Subversion Repositories HelenOS

Rev

Rev 1890 | Rev 1914 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1890 Rev 1891
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
77
#include <typedefs.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
/**
81
/**
82
 * Each architecture decides what functions will be used to carry out
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
83
 * address space operations such as creating or locking page tables.
84
 */
84
 */
85
as_operations_t *as_operations = NULL;
85
as_operations_t *as_operations = NULL;
86
 
86
 
87
/**
87
/**
88
 * Slab for as_t objects.
88
 * Slab for as_t objects.
89
 */
89
 */
90
static slab_cache_t *as_slab;
90
static slab_cache_t *as_slab;
91
 
91
 
92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
94
 
94
 
95
/**
95
/**
96
 * This list contains address spaces that are not active on any
96
 * This list contains address spaces that are not active on any
97
 * processor and that have valid ASID.
97
 * processor and that have valid ASID.
98
 */
98
 */
99
LIST_INITIALIZE(inactive_as_with_asid_head);
99
LIST_INITIALIZE(inactive_as_with_asid_head);
100
 
100
 
101
/** Kernel address space. */
101
/** Kernel address space. */
102
as_t *AS_KERNEL = NULL;
102
as_t *AS_KERNEL = NULL;
103
 
103
 
104
static int area_flags_to_page_flags(int aflags);
104
static int area_flags_to_page_flags(int aflags);
105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107
static void sh_info_remove_reference(share_info_t *sh_info);
107
static void sh_info_remove_reference(share_info_t *sh_info);
108
 
108
 
-
 
109
static int as_constructor(void *obj, int flags)
-
 
110
{
-
 
111
    as_t *as = (as_t *) obj;
-
 
112
    int rc;
-
 
113
 
-
 
114
    link_initialize(&as->inactive_as_with_asid_link);
-
 
115
    mutex_initialize(&as->lock);   
-
 
116
   
-
 
117
    rc = as_constructor_arch(as, flags);
-
 
118
   
-
 
119
    return rc;
-
 
120
}
-
 
121
 
-
 
122
static int as_destructor(void *obj)
-
 
123
{
-
 
124
    as_t *as = (as_t *) obj;
-
 
125
 
-
 
126
    return as_destructor_arch(as);
-
 
127
}
-
 
128
 
109
/** Initialize address space subsystem. */
129
/** Initialize address space subsystem. */
110
void as_init(void)
130
void as_init(void)
111
{
131
{
112
    as_arch_init();
132
    as_arch_init();
113
   
133
   
114
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
134
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
-
 
135
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
115
   
136
   
116
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
137
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
117
    if (!AS_KERNEL)
138
    if (!AS_KERNEL)
118
        panic("can't create kernel address space\n");
139
        panic("can't create kernel address space\n");
119
   
140
   
120
}
141
}
121
 
142
 
122
/** Create address space.
143
/** Create address space.
123
 *
144
 *
124
 * @param flags Flags that influence way in wich the address space is created.
145
 * @param flags Flags that influence way in wich the address space is created.
125
 */
146
 */
126
as_t *as_create(int flags)
147
as_t *as_create(int flags)
127
{
148
{
128
    as_t *as;
149
    as_t *as;
129
 
150
 
130
    as = (as_t *) slab_alloc(as_slab, 0);
151
    as = (as_t *) slab_alloc(as_slab, 0);
131
    link_initialize(&as->inactive_as_with_asid_link);
-
 
132
    mutex_initialize(&as->lock);
152
    (void) as_create_arch(as, 0);
-
 
153
   
133
    btree_create(&as->as_area_btree);
154
    btree_create(&as->as_area_btree);
134
   
155
   
135
    if (flags & FLAG_AS_KERNEL)
156
    if (flags & FLAG_AS_KERNEL)
136
        as->asid = ASID_KERNEL;
157
        as->asid = ASID_KERNEL;
137
    else
158
    else
138
        as->asid = ASID_INVALID;
159
        as->asid = ASID_INVALID;
139
   
160
   
140
    as->refcount = 0;
161
    as->refcount = 0;
141
    as->cpu_refcount = 0;
162
    as->cpu_refcount = 0;
142
    as->page_table = page_table_create(flags);
163
    as->page_table = page_table_create(flags);
143
 
164
 
144
    return as;
165
    return as;
145
}
166
}
146
 
167
 
147
/** Destroy adress space.
168
/** Destroy adress space.
148
 *
169
 *
149
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
170
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
150
 * the address space can be destroyed.
171
 * the address space can be destroyed.
151
 */
172
 */
152
void as_destroy(as_t *as)
173
void as_destroy(as_t *as)
153
{
174
{
154
    ipl_t ipl;
175
    ipl_t ipl;
155
    bool cond;
176
    bool cond;
156
 
177
 
157
    ASSERT(as->refcount == 0);
178
    ASSERT(as->refcount == 0);
158
   
179
   
159
    /*
180
    /*
160
     * Since there is no reference to this area,
181
     * Since there is no reference to this area,
161
     * it is safe not to lock its mutex.
182
     * it is safe not to lock its mutex.
162
     */
183
     */
163
    ipl = interrupts_disable();
184
    ipl = interrupts_disable();
164
    spinlock_lock(&inactive_as_with_asid_lock);
185
    spinlock_lock(&inactive_as_with_asid_lock);
165
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
186
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
166
        if (as != AS && as->cpu_refcount == 0)
187
        if (as != AS && as->cpu_refcount == 0)
167
            list_remove(&as->inactive_as_with_asid_link);
188
            list_remove(&as->inactive_as_with_asid_link);
168
        asid_put(as->asid);
189
        asid_put(as->asid);
169
    }
190
    }
170
    spinlock_unlock(&inactive_as_with_asid_lock);
191
    spinlock_unlock(&inactive_as_with_asid_lock);
171
 
192
 
172
    /*
193
    /*
173
     * Destroy address space areas of the address space.
194
     * Destroy address space areas of the address space.
174
     * The B+tee must be walked carefully because it is
195
     * The B+tee must be walked carefully because it is
175
     * also being destroyed.
196
     * also being destroyed.
176
     */
197
     */
177
    for (cond = true; cond; ) {
198
    for (cond = true; cond; ) {
178
        btree_node_t *node;
199
        btree_node_t *node;
179
 
200
 
180
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
201
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
181
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
202
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
182
 
203
 
183
        if ((cond = node->keys)) {
204
        if ((cond = node->keys)) {
184
            as_area_destroy(as, node->key[0]);
205
            as_area_destroy(as, node->key[0]);
185
        }
206
        }
186
    }
207
    }
187
 
208
 
188
    btree_destroy(&as->as_area_btree);
209
    btree_destroy(&as->as_area_btree);
189
    page_table_destroy(as->page_table);
210
    page_table_destroy(as->page_table);
190
 
211
 
191
    interrupts_restore(ipl);
212
    interrupts_restore(ipl);
192
   
213
   
193
    slab_free(as_slab, as);
214
    slab_free(as_slab, as);
194
}
215
}
195
 
216
 
196
/** Create address space area of common attributes.
217
/** Create address space area of common attributes.
197
 *
218
 *
198
 * The created address space area is added to the target address space.
219
 * The created address space area is added to the target address space.
199
 *
220
 *
200
 * @param as Target address space.
221
 * @param as Target address space.
201
 * @param flags Flags of the area memory.
222
 * @param flags Flags of the area memory.
202
 * @param size Size of area.
223
 * @param size Size of area.
203
 * @param base Base address of area.
224
 * @param base Base address of area.
204
 * @param attrs Attributes of the area.
225
 * @param attrs Attributes of the area.
205
 * @param backend Address space area backend. NULL if no backend is used.
226
 * @param backend Address space area backend. NULL if no backend is used.
206
 * @param backend_data NULL or a pointer to an array holding two void *.
227
 * @param backend_data NULL or a pointer to an array holding two void *.
207
 *
228
 *
208
 * @return Address space area on success or NULL on failure.
229
 * @return Address space area on success or NULL on failure.
209
 */
230
 */
210
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
231
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
211
           mem_backend_t *backend, mem_backend_data_t *backend_data)
232
           mem_backend_t *backend, mem_backend_data_t *backend_data)
212
{
233
{
213
    ipl_t ipl;
234
    ipl_t ipl;
214
    as_area_t *a;
235
    as_area_t *a;
215
   
236
   
216
    if (base % PAGE_SIZE)
237
    if (base % PAGE_SIZE)
217
        return NULL;
238
        return NULL;
218
 
239
 
219
    if (!size)
240
    if (!size)
220
        return NULL;
241
        return NULL;
221
 
242
 
222
    /* Writeable executable areas are not supported. */
243
    /* Writeable executable areas are not supported. */
223
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
244
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
224
        return NULL;
245
        return NULL;
225
   
