Subversion Repositories HelenOS

Rev

Rev 3104 | Rev 3222 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3104 Rev 3186
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
 
328
 
329
    btree_create(&a->used_space);
329
    btree_create(&a->used_space);
330
   
330
   
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
332
 
332
 
333
    mutex_unlock(&as->lock);
333
    mutex_unlock(&as->lock);
334
    interrupts_restore(ipl);
334
    interrupts_restore(ipl);
335
 
335
 
336
    return a;
336
    return a;
337
}
337
}
338
 
338
 
339
/** Find address space area and change it.
339
/** Find address space area and change it.
340
 *
340
 *
341
 * @param as Address space.
341
 * @param as Address space.
342
 * @param address Virtual address belonging to the area to be changed. Must be
342
 * @param address Virtual address belonging to the area to be changed. Must be
343
 *     page-aligned.
343
 *     page-aligned.
344
 * @param size New size of the virtual memory block starting at address.
344
 * @param size New size of the virtual memory block starting at address.
345
 * @param flags Flags influencing the remap operation. Currently unused.
345
 * @param flags Flags influencing the remap operation. Currently unused.
346
 *
346
 *
347
 * @return Zero on success or a value from @ref errno.h otherwise.
347
 * @return Zero on success or a value from @ref errno.h otherwise.
348
 */
348
 */
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
350
{
350
{
351
    as_area_t *area;
351
    as_area_t *area;
352
    ipl_t ipl;
352
    ipl_t ipl;
353
    size_t pages;
353
    size_t pages;
354
   
354
   
355
    ipl = interrupts_disable();
355
    ipl = interrupts_disable();
356
    mutex_lock(&as->lock);
356
    mutex_lock(&as->lock);
357
   
357
   
358
    /*
358
    /*
359
     * Locate the area.
359
     * Locate the area.
360
     */
360
     */
361
    area = find_area_and_lock(as, address);
361
    area = find_area_and_lock(as, address);
362
    if (!area) {
362
    if (!area) {
363
        mutex_unlock(&as->lock);
363
        mutex_unlock(&as->lock);
364
        interrupts_restore(ipl);
364
        interrupts_restore(ipl);
365
        return ENOENT;
365
        return ENOENT;
366
    }
366
    }
367
 
367
 
368
    if (area->backend == &phys_backend) {
368
    if (area->backend == &phys_backend) {
369
        /*
369
        /*
370
         * Remapping of address space areas associated
370
         * Remapping of address space areas associated
371
         * with memory mapped devices is not supported.
371
         * with memory mapped devices is not supported.
372
         */
372
         */
373
        mutex_unlock(&area->lock);
373
        mutex_unlock(&area->lock);
374
        mutex_unlock(&as->lock);
374
        mutex_unlock(&as->lock);
375
        interrupts_restore(ipl);
375
        interrupts_restore(ipl);
376
        return ENOTSUP;
376
        return ENOTSUP;
377
    }
377
    }
378
    if (area->sh_info) {
378
    if (area->sh_info) {
379
        /*
379
        /*
380
         * Remapping of shared address space areas
380
         * Remapping of shared address space areas
381
         * is not supported.
381
         * is not supported.
382
         */
382
         */
383
        mutex_unlock(&area->lock);
383
        mutex_unlock(&area->lock);
384
        mutex_unlock(&as->lock);
384
        mutex_unlock(&as->lock);
385
        interrupts_restore(ipl);
385
        interrupts_restore(ipl);
386
        return ENOTSUP;
386
        return ENOTSUP;
387
    }
387
    }
388
 
388
 
389
    pages = SIZE2FRAMES((address - area->base) + size);
389
    pages = SIZE2FRAMES((address - area->base) + size);
390
    if (!pages) {
390
    if (!pages) {
391
        /*
391
        /*
392
         * Zero size address space areas are not allowed.
392
         * Zero size address space areas are not allowed.
393
         */
393
         */
394
        mutex_unlock(&area->lock);
394
        mutex_unlock(&area->lock);
395
        mutex_unlock(&as->lock);
395
        mutex_unlock(&as->lock);
396
        interrupts_restore(ipl);
396
        interrupts_restore(ipl);
397
        return EPERM;
397
        return EPERM;
398
    }
398
    }
399
   
399
   
400
    if (pages < area->pages) {
400
    if (pages < area->pages) {
401
        bool cond;
401
        bool cond;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
403
 
403
 
404
        /*
404
        /*
405
         * Shrinking the area.
405
         * Shrinking the area.
406
         * No need to check for overlaps.
406
         * No need to check for overlaps.
407
         */
407
         */
408
 
408
 
409
        /*
409
        /*
410
         * Start TLB shootdown sequence.
410
         * Start TLB shootdown sequence.
411
         */
411
         */
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
413
            pages * PAGE_SIZE, area->pages - pages);
413
            pages * PAGE_SIZE, area->pages - pages);
414
 
414
 
415
        /*
415
        /*
416
         * Remove frames belonging to used space starting from
416
         * Remove frames belonging to used space starting from
417
         * the highest addresses downwards until an overlap with
417
         * the highest addresses downwards until an overlap with
418
         * the resized address space area is found. Note that this
418
         * the resized address space area is found. Note that this
419
         * is also the right way to remove part of the used_space
419
         * is also the right way to remove part of the used_space
420
         * B+tree leaf list.
420
         * B+tree leaf list.
421
         */    
421
         */    
422
        for (cond = true; cond;) {
422
        for (cond = true; cond;) {
423
            btree_node_t *node;
423
            btree_node_t *node;
424
       
424
       
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
426
            node =
426
            node =
427
                list_get_instance(area->used_space.leaf_head.prev,
427
                list_get_instance(area->used_space.leaf_head.prev,
428
                btree_node_t, leaf_link);
428
                btree_node_t, leaf_link);
429
            if ((cond = (bool) node->keys)) {
429
            if ((cond = (bool) node->keys)) {
430
                uintptr_t b = node->key[node->keys - 1];
430
                uintptr_t b = node->key[node->keys - 1];
431
                count_t c =
431
                count_t c =
432
                    (count_t) node->value[node->keys - 1];
432
                    (count_t) node->value[node->keys - 1];
433
                unsigned int i = 0;
433
                unsigned int i = 0;
434
           
434
           
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
436
                    pages * PAGE_SIZE)) {
436
                    pages * PAGE_SIZE)) {
437
                   
437
                   
438
                    if (b + c * PAGE_SIZE <= start_free) {
438
                    if (b + c * PAGE_SIZE <= start_free) {
439
                        /*
439
                        /*
440
                         * The whole interval fits
440
                         * The whole interval fits
441
                         * completely in the resized
441
                         * completely in the resized
442
                         * address space area.
442
                         * address space area.
443
                         */
443
                         */
444
                        break;
444
                        break;
445
                    }
445
                    }
446
       
446
       
447
                    /*
447
                    /*
448
                     * Part of the interval corresponding
448
                     * Part of the interval corresponding
449
                     * to b and c overlaps with the resized
449
                     * to b and c overlaps with the resized
450
                     * address space area.
450
                     * address space area.
451
                     */
451
                     */
452
       
452
       
453
                    cond = false;   /* we are almost done */
453
                    cond = false;   /* we are almost done */
454
                    i = (start_free - b) >> PAGE_WIDTH;
454
                    i = (start_free - b) >> PAGE_WIDTH;
455
                    if (!used_space_remove(area, start_free, c - i))
455
                    if (!used_space_remove(area, start_free, c - i))
456
                        panic("Could not remove used space.\n");
456
                        panic("Could not remove used space.\n");
457
                } else {
457
                } else {
458
                    /*
458
                    /*
459
                     * The interval of used space can be
459
                     * The interval of used space can be
460
                     * completely removed.
460
                     * completely removed.
461
                     */
461
                     */
462
                    if (!used_space_remove(area, b, c))
462
                    if (!used_space_remove(area, b, c))
463
                        panic("Could not remove used space.\n");
463
                        panic("Could not remove used space.\n");
464
                }
464
                }
465
           
465
           
466
                for (; i < c; i++) {
466
                for (; i < c; i++) {
467
                    pte_t *pte;
467
                    pte_t *pte;
468
           
468
           
469
                    page_table_lock(as, false);
469
                    page_table_lock(as, false);
470
                    pte = page_mapping_find(as, b +
470
                    pte = page_mapping_find(as, b +
471
                        i * PAGE_SIZE);
471
                        i * PAGE_SIZE);
472
                    ASSERT(pte && PTE_VALID(pte) &&
472
                    ASSERT(pte && PTE_VALID(pte) &&
473
                        PTE_PRESENT(pte));
473
                        PTE_PRESENT(pte));
474
                    if (area->backend &&
474
                    if (area->backend &&
475
                        area->backend->frame_free) {
475
                        area->backend->frame_free) {
476
                        area->backend->frame_free(area,
476
                        area->backend->frame_free(area,
477
                            b + i * PAGE_SIZE,
477
                            b + i * PAGE_SIZE,
478
                            PTE_GET_FRAME(pte));
478
                            PTE_GET_FRAME(pte));
479
                    }
479
                    }
480
                    page_mapping_remove(as, b +
480
                    page_mapping_remove(as, b +
481
                        i * PAGE_SIZE);
481
                        i * PAGE_SIZE);
482
                    page_table_unlock(as, false);
482
                    page_table_unlock(as, false);
483
                }
483
                }
484
            }
484
            }
485
        }
485
        }
486
 
486
 
487
        /*
487
        /*
488
         * Finish TLB shootdown sequence.
488
         * Finish TLB shootdown sequence.
489
         */
489
         */
490
 
490
 
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
492
            area->pages - pages);
492
            area->pages - pages);
493
        /*
493
        /*
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
495
         */
495
         */
496
        as_invalidate_translation_cache(as, area->base +
496
        as_invalidate_translation_cache(as, area->base +
497
            pages * PAGE_SIZE, area->pages - pages);
497
            pages * PAGE_SIZE, area->pages - pages);
498
        tlb_shootdown_finalize();
498
        tlb_shootdown_finalize();
499
       
499
       
500
    } else {
500
    } else {
501
        /*
501
        /*
502
         * Growing the area.
502
         * Growing the area.
503
         * Check for overlaps with other address space areas.
503
         * Check for overlaps with other address space areas.
504
         */
504
         */
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
506
            area)) {
506
            area)) {
507
            mutex_unlock(&area->lock);
507
            mutex_unlock(&area->lock);
508
            mutex_unlock(&as->lock);       
508
            mutex_unlock(&as->lock);       
509
            interrupts_restore(ipl);
509
            interrupts_restore(ipl);
510
            return EADDRNOTAVAIL;
510
            return EADDRNOTAVAIL;
511
        }
511
        }
512
    }
512
    }
513
 
513
 
514
    area->pages = pages;
514
    area->pages = pages;
515
   
515
   
516
    mutex_unlock(&area->lock);
516
    mutex_unlock(&area->lock);
517
    mutex_unlock(&as->lock);
517
    mutex_unlock(&as->lock);
518
    interrupts_restore(ipl);
518
    interrupts_restore(ipl);
519
 
