags(). */
1891
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1896
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1892
{
1897
{
1893
    return (unative_t) as_area_change_flags(AS, flags, address);
1898
    return (unative_t) as_area_change_flags(AS, flags, address);
1894
}
1899
}
1895
 
1900
 
1896
/** Wrapper for as_area_destroy(). */
1901
/** Wrapper for as_area_destroy(). */
1897
unative_t sys_as_area_destroy(uintptr_t address)
1902
unative_t sys_as_area_destroy(uintptr_t address)
1898
{
1903
{
1899
    return (unative_t) as_area_destroy(AS, address);
1904
    return (unative_t) as_area_destroy(AS, address);
1900
}
1905
}
1901
 
1906
 
1902
/** Print out information about address space.
1907
/** Print out information about address space.
1903
 *
1908
 *
1904
 * @param as Address space.
1909
 * @param as Address space.
1905
 */
1910
 */
1906
void as_print(as_t *as)
1911
void as_print(as_t *as)
1907
{
1912
{
1908
    ipl_t ipl;
1913
    ipl_t ipl;
1909
   
1914
   
1910
    ipl = interrupts_disable();
1915
    ipl = interrupts_disable();
1911
    mutex_lock(&as->lock);
1916
    mutex_lock(&as->lock);
1912
   
1917
   
1913
    /* print out info about address space areas */
1918
    /* print out info about address space areas */
1914
    link_t *cur;
1919
    link_t *cur;
1915
    for (cur = as->as_area_btree.leaf_head.next;
1920
    for (cur = as->as_area_btree.leaf_head.next;
1916
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1921
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1917
        btree_node_t *node;
1922
        btree_node_t *node;
1918
       
1923
       
1919
        node = list_get_instance(cur, btree_node_t, leaf_link);
1924
        node = list_get_instance(cur, btree_node_t, leaf_link);
1920
       
1925
       
1921
        unsigned int i;
1926
        unsigned int i;
1922
        for (i = 0; i < node->keys; i++) {
1927
        for (i = 0; i < node->keys; i++) {
1923
            as_area_t *area = node->value[i];
1928
            as_area_t *area = node->value[i];
1924
       
1929
       
1925
            mutex_lock(&area->lock);
1930
            mutex_lock(&area->lock);
1926
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1931
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1927
                area, area->base, area->pages, area->base,
1932
                area, area->base, area->pages, area->base,
1928
                area->base + FRAMES2SIZE(area->pages));
1933
                area->base + FRAMES2SIZE(area->pages));
1929
            mutex_unlock(&area->lock);
1934
            mutex_unlock(&area->lock);
1930
        }
1935
        }
1931
    }
1936
    }
1932
   
1937
   
1933
    mutex_unlock(&as->lock);
1938
    mutex_unlock(&as->lock);
1934
    interrupts_restore(ipl);
1939
    interrupts_restore(ipl);
1935
}
1940
}
1936
 
1941
 
1937
/** @}
1942
/** @}
1938
 */
1943
 */
1939
 
1944