246
   
226
    ipl = interrupts_disable();
247
    ipl = interrupts_disable();
227
    mutex_lock(&as->lock);
248
    mutex_lock(&as->lock);
228
   
249
   
229
    if (!check_area_conflicts(as, base, size, NULL)) {
250
    if (!check_area_conflicts(as, base, size, NULL)) {
230
        mutex_unlock(&as->lock);
251
        mutex_unlock(&as->lock);
231
        interrupts_restore(ipl);
252
        interrupts_restore(ipl);
232
        return NULL;
253
        return NULL;
233
    }
254
    }
234
   
255
   
235
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
256
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
236
 
257
 
237
    mutex_initialize(&a->lock);
258
    mutex_initialize(&a->lock);
238
   
259
   
239
    a->as = as;
260
    a->as = as;
240
    a->flags = flags;
261
    a->flags = flags;
241
    a->attributes = attrs;
262
    a->attributes = attrs;
242
    a->pages = SIZE2FRAMES(size);
263
    a->pages = SIZE2FRAMES(size);
243
    a->base = base;
264
    a->base = base;
244
    a->sh_info = NULL;
265
    a->sh_info = NULL;
245
    a->backend = backend;
266
    a->backend = backend;
246
    if (backend_data)
267
    if (backend_data)
247
        a->backend_data = *backend_data;
268
        a->backend_data = *backend_data;
248
    else
269
    else
249
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
270
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
250
 
271
 
251
    btree_create(&a->used_space);
272
    btree_create(&a->used_space);
252
   
273
   
253
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
274
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
254
 
275
 
255
    mutex_unlock(&as->lock);
276
    mutex_unlock(&as->lock);
256
    interrupts_restore(ipl);
277
    interrupts_restore(ipl);
257
 
278
 
258
    return a;
279
    return a;
259
}
280
}
260
 
281
 
261
/** Find address space area and change it.
282
/** Find address space area and change it.
262
 *
283
 *
263
 * @param as Address space.
284
 * @param as Address space.
264
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
285
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
265
 * @param size New size of the virtual memory block starting at address.
286
 * @param size New size of the virtual memory block starting at address.
266
 * @param flags Flags influencing the remap operation. Currently unused.
287
 * @param flags Flags influencing the remap operation. Currently unused.
267
 *
288
 *
268
 * @return Zero on success or a value from @ref errno.h otherwise.
289
 * @return Zero on success or a value from @ref errno.h otherwise.
269
 */
290
 */
270
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
291
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
271
{
292
{
272
    as_area_t *area;
293
    as_area_t *area;
273
    ipl_t ipl;
294
    ipl_t ipl;
274
    size_t pages;
295
    size_t pages;
275
   
296
   
276
    ipl = interrupts_disable();
297
    ipl = interrupts_disable();
277
    mutex_lock(&as->lock);
298
    mutex_lock(&as->lock);
278
   
299
   
279
    /*
300
    /*
280
     * Locate the area.
301
     * Locate the area.
281
     */
302
     */
282
    area = find_area_and_lock(as, address);
303
    area = find_area_and_lock(as, address);
283
    if (!area) {
304
    if (!area) {
284
        mutex_unlock(&as->lock);
305
        mutex_unlock(&as->lock);
285
        interrupts_restore(ipl);
306
        interrupts_restore(ipl);
286
        return ENOENT;
307
        return ENOENT;
287
    }
308
    }
288
 
309
 
289
    if (area->backend == &phys_backend) {
310
    if (area->backend == &phys_backend) {
290
        /*
311
        /*
291
         * Remapping of address space areas associated
312
         * Remapping of address space areas associated
292
         * with memory mapped devices is not supported.
313
         * with memory mapped devices is not supported.
293
         */
314
         */
294
        mutex_unlock(&area->lock);
315
        mutex_unlock(&area->lock);
295
        mutex_unlock(&as->lock);
316
        mutex_unlock(&as->lock);
296
        interrupts_restore(ipl);
317
        interrupts_restore(ipl);
297
        return ENOTSUP;
318
        return ENOTSUP;
298
    }
319
    }
299
    if (area->sh_info) {
320
    if (area->sh_info) {
300
        /*
321
        /*
301
         * Remapping of shared address space areas
322
         * Remapping of shared address space areas
302
         * is not supported.
323
         * is not supported.
303
         */
324
         */
304
        mutex_unlock(&area->lock);
325
        mutex_unlock(&area->lock);
305
        mutex_unlock(&as->lock);
326
        mutex_unlock(&as->lock);
306
        interrupts_restore(ipl);
327
        interrupts_restore(ipl);
307
        return ENOTSUP;
328
        return ENOTSUP;
308
    }
329
    }
309
 
330
 
310
    pages = SIZE2FRAMES((address - area->base) + size);
331
    pages = SIZE2FRAMES((address - area->base) + size);
311
    if (!pages) {
332
    if (!pages) {
312
        /*
333
        /*
313
         * Zero size address space areas are not allowed.
334
         * Zero size address space areas are not allowed.
314
         */
335
         */
315
        mutex_unlock(&area->lock);
336
        mutex_unlock(&area->lock);
316
        mutex_unlock(&as->lock);
337
        mutex_unlock(&as->lock);
317
        interrupts_restore(ipl);
338
        interrupts_restore(ipl);
318
        return EPERM;
339
        return EPERM;
319
    }
340
    }
320
   
341
   
321
    if (pages < area->pages) {
342
    if (pages < area->pages) {
322
        bool cond;
343
        bool cond;
323
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
344
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
324
 
345
 
325
        /*
346
        /*
326
         * Shrinking the area.
347
         * Shrinking the area.
327
         * No need to check for overlaps.
348
         * No need to check for overlaps.
328
         */
349
         */
329
 
350
 
330
        /*
351
        /*
331
         * Start TLB shootdown sequence.
352
         * Start TLB shootdown sequence.
332
         */
353
         */
333
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
354
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
334
 
355
 
335
        /*
356
        /*
336
         * Remove frames belonging to used space starting from
357
         * Remove frames belonging to used space starting from
337
         * the highest addresses downwards until an overlap with
358
         * the highest addresses downwards until an overlap with
338
         * the resized address space area is found. Note that this
359
         * the resized address space area is found. Note that this
339
         * is also the right way to remove part of the used_space
360
         * is also the right way to remove part of the used_space
340
         * B+tree leaf list.
361
         * B+tree leaf list.
341
         */    
362
         */    
342
        for (cond = true; cond;) {
363
        for (cond = true; cond;) {
343
            btree_node_t *node;
364
            btree_node_t *node;
344
       
365
       
345
            ASSERT(!list_empty(&area->used_space.leaf_head));
366
            ASSERT(!list_empty(&area->used_space.leaf_head));
346
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
367
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
347
            if ((cond = (bool) node->keys)) {
368
            if ((cond = (bool) node->keys)) {
348
                uintptr_t b = node->key[node->keys - 1];
369
                uintptr_t b = node->key[node->keys - 1];
349
                count_t c = (count_t) node->value[node->keys - 1];
370
                count_t c = (count_t) node->value[node->keys - 1];
350
                int i = 0;
371
                int i = 0;
351
           
372
           
352
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
373
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
353
                   
374
                   
354
                    if (b + c*PAGE_SIZE <= start_free) {
375
                    if (b + c*PAGE_SIZE <= start_free) {
355
                        /*
376
                        /*
356
                         * The whole interval fits completely
377
                         * The whole interval fits completely
357
                         * in the resized address space area.
378
                         * in the resized address space area.
358
                         */
379
                         */
359
                        break;
380
                        break;
360
                    }
381
                    }
361
       
382
       
362
                    /*
383
                    /*
363
                     * Part of the interval corresponding to b and c
384
                     * Part of the interval corresponding to b and c
364
                     * overlaps with the resized address space area.
385
                     * overlaps with the resized address space area.
365
                     */
386
                     */
366
       
387
       
367
                    cond = false;   /* we are almost done */
388
                    cond = false;   /* we are almost done */
368
                    i = (start_free - b) >> PAGE_WIDTH;
389
                    i = (start_free - b) >> PAGE_WIDTH;
369
                    if (!used_space_remove(area, start_free, c - i))
390
                    if (!used_space_remove(area, start_free, c - i))
370
                        panic("Could not remove used space.\n");
391
                        panic("Could not remove used space.\n");
371
                } else {
392
                } else {
372
                    /*
393
                    /*
373
                     * The interval of used space can be completely removed.
394
                     * The interval of used space can be completely removed.
374
                     */
395
                     */
375
                    if (!used_space_remove(area, b, c))
396
                    if (!used_space_remove(area, b, c))
376
                        panic("Could not remove used space.\n");
397
                        panic("Could not remove used space.\n");
377
                }
398
                }
378
           