519
 
520
    return 0;
520
    return 0;
521
}
521
}
522
 
522
 
523
/** Destroy address space area.
523
/** Destroy address space area.
524
 *
524
 *
525
 * @param as Address space.
525
 * @param as Address space.
526
 * @param address Address withing the area to be deleted.
526
 * @param address Address withing the area to be deleted.
527
 *
527
 *
528
 * @return Zero on success or a value from @ref errno.h on failure.
528
 * @return Zero on success or a value from @ref errno.h on failure.
529
 */
529
 */
530
int as_area_destroy(as_t *as, uintptr_t address)
530
int as_area_destroy(as_t *as, uintptr_t address)
531
{
531
{
532
    as_area_t *area;
532
    as_area_t *area;
533
    uintptr_t base;
533
    uintptr_t base;
534
    link_t *cur;
534
    link_t *cur;
535
    ipl_t ipl;
535
    ipl_t ipl;
536
 
536
 
537
    ipl = interrupts_disable();
537
    ipl = interrupts_disable();
538
    mutex_lock(&as->lock);
538
    mutex_lock(&as->lock);
539
 
539
 
540
    area = find_area_and_lock(as, address);
540
    area = find_area_and_lock(as, address);
541
    if (!area) {
541
    if (!area) {
542
        mutex_unlock(&as->lock);
542
        mutex_unlock(&as->lock);
543
        interrupts_restore(ipl);
543
        interrupts_restore(ipl);
544
        return ENOENT;
544
        return ENOENT;
545
    }
545
    }
546
 
546
 
547
    base = area->base;
547
    base = area->base;
548
 
548
 
549
    /*
549
    /*
550
     * Start TLB shootdown sequence.
550
     * Start TLB shootdown sequence.
551
     */
551
     */
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
553
 
553
 
554
    /*
554
    /*
555
     * Visit only the pages mapped by used_space B+tree.
555
     * Visit only the pages mapped by used_space B+tree.
556
     */
556
     */
557
    for (cur = area->used_space.leaf_head.next;
557
    for (cur = area->used_space.leaf_head.next;
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
559
        btree_node_t *node;
559
        btree_node_t *node;
560
        unsigned int i;
560
        unsigned int i;
561
       
561
       
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
563
        for (i = 0; i < node->keys; i++) {
563
        for (i = 0; i < node->keys; i++) {
564
            uintptr_t b = node->key[i];
564
            uintptr_t b = node->key[i];
565
            count_t j;
565
            count_t j;
566
            pte_t *pte;
566
            pte_t *pte;
567
           
567
           
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
569
                page_table_lock(as, false);
569
                page_table_lock(as, false);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
571
                ASSERT(pte && PTE_VALID(pte) &&
571
                ASSERT(pte && PTE_VALID(pte) &&
572
                    PTE_PRESENT(pte));
572
                    PTE_PRESENT(pte));
573
                if (area->backend &&
573
                if (area->backend &&
574
                    area->backend->frame_free) {
574
                    area->backend->frame_free) {
575
                    area->backend->frame_free(area, b +
575
                    area->backend->frame_free(area, b +
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
577
                }
577
                }
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
579
                page_table_unlock(as, false);
579
                page_table_unlock(as, false);
580
            }
580
            }
581
        }
581
        }
582
    }
582
    }
583
 
583
 
584
    /*
584
    /*
585
     * Finish TLB shootdown sequence.
585
     * Finish TLB shootdown sequence.
586
     */
586
     */
587
 
587
 
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
589
    /*
589
    /*
590
     * Invalidate potential software translation caches (e.g. TSB on
590
     * Invalidate potential software translation caches (e.g. TSB on
591
     * sparc64).
591
     * sparc64).
592
     */
592
     */
593
    as_invalidate_translation_cache(as, area->base, area->pages);
593
    as_invalidate_translation_cache(as, area->base, area->pages);
594
    tlb_shootdown_finalize();
594
    tlb_shootdown_finalize();
595
   
595
   
596
    btree_destroy(&area->used_space);
596
    btree_destroy(&area->used_space);
597
 
597
 
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
599
   
599
   
600
    if (area->sh_info)
600
    if (area->sh_info)
601
        sh_info_remove_reference(area->sh_info);
601
        sh_info_remove_reference(area->sh_info);
602
       
602
       
603
    mutex_unlock(&area->lock);
603
    mutex_unlock(&area->lock);
604
 
604
 
605
    /*
605
    /*
606
     * Remove the empty area from address space.
606
     * Remove the empty area from address space.
607
     */
607
     */
608
    btree_remove(&as->as_area_btree, base, NULL);
608
    btree_remove(&as->as_area_btree, base, NULL);
609
   
609
   
610
    free(area);
610
    free(area);
611
   
611
   
612
    mutex_unlock(&as->lock);
612
    mutex_unlock(&as->lock);
613
    interrupts_restore(ipl);
613
    interrupts_restore(ipl);
614
    return 0;
614
    return 0;
615
}
615
}
616
 
616
 
617
/** Share address space area with another or the same address space.
617
/** Share address space area with another or the same address space.
618
 *
618
 *
619
 * Address space area mapping is shared with a new address space area.
619
 * Address space area mapping is shared with a new address space area.
620
 * If the source address space area has not been shared so far,
620
 * If the source address space area has not been shared so far,
621
 * a new sh_info is created. The new address space area simply gets the
621
 * a new sh_info is created. The new address space area simply gets the
622
 * sh_info of the source area. The process of duplicating the
622
 * sh_info of the source area. The process of duplicating the
623
 * mapping is done through the backend share function.
623
 * mapping is done through the backend share function.
624
 *
624
 *
625
 * @param src_as Pointer to source address space.
625
 * @param src_as Pointer to source address space.
626
 * @param src_base Base address of the source address space area.
626
 * @param src_base Base address of the source address space area.
627
 * @param acc_size Expected size of the source area.
627
 * @param acc_size Expected size of the source area.
628
 * @param dst_as Pointer to destination address space.
628
 * @param dst_as Pointer to destination address space.
629
 * @param dst_base Target base address.
629
 * @param dst_base Target base address.
630
 * @param dst_flags_mask Destination address space area flags mask.
630
 * @param dst_flags_mask Destination address space area flags mask.
631
 *
631
 *
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
633
 * such address space area, EPERM if there was a problem in accepting the area
633
 * such address space area, EPERM if there was a problem in accepting the area
634
 * or ENOMEM if there was a problem in allocating destination address space
634
 * or ENOMEM if there was a problem in allocating destination address space
635
 * area. ENOTSUP is returned if the address space area backend does not support
635
 * area. ENOTSUP is returned if the address space area backend does not support
636
 * sharing.
636
 * sharing.
637
 */
637
 */
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
640
{
640
{
641
    ipl_t ipl;
641
    ipl_t ipl;
642
    int src_flags;
642
    int src_flags;
643
    size_t src_size;
643
    size_t src_size;
644
    as_area_t *src_area, *dst_area;
644
    as_area_t *src_area, *dst_area;
645
    share_info_t *sh_info;
645
    share_info_t *sh_info;
646
    mem_backend_t *src_backend;
646
    mem_backend_t *src_backend;
647
    mem_backend_data_t src_backend_data;
647
    mem_backend_data_t src_backend_data;
648
   
648
   
649
    ipl = interrupts_disable();
649
    ipl = interrupts_disable();
650
    mutex_lock(&src_as->lock);
650
    mutex_lock(&src_as->lock);
651
    src_area = find_area_and_lock(src_as, src_base);
651
    src_area = find_area_and_lock(src_as, src_base);
652
    if (!src_area) {
652
    if (!src_area) {
653
        /*
653
        /*
654
         * Could not find the source address space area.
654
         * Could not find the source address space area.
655
         */
655
         */
656
        mutex_unlock(&src_as->lock);
656
        mutex_unlock(&src_as->lock);
657
        interrupts_restore(ipl);
657
        interrupts_restore(ipl);
658
        return ENOENT;
658
        return ENOENT;
659
    }
659
    }
660
 
660
 
661
    if (!src_area->backend || !src_area->backend->share) {
661
    if (!src_area->backend || !src_area->backend->share) {
662
        /*
662
        /*
663
         * There is no backend or the backend does not
663
         * There is no backend or the backend does not
664
         * know how to share the area.
664
         * know how to share the area.
665
         */
665
         */
666
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
668
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
669
        return ENOTSUP;
669
        return ENOTSUP;
670
    }
670
    }
671
   
671
   
672
    src_size = src_area->pages * PAGE_SIZE;
672
    src_size = src_area->pages * PAGE_SIZE;
673
    src_flags = src_area->flags;
673
    src_flags = src_area->flags;
674
    src_backend = src_area->backend;
674
    src_backend = src_area->backend;
675
    src_backend_data = src_area->backend_data;
675
    src_backend_data = src_area->backend_data;
676
 
676
 
677
    /* Share the cacheable flag from the original mapping */
677
    /* Share the cacheable flag from the original mapping */
678
    if (src_flags & AS_AREA_CACHEABLE)
678
    if (src_flags & AS_AREA_CACHEABLE)
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
680
 
680
 
681
    if (src_size != acc_size ||
681
    if (src_size != acc_size ||
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
683
        mutex_unlock(&src_area->lock);
683
        mutex_unlock(&src_area->lock);
684
        mutex_unlock(&src_as->lock);
684
        mutex_unlock(&src_as->lock);
685
        interrupts_restore(ipl);
685
        interrupts_restore(ipl);
686
        return EPERM;
686
        return EPERM;
687
    }
687
    }
688
 
688
 
689
    /*
689
    /*
690
     * Now we are committed to sharing the area.
690
     * Now we are committed to sharing the area.
691
     * First, prepare the area for sharing.
691
     * First, prepare the area for sharing.
692
     * Then it will be safe to unlock it.
692
     * Then it will be safe to unlock it.
693
     */
693
     */
694
    sh_info = src_area->sh_info;
694
    sh_info = src_area->sh_info;
695
    if (!sh_info) {
695
    if (!sh_info) {
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
697
        mutex_initialize(&sh_info->lock);
697
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
698
        sh_info->refcount = 2;
698
        sh_info->refcount = 2;
699
        btree_create(&sh_info->pagemap);
699
        btree_create(&sh_info->pagemap);
700
        src_area->sh_info = sh_info;
700
        src_area->sh_info = sh_info;
701
        /*
701
        /*
702
         * Call the backend to setup sharing.
702
         * Call the backend to setup sharing.
703
         */
703
         */
704
        src_area->backend->share(src_area);
704
        src_area->backend->share(src_area);
705
    } else {
705
    } else {
706
        mutex_lock(&sh_info->lock);
706
        mutex_lock(&sh_info->lock);
707
        sh_info->refcount++;
707
        sh_info->refcount++;
708
        mutex_unlock(&sh_info->lock);
708
        mutex_unlock(&sh_info->lock);
709
    }
709
    }
710
 
710
 
711
    mutex_unlock(&src_area->lock);
711
    mutex_unlock(&src_area->lock);
712
    mutex_unlock(&src_as->lock);
712
    mutex_unlock(&src_as->lock);
713
 