399
           
379
                for (; i < c; i++) {
400
                for (; i < c; i++) {
380
                    pte_t *pte;
401
                    pte_t *pte;
381
           
402
           
382
                    page_table_lock(as, false);
403
                    page_table_lock(as, false);
383
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
404
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
384
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
405
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
385
                    if (area->backend && area->backend->frame_free) {
406
                    if (area->backend && area->backend->frame_free) {
386
                        area->backend->frame_free(area,
407
                        area->backend->frame_free(area,
387
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
408
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
388
                    }
409
                    }
389
                    page_mapping_remove(as, b + i*PAGE_SIZE);
410
                    page_mapping_remove(as, b + i*PAGE_SIZE);
390
                    page_table_unlock(as, false);
411
                    page_table_unlock(as, false);
391
                }
412
                }
392
            }
413
            }
393
        }
414
        }
394
 
415
 
395
        /*
416
        /*
396
         * Finish TLB shootdown sequence.
417
         * Finish TLB shootdown sequence.
397
         */
418
         */
398
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
419
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
399
        tlb_shootdown_finalize();
420
        tlb_shootdown_finalize();
400
       
421
       
401
        /*
422
        /*
402
         * Invalidate software translation caches (e.g. TSB on sparc64).
423
         * Invalidate software translation caches (e.g. TSB on sparc64).
403
         */
424
         */
404
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
425
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
405
    } else {
426
    } else {
406
        /*
427
        /*
407
         * Growing the area.
428
         * Growing the area.
408
         * Check for overlaps with other address space areas.
429
         * Check for overlaps with other address space areas.
409
         */
430
         */
410
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
431
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
411
            mutex_unlock(&area->lock);
432
            mutex_unlock(&area->lock);
412
            mutex_unlock(&as->lock);       
433
            mutex_unlock(&as->lock);       
413
            interrupts_restore(ipl);
434
            interrupts_restore(ipl);
414
            return EADDRNOTAVAIL;
435
            return EADDRNOTAVAIL;
415
        }
436
        }
416
    }
437
    }
417
 
438
 
418
    area->pages = pages;
439
    area->pages = pages;
419
   
440
   
420
    mutex_unlock(&area->lock);
441
    mutex_unlock(&area->lock);
421
    mutex_unlock(&as->lock);
442
    mutex_unlock(&as->lock);
422
    interrupts_restore(ipl);
443
    interrupts_restore(ipl);
423
 
444
 
424
    return 0;
445
    return 0;
425
}
446
}
426
 
447
 
427
/** Destroy address space area.
448
/** Destroy address space area.
428
 *
449
 *
429
 * @param as Address space.
450
 * @param as Address space.
430
 * @param address Address withing the area to be deleted.
451
 * @param address Address withing the area to be deleted.
431
 *
452
 *
432
 * @return Zero on success or a value from @ref errno.h on failure.
453
 * @return Zero on success or a value from @ref errno.h on failure.
433
 */
454
 */
434
int as_area_destroy(as_t *as, uintptr_t address)
455
int as_area_destroy(as_t *as, uintptr_t address)
435
{
456
{
436
    as_area_t *area;
457
    as_area_t *area;
437
    uintptr_t base;
458
    uintptr_t base;
438
    link_t *cur;
459
    link_t *cur;
439
    ipl_t ipl;
460
    ipl_t ipl;
440
 
461
 
441
    ipl = interrupts_disable();
462
    ipl = interrupts_disable();
442
    mutex_lock(&as->lock);
463
    mutex_lock(&as->lock);
443
 
464
 
444
    area = find_area_and_lock(as, address);
465
    area = find_area_and_lock(as, address);
445
    if (!area) {
466
    if (!area) {
446
        mutex_unlock(&as->lock);
467
        mutex_unlock(&as->lock);
447
        interrupts_restore(ipl);
468
        interrupts_restore(ipl);
448
        return ENOENT;
469
        return ENOENT;
449
    }
470
    }
450
 
471
 
451
    base = area->base;
472
    base = area->base;
452
 
473
 
453
    /*
474
    /*
454
     * Start TLB shootdown sequence.
475
     * Start TLB shootdown sequence.
455
     */
476
     */
456
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
477
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
457
 
478
 
458
    /*
479
    /*
459
     * Visit only the pages mapped by used_space B+tree.
480
     * Visit only the pages mapped by used_space B+tree.
460
     */
481
     */
461
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
482
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
462
        btree_node_t *node;
483
        btree_node_t *node;
463
        int i;
484
        int i;
464
       
485
       
465
        node = list_get_instance(cur, btree_node_t, leaf_link);
486
        node = list_get_instance(cur, btree_node_t, leaf_link);
466
        for (i = 0; i < node->keys; i++) {
487
        for (i = 0; i < node->keys; i++) {
467
            uintptr_t b = node->key[i];
488
            uintptr_t b = node->key[i];
468
            count_t j;
489
            count_t j;
469
            pte_t *pte;
490
            pte_t *pte;
470
           
491
           
471
            for (j = 0; j < (count_t) node->value[i]; j++) {
492
            for (j = 0; j < (count_t) node->value[i]; j++) {
472
                page_table_lock(as, false);
493
                page_table_lock(as, false);
473
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
494
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
474
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
495
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
475
                if (area->backend && area->backend->frame_free) {
496
                if (area->backend && area->backend->frame_free) {
476
                    area->backend->frame_free(area,
497
                    area->backend->frame_free(area,
477
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
498
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
478
                }
499
                }
479
                page_mapping_remove(as, b + j*PAGE_SIZE);              
500
                page_mapping_remove(as, b + j*PAGE_SIZE);              
480
                page_table_unlock(as, false);
501
                page_table_unlock(as, false);
481
            }
502
            }
482
        }
503
        }
483
    }
504
    }
484
 
505
 
485
    /*
506
    /*
486
     * Finish TLB shootdown sequence.
507
     * Finish TLB shootdown sequence.
487
     */
508
     */
488
    tlb_invalidate_pages(as->asid, area->base, area->pages);
509
    tlb_invalidate_pages(as->asid, area->base, area->pages);
489
    tlb_shootdown_finalize();
510
    tlb_shootdown_finalize();
490
   
511
   
491
    /*
512
    /*
492
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
513
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
493
     */
514
     */
494
    as_invalidate_translation_cache(as, area->base, area->pages);
515
    as_invalidate_translation_cache(as, area->base, area->pages);
495
   
516
   
496
    btree_destroy(&area->used_space);
517
    btree_destroy(&area->used_space);
497
 
518
 
498
    area->attributes |= AS_AREA_ATTR_PARTIAL;
519
    area->attributes |= AS_AREA_ATTR_PARTIAL;
499
   
520
   
500
    if (area->sh_info)
521
    if (area->sh_info)
501
        sh_info_remove_reference(area->sh_info);
522
        sh_info_remove_reference(area->sh_info);
502
       
523
       
503
    mutex_unlock(&area->lock);
524
    mutex_unlock(&area->lock);
504
 
525
 
505
    /*
526
    /*
506
     * Remove the empty area from address space.
527
     * Remove the empty area from address space.
507
     */
528
     */
508
    btree_remove(&as->as_area_btree, base, NULL);
529
    btree_remove(&as->as_area_btree, base, NULL);
509
   
530
   
510
    free(area);
531
    free(area);
511
   
532
   
512
    mutex_unlock(&as->lock);
533
    mutex_unlock(&as->lock);
513
    interrupts_restore(ipl);
534
    interrupts_restore(ipl);
514
    return 0;
535
    return 0;
515
}
536
}
516
 
537
 
517
/** Share address space area with another or the same address space.
538
/** Share address space area with another or the same address space.
518
 *
539
 *
519
 * Address space area mapping is shared with a new address space area.
540
 * Address space area mapping is shared with a new address space area.
520
 * If the source address space area has not been shared so far,
541
 * If the source address space area has not been shared so far,
521
 * a new sh_info is created. The new address space area simply gets the
542
 * a new sh_info is created. The new address space area simply gets the
522
 * sh_info of the source area. The process of duplicating the
543
 * sh_info of the source area. The process of duplicating the
523
 * mapping is done through the backend share function.
544
 * mapping is done through the backend share function.
524
 *
545
 *
525
 * @param src_as Pointer to source address space.
546
 * @param src_as Pointer to source address space.
526
 * @param src_base Base address of the source address space area.
547
 * @param src_base Base address of the source address space area.
527
 * @param acc_size Expected size of the source area.
548
 * @param acc_size Expected size of the source area.
528
 * @param dst_as Pointer to destination address space.
549
 * @param dst_as Pointer to destination address space.
529
 * @param dst_base Target base address.
550
 * @param dst_base Target base address.
530
 * @param dst_flags_mask Destination address space area flags mask.
551
 * @param dst_flags_mask Destination address space area flags mask.
531
 *
552
 *
532
 * @return Zero on success or ENOENT if there is no such task or
553
 * @return Zero on success or ENOENT if there is no such task or
533
 *     if there is no such address space area,
554
 *     if there is no such address space area,
534
 *     EPERM if there was a problem in accepting the area or
555
 *     EPERM if there was a problem in accepting the area or
535
 *     ENOMEM if there was a problem in allocating destination
556
 *     ENOMEM if there was a problem in allocating destination
536
 *     address space area. ENOTSUP is returned if an attempt
557
 *     address space area. ENOTSUP is returned if an attempt
537
 *     to share non-anonymous address space area is detected.
558
 *     to share non-anonymous address space area is detected.
538
 */
559
 */
539
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
560
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
540
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
561
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
541
{
562
{
542
    ipl_t ipl;
563
    ipl_t ipl;
543
    int src_flags;
564
    int src_flags;
544
    size_t src_size;
565
    size_t src_size;
545
    as_area_t *src_area, *dst_area;
566
    as_area_t *src_area, *dst_area;
546
    share_info_t *sh_info;
567
    share_info_t *sh_info;
547
    mem_backend_t *src_backend;
568
    mem_backend_t *src_backend;
548
    mem_backend_data_t src_backend_data;
569
    mem_backend_data_t src_backend_data;
549
   
570
   
550
    ipl = interrupts_disable();
571
    ipl = interrupts_disable();
551
    mutex_lock(&src_as->lock);
572
    mutex_lock(&src_as->lock);
552
    src_area = find_area_and_lock(src_as, src_base);
573
    src_area = find_area_and_lock(src_as, src_base);
553
    if (!src_area) {
574
    if (!src_area) {
554
        /*
575
        /*
555
         * Could not find the source address space area.
576
         * Could not find the source address space area.
556
         */
577
         */
557
        mutex_unlock(&src_as->lock);
578
        mutex_unlock(&src_as->lock);
558
        interrupts_restore(ipl);
579
        interrupts_restore(ipl);
559
        return ENOENT;
580
        return ENOENT;
560
    }
581
    }
561
   
582
   
562
    if (!src_area->backend || !src_area->backend->share) {
583
    if (!src_area->backend || !src_area->backend->share) {
563
        /*
584
        /*
564
         * There is no backend or the backend does not
585
         * There is no backend or the backend does not
565
         * know how to share the area.
586
         * know how to share the area.
566
         */
587
         */
567
        mutex_unlock(&src_area->lock);
588
        mutex_unlock(&src_area->lock);
568
        mutex_unlock(&src_as->lock);
589
        mutex_unlock(&src_as->lock);
569
        interrupts_restore(ipl);
590
        interrupts_restore(ipl);
570
        return ENOTSUP;
591
        return ENOTSUP;
571
    }
592
    }
572
   
593
   
573
    src_size = src_area->pages * PAGE_SIZE;
594
    src_size = src_area->pages * PAGE_SIZE;
574
    src_flags = src_area->flags;
595
    src_flags = src_area->flags;
575
    src_backend = src_area->backend;
596
    src_backend = src_area->backend;
576
    src_backend_data = src_area->backend_data;
597
    src_backend_data = src_area->backend_data;
577
 
598
 
578
    /* Share the cacheable flag from the original mapping */
599
    /* Share the cacheable flag from the original mapping */
579
    if (src_flags & AS_AREA_CACHEABLE)
600
    if (src_flags & AS_AREA_CACHEABLE)
580
        dst_flags_mask |= AS_AREA_CACHEABLE;
601
        dst_flags_mask |= AS_AREA_CACHEABLE;
581
 
602
 
582
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
603
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
583
        mutex_unlock(&src_area->lock);
604
        mutex_unlock(&src_area->lock);
584
        mutex_unlock(&src_as->lock);
605
        mutex_unlock(&src_as->lock);
585
        interrupts_restore(ipl);
606
        interrupts_restore(ipl);
586
        return EPERM;
607
        return EPERM;
587
    }
608
    }
588
 
609
 
589
    /*
610
    /*
590
     * Now we are committed to sharing the area.
611
     * Now we are committed to sharing the area.
591
     * First prepare the area for sharing.
612
     * First prepare the area for sharing.
592
     * Then it will be safe to unlock it.
613
     * Then it will be safe to unlock it.
593
     */
614
     */
594
    sh_info = src_area->sh_info;
615
    sh_info = src_area->sh_info;
595
    if (!sh_info) {
616
    if (!sh_info) {
596
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
617
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
597
        mutex_initialize(&sh_info->lock);
618
        mutex_initialize(&sh_info->lock);
598
        sh_info->refcount = 2;
619
        sh_info->refcount = 2;
599
        btree_create(&sh_info->pagemap);
620
        btree_create(&sh_info->pagemap);
600
        src_area->sh_info = sh_info;
621
        src_area->sh_info = sh_info;
601
    } else {
622
    } else {
602
        mutex_lock(&sh_info->lock);
623
        mutex_lock(&sh_info->lock);
603
        sh_info->refcount++;
624
        sh_info->refcount++;
604
        mutex_unlock(&sh_info->lock);
625
        mutex_unlock(&sh_info->lock);
605
    }
626
    }
606
 
627
 
607
    src_area->backend->share(src_area);
628
    src_area->backend->share(src_area);
608
 
629
 
609
    mutex_unlock(&src_area->lock);
630
    mutex_unlock(&src_area->lock);
610
    mutex_unlock(&src_as->lock);
631
    mutex_unlock(&src_as->lock);
611
 
632
 
612
    /*
633
    /*
613
     * Create copy of the source address space area.
634
     * Create copy of the source address space area.
614
     * The destination area is created with AS_AREA_ATTR_PARTIAL
635
     * The destination area is created with AS_AREA_ATTR_PARTIAL
615
     * attribute set which prevents race condition with
636
     * attribute set which prevents race condition with
616
     * preliminary as_page_fault() calls.
637
     * preliminary as_page_fault() calls.
617
     * The flags of the source area are masked against dst_flags_mask
638
     * The flags of the source area are masked against dst_flags_mask
618
     * to support sharing in less privileged mode.
639
     * to support sharing in less privileged mode.
619
     */
640
     */
620
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
641
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
621
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
642
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
622
    if (!dst_area) {
643
    if (!dst_area) {
623
        /*
644
        /*
624
         * Destination address space area could not be created.
645
         * Destination address space area could not be created.
625
         */
646
         */
626
        sh_info_remove_reference(sh_info);
647
        sh_info_remove_reference(sh_info);
627
       
648
       
628
        interrupts_restore(ipl);
649
        interrupts_restore(ipl);
629
        return ENOMEM;
650
        return ENOMEM;
630
    }
651
    }
631
   
652
   
632
    /*
653
    /*
633
     * Now the destination address space area has been
654
     * Now the destination address space area has been
634
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
655
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
635
     * attribute and set the sh_info.
656
     * attribute and set the sh_info.
636
     */
657
     */
637
    mutex_lock(&dst_area->lock);
658
    mutex_lock(&dst_area->lock);
638
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
659
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
639
    dst_area->sh_info = sh_info;
660
    dst_area->sh_info = sh_info;
640
    mutex_unlock(&dst_area->lock);
661
    mutex_unlock(&dst_area->lock);
641
   
662
   
642
    interrupts_restore(ipl);
663
    interrupts_restore(ipl);
643
   
664
   
644
    return 0;
665
    return 0;
645
}
666
}
646
 
667
 
647
/** Check access mode for address space area.
668
/** Check access mode for address space area.
648
 *
669
 *
649
 * The address space area must be locked prior to this call.
670
 * The address space area must be locked prior to this call.
650
 *
671
 *
651
 * @param area Address space area.
672
 * @param area Address space area.
652
 * @param access Access mode.
673
 * @param access Access mode.
653
 *
674
 *
654
 * @return False if access violates area's permissions, true otherwise.
675
 * @return False if access violates area's permissions, true otherwise.
655
 */
676
 */
656
bool as_area_check_access(as_area_t *area, pf_access_t access)
677
bool as_area_check_access(as_area_t *area, pf_access_t access)
657
{
678
{
658
    int flagmap[] = {
679
    int flagmap[] = {
659
        [PF_ACCESS_READ] = AS_AREA_READ,
680
        [PF_ACCESS_READ] = AS_AREA_READ,
660
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
681
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
661
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
682
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
662
    };
683
    };
663
 
684
 
664
    if (!(area->flags & flagmap[access]))
685
    if (!(area->flags & flagmap[access]))
665
        return false;
686
        return false;
666
   