713
 
714
    /*
714
    /*
715
     * Create copy of the source address space area.
715
     * Create copy of the source address space area.
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
717
     * attribute set which prevents race condition with
717
     * attribute set which prevents race condition with
718
     * preliminary as_page_fault() calls.
718
     * preliminary as_page_fault() calls.
719
     * The flags of the source area are masked against dst_flags_mask
719
     * The flags of the source area are masked against dst_flags_mask
720
     * to support sharing in less privileged mode.
720
     * to support sharing in less privileged mode.
721
     */
721
     */
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
724
    if (!dst_area) {
724
    if (!dst_area) {
725
        /*
725
        /*
726
         * Destination address space area could not be created.
726
         * Destination address space area could not be created.
727
         */
727
         */
728
        sh_info_remove_reference(sh_info);
728
        sh_info_remove_reference(sh_info);
729
       
729
       
730
        interrupts_restore(ipl);
730
        interrupts_restore(ipl);
731
        return ENOMEM;
731
        return ENOMEM;
732
    }
732
    }
733
 
733
 
734
    /*
734
    /*
735
     * Now the destination address space area has been
735
     * Now the destination address space area has been
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
737
     * attribute and set the sh_info.
737
     * attribute and set the sh_info.
738
     */
738
     */
739
    mutex_lock(&dst_as->lock); 
739
    mutex_lock(&dst_as->lock); 
740
    mutex_lock(&dst_area->lock);
740
    mutex_lock(&dst_area->lock);
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
742
    dst_area->sh_info = sh_info;
742
    dst_area->sh_info = sh_info;
743
    mutex_unlock(&dst_area->lock);
743
    mutex_unlock(&dst_area->lock);
744
    mutex_unlock(&dst_as->lock);   
744
    mutex_unlock(&dst_as->lock);   
745
 
745
 
746
    interrupts_restore(ipl);
746
    interrupts_restore(ipl);
747
   
747
   
748
    return 0;
748
    return 0;
749
}
749
}
750
 
750
 
751
/** Check access mode for address space area.
751
/** Check access mode for address space area.
752
 *
752
 *
753
 * The address space area must be locked prior to this call.
753
 * The address space area must be locked prior to this call.
754
 *
754
 *
755
 * @param area Address space area.
755
 * @param area Address space area.
756
 * @param access Access mode.
756
 * @param access Access mode.
757
 *
757
 *
758
 * @return False if access violates area's permissions, true otherwise.
758
 * @return False if access violates area's permissions, true otherwise.
759
 */
759
 */
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
761
{
761
{
762
    int flagmap[] = {
762
    int flagmap[] = {
763
        [PF_ACCESS_READ] = AS_AREA_READ,
763
        [PF_ACCESS_READ] = AS_AREA_READ,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
766
    };
766
    };
767
 
767
 
768
    if (!(area->flags & flagmap[access]))
768
    if (!(area->flags & flagmap[access]))
769
        return false;
769
        return false;
770
   
770
   
771
    return true;
771
    return true;
772
}
772
}
773
 
773
 
774
/** Handle page fault within the current address space.
774
/** Handle page fault within the current address space.
775
 *
775
 *
776
 * This is the high-level page fault handler. It decides
776
 * This is the high-level page fault handler. It decides
777
 * whether the page fault can be resolved by any backend
777
 * whether the page fault can be resolved by any backend
778
 * and if so, it invokes the backend to resolve the page
778
 * and if so, it invokes the backend to resolve the page
779
 * fault.
779
 * fault.
780
 *
780
 *
781
 * Interrupts are assumed disabled.
781
 * Interrupts are assumed disabled.
782
 *
782
 *
783
 * @param page Faulting page.
783
 * @param page Faulting page.
784
 * @param access Access mode that caused the fault (i.e. read/write/exec).
784
 * @param access Access mode that caused the fault (i.e. read/write/exec).
785
 * @param istate Pointer to interrupted state.
785
 * @param istate Pointer to interrupted state.
786
 *
786
 *
787
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
787
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
788
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
788
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
789
 */
789
 */
790
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
790
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
791
{
791
{
792
    pte_t *pte;
792
    pte_t *pte;
793
    as_area_t *area;
793
    as_area_t *area;
794
   
794
   
795
    if (!THREAD)
795
    if (!THREAD)
796
        return AS_PF_FAULT;
796
        return AS_PF_FAULT;
797
       
797
       
798
    ASSERT(AS);
798
    ASSERT(AS);
799
 
799
 
800
    mutex_lock(&AS->lock);
800
    mutex_lock(&AS->lock);
801
    area = find_area_and_lock(AS, page);   
801
    area = find_area_and_lock(AS, page);   
802
    if (!area) {
802
    if (!area) {
803
        /*
803
        /*
804
         * No area contained mapping for 'page'.
804
         * No area contained mapping for 'page'.
805
         * Signal page fault to low-level handler.
805
         * Signal page fault to low-level handler.
806
         */
806
         */
807
        mutex_unlock(&AS->lock);
807
        mutex_unlock(&AS->lock);
808
        goto page_fault;
808
        goto page_fault;
809
    }
809
    }
810
 
810
 
811
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
811
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
812
        /*
812
        /*
813
         * The address space area is not fully initialized.
813
         * The address space area is not fully initialized.
814
         * Avoid possible race by returning error.
814
         * Avoid possible race by returning error.
815
         */
815
         */
816
        mutex_unlock(&area->lock);
816
        mutex_unlock(&area->lock);
817
        mutex_unlock(&AS->lock);
817
        mutex_unlock(&AS->lock);
818
        goto page_fault;       
818
        goto page_fault;       
819
    }
819
    }
820
 
820
 
821
    if (!area->backend || !area->backend->page_fault) {
821
    if (!area->backend || !area->backend->page_fault) {
822
        /*
822
        /*
823
         * The address space area is not backed by any backend
823
         * The address space area is not backed by any backend
824
         * or the backend cannot handle page faults.
824
         * or the backend cannot handle page faults.
825
         */
825
         */
826
        mutex_unlock(&area->lock);
826
        mutex_unlock(&area->lock);
827
        mutex_unlock(&AS->lock);
827
        mutex_unlock(&AS->lock);
828
        goto page_fault;       
828
        goto page_fault;       
829
    }
829
    }
830
 
830
 
831
    page_table_lock(AS, false);
831
    page_table_lock(AS, false);
832
   
832
   
833
    /*
833
    /*
834
     * To avoid race condition between two page faults
834
     * To avoid race condition between two page faults
835
     * on the same address, we need to make sure
835
     * on the same address, we need to make sure
836
     * the mapping has not been already inserted.
836
     * the mapping has not been already inserted.
837
     */
837
     */
838
    if ((pte = page_mapping_find(AS, page))) {
838
    if ((pte = page_mapping_find(AS, page))) {
839
        if (PTE_PRESENT(pte)) {
839
        if (PTE_PRESENT(pte)) {
840
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
840
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
841
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
841
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
842
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
842
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
843
                page_table_unlock(AS, false);
843
                page_table_unlock(AS, false);
844
                mutex_unlock(&area->lock);
844
                mutex_unlock(&area->lock);
845
                mutex_unlock(&AS->lock);
845
                mutex_unlock(&AS->lock);
846
                return AS_PF_OK;
846
                return AS_PF_OK;
847
            }
847
            }
848
        }
848
        }
849
    }
849
    }
850
   
850
   
851
    /*
851
    /*
852
     * Resort to the backend page fault handler.
852
     * Resort to the backend page fault handler.
853
     */
853
     */
854
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
854
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
855
        page_table_unlock(AS, false);
855
        page_table_unlock(AS, false);
856
        mutex_unlock(&area->lock);
856
        mutex_unlock(&area->lock);
857
        mutex_unlock(&AS->lock);
857
        mutex_unlock(&AS->lock);
858
        goto page_fault;
858
        goto page_fault;
859
    }
859
    }
860
   
860
   
861
    page_table_unlock(AS, false);
861
    page_table_unlock(AS, false);
862
    mutex_unlock(&area->lock);
862
    mutex_unlock(&area->lock);
863
    mutex_unlock(&AS->lock);
863
    mutex_unlock(&AS->lock);
864
    return AS_PF_OK;
864
    return AS_PF_OK;
865
 
865
 
866
page_fault:
866
page_fault:
867
    if (THREAD->in_copy_from_uspace) {
867
    if (THREAD->in_copy_from_uspace) {
868
        THREAD->in_copy_from_uspace = false;
868
        THREAD->in_copy_from_uspace = false;
869
        istate_set_retaddr(istate,
869
        istate_set_retaddr(istate,
870
            (uintptr_t) &memcpy_from_uspace_failover_address);
870
            (uintptr_t) &memcpy_from_uspace_failover_address);
871
    } else if (THREAD->in_copy_to_uspace) {
871
    } else if (THREAD->in_copy_to_uspace) {
872
        THREAD->in_copy_to_uspace = false;
872
        THREAD->in_copy_to_uspace = false;
873
        istate_set_retaddr(istate,
873
        istate_set_retaddr(istate,
874
            (uintptr_t) &memcpy_to_uspace_failover_address);
874
            (uintptr_t) &memcpy_to_uspace_failover_address);
875
    } else {
875
    } else {
876
        return AS_PF_FAULT;
876
        return AS_PF_FAULT;
877
    }
877
    }
878
 
878
 
879
    return AS_PF_DEFER;
879
    return AS_PF_DEFER;
880
}
880
}
881
 
881
 
882
/** Switch address spaces.
882
/** Switch address spaces.
883
 *
883
 *
884
 * Note that this function cannot sleep as it is essentially a part of
884
 * Note that this function cannot sleep as it is essentially a part of
885
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
885
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
886
 * thing which is forbidden in this context is locking the address space.
886
 * thing which is forbidden in this context is locking the address space.
887
 *
887
 *
888
 * When this function is enetered, no spinlocks may be held.
888
 * When this function is enetered, no spinlocks may be held.
889
 *
889
 *
890
 * @param old Old address space or NULL.
890
 * @param old Old address space or NULL.
891
 * @param new New address space.
891
 * @param new New address space.
892
 */
892
 */
893
void as_switch(as_t *old_as, as_t *new_as)
893
void as_switch(as_t *old_as, as_t *new_as)
894
{
894
{
895
    DEADLOCK_PROBE_INIT(p_asidlock);
895
    DEADLOCK_PROBE_INIT(p_asidlock);
896
    preemption_disable();
896
    preemption_disable();
897
retry:
897
retry:
898
    (void) interrupts_disable();
898
    (void) interrupts_disable();
899
    if (!spinlock_trylock(&asidlock)) {
899
    if (!spinlock_trylock(&asidlock)) {
900
        /*
900
        /*
901
         * Avoid deadlock with TLB shootdown.
901
         * Avoid deadlock with TLB shootdown.
902
         * We can enable interrupts here because
902
         * We can enable interrupts here because
903
         * preemption is disabled. We should not be
903
         * preemption is disabled. We should not be
904
         * holding any other lock.
904
         * holding any other lock.
905
         */
905
         */
906
        (void) interrupts_enable();
906
        (void) interrupts_enable();
907
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
907
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
908
        goto retry;
908
        goto retry;
909
    }
909
    }
910
    preemption_enable();
910
    preemption_enable();
911
 