687
   
667
    return true;
688
    return true;
668
}
689
}
669
 
690
 
670
/** Handle page fault within the current address space.
691
/** Handle page fault within the current address space.
671
 *
692
 *
672
 * This is the high-level page fault handler. It decides
693
 * This is the high-level page fault handler. It decides
673
 * whether the page fault can be resolved by any backend
694
 * whether the page fault can be resolved by any backend
674
 * and if so, it invokes the backend to resolve the page
695
 * and if so, it invokes the backend to resolve the page
675
 * fault.
696
 * fault.
676
 *
697
 *
677
 * Interrupts are assumed disabled.
698
 * Interrupts are assumed disabled.
678
 *
699
 *
679
 * @param page Faulting page.
700
 * @param page Faulting page.
680
 * @param access Access mode that caused the fault (i.e. read/write/exec).
701
 * @param access Access mode that caused the fault (i.e. read/write/exec).
681
 * @param istate Pointer to interrupted state.
702
 * @param istate Pointer to interrupted state.
682
 *
703
 *
683
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
704
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
684
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
705
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
685
 */
706
 */
686
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
707
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
687
{
708
{
688
    pte_t *pte;
709
    pte_t *pte;
689
    as_area_t *area;
710
    as_area_t *area;
690
   
711
   
691
    if (!THREAD)
712
    if (!THREAD)
692
        return AS_PF_FAULT;
713
        return AS_PF_FAULT;
693
       
714
       
694
    ASSERT(AS);
715
    ASSERT(AS);
695
 
716
 
696
    mutex_lock(&AS->lock);
717
    mutex_lock(&AS->lock);
697
    area = find_area_and_lock(AS, page);   
718
    area = find_area_and_lock(AS, page);   
698
    if (!area) {
719
    if (!area) {
699
        /*
720
        /*
700
         * No area contained mapping for 'page'.
721
         * No area contained mapping for 'page'.
701
         * Signal page fault to low-level handler.
722
         * Signal page fault to low-level handler.
702
         */
723
         */
703
        mutex_unlock(&AS->lock);
724
        mutex_unlock(&AS->lock);
704
        goto page_fault;
725
        goto page_fault;
705
    }
726
    }
706
 
727
 
707
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
728
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
708
        /*
729
        /*
709
         * The address space area is not fully initialized.
730
         * The address space area is not fully initialized.
710
         * Avoid possible race by returning error.
731
         * Avoid possible race by returning error.
711
         */
732
         */
712
        mutex_unlock(&area->lock);
733
        mutex_unlock(&area->lock);
713
        mutex_unlock(&AS->lock);
734
        mutex_unlock(&AS->lock);
714
        goto page_fault;       
735
        goto page_fault;       
715
    }
736
    }
716
 
737
 
717
    if (!area->backend || !area->backend->page_fault) {
738
    if (!area->backend || !area->backend->page_fault) {
718
        /*
739
        /*
719
         * The address space area is not backed by any backend
740
         * The address space area is not backed by any backend
720
         * or the backend cannot handle page faults.
741
         * or the backend cannot handle page faults.
721
         */
742
         */
722
        mutex_unlock(&area->lock);
743
        mutex_unlock(&area->lock);
723
        mutex_unlock(&AS->lock);
744
        mutex_unlock(&AS->lock);
724
        goto page_fault;       
745
        goto page_fault;       
725
    }
746
    }
726
 
747
 
727
    page_table_lock(AS, false);
748
    page_table_lock(AS, false);
728
   
749
   
729
    /*
750
    /*
730
     * To avoid race condition between two page faults
751
     * To avoid race condition between two page faults
731
     * on the same address, we need to make sure
752
     * on the same address, we need to make sure
732
     * the mapping has not been already inserted.
753
     * the mapping has not been already inserted.
733
     */
754
     */
734
    if ((pte = page_mapping_find(AS, page))) {
755
    if ((pte = page_mapping_find(AS, page))) {
735
        if (PTE_PRESENT(pte)) {
756
        if (PTE_PRESENT(pte)) {
736
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
757
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
737
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
758
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
738
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
759
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
739
                page_table_unlock(AS, false);
760
                page_table_unlock(AS, false);
740
                mutex_unlock(&area->lock);
761
                mutex_unlock(&area->lock);
741
                mutex_unlock(&AS->lock);
762
                mutex_unlock(&AS->lock);
742
                return AS_PF_OK;
763
                return AS_PF_OK;
743
            }
764
            }
744
        }
765
        }
745
    }
766
    }
746
   
767
   
747
    /*
768
    /*
748
     * Resort to the backend page fault handler.
769
     * Resort to the backend page fault handler.
749
     */
770
     */
750
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
771
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
751
        page_table_unlock(AS, false);
772
        page_table_unlock(AS, false);
752
        mutex_unlock(&area->lock);
773
        mutex_unlock(&area->lock);
753
        mutex_unlock(&AS->lock);
774
        mutex_unlock(&AS->lock);
754
        goto page_fault;
775
        goto page_fault;
755
    }
776
    }
756
   
777
   
757
    page_table_unlock(AS, false);
778
    page_table_unlock(AS, false);
758
    mutex_unlock(&area->lock);
779
    mutex_unlock(&area->lock);
759
    mutex_unlock(&AS->lock);
780
    mutex_unlock(&AS->lock);
760
    return AS_PF_OK;
781
    return AS_PF_OK;
761
 
782
 
762
page_fault:
783
page_fault:
763
    if (THREAD->in_copy_from_uspace) {
784
    if (THREAD->in_copy_from_uspace) {
764
        THREAD->in_copy_from_uspace = false;
785
        THREAD->in_copy_from_uspace = false;
765
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
786
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
766
    } else if (THREAD->in_copy_to_uspace) {
787
    } else if (THREAD->in_copy_to_uspace) {
767
        THREAD->in_copy_to_uspace = false;
788
        THREAD->in_copy_to_uspace = false;
768
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
789
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
769
    } else {
790
    } else {
770
        return AS_PF_FAULT;
791
        return AS_PF_FAULT;
771
    }
792
    }
772
 
793
 
773
    return AS_PF_DEFER;
794
    return AS_PF_DEFER;
774
}
795
}
775
 
796
 
776
/** Switch address spaces.
797
/** Switch address spaces.
777
 *
798
 *
778
 * Note that this function cannot sleep as it is essentially a part of
799
 * Note that this function cannot sleep as it is essentially a part of
779
 * scheduling. Sleeping here would lead to deadlock on wakeup.
800
 * scheduling. Sleeping here would lead to deadlock on wakeup.
780
 *
801
 *
781
 * @param old Old address space or NULL.
802
 * @param old Old address space or NULL.
782
 * @param new New address space.
803
 * @param new New address space.
783
 */
804
 */
784
void as_switch(as_t *old, as_t *new)
805
void as_switch(as_t *old, as_t *new)
785
{
806
{
786
    ipl_t ipl;
807
    ipl_t ipl;
787
    bool needs_asid = false;
808
    bool needs_asid = false;
788
   
809
   
789
    ipl = interrupts_disable();
810
    ipl = interrupts_disable();
790
    spinlock_lock(&inactive_as_with_asid_lock);
811
    spinlock_lock(&inactive_as_with_asid_lock);
791
 
812
 
792
    /*
813
    /*
793
     * First, take care of the old address space.
814
     * First, take care of the old address space.
794
     */
815
     */
795
    if (old) {
816
    if (old) {
796
        mutex_lock_active(&old->lock);
817
        mutex_lock_active(&old->lock);
797
        ASSERT(old->cpu_refcount);
818
        ASSERT(old->cpu_refcount);
798
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
819
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
799
            /*
820
            /*
800
             * The old address space is no longer active on
821
             * The old address space is no longer active on
801
             * any processor. It can be appended to the
822
             * any processor. It can be appended to the
802
             * list of inactive address spaces with assigned
823
             * list of inactive address spaces with assigned
803
             * ASID.
824
             * ASID.
804
             */
825
             */
805
             ASSERT(old->asid != ASID_INVALID);
826
             ASSERT(old->asid != ASID_INVALID);
806
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
827
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
807
        }
828
        }
808
        mutex_unlock(&old->lock);
829
        mutex_unlock(&old->lock);
809
 
830
 
810
        /*
831
        /*
811
         * Perform architecture-specific tasks when the address space
832
         * Perform architecture-specific tasks when the address space
812
         * is being removed from the CPU.
833
         * is being removed from the CPU.
813
         */
834
         */
814
        as_deinstall_arch(old);
835
        as_deinstall_arch(old);
815
    }
836
    }
816
 
837
 
817
    /*
838
    /*
818
     * Second, prepare the new address space.
839
     * Second, prepare the new address space.
819
     */
840
     */
820
    mutex_lock_active(&new->lock);
841
    mutex_lock_active(&new->lock);
821
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
842
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
822
        if (new->asid != ASID_INVALID)
843
        if (new->asid != ASID_INVALID)
823
            list_remove(&new->inactive_as_with_asid_link);
844
            list_remove(&new->inactive_as_with_asid_link);
824
        else
845
        else
825
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
846
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
826
    }
847
    }
827
    SET_PTL0_ADDRESS(new->page_table);
848
    SET_PTL0_ADDRESS(new->page_table);
828
    mutex_unlock(&new->lock);
849
    mutex_unlock(&new->lock);
829
 