911
 
912
    /*
912
    /*
913
     * First, take care of the old address space.
913
     * First, take care of the old address space.
914
     */
914
     */
915
    if (old_as) {
915
    if (old_as) {
916
        ASSERT(old_as->cpu_refcount);
916
        ASSERT(old_as->cpu_refcount);
917
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
917
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
918
            /*
918
            /*
919
             * The old address space is no longer active on
919
             * The old address space is no longer active on
920
             * any processor. It can be appended to the
920
             * any processor. It can be appended to the
921
             * list of inactive address spaces with assigned
921
             * list of inactive address spaces with assigned
922
             * ASID.
922
             * ASID.
923
             */
923
             */
924
            ASSERT(old_as->asid != ASID_INVALID);
924
            ASSERT(old_as->asid != ASID_INVALID);
925
            list_append(&old_as->inactive_as_with_asid_link,
925
            list_append(&old_as->inactive_as_with_asid_link,
926
                &inactive_as_with_asid_head);
926
                &inactive_as_with_asid_head);
927
        }
927
        }
928
 
928
 
929
        /*
929
        /*
930
         * Perform architecture-specific tasks when the address space
930
         * Perform architecture-specific tasks when the address space
931
         * is being removed from the CPU.
931
         * is being removed from the CPU.
932
         */
932
         */
933
        as_deinstall_arch(old_as);
933
        as_deinstall_arch(old_as);
934
    }
934
    }
935
 
935
 
936
    /*
936
    /*
937
     * Second, prepare the new address space.
937
     * Second, prepare the new address space.
938
     */
938
     */
939
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
939
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
940
        if (new_as->asid != ASID_INVALID)
940
        if (new_as->asid != ASID_INVALID)
941
            list_remove(&new_as->inactive_as_with_asid_link);
941
            list_remove(&new_as->inactive_as_with_asid_link);
942
        else
942
        else
943
            new_as->asid = asid_get();
943
            new_as->asid = asid_get();
944
    }
944
    }
945
#ifdef AS_PAGE_TABLE
945
#ifdef AS_PAGE_TABLE
946
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
946
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
947
#endif
947
#endif
948
   
948
   
949
    /*
949
    /*
950
     * Perform architecture-specific steps.
950
     * Perform architecture-specific steps.
951
     * (e.g. write ASID to hardware register etc.)
951
     * (e.g. write ASID to hardware register etc.)
952
     */
952
     */
953
    as_install_arch(new_as);
953
    as_install_arch(new_as);
954
 
954
 
955
    spinlock_unlock(&asidlock);
955
    spinlock_unlock(&asidlock);
956
   
956
   
957
    AS = new_as;
957
    AS = new_as;
958
}
958
}
959
 
959
 
960
/** Convert address space area flags to page flags.
960
/** Convert address space area flags to page flags.
961
 *
961
 *
962
 * @param aflags Flags of some address space area.
962
 * @param aflags Flags of some address space area.
963
 *
963
 *
964
 * @return Flags to be passed to page_mapping_insert().
964
 * @return Flags to be passed to page_mapping_insert().
965
 */
965
 */
966
int area_flags_to_page_flags(int aflags)
966
int area_flags_to_page_flags(int aflags)
967
{
967
{
968
    int flags;
968
    int flags;
969
 
969
 
970
    flags = PAGE_USER | PAGE_PRESENT;
970
    flags = PAGE_USER | PAGE_PRESENT;
971
   
971
   
972
    if (aflags & AS_AREA_READ)
972
    if (aflags & AS_AREA_READ)
973
        flags |= PAGE_READ;
973
        flags |= PAGE_READ;
974
       
974
       
975
    if (aflags & AS_AREA_WRITE)
975
    if (aflags & AS_AREA_WRITE)
976
        flags |= PAGE_WRITE;
976
        flags |= PAGE_WRITE;
977
   
977
   
978
    if (aflags & AS_AREA_EXEC)
978
    if (aflags & AS_AREA_EXEC)
979
        flags |= PAGE_EXEC;
979
        flags |= PAGE_EXEC;
980
   
980
   
981
    if (aflags & AS_AREA_CACHEABLE)
981
    if (aflags & AS_AREA_CACHEABLE)
982
        flags |= PAGE_CACHEABLE;
982
        flags |= PAGE_CACHEABLE;
983
       
983
       
984
    return flags;
984
    return flags;
985
}
985
}
986
 
986
 
987
/** Compute flags for virtual address translation subsytem.
987
/** Compute flags for virtual address translation subsytem.
988
 *
988
 *
989
 * The address space area must be locked.
989
 * The address space area must be locked.
990
 * Interrupts must be disabled.
990
 * Interrupts must be disabled.
991
 *
991
 *
992
 * @param a Address space area.
992
 * @param a Address space area.
993
 *
993
 *
994
 * @return Flags to be used in page_mapping_insert().
994
 * @return Flags to be used in page_mapping_insert().
995
 */
995
 */
996
int as_area_get_flags(as_area_t *a)
996
int as_area_get_flags(as_area_t *a)
997
{
997
{
998
    return area_flags_to_page_flags(a->flags);
998
    return area_flags_to_page_flags(a->flags);
999
}
999
}
1000
 
1000
 
1001
/** Create page table.
1001
/** Create page table.
1002
 *
1002
 *
1003
 * Depending on architecture, create either address space
1003
 * Depending on architecture, create either address space
1004
 * private or global page table.
1004
 * private or global page table.
1005
 *
1005
 *
1006
 * @param flags Flags saying whether the page table is for kernel address space.
1006
 * @param flags Flags saying whether the page table is for kernel address space.
1007
 *
1007
 *
1008
 * @return First entry of the page table.
1008
 * @return First entry of the page table.
1009
 */
1009
 */
1010
pte_t *page_table_create(int flags)
1010
pte_t *page_table_create(int flags)
1011
{
1011
{
1012
#ifdef __OBJC__
1012
#ifdef __OBJC__
1013
    return [as_t page_table_create: flags];
1013
    return [as_t page_table_create: flags];
1014
#else
1014
#else
1015
    ASSERT(as_operations);
1015
    ASSERT(as_operations);
1016
    ASSERT(as_operations->page_table_create);
1016
    ASSERT(as_operations->page_table_create);
1017
   
1017
   
1018
    return as_operations->page_table_create(flags);
1018
    return as_operations->page_table_create(flags);
1019
#endif
1019
#endif
1020
}
1020
}
1021
 
1021
 
1022
/** Destroy page table.
1022
/** Destroy page table.
1023
 *
1023
 *
1024
 * Destroy page table in architecture specific way.
1024
 * Destroy page table in architecture specific way.
1025
 *
1025
 *
1026
 * @param page_table Physical address of PTL0.
1026
 * @param page_table Physical address of PTL0.
1027
 */
1027
 */
1028
void page_table_destroy(pte_t *page_table)
1028
void page_table_destroy(pte_t *page_table)
1029
{
1029
{
1030
#ifdef __OBJC__
1030
#ifdef __OBJC__
1031
    return [as_t page_table_destroy: page_table];
1031
    return [as_t page_table_destroy: page_table];
1032
#else
1032
#else
1033
    ASSERT(as_operations);
1033
    ASSERT(as_operations);
1034
    ASSERT(as_operations->page_table_destroy);
1034
    ASSERT(as_operations->page_table_destroy);
1035
   
1035
   
1036
    as_operations->page_table_destroy(page_table);
1036
    as_operations->page_table_destroy(page_table);
1037
#endif
1037
#endif
1038
}
1038
}
1039
 
1039
 
1040
/** Lock page table.
1040
/** Lock page table.
1041
 *
1041
 *
1042
 * This function should be called before any page_mapping_insert(),
1042
 * This function should be called before any page_mapping_insert(),
1043
 * page_mapping_remove() and page_mapping_find().
1043
 * page_mapping_remove() and page_mapping_find().
1044
 *
1044
 *
1045
 * Locking order is such that address space areas must be locked
1045
 * Locking order is such that address space areas must be locked
1046
 * prior to this call. Address space can be locked prior to this
1046
 * prior to this call. Address space can be locked prior to this
1047
 * call in which case the lock argument is false.
1047
 * call in which case the lock argument is false.
1048
 *
1048
 *
1049
 * @param as Address space.
1049
 * @param as Address space.
1050
 * @param lock If false, do not attempt to lock as->lock.
1050
 * @param lock If false, do not attempt to lock as->lock.
1051
 */
1051
 */
1052
void page_table_lock(as_t *as, bool lock)
1052
void page_table_lock(as_t *as, bool lock)
1053
{
1053
{
1054
#ifdef __OBJC__
1054
#ifdef __OBJC__
1055
    [as page_table_lock: lock];
1055
    [as page_table_lock: lock];
1056
#else
1056
#else
1057
    ASSERT(as_operations);
1057
    ASSERT(as_operations);
1058
    ASSERT(as_operations->page_table_lock);
1058
    ASSERT(as_operations->page_table_lock);
1059
   
1059
   
1060
    as_operations->page_table_lock(as, lock);
1060
    as_operations->page_table_lock(as, lock);
1061
#endif
1061
#endif
1062
}
1062
}
1063
 
1063
 
1064
/** Unlock page table.
1064
/** Unlock page table.
1065
 *
1065
 *
1066
 * @param as Address space.
1066
 * @param as Address space.
1067
 * @param unlock If false, do not attempt to unlock as->lock.
1067
 * @param unlock If false, do not attempt to unlock as->lock.
1068
 */
1068
 */
1069
void page_table_unlock(as_t *as, bool unlock)
1069
void page_table_unlock(as_t *as, bool unlock)
1070
{
1070
{
1071
#ifdef __OBJC__
1071
#ifdef __OBJC__
1072
    [as page_table_unlock: unlock];
1072
    [as page_table_unlock: unlock];
1073
#else
1073
#else
1074
    ASSERT(as_operations);
1074
    ASSERT(as_operations);
1075
    ASSERT(as_operations->page_table_unlock);
1075
    ASSERT(as_operations->page_table_unlock);
1076
   
1076
   
1077
    as_operations->page_table_unlock(as, unlock);
1077
    as_operations->page_table_unlock(as, unlock);
1078
#endif
1078
#endif
1079
}
1079
}
1080
 
1080
 
1081
 
1081
 
1082
/** Find address space area and lock it.
1082
/** Find address space area and lock it.
1083
 *
1083
 *
1084
 * The address space must be locked and interrupts must be disabled.
1084
 * The address space must be locked and interrupts must be disabled.
1085
 *
1085
 *
1086
 * @param as Address space.
1086
 * @param as Address space.
1087
 * @param va Virtual address.
1087
 * @param va Virtual address.
1088
 *
1088
 *
1089
 * @return Locked address space area containing va on success or NULL on
1089
 * @return Locked address space area containing va on success or NULL on
1090
 *     failure.
1090
 *     failure.
1091
 */
1091
 */
1092
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1092
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1093
{
1093
{
1094
    as_area_t *a;
1094
    as_area_t *a;
1095
    btree_node_t *leaf, *lnode;
1095
    btree_node_t *leaf, *lnode;
1096
    unsigned int i;
1096
    unsigned int i;
1097
   