850
 
830
    if (needs_asid) {
851
    if (needs_asid) {
831
        /*
852
        /*
832
         * Allocation of new ASID was deferred
853
         * Allocation of new ASID was deferred
833
         * until now in order to avoid deadlock.
854
         * until now in order to avoid deadlock.
834
         */
855
         */
835
        asid_t asid;
856
        asid_t asid;
836
       
857
       
837
        asid = asid_get();
858
        asid = asid_get();
838
        mutex_lock_active(&new->lock);
859
        mutex_lock_active(&new->lock);
839
        new->asid = asid;
860
        new->asid = asid;
840
        mutex_unlock(&new->lock);
861
        mutex_unlock(&new->lock);
841
    }
862
    }
842
    spinlock_unlock(&inactive_as_with_asid_lock);
863
    spinlock_unlock(&inactive_as_with_asid_lock);
843
    interrupts_restore(ipl);
864
    interrupts_restore(ipl);
844
   
865
   
845
    /*
866
    /*
846
     * Perform architecture-specific steps.
867
     * Perform architecture-specific steps.
847
     * (e.g. write ASID to hardware register etc.)
868
     * (e.g. write ASID to hardware register etc.)
848
     */
869
     */
849
    as_install_arch(new);
870
    as_install_arch(new);
850
   
871
   
851
    AS = new;
872
    AS = new;
852
}
873
}
853
 
874
 
854
/** Convert address space area flags to page flags.
875
/** Convert address space area flags to page flags.
855
 *
876
 *
856
 * @param aflags Flags of some address space area.
877
 * @param aflags Flags of some address space area.
857
 *
878
 *
858
 * @return Flags to be passed to page_mapping_insert().
879
 * @return Flags to be passed to page_mapping_insert().
859
 */
880
 */
860
int area_flags_to_page_flags(int aflags)
881
int area_flags_to_page_flags(int aflags)
861
{
882
{
862
    int flags;
883
    int flags;
863
 
884
 
864
    flags = PAGE_USER | PAGE_PRESENT;
885
    flags = PAGE_USER | PAGE_PRESENT;
865
   
886
   
866
    if (aflags & AS_AREA_READ)
887
    if (aflags & AS_AREA_READ)
867
        flags |= PAGE_READ;
888
        flags |= PAGE_READ;
868
       
889
       
869
    if (aflags & AS_AREA_WRITE)
890
    if (aflags & AS_AREA_WRITE)
870
        flags |= PAGE_WRITE;
891
        flags |= PAGE_WRITE;
871
   
892
   
872
    if (aflags & AS_AREA_EXEC)
893
    if (aflags & AS_AREA_EXEC)
873
        flags |= PAGE_EXEC;
894
        flags |= PAGE_EXEC;
874
   
895
   
875
    if (aflags & AS_AREA_CACHEABLE)
896
    if (aflags & AS_AREA_CACHEABLE)
876
        flags |= PAGE_CACHEABLE;
897
        flags |= PAGE_CACHEABLE;
877
       
898
       
878
    return flags;
899
    return flags;
879
}
900
}
880
 
901
 
881
/** Compute flags for virtual address translation subsytem.
902
/** Compute flags for virtual address translation subsytem.
882
 *
903
 *
883
 * The address space area must be locked.
904
 * The address space area must be locked.
884
 * Interrupts must be disabled.
905
 * Interrupts must be disabled.
885
 *
906
 *
886
 * @param a Address space area.
907
 * @param a Address space area.
887
 *
908
 *
888
 * @return Flags to be used in page_mapping_insert().
909
 * @return Flags to be used in page_mapping_insert().
889
 */
910
 */
890
int as_area_get_flags(as_area_t *a)
911
int as_area_get_flags(as_area_t *a)
891
{
912
{
892
    return area_flags_to_page_flags(a->flags);
913
    return area_flags_to_page_flags(a->flags);
893
}
914
}
894
 
915
 
895
/** Create page table.
916
/** Create page table.
896
 *
917
 *
897
 * Depending on architecture, create either address space
918
 * Depending on architecture, create either address space
898
 * private or global page table.
919
 * private or global page table.
899
 *
920
 *
900
 * @param flags Flags saying whether the page table is for kernel address space.
921
 * @param flags Flags saying whether the page table is for kernel address space.
901
 *
922
 *
902
 * @return First entry of the page table.
923
 * @return First entry of the page table.
903
 */
924
 */
904
pte_t *page_table_create(int flags)
925
pte_t *page_table_create(int flags)
905
{
926
{
906
        ASSERT(as_operations);
927
        ASSERT(as_operations);
907
        ASSERT(as_operations->page_table_create);
928
        ASSERT(as_operations->page_table_create);
908
 
929
 
909
        return as_operations->page_table_create(flags);
930
        return as_operations->page_table_create(flags);
910
}
931
}
911
 
932
 
912
/** Destroy page table.
933
/** Destroy page table.
913
 *
934
 *
914
 * Destroy page table in architecture specific way.
935
 * Destroy page table in architecture specific way.
915
 *
936
 *
916
 * @param page_table Physical address of PTL0.
937
 * @param page_table Physical address of PTL0.
917
 */
938
 */
918
void page_table_destroy(pte_t *page_table)
939
void page_table_destroy(pte_t *page_table)
919
{
940
{
920
        ASSERT(as_operations);
941
        ASSERT(as_operations);
921
        ASSERT(as_operations->page_table_destroy);
942
        ASSERT(as_operations->page_table_destroy);
922
 
943
 
923
        as_operations->page_table_destroy(page_table);
944
        as_operations->page_table_destroy(page_table);
924
}
945
}
925
 
946
 
926
/** Lock page table.
947
/** Lock page table.
927
 *
948
 *
928
 * This function should be called before any page_mapping_insert(),
949
 * This function should be called before any page_mapping_insert(),
929
 * page_mapping_remove() and page_mapping_find().
950
 * page_mapping_remove() and page_mapping_find().
930
 *
951
 *
931
 * Locking order is such that address space areas must be locked
952
 * Locking order is such that address space areas must be locked
932
 * prior to this call. Address space can be locked prior to this
953
 * prior to this call. Address space can be locked prior to this
933
 * call in which case the lock argument is false.
954
 * call in which case the lock argument is false.
934
 *
955
 *
935
 * @param as Address space.
956
 * @param as Address space.
936
 * @param lock If false, do not attempt to lock as->lock.
957
 * @param lock If false, do not attempt to lock as->lock.
937
 */
958
 */
938
void page_table_lock(as_t *as, bool lock)
959
void page_table_lock(as_t *as, bool lock)
939
{
960
{
940
    ASSERT(as_operations);
961
    ASSERT(as_operations);
941
    ASSERT(as_operations->page_table_lock);
962
    ASSERT(as_operations->page_table_lock);
942
 
963
 
943
    as_operations->page_table_lock(as, lock);
964
    as_operations->page_table_lock(as, lock);
944
}
965
}
945
 
966
 
946
/** Unlock page table.
967
/** Unlock page table.
947
 *
968
 *
948
 * @param as Address space.
969
 * @param as Address space.
949
 * @param unlock If false, do not attempt to unlock as->lock.
970
 * @param unlock If false, do not attempt to unlock as->lock.
950
 */
971
 */
951
void page_table_unlock(as_t *as, bool unlock)
972
void page_table_unlock(as_t *as, bool unlock)
952
{
973
{
953
    ASSERT(as_operations);
974
    ASSERT(as_operations);
954
    ASSERT(as_operations->page_table_unlock);
975
    ASSERT(as_operations->page_table_unlock);
955
 
976
 
956
    as_operations->page_table_unlock(as, unlock);
977
    as_operations->page_table_unlock(as, unlock);
957
}
978
}
958
 
979
 
959
 
980
 
960
/** Find address space area and lock it.
981
/** Find address space area and lock it.
961
 *
982
 *
962
 * The address space must be locked and interrupts must be disabled.
983
 * The address space must be locked and interrupts must be disabled.
963
 *
984
 *
964
 * @param as Address space.
985
 * @param as Address space.
965
 * @param va Virtual address.
986
 * @param va Virtual address.
966
 *
987
 *
967
 * @return Locked address space area containing va on success or NULL on failure.
988
 * @return Locked address space area containing va on success or NULL on failure.
968
 */
989
 */
969
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
990
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
970
{
991
{
971
    as_area_t *a;
992
    as_area_t *a;
972
    btree_node_t *leaf, *lnode;
993
    btree_node_t *leaf, *lnode;
973
    int i;
994
    int i;
974
   
995
   
975
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
996
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
976
    if (a) {
997
    if (a) {
977
        /* va is the base address of an address space area */
998
        /* va is the base address of an address space area */
978
        mutex_lock(&a->lock);
999
        mutex_lock(&a->lock);
979
        return a;
1000
        return a;
980
    }
1001
    }
981
   
1002
   
982
    /*
1003
    /*
983
     * Search the leaf node and the righmost record of its left neighbour
1004
     * Search the leaf node and the righmost record of its left neighbour
984
     * to find out whether this is a miss or va belongs to an address
1005
     * to find out whether this is a miss or va belongs to an address
985
     * space area found there.
1006
     * space area found there.
986
     */
1007
     */
987
   
1008
   
988
    /* First, search the leaf node itself. */
1009
    /* First, search the leaf node itself. */
989
    for (i = 0; i < leaf->keys; i++) {
1010
    for (i = 0; i < leaf->keys; i++) {
990
        a = (as_area_t *) leaf->value[i];
1011
        a = (as_area_t *) leaf->value[i];
991
        mutex_lock(&a->lock);
1012
        mutex_lock(&a->lock);
992
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1013
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
993
            return a;
1014
            return a;
994
        }
1015
        }
995
        mutex_unlock(&a->lock);
1016
        mutex_unlock(&a->lock);
996
    }
1017
    }
997
 
1018
 
998
    /*
1019
    /*
999
     * Second, locate the left neighbour and test its last record.
1020
     * Second, locate the left neighbour and test its last record.
1000
     * Because of its position in the B+tree, it must have base < va.
1021
     * Because of its position in the B+tree, it must have base < va.
1001
     */
1022
     */
1002
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1023
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1003
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1024
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1004
        mutex_lock(&a->lock);
1025
        mutex_lock(&a->lock);
1005
        if (va < a->base + a->pages * PAGE_SIZE) {
1026
        if (va < a->base + a->pages * PAGE_SIZE) {
1006
            return a;
1027
            return a;
1007
        }
1028
        }
1008
        mutex_unlock(&a->lock);
1029
        mutex_unlock(&a->lock);
1009
    }
1030
    }
1010
 
1031
 
1011
    return NULL;
1032
    return NULL;
1012
}
1033
}
1013
 
1034
 
1014
/** Check area conflicts with other areas.
1035
/** Check area conflicts with other areas.
1015
 *
1036
 *
1016
 * The address space must be locked and interrupts must be disabled.
1037
 * The address space must be locked and interrupts must be disabled.
1017
 *
1038
 *
1018
 * @param as Address space.
1039
 * @param as Address space.
1019
 * @param va Starting virtual address of the area being tested.
1040
 * @param va Starting virtual address of the area being tested.
1020
 * @param size Size of the area being tested.
1041
 * @param size Size of the area being tested.
1021
 * @param avoid_area Do not touch this area.
1042
 * @param avoid_area Do not touch this area.
1022
 *
1043
 *
1023
 * @return True if there is no conflict, false otherwise.
1044
 * @return True if there is no conflict, false otherwise.
1024
 */
1045
 */
1025
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1046
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1026
{
1047
{
1027
    as_area_t *a;
1048
    as_area_t *a;
1028
    btree_node_t *leaf, *node;
1049
    btree_node_t *leaf, *node;
1029
    int i;
1050
    int i;
1030
   
1051
   
1031
    /*
1052
    /*
1032
     * We don't want any area to have conflicts with NULL page.
1053
     * We don't want any area to have conflicts with NULL page.
1033
     */
1054
     */
1034
    if (overlaps(va, size, NULL, PAGE_SIZE))
1055
    if (overlaps(va, size, NULL, PAGE_SIZE))
1035
        return false;
1056
        return false;
1036
   
1057
   
1037
    /*
1058
    /*
1038
     * The leaf node is found in O(log n), where n is proportional to
1059
     * The leaf node is found in O(log n), where n is proportional to
1039
     * the number of address space areas belonging to as.
1060
     * the number of address space areas belonging to as.
1040
     * The check for conflicts is then attempted on the rightmost
1061
     * The check for conflicts is then attempted on the rightmost
1041
     * record in the left neighbour, the leftmost record in the right
1062
     * record in the left neighbour, the leftmost record in the right
1042
     * neighbour and all records in the leaf node itself.
1063
     * neighbour and all records in the leaf node itself.
1043
     */
1064
     */
1044
   
1065
   
1045
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1066
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1046
        if (a != avoid_area)
1067
        if (a != avoid_area)
1047
            return false;
1068
            return false;
1048
    }
1069
    }
1049
   
1070
   
1050
    /* First, check the two border cases. */
1071
    /* First, check the two border cases. */
1051
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1072
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1052
        a = (as_area_t *) node->value[node->keys - 1];
1073
        a = (as_area_t *) node->value[node->keys - 1];
1053
        mutex_lock(&a->lock);
1074
        mutex_lock(&a->lock);
1054
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1075
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1055
            mutex_unlock(&a->lock);
1076
            mutex_unlock(&a->lock);
1056
            return false;
1077
            return false;
1057
        }
1078
        }
1058
        mutex_unlock(&a->lock);
1079
        mutex_unlock(&a->lock);
1059
    }
1080
    }
1060
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1081
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1061
        a = (as_area_t *) node->value[0];
1082
        a = (as_area_t *) node->value[0];
1062
        mutex_lock(&a->lock);
1083
        mutex_lock(&a->lock);
1063
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1084
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1064
            mutex_unlock(&a->lock);
1085
            mutex_unlock(&a->lock);
1065
            return false;
1086
            return false;
1066
        }
1087
        }
1067
        mutex_unlock(&a->lock);
1088
        mutex_unlock(&a->lock);
1068
    }
1089
    }
1069
   
1090
   
1070
    /* Second, check the leaf node. */
1091
    /* Second, check the leaf node. */
1071
    for (i = 0; i < leaf->keys; i++) {
1092
    for (i = 0; i < leaf->keys; i++) {
1072
        a = (as_area_t *) leaf->value[i];
1093
        a = (as_area_t *) leaf->value[i];
1073
   
1094
   
1074
        if (a == avoid_area)
1095
        if (a == avoid_area)
1075
            continue;
1096
            continue;
1076
   
1097
   
1077
        mutex_lock(&a->lock);
1098
        mutex_lock(&a->lock);
1078
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1099
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1079
            mutex_unlock(&a->lock);
1100
            mutex_unlock(&a->lock);
1080
            return false;
1101
            return false;
1081
        }
1102
        }
1082
        mutex_unlock(&a->lock);
1103
        mutex_unlock(&a->lock);
1083
    }
1104
    }
1084
 
1105
 
1085
    /*
1106
    /*
1086
     * So far, the area does not conflict with other areas.
1107
     * So far, the area does not conflict with other areas.
1087
     * Check if it doesn't conflict with kernel address space.
1108
     * Check if it doesn't conflict with kernel address space.
1088
     */  
1109
     */  
1089
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1110
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1090
        return !overlaps(va, size,
1111
        return !overlaps(va, size,
1091
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1112
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1092
    }
1113
    }
1093
 
1114
 
1094
    return true;
1115
    return true;
1095
}
1116
}
1096
 
1117
 
1097
/** Return size of the address space area with given base.  */
1118
/** Return size of the address space area with given base.  */
1098
size_t as_get_size(uintptr_t base)
1119
size_t as_get_size(uintptr_t base)
1099
{
1120
{
1100
    ipl_t ipl;
1121
    ipl_t ipl;
1101
    as_area_t *src_area;
1122
    as_area_t *src_area;
1102
    size_t size;
1123
    size_t size;
1103
 
1124
 
1104
    ipl = interrupts_disable();
1125
    ipl = interrupts_disable();
1105
    src_area = find_area_and_lock(AS, base);
1126
    src_area = find_area_and_lock(AS, base);
1106
    if (src_area){
1127
    if (src_area){
1107
        size = src_area->pages * PAGE_SIZE;
1128
        size = src_area->pages * PAGE_SIZE;
1108
        mutex_unlock(&src_area->lock);
1129
        mutex_unlock(&src_area->lock);
1109
    } else {
1130
    } else {
1110
        size = 0;
1131
        size = 0;
1111
    }
1132
    }
1112
    interrupts_restore(ipl);
1133
    interrupts_restore(ipl);
1113
    return size;
1134
    return size;
1114
}
1135
}
1115
 