1097
   
1098
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1098
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1099
    if (a) {
1099
    if (a) {
1100
        /* va is the base address of an address space area */
1100
        /* va is the base address of an address space area */
1101
        mutex_lock(&a->lock);
1101
        mutex_lock(&a->lock);
1102
        return a;
1102
        return a;
1103
    }
1103
    }
1104
   
1104
   
1105
    /*
1105
    /*
1106
     * Search the leaf node and the righmost record of its left neighbour
1106
     * Search the leaf node and the righmost record of its left neighbour
1107
     * to find out whether this is a miss or va belongs to an address
1107
     * to find out whether this is a miss or va belongs to an address
1108
     * space area found there.
1108
     * space area found there.
1109
     */
1109
     */
1110
   
1110
   
1111
    /* First, search the leaf node itself. */
1111
    /* First, search the leaf node itself. */
1112
    for (i = 0; i < leaf->keys; i++) {
1112
    for (i = 0; i < leaf->keys; i++) {
1113
        a = (as_area_t *) leaf->value[i];
1113
        a = (as_area_t *) leaf->value[i];
1114
        mutex_lock(&a->lock);
1114
        mutex_lock(&a->lock);
1115
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1115
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1116
            return a;
1116
            return a;
1117
        }
1117
        }
1118
        mutex_unlock(&a->lock);
1118
        mutex_unlock(&a->lock);
1119
    }
1119
    }
1120
 
1120
 
1121
    /*
1121
    /*
1122
     * Second, locate the left neighbour and test its last record.
1122
     * Second, locate the left neighbour and test its last record.
1123
     * Because of its position in the B+tree, it must have base < va.
1123
     * Because of its position in the B+tree, it must have base < va.
1124
     */
1124
     */
1125
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1125
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1126
    if (lnode) {
1126
    if (lnode) {
1127
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1127
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1128
        mutex_lock(&a->lock);
1128
        mutex_lock(&a->lock);
1129
        if (va < a->base + a->pages * PAGE_SIZE) {
1129
        if (va < a->base + a->pages * PAGE_SIZE) {
1130
            return a;
1130
            return a;
1131
        }
1131
        }
1132
        mutex_unlock(&a->lock);
1132
        mutex_unlock(&a->lock);
1133
    }
1133
    }
1134
 
1134
 
1135
    return NULL;
1135
    return NULL;
1136
}
1136
}
1137
 
1137
 
1138
/** Check area conflicts with other areas.
1138
/** Check area conflicts with other areas.
1139
 *
1139
 *
1140
 * The address space must be locked and interrupts must be disabled.
1140
 * The address space must be locked and interrupts must be disabled.
1141
 *
1141
 *
1142
 * @param as Address space.
1142
 * @param as Address space.
1143
 * @param va Starting virtual address of the area being tested.
1143
 * @param va Starting virtual address of the area being tested.
1144
 * @param size Size of the area being tested.
1144
 * @param size Size of the area being tested.
1145
 * @param avoid_area Do not touch this area.
1145
 * @param avoid_area Do not touch this area.
1146
 *
1146
 *
1147
 * @return True if there is no conflict, false otherwise.
1147
 * @return True if there is no conflict, false otherwise.
1148
 */
1148
 */
1149
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1149
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1150
              as_area_t *avoid_area)
1150
              as_area_t *avoid_area)
1151
{
1151
{
1152
    as_area_t *a;
1152
    as_area_t *a;
1153
    btree_node_t *leaf, *node;
1153
    btree_node_t *leaf, *node;
1154
    unsigned int i;
1154
    unsigned int i;
1155
   
1155
   
1156
    /*
1156
    /*
1157
     * We don't want any area to have conflicts with NULL page.
1157
     * We don't want any area to have conflicts with NULL page.
1158
     */
1158
     */
1159
    if (overlaps(va, size, NULL, PAGE_SIZE))
1159
    if (overlaps(va, size, NULL, PAGE_SIZE))
1160
        return false;
1160
        return false;
1161
   
1161
   
1162
    /*
1162
    /*
1163
     * The leaf node is found in O(log n), where n is proportional to
1163
     * The leaf node is found in O(log n), where n is proportional to
1164
     * the number of address space areas belonging to as.
1164
     * the number of address space areas belonging to as.
1165
     * The check for conflicts is then attempted on the rightmost
1165
     * The check for conflicts is then attempted on the rightmost
1166
     * record in the left neighbour, the leftmost record in the right
1166
     * record in the left neighbour, the leftmost record in the right
1167
     * neighbour and all records in the leaf node itself.
1167
     * neighbour and all records in the leaf node itself.
1168
     */
1168
     */
1169
   
1169
   
1170
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1170
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1171
        if (a != avoid_area)
1171
        if (a != avoid_area)
1172
            return false;
1172
            return false;
1173
    }
1173
    }
1174
   
1174
   
1175
    /* First, check the two border cases. */
1175
    /* First, check the two border cases. */
1176
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1176
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1177
        a = (as_area_t *) node->value[node->keys - 1];
1177
        a = (as_area_t *) node->value[node->keys - 1];
1178
        mutex_lock(&a->lock);
1178
        mutex_lock(&a->lock);
1179
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1179
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1180
            mutex_unlock(&a->lock);
1180
            mutex_unlock(&a->lock);
1181
            return false;
1181
            return false;
1182
        }
1182
        }
1183
        mutex_unlock(&a->lock);
1183
        mutex_unlock(&a->lock);
1184
    }
1184
    }
1185
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1185
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1186
    if (node) {
1186
    if (node) {
1187
        a = (as_area_t *) node->value[0];
1187
        a = (as_area_t *) node->value[0];
1188
        mutex_lock(&a->lock);
1188
        mutex_lock(&a->lock);
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1190
            mutex_unlock(&a->lock);
1190
            mutex_unlock(&a->lock);
1191
            return false;
1191
            return false;
1192
        }
1192
        }
1193
        mutex_unlock(&a->lock);
1193
        mutex_unlock(&a->lock);
1194
    }
1194
    }
1195
   
1195
   
1196
    /* Second, check the leaf node. */
1196
    /* Second, check the leaf node. */
1197
    for (i = 0; i < leaf->keys; i++) {
1197
    for (i = 0; i < leaf->keys; i++) {
1198
        a = (as_area_t *) leaf->value[i];
1198
        a = (as_area_t *) leaf->value[i];
1199
   
1199
   
1200
        if (a == avoid_area)
1200
        if (a == avoid_area)
1201
            continue;
1201
            continue;
1202
   
1202
   
1203
        mutex_lock(&a->lock);
1203
        mutex_lock(&a->lock);
1204
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1204
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1205
            mutex_unlock(&a->lock);
1205
            mutex_unlock(&a->lock);
1206
            return false;
1206
            return false;
1207
        }
1207
        }
1208
        mutex_unlock(&a->lock);
1208
        mutex_unlock(&a->lock);
1209
    }
1209
    }
1210
 
1210
 
1211
    /*
1211
    /*
1212
     * So far, the area does not conflict with other areas.
1212
     * So far, the area does not conflict with other areas.
1213
     * Check if it doesn't conflict with kernel address space.
1213
     * Check if it doesn't conflict with kernel address space.
1214
     */  
1214
     */  
1215
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1215
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1216
        return !overlaps(va, size,
1216
        return !overlaps(va, size,
1217
            KERNEL_ADDRESS_SPACE_START,
1217
            KERNEL_ADDRESS_SPACE_START,
1218
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1218
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1219
    }
1219
    }
1220
 
1220
 
1221
    return true;
1221
    return true;
1222
}
1222
}
1223
 
1223
 
1224
/** Return size of the address space area with given base.
1224
/** Return size of the address space area with given base.
1225
 *
1225
 *
1226
 * @param base      Arbitrary address insede the address space area.
1226
 * @param base      Arbitrary address insede the address space area.
1227
 *
1227
 *
1228
 * @return      Size of the address space area in bytes or zero if it
1228
 * @return      Size of the address space area in bytes or zero if it
1229
 *          does not exist.
1229
 *          does not exist.
1230
 */
1230
 */
1231
size_t as_area_get_size(uintptr_t base)
1231
size_t as_area_get_size(uintptr_t base)
1232
{
1232
{
1233
    ipl_t ipl;
1233
    ipl_t ipl;
1234
    as_area_t *src_area;
1234
    as_area_t *src_area;
1235
    size_t size;
1235
    size_t size;
1236
 
1236
 
1237
    ipl = interrupts_disable();
1237
    ipl = interrupts_disable();
1238
    src_area = find_area_and_lock(AS, base);
1238
    src_area = find_area_and_lock(AS, base);
1239
    if (src_area){
1239
    if (src_area){
1240
        size = src_area->pages * PAGE_SIZE;
1240
        size = src_area->pages * PAGE_SIZE;
1241
        mutex_unlock(&src_area->lock);
1241
        mutex_unlock(&src_area->lock);
1242
    } else {
1242
    } else {
1243
        size = 0;
1243
        size = 0;
1244
    }
1244
    }
1245
    interrupts_restore(ipl);
1245
    interrupts_restore(ipl);
1246
    return size;
1246
    return size;
1247
}
1247
}
1248
 
1248
 
1249
/** Mark portion of address space area as used.
1249
/** Mark portion of address space area as used.
1250
 *
1250
 *
1251
 * The address space area must be already locked.
1251
 * The address space area must be already locked.
1252
 *
1252
 *
1253
 * @param a Address space area.
1253
 * @param a Address space area.
1254
 * @param page First page to be marked.
1254
 * @param page First page to be marked.
1255
 * @param count Number of page to be marked.
1255
 * @param count Number of page to be marked.
1256
 *
1256
 *
1257
 * @return 0 on failure and 1 on success.
1257
 * @return 0 on failure and 1 on success.
1258
 */
1258
 */
1259
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1259
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1260
{
1260
{
1261
    btree_node_t *leaf, *node;
1261
    btree_node_t *leaf, *node;
1262
    count_t pages;
1262
    count_t pages;
1263
    unsigned int i;
1263
    unsigned int i;
1264
 
1264
 
1265
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1265
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1266
    ASSERT(count);
1266
    ASSERT(count);
1267
 
1267
 
1268
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1268
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1269
    if (pages) {
1269
    if (pages) {
1270
        /*
1270
        /*
1271
         * We hit the beginning of some used space.
1271
         * We hit the beginning of some used space.
1272
         */
1272
         */
1273
        return 0;
1273
        return 0;
1274
    }
1274
    }
1275
 
1275
 
1276
    if (!leaf->keys) {
1276
    if (!leaf->keys) {
1277
        btree_insert(&a->used_space, page, (void *) count, leaf);
1277
        btree_insert(&a->used_space, page, (void *) count, leaf);
1278
        return 1;
1278
        return 1;
1279
    }
1279
    }
1280
 
1280
 
1281
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1281
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1282
    if (node) {
1282
    if (node) {
1283
        uintptr_t left_pg = node->key[node->keys - 1];
1283
        uintptr_t left_pg = node->key[node->keys - 1];
1284
        uintptr_t right_pg = leaf->key[0];
1284
        uintptr_t right_pg = leaf->key[0];
1285
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1285
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1286
        count_t right_cnt = (count_t) leaf->value[0];
1286
        count_t right_cnt = (count_t) leaf->value[0];
1287
       
1287
       
1288
        /*
1288
        /*
1289
         * Examine the possibility that the interval fits
1289
         * Examine the possibility that the interval fits
1290
         * somewhere between the rightmost interval of
1290
         * somewhere between the rightmost interval of
1291
         * the left neigbour and the first interval of the leaf.
1291
         * the left neigbour and the first interval of the leaf.
1292
         */
1292
         */
1293
         
1293
         
1294
        if (page >= right_pg) {
1294
        if (page >= right_pg) {
1295
            /* Do nothing. */
1295
            /* Do nothing. */
1296
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1296
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1297
            left_cnt * PAGE_SIZE)) {
1297
            left_cnt * PAGE_SIZE)) {
1298
            /* The interval intersects with the left interval. */
1298
            /* The interval intersects with the left interval. */
1299
            return 0;
1299
            return 0;
1300
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1300
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1301
            right_cnt * PAGE_SIZE)) {
1301
            right_cnt * PAGE_SIZE)) {
1302
            /* The interval intersects with the right interval. */
1302
            /* The interval intersects with the right interval. */
1303
            return 0;          
1303
            return 0;          
1304
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1304
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1305
            (page + count * PAGE_SIZE == right_pg)) {
1305
            (page + count * PAGE_SIZE == right_pg)) {
1306
            /*
1306
            /*
1307
             * The interval can be added by merging the two already
1307
             * The interval can be added by merging the two already
1308
             * present intervals.
1308
             * present intervals.
1309
             */
1309
             */
1310
            node->value[node->keys - 1] += count + right_cnt;
1310
            node->value[node->keys - 1] += count + right_cnt;
1311
            btree_remove(&a->used_space, right_pg, leaf);
1311
            btree_remove(&a->used_space, right_pg, leaf);
1312
            return 1;
1312
            return 1;
1313
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1313
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1314
            /*
1314
            /*
1315
             * The interval can be added by simply growing the left
1315
             * The interval can be added by simply growing the left
1316
             * interval.
1316
             * interval.
1317
             */
1317
             */
1318
            node->value[node->keys - 1] += count;
1318
            node->value[node->keys - 1] += count;
1319
            return 1;
1319
            return 1;
1320
        } else if (page + count * PAGE_SIZE == right_pg) {
1320
        } else if (page + count * PAGE_SIZE == right_pg) {
1321
            /*
1321
            /*
1322
             * The interval can be addded by simply moving base of
1322
             * The interval can be addded by simply moving base of
1323
             * the right interval down and increasing its size
1323
             * the right interval down and increasing its size
1324
             * accordingly.
1324
             * accordingly.
1325
             */
1325
             */
1326
            leaf->value[0] += count;
1326
            leaf->value[0] += count;
1327
            leaf->key[0] = page;
1327
            leaf->key[0] = page;
1328
            return 1;
1328
            return 1;
1329
        } else {
1329
        } else {
1330
            /*
1330
            /*
1331
             * The interval is between both neigbouring intervals,
1331
             * The interval is between both neigbouring intervals,
1332
             * but cannot be merged with any of them.
1332
             * but cannot be merged with any of them.
1333
             */
1333
             */
1334
            btree_insert(&a->used_space, page, (void *) count,
1334
            btree_insert(&a->used_space, page, (void *) count,
1335
                leaf);
1335
                leaf);
1336
            return 1;
1336
            return 1;
1337
        }
1337
        }
1338
    } else if (page < leaf->key[0]) {
1338
    } else if (page < leaf->key[0]) {
1339
        uintptr_t right_pg = leaf->key[0];
1339
        uintptr_t right_pg = leaf->key[0];
1340
        count_t right_cnt = (count_t) leaf->value[0];
1340
        count_t right_cnt = (count_t) leaf->value[0];
1341
   
1341
   
1342
        /*
1342
        /*
1343
         * Investigate the border case in which the left neighbour does
1343
         * Investigate the border case in which the left neighbour does
1344
         * not exist but the interval fits from the left.
1344
         * not exist but the interval fits from the left.
1345
         */
1345
         */
1346
         
1346
         
1347
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1347
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1348
            right_cnt * PAGE_SIZE)) {
1348
            right_cnt * PAGE_SIZE)) {
1349
            /* The interval intersects with the right interval. */
1349
            /* The interval intersects with the right interval. */
1350
            return 0;
1350
            return 0;
1351
        } else if (page + count * PAGE_SIZE == right_pg) {
1351
        } else if (page + count * PAGE_SIZE == right_pg) {
1352
            /*
1352
            /*
1353
             * The interval can be added by moving the base of the
1353
             * The interval can be added by moving the base of the
1354
             * right interval down and increasing its size
1354
             * right interval down and increasing its size
1355
             * accordingly.
1355
             * accordingly.
1356
             */
1356
             */
1357
            leaf->key[0] = page;
1357
            leaf->key[0] = page;
1358
            leaf->value[0] += count;
1358
            leaf->value[0] += count;
1359
            return 1;
1359
            return 1;
1360
        } else {
1360
        } else {
1361
            /*
1361
            /*
1362
             * The interval doesn't adjoin with the right interval.
1362
             * The interval doesn't adjoin with the right interval.
1363
             * It must be added individually.
1363
             * It must be added individually.
1364
             */
1364
             */
1365
            btree_insert(&a->used_space, page, (void *) count,
1365
            btree_insert(&a->used_space, page, (void *) count,
1366
                leaf);
1366
                leaf);
1367
            return 1;
1367
            return 1;
1368
        }
1368
        }
1369
    }
1369
    }
1370
 
1370
 
1371
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1371
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1372
    if (node) {
1372
    if (node) {
1373
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1373
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1374
        uintptr_t right_pg = node->key[0];
1374
        uintptr_t right_pg = node->key[0];
1375
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1375
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1376
        count_t right_cnt = (count_t) node->value[0];
1376
        count_t right_cnt = (count_t) node->value[0];
1377
       
1377
       
1378
        /*
1378
        /*
1379
         * Examine the possibility that the interval fits
1379
         * Examine the possibility that the interval fits
1380
         * somewhere between the leftmost interval of
1380
         * somewhere between the leftmost interval of
1381
         * the right neigbour and the last interval of the leaf.
1381
         * the right neigbour and the last interval of the leaf.
1382
         */
1382
         */
1383
 
1383
 
1384
        if (page < left_pg) {
1384
        if (page < left_pg) {
1385
            /* Do nothing. */
1385
            /* Do nothing. */
1386
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1386
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1387
            left_cnt * PAGE_SIZE)) {
1387
            left_cnt * PAGE_SIZE)) {
1388
            /* The interval intersects with the left interval. */
1388
            /* The interval intersects with the left interval. */
1389
            return 0;
1389
            return 0;
1390
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1390
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1391
            right_cnt * PAGE_SIZE)) {
1391
            right_cnt * PAGE_SIZE)) {
1392
            /* The interval intersects with the right interval. */
1392
            /* The interval intersects with the right interval. */
1393
            return 0;          
1393
            return 0;          
1394
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1394
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1395
            (page + count * PAGE_SIZE == right_pg)) {
1395
            (page + count * PAGE_SIZE == right_pg)) {
1396
            /*
1396
            /*
1397
             * The interval can be added by merging the two already
1397
             * The interval can be added by merging the two already
1398
             * present intervals.
1398
             * present intervals.
1399
             * */
1399
             * */
1400
            leaf->value[leaf->keys - 1] += count + right_cnt;
1400
            leaf->value[leaf->keys - 1] += count + right_cnt;
1401
            btree_remove(&a->used_space, right_pg, node);
1401
            btree_remove(&a->used_space, right_pg, node);
1402
            return 1;
1402
            return 1;
1403
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1403
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1404
            /*
1404
            /*
1405
             * The interval can be added by simply growing the left
1405
             * The interval can be added by simply growing the left
1406
             * interval.
1406
             * interval.
1407
             * */
1407
             * */
1408
            leaf->value[leaf->keys - 1] +=  count;
1408
            leaf->value[leaf->keys - 1] +=  count;
1409
            return 1;
1409
            return 1;
1410
        } else if (page + count * PAGE_SIZE == right_pg) {
1410
        } else if (page + count * PAGE_SIZE == right_pg) {
1411
            /*
1411
            /*
1412
             * The interval can be addded by simply moving base of
1412
             * The interval can be addded by simply moving base of
1413
             * the right interval down and increasing its size
1413
             * the right interval down and increasing its size
1414
             * accordingly.
1414
             * accordingly.
1415
             */
1415
             */
1416
            node->value[0] += count;
1416
            node->value[0] += count;
1417
            node->key[0] = page;
1417
            node->key[0] = page;
1418
            return 1;
1418
            return 1;
1419
        } else {
1419
        } else {
1420
            /*
1420
            /*
1421
             * The interval is between both neigbouring intervals,
1421
             * The interval is between both neigbouring intervals,
1422
             * but cannot be merged with any of them.
1422
             * but cannot be merged with any of them.
1423
             */
1423
             */
1424
            btree_insert(&a->used_space, page, (void *) count,
1424
            btree_insert(&a->used_space, page, (void *) count,
1425
                leaf);
1425
                leaf);
1426
            return 1;
1426
            return 1;
1427
        }
1427
        }
1428
    } else if (page >= leaf->key[leaf->keys - 1]) {
1428
    } else if (page >= leaf->key[leaf->keys - 1]) {
1429
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1429
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1430
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1430
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1431
   
1431
   
1432
        /*
1432
        /*
1433
         * Investigate the border case in which the right neighbour
1433
         * Investigate the border case in which the right neighbour
1434
         * does not exist but the interval fits from the right.
1434
         * does not exist but the interval fits from the right.
1435
         */
1435
         */
1436
         
1436
         
1437
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1437
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1438
            left_cnt * PAGE_SIZE)) {
1438
            left_cnt * PAGE_SIZE)) {
1439
            /* The interval intersects with the left interval. */
1439
            /* The interval intersects with the left interval. */
1440
            return 0;
1440
            return 0;
1441
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1441
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1442
            /*
1442
            /*
1443
             * The interval can be added by growing the left
1443
             * The interval can be added by growing the left
1444
             * interval.
1444
             * interval.
1445
             */
1445
             */
1446
            leaf->value[leaf->keys - 1] += count;
1446
            leaf->value[leaf->keys - 1] += count;
1447
            return 1;
1447
            return 1;
1448
        } else {
1448
        } else {
1449
            /*
1449
            /*
1450
             * The interval doesn't adjoin with the left interval.
1450
             * The interval doesn't adjoin with the left interval.
1451
             * It must be added individually.
1451
             * It must be added individually.
1452
             */
1452
             */
1453
            btree_insert(&a->used_space, page, (void *) count,
1453
            btree_insert(&a->used_space, page, (void *) count,
1454
                leaf);
1454
                leaf);
1455
            return 1;
1455
            return 1;
1456
        }
1456
        }
1457
    }
1457
    }
1458
   
1458
   
1459
    /*
1459
    /*
1460
     * Note that if the algorithm made it thus far, the interval can fit
1460
     * Note that if the algorithm made it thus far, the interval can fit
1461
     * only between two other intervals of the leaf. The two border cases
1461
     * only between two other intervals of the leaf. The two border cases
1462
     * were already resolved.
1462
     * were already resolved.
1463
     */
1463
     */
1464
    for (i = 1; i < leaf->keys; i++) {
1464
    for (i = 1; i < leaf->keys; i++) {
1465
        if (page < leaf->key[i]) {
1465
        if (page < leaf->key[i]) {
1466
            uintptr_t left_pg = leaf->key[i - 1];
1466
            uintptr_t left_pg = leaf->key[i - 1];
1467
            uintptr_t right_pg = leaf->key[i];
1467
            uintptr_t right_pg = leaf->key[i];
1468
            count_t left_cnt = (count_t) leaf->value[i - 1];
1468
            count_t left_cnt = (count_t) leaf->value[i - 1];
1469
            count_t right_cnt = (count_t) leaf->value[i];
1469
            count_t right_cnt = (count_t) leaf->value[i];
1470
 
1470
 
1471
            /*
1471
            /*
1472
             * The interval fits between left_pg and right_pg.
1472
             * The interval fits between left_pg and right_pg.
1473
             */
1473
             */
1474
 
1474
 
1475
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1475
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1476
                left_cnt * PAGE_SIZE)) {
1476
                left_cnt * PAGE_SIZE)) {
1477
                /*
1477
                /*
1478
                 * The interval intersects with the left
1478
                 * The interval intersects with the left
1479
                 * interval.
1479
                 * interval.
1480
                 */
1480
                 */
1481
                return 0;
1481
                return 0;
1482
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1482
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1483
                right_cnt * PAGE_SIZE)) {
1483
                right_cnt * PAGE_SIZE)) {
1484
                /*
1484
                /*
1485
                 * The interval intersects with the right
1485
                 * The interval intersects with the right
1486
                 * interval.
1486
                 * interval.
1487
                 */
1487
                 */
1488
                return 0;          
1488
                return 0;          
1489
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1489
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1490
                (page + count * PAGE_SIZE == right_pg)) {
1490
                (page + count * PAGE_SIZE == right_pg)) {
1491
                /*
1491
                /*
1492
                 * The interval can be added by merging the two
1492
                 * The interval can be added by merging the two
1493
                 * already present intervals.
1493
                 * already present intervals.
1494
                 */
1494
                 */
1495
                leaf->value[i - 1] += count + right_cnt;
1495
                leaf->value[i - 1] += count + right_cnt;
1496
                btree_remove(&a->used_space, right_pg, leaf);
1496
                btree_remove(&a->used_space, right_pg, leaf);
1497
                return 1;
1497
                return 1;
1498
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1498
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1499
                /*
1499
                /*
1500
                 * The interval can be added by simply growing
1500
                 * The interval can be added by simply growing
1501
                 * the left interval.
1501
                 * the left interval.
1502
                 */
1502
                 */
1503
                leaf->value[i - 1] += count;
1503
                leaf->value[i - 1] += count;
1504
                return 1;
1504
                return 1;
1505
            } else if (page + count * PAGE_SIZE == right_pg) {
1505
            } else if (page + count * PAGE_SIZE == right_pg) {
1506
                /*
1506
                /*
1507
                     * The interval can be addded by simply moving
1507
                     * The interval can be addded by simply moving
1508
                 * base of the right interval down and
1508
                 * base of the right interval down and
1509
                 * increasing its size accordingly.
1509
                 * increasing its size accordingly.
1510
                 */
1510
                 */
1511
                leaf->value[i] += count;
1511
                leaf->value[i] += count;
1512
                leaf->key[i] = page;
1512
                leaf->key[i] = page;
1513
                return 1;
1513
                return 1;
1514
            } else {
1514
            } else {
1515
                /*
1515
                /*
1516
                 * The interval is between both neigbouring
1516
                 * The interval is between both neigbouring
1517
                 * intervals, but cannot be merged with any of
1517
                 * intervals, but cannot be merged with any of
1518
                 * them.
1518
                 * them.
1519
                 */
1519
                 */
1520
                btree_insert(&a->used_space, page,
1520
                btree_insert(&a->used_space, page,
1521
                    (void *) count, leaf);
1521
                    (void *) count, leaf);
1522
                return 1;
1522
                return 1;
1523
            }
1523
            }
1524
        }
1524
        }
1525
    }
1525
    }
1526
 
1526
 
1527
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1527
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1528
        "%p.\n", count, page);
1528
        "%p.\n", count, page);
1529
}
1529
}
1530
 
1530
 
1531
/** Mark portion of address space area as unused.
1531
/** Mark portion of address space area as unused.
1532
 *
1532
 *
1533
 * The address space area must be already locked.
1533
 * The address space area must be already locked.
1534
 *
1534
 *
1535
 * @param a Address space area.
1535
 * @param a Address space area.
1536
 * @param page First page to be marked.
1536
 * @param page First page to be marked.
1537
 * @param count Number of page to be marked.
1537
 * @param count Number of page to be marked.
1538
 *
1538
 *
1539
 * @return 0 on failure and 1 on success.
1539
 * @return 0 on failure and 1 on success.
1540
 */
1540
 */
1541
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1541
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1542
{
1542
{
1543
    btree_node_t *leaf, *node;
1543
    btree_node_t *leaf, *node;
1544
    count_t pages;
1544
    count_t pages;
1545
    unsigned int i;
1545
    unsigned int i;
1546
 
1546
 
1547
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1547
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1548
    ASSERT(count);
1548
    ASSERT(count);
1549
 
1549
 
1550
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1550
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1551
    if (pages) {
1551
    if (pages) {
1552
        /*
1552
        /*
1553
         * We are lucky, page is the beginning of some interval.
1553
         * We are lucky, page is the beginning of some interval.
1554
         */
1554
         */
1555
        if (count > pages) {
1555
        if (count > pages) {
1556
            return 0;
1556
            return 0;
1557
        } else if (count == pages) {
1557
        } else if (count == pages) {
1558
            btree_remove(&a->used_space, page, leaf);
1558
            btree_remove(&a->used_space, page, leaf);
1559
            return 1;
1559
            return 1;
1560
        } else {
1560
        } else {
1561
            /*
1561
            /*
1562
             * Find the respective interval.
1562
             * Find the respective interval.
1563
             * Decrease its size and relocate its start address.
1563
             * Decrease its size and relocate its start address.
1564
             */
1564
             */
1565
            for (i = 0; i < leaf->keys; i++) {
1565
            for (i = 0; i < leaf->keys; i++) {
1566
                if (leaf->key[i] == page) {
1566
                if (leaf->key[i] == page) {
1567
                    leaf->key[i] += count * PAGE_SIZE;
1567
                    leaf->key[i] += count * PAGE_SIZE;
1568
                    leaf->value[i] -= count;
1568
                    leaf->value[i] -= count;
1569
                    return 1;
1569
                    return 1;
1570
                }
1570
                }
1571
            }
1571
            }
1572
            goto error;
1572
            goto error;
1573
        }
1573
        }
1574
    }
1574
    }
1575
 
1575
 
1576
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1576
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1577
    if (node && page < leaf->key[0]) {
1577
    if (node && page < leaf->key[0]) {
1578
        uintptr_t left_pg = node->key[node->keys - 1];
1578
        uintptr_t left_pg = node->key[node->keys - 1];
1579
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1579
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1580
 
1580
 
1581
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1581
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1582
            count * PAGE_SIZE)) {
1582
            count * PAGE_SIZE)) {
1583
            if (page + count * PAGE_SIZE ==
1583
            if (page + count * PAGE_SIZE ==
1584
                left_pg + left_cnt * PAGE_SIZE) {
1584
                left_pg + left_cnt * PAGE_SIZE) {
1585
                /*
1585
                /*
1586
                 * The interval is contained in the rightmost
1586
                 * The interval is contained in the rightmost
1587
                 * interval of the left neighbour and can be
1587
                 * interval of the left neighbour and can be
1588
                 * removed by updating the size of the bigger
1588
                 * removed by updating the size of the bigger
1589
                 * interval.
1589
                 * interval.
1590
                 */
1590
                 */
1591
                node->value[node->keys - 1] -= count;
1591
                node->value[node->keys - 1] -= count;
1592
                return 1;
1592
                return 1;
1593
            } else if (page + count * PAGE_SIZE <
1593
            } else if (page + count * PAGE_SIZE <
1594
                left_pg + left_cnt*PAGE_SIZE) {
1594
                left_pg + left_cnt*PAGE_SIZE) {
1595
                count_t new_cnt;
1595
                count_t new_cnt;
1596
               
1596
               
1597
                /*
1597
                /*
1598
                 * The interval is contained in the rightmost
1598
                 * The interval is contained in the rightmost
1599
                 * interval of the left neighbour but its
1599
                 * interval of the left neighbour but its
1600
                 * removal requires both updating the size of
1600
                 * removal requires both updating the size of
1601
                 * the original interval and also inserting a
1601
                 * the original interval and also inserting a
1602
                 * new interval.
1602
                 * new interval.
1603
                 */
1603
                 */
1604
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1604
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1605
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1605
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1606
                node->value[node->keys - 1] -= count + new_cnt;
1606
                node->value[node->keys - 1] -= count + new_cnt;
1607
                btree_insert(&a->used_space, page +
1607
                btree_insert(&a->used_space, page +
1608
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1608
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1609
                return 1;
1609
                return 1;
1610
            }
1610
            }
1611
        }
1611
        }
1612
        return 0;
1612
        return 0;
1613
    } else if (page < leaf->key[0]) {
1613
    } else if (page < leaf->key[0]) {
1614
        return 0;
1614
        return 0;
1615
    }
1615
    }
1616
   
1616
   
1617
    if (page > leaf->key[leaf->keys - 1]) {
1617
    if (page > leaf->key[leaf->keys - 1]) {
1618
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1618
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1619
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1619
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1620
 
1620
 
1621
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1621
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1622
            count * PAGE_SIZE)) {
1622
            count * PAGE_SIZE)) {
1623
            if (page + count * PAGE_SIZE ==
1623
            if (page + count * PAGE_SIZE ==
1624
                left_pg + left_cnt * PAGE_SIZE) {
1624
                left_pg + left_cnt * PAGE_SIZE) {
1625
                /*
1625
                /*
1626
                 * The interval is contained in the rightmost
1626
                 * The interval is contained in the rightmost
1627
                 * interval of the leaf and can be removed by
1627
                 * interval of the leaf and can be removed by
1628
                 * updating the size of the bigger interval.
1628
                 * updating the size of the bigger interval.
1629
                 */
1629
                 */
1630
                leaf->value[leaf->keys - 1] -= count;
1630
                leaf->value[leaf->keys - 1] -= count;
1631
                return 1;
1631
                return 1;
1632
            } else if (page + count * PAGE_SIZE < left_pg +
1632
            } else if (page + count * PAGE_SIZE < left_pg +
1633
                left_cnt * PAGE_SIZE) {
1633
                left_cnt * PAGE_SIZE) {
1634
                count_t new_cnt;
1634
                count_t new_cnt;
1635
               
1635
               
1636
                /*
1636
                /*
1637
                 * The interval is contained in the rightmost
1637
                 * The interval is contained in the rightmost
1638
                 * interval of the leaf but its removal
1638
                 * interval of the leaf but its removal
1639
                 * requires both updating the size of the
1639
                 * requires both updating the size of the
1640
                 * original interval and also inserting a new
1640
                 * original interval and also inserting a new
1641
                 * interval.
1641
                 * interval.
1642
                 */
1642
                 */
1643
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1643
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1644
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1644
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1645
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1645
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1646
                btree_insert(&a->used_space, page +
1646
                btree_insert(&a->used_space, page +
1647
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1647
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1648
                return 1;
1648
                return 1;
1649
            }
1649
            }
1650
        }
1650
        }
1651
        return 0;
1651
        return 0;
1652
    }  
1652
    }  
1653
   
1653
   
1654
    /*
1654
    /*
1655
     * The border cases have been already resolved.
1655
     * The border cases have been already resolved.
1656
     * Now the interval can be only between intervals of the leaf.
1656
     * Now the interval can be only between intervals of the leaf.
1657
     */
1657
     */
1658
    for (i = 1; i < leaf->keys - 1; i++) {
1658
    for (i = 1; i < leaf->keys - 1; i++) {
1659
        if (page < leaf->key[i]) {
1659
        if (page < leaf->key[i]) {
1660
            uintptr_t left_pg = leaf->key[i - 1];
1660
            uintptr_t left_pg = leaf->key[i - 1];
1661
            count_t left_cnt = (count_t) leaf->value[i - 1];
1661
            count_t left_cnt = (count_t) leaf->value[i - 1];
1662
 
1662
 
1663
            /*
1663
            /*
1664
             * Now the interval is between intervals corresponding
1664
             * Now the interval is between intervals corresponding
1665
             * to (i - 1) and i.
1665
             * to (i - 1) and i.
1666
             */
1666
             */
1667
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1667
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1668
                count * PAGE_SIZE)) {
1668
                count * PAGE_SIZE)) {
1669
                if (page + count * PAGE_SIZE ==
1669
                if (page + count * PAGE_SIZE ==
1670
                    left_pg + left_cnt*PAGE_SIZE) {
1670
                    left_pg + left_cnt*PAGE_SIZE) {
1671
                    /*
1671
                    /*
1672
                     * The interval is contained in the
1672
                     * The interval is contained in the
1673
                     * interval (i - 1) of the leaf and can
1673
                     * interval (i - 1) of the leaf and can
1674
                     * be removed by updating the size of
1674
                     * be removed by updating the size of
1675
                     * the bigger interval.
1675
                     * the bigger interval.
1676
                     */
1676
                     */
1677
                    leaf->value[i - 1] -= count;
1677
                    leaf->value[i - 1] -= count;
1678
                    return 1;
1678
                    return 1;
1679
                } else if (page + count * PAGE_SIZE <
1679
                } else if (page + count * PAGE_SIZE <
1680
                    left_pg + left_cnt * PAGE_SIZE) {
1680
                    left_pg + left_cnt * PAGE_SIZE) {
1681
                    count_t new_cnt;
1681
                    count_t new_cnt;
1682
               
1682
               
1683
                    /*
1683
                    /*
1684
                     * The interval is contained in the
1684
                     * The interval is contained in the
1685
                     * interval (i - 1) of the leaf but its
1685
                     * interval (i - 1) of the leaf but its
1686
                     * removal requires both updating the
1686
                     * removal requires both updating the
1687
                     * size of the original interval and
1687
                     * size of the original interval and
1688
                     * also inserting a new interval.
1688
                     * also inserting a new interval.
1689
                     */
1689
                     */
1690
                    new_cnt = ((left_pg +
1690
                    new_cnt = ((left_pg +
1691
                        left_cnt * PAGE_SIZE) -
1691
                        left_cnt * PAGE_SIZE) -
1692
                        (page + count * PAGE_SIZE)) >>
1692
                        (page + count * PAGE_SIZE)) >>
1693
                        PAGE_WIDTH;
1693
                        PAGE_WIDTH;
1694
                    leaf->value[i - 1] -= count + new_cnt;
1694
                    leaf->value[i - 1] -= count + new_cnt;
1695
                    btree_insert(&a->used_space, page +
1695
                    btree_insert(&a->used_space, page +
1696
                        count * PAGE_SIZE, (void *) new_cnt,
1696
                        count * PAGE_SIZE, (void *) new_cnt,
1697
                        leaf);
1697
                        leaf);
1698
                    return 1;
1698
                    return 1;
1699
                }
1699
                }
1700
            }
1700
            }
1701
            return 0;
1701
            return 0;
1702
        }
1702
        }
1703
    }
1703
    }
1704
 
1704
 
1705
error:
1705
error:
1706
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1706
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1707
        "from %p.\n", count, page);
1707
        "from %p.\n", count, page);
1708
}
1708
}
1709
 
1709
 
1710
/** Remove reference to address space area share info.
1710
/** Remove reference to address space area share info.
1711
 *
1711
 *
1712
 * If the reference count drops to 0, the sh_info is deallocated.
1712
 * If the reference count drops to 0, the sh_info is deallocated.
1713
 *
1713
 *
1714
 * @param sh_info Pointer to address space area share info.
1714
 * @param sh_info Pointer to address space area share info.
1715
 */
1715
 */
1716
void sh_info_remove_reference(share_info_t *sh_info)
1716
void sh_info_remove_reference(share_info_t *sh_info)
1717
{
1717
{
1718
    bool dealloc = false;
1718
    bool dealloc = false;
1719
 
1719
 
1720
    mutex_lock(&sh_info->lock);
1720
    mutex_lock(&sh_info->lock);
1721
    ASSERT(sh_info->refcount);
1721
    ASSERT(sh_info->refcount);
1722
    if (--sh_info->refcount == 0) {
1722
    if (--sh_info->refcount == 0) {
1723
        dealloc = true;
1723
        dealloc = true;
1724
        link_t *cur;
1724
        link_t *cur;
1725
       
1725
       
1726
        /*
1726
        /*
1727
         * Now walk carefully the pagemap B+tree and free/remove
1727
         * Now walk carefully the pagemap B+tree and free/remove
1728
         * reference from all frames found there.
1728
         * reference from all frames found there.
1729
         */
1729
         */
1730
        for (cur = sh_info->pagemap.leaf_head.next;
1730
        for (cur = sh_info->pagemap.leaf_head.next;
1731
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1731
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1732
            btree_node_t *node;
1732
            btree_node_t *node;
1733
            unsigned int i;
1733
            unsigned int i;
1734
           
1734
           
1735
            node = list_get_instance(cur, btree_node_t, leaf_link);
1735
            node = list_get_instance(cur, btree_node_t, leaf_link);
1736
            for (i = 0; i < node->keys; i++)
1736
            for (i = 0; i < node->keys; i++)
1737
                frame_free((uintptr_t) node->value[i]);
1737
                frame_free((uintptr_t) node->value[i]);
1738
        }
1738
        }
1739
       
1739
       
1740
    }
1740
    }
1741
    mutex_unlock(&sh_info->lock);
1741
    mutex_unlock(&sh_info->lock);
1742
   
1742
   
1743
    if (dealloc) {
1743
    if (dealloc) {
1744
        btree_destroy(&sh_info->pagemap);
1744
        btree_destroy(&sh_info->pagemap);
1745
        free(sh_info);
1745
        free(sh_info);
1746
    }
1746
    }
1747
}
1747
}
1748
 
1748
 
1749
/*
1749
/*
1750
 * Address space related syscalls.
1750
 * Address space related syscalls.
1751
 */
1751
 */
1752
 
1752
 
1753
/** Wrapper for as_area_create(). */
1753
/** Wrapper for as_area_create(). */
1754
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1754
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1755
{
1755
{
1756
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1756
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1757
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1757
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1758
        return (unative_t) address;
1758
        return (unative_t) address;
1759
    else
1759
    else
1760
        return (unative_t) -1;
1760
        return (unative_t) -1;
1761
}
1761
}
1762
 
1762
 
1763
/** Wrapper for as_area_resize(). */
1763
/** Wrapper for as_area_resize(). */
1764
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1764
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1765
{
1765
{
1766
    return (unative_t) as_area_resize(AS, address, size, 0);
1766
    return (unative_t) as_area_resize(AS, address, size, 0);
1767
}
1767
}
1768
 
1768
 
1769
/** Wrapper for as_area_destroy(). */
1769
/** Wrapper for as_area_destroy(). */
1770
unative_t sys_as_area_destroy(uintptr_t address)
1770
unative_t sys_as_area_destroy(uintptr_t address)
1771
{
1771
{
1772
    return (unative_t) as_area_destroy(AS, address);
1772
    return (unative_t) as_area_destroy(AS, address);
1773
}
1773
}
1774
 
1774
 
1775
/** Print out information about address space.
1775
/** Print out information about address space.
1776
 *
1776
 *
1777
 * @param as Address space.
1777
 * @param as Address space.
1778
 */
1778
 */
1779
void as_print(as_t *as)
1779
void as_print(as_t *as)
1780
{
1780
{
1781
    ipl_t ipl;
1781
    ipl_t ipl;
1782
   
1782
   
1783
    ipl = interrupts_disable();
1783
    ipl = interrupts_disable();
1784
    mutex_lock(&as->lock);
1784
    mutex_lock(&as->lock);
1785
   
1785
   
1786
    /* print out info about address space areas */
1786
    /* print out info about address space areas */
1787
    link_t *cur;
1787
    link_t *cur;
1788
    for (cur = as->as_area_btree.leaf_head.next;
1788
    for (cur = as->as_area_btree.leaf_head.next;
1789
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1789
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1790
        btree_node_t *node;
1790
        btree_node_t *node;
1791
       
1791
       
1792
        node = list_get_instance(cur, btree_node_t, leaf_link);
1792
        node = list_get_instance(cur, btree_node_t, leaf_link);
1793
       
1793
       
1794
        unsigned int i;
1794
        unsigned int i;
1795
        for (i = 0; i < node->keys; i++) {
1795
        for (i = 0; i < node->keys; i++) {
1796
            as_area_t *area = node->value[i];
1796
            as_area_t *area = node->value[i];
1797
       
1797
       
1798
            mutex_lock(&area->lock);
1798
            mutex_lock(&area->lock);
1799
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1799
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
1800
                area, area->base, area->pages, area->base,
1800
                area, area->base, area->pages, area->base,
1801
                area->base + FRAMES2SIZE(area->pages));
1801
                area->base + FRAMES2SIZE(area->pages));
1802
            mutex_unlock(&area->lock);
1802
            mutex_unlock(&area->lock);
1803
        }
1803
        }
1804
    }
1804
    }
1805
   
1805
   
1806
    mutex_unlock(&as->lock);
1806
    mutex_unlock(&as->lock);
1807
    interrupts_restore(ipl);
1807
    interrupts_restore(ipl);
1808
}
1808
}
1809
 
1809
 
1810
/** @}
1810
/** @}
1811
 */
1811
 */
1812
 
1812