1136
 
1116
/** Mark portion of address space area as used.
1137
/** Mark portion of address space area as used.
1117
 *
1138
 *
1118
 * The address space area must be already locked.
1139
 * The address space area must be already locked.
1119
 *
1140
 *
1120
 * @param a Address space area.
1141
 * @param a Address space area.
1121
 * @param page First page to be marked.
1142
 * @param page First page to be marked.
1122
 * @param count Number of page to be marked.
1143
 * @param count Number of page to be marked.
1123
 *
1144
 *
1124
 * @return 0 on failure and 1 on success.
1145
 * @return 0 on failure and 1 on success.
1125
 */
1146
 */
1126
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1147
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1127
{
1148
{
1128
    btree_node_t *leaf, *node;
1149
    btree_node_t *leaf, *node;
1129
    count_t pages;
1150
    count_t pages;
1130
    int i;
1151
    int i;
1131
 
1152
 
1132
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1153
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1133
    ASSERT(count);
1154
    ASSERT(count);
1134
 
1155
 
1135
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1156
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1136
    if (pages) {
1157
    if (pages) {
1137
        /*
1158
        /*
1138
         * We hit the beginning of some used space.
1159
         * We hit the beginning of some used space.
1139
         */
1160
         */
1140
        return 0;
1161
        return 0;
1141
    }
1162
    }
1142
 
1163
 
1143
    if (!leaf->keys) {
1164
    if (!leaf->keys) {
1144
        btree_insert(&a->used_space, page, (void *) count, leaf);
1165
        btree_insert(&a->used_space, page, (void *) count, leaf);
1145
        return 1;
1166
        return 1;
1146
    }
1167
    }
1147
 
1168
 
1148
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1169
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1149
    if (node) {
1170
    if (node) {
1150
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1171
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1151
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1172
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1152
       
1173
       
1153
        /*
1174
        /*
1154
         * Examine the possibility that the interval fits
1175
         * Examine the possibility that the interval fits
1155
         * somewhere between the rightmost interval of
1176
         * somewhere between the rightmost interval of
1156
         * the left neigbour and the first interval of the leaf.
1177
         * the left neigbour and the first interval of the leaf.
1157
         */
1178
         */
1158
         
1179
         
1159
        if (page >= right_pg) {
1180
        if (page >= right_pg) {
1160
            /* Do nothing. */
1181
            /* Do nothing. */
1161
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1182
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1162
            /* The interval intersects with the left interval. */
1183
            /* The interval intersects with the left interval. */
1163
            return 0;
1184
            return 0;
1164
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1185
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1165
            /* The interval intersects with the right interval. */
1186
            /* The interval intersects with the right interval. */
1166
            return 0;          
1187
            return 0;          
1167
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1188
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1168
            /* The interval can be added by merging the two already present intervals. */
1189
            /* The interval can be added by merging the two already present intervals. */
1169
            node->value[node->keys - 1] += count + right_cnt;
1190
            node->value[node->keys - 1] += count + right_cnt;
1170
            btree_remove(&a->used_space, right_pg, leaf);
1191
            btree_remove(&a->used_space, right_pg, leaf);
1171
            return 1;
1192
            return 1;
1172
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1193
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1173
            /* The interval can be added by simply growing the left interval. */
1194
            /* The interval can be added by simply growing the left interval. */
1174
            node->value[node->keys - 1] += count;
1195
            node->value[node->keys - 1] += count;
1175
            return 1;
1196
            return 1;
1176
        } else if (page + count*PAGE_SIZE == right_pg) {
1197
        } else if (page + count*PAGE_SIZE == right_pg) {
1177
            /*
1198
            /*
1178
             * The interval can be addded by simply moving base of the right
1199
             * The interval can be addded by simply moving base of the right
1179
             * interval down and increasing its size accordingly.
1200
             * interval down and increasing its size accordingly.
1180
             */
1201
             */
1181
            leaf->value[0] += count;
1202
            leaf->value[0] += count;
1182
            leaf->key[0] = page;
1203
            leaf->key[0] = page;
1183
            return 1;
1204
            return 1;
1184
        } else {
1205
        } else {
1185
            /*
1206
            /*
1186
             * The interval is between both neigbouring intervals,
1207
             * The interval is between both neigbouring intervals,
1187
             * but cannot be merged with any of them.
1208
             * but cannot be merged with any of them.
1188
             */
1209
             */
1189
            btree_insert(&a->used_space, page, (void *) count, leaf);
1210
            btree_insert(&a->used_space, page, (void *) count, leaf);
1190
            return 1;
1211
            return 1;
1191
        }
1212
        }
1192
    } else if (page < leaf->key[0]) {
1213
    } else if (page < leaf->key[0]) {
1193
        uintptr_t right_pg = leaf->key[0];
1214
        uintptr_t right_pg = leaf->key[0];
1194
        count_t right_cnt = (count_t) leaf->value[0];
1215
        count_t right_cnt = (count_t) leaf->value[0];
1195
   
1216
   
1196
        /*
1217
        /*
1197
         * Investigate the border case in which the left neighbour does not
1218
         * Investigate the border case in which the left neighbour does not
1198
         * exist but the interval fits from the left.
1219
         * exist but the interval fits from the left.
1199
         */
1220
         */
1200
         
1221
         
1201
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1222
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1202
            /* The interval intersects with the right interval. */
1223
            /* The interval intersects with the right interval. */
1203
            return 0;
1224
            return 0;
1204
        } else if (page + count*PAGE_SIZE == right_pg) {
1225
        } else if (page + count*PAGE_SIZE == right_pg) {
1205
            /*
1226
            /*
1206
             * The interval can be added by moving the base of the right interval down
1227
             * The interval can be added by moving the base of the right interval down
1207
             * and increasing its size accordingly.
1228
             * and increasing its size accordingly.
1208
             */
1229
             */
1209
            leaf->key[0] = page;
1230
            leaf->key[0] = page;
1210
            leaf->value[0] += count;
1231
            leaf->value[0] += count;
1211
            return 1;
1232
            return 1;
1212
        } else {
1233
        } else {
1213
            /*
1234
            /*
1214
             * The interval doesn't adjoin with the right interval.
1235
             * The interval doesn't adjoin with the right interval.
1215
             * It must be added individually.
1236
             * It must be added individually.
1216
             */
1237
             */
1217
            btree_insert(&a->used_space, page, (void *) count, leaf);
1238
            btree_insert(&a->used_space, page, (void *) count, leaf);
1218
            return 1;
1239
            return 1;
1219
        }
1240
        }
1220
    }
1241
    }
1221
 
1242
 
1222
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1243
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1223
    if (node) {
1244
    if (node) {
1224
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1245
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1225
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1246
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1226
       
1247
       
1227
        /*
1248
        /*
1228
         * Examine the possibility that the interval fits
1249
         * Examine the possibility that the interval fits
1229
         * somewhere between the leftmost interval of
1250
         * somewhere between the leftmost interval of
1230
         * the right neigbour and the last interval of the leaf.
1251
         * the right neigbour and the last interval of the leaf.
1231
         */
1252
         */
1232
 
1253
 
1233
        if (page < left_pg) {
1254
        if (page < left_pg) {
1234
            /* Do nothing. */
1255
            /* Do nothing. */
1235
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1256
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1236
            /* The interval intersects with the left interval. */
1257
            /* The interval intersects with the left interval. */
1237
            return 0;
1258
            return 0;
1238
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1259
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1239
            /* The interval intersects with the right interval. */
1260
            /* The interval intersects with the right interval. */
1240
            return 0;          
1261
            return 0;          
1241
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1262
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1242
            /* The interval can be added by merging the two already present intervals. */
1263
            /* The interval can be added by merging the two already present intervals. */
1243
            leaf->value[leaf->keys - 1] += count + right_cnt;
1264
            leaf->value[leaf->keys - 1] += count + right_cnt;
1244
            btree_remove(&a->used_space, right_pg, node);
1265
            btree_remove(&a->used_space, right_pg, node);
1245
            return 1;
1266
            return 1;
1246
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1267
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1247
            /* The interval can be added by simply growing the left interval. */
1268
            /* The interval can be added by simply growing the left interval. */
1248
            leaf->value[leaf->keys - 1] +=  count;
1269
            leaf->value[leaf->keys - 1] +=  count;
1249
            return 1;
1270
            return 1;
1250
        } else if (page + count*PAGE_SIZE == right_pg) {
1271
        } else if (page + count*PAGE_SIZE == right_pg) {
1251
            /*
1272
            /*
1252
             * The interval can be addded by simply moving base of the right
1273
             * The interval can be addded by simply moving base of the right
1253
             * interval down and increasing its size accordingly.
1274
             * interval down and increasing its size accordingly.
1254
             */
1275
             */
1255
            node->value[0] += count;
1276
            node->value[0] += count;
1256
            node->key[0] = page;
1277
            node->key[0] = page;
1257
            return 1;
1278
            return 1;
1258
        } else {
1279
        } else {
1259
            /*
1280
            /*
1260
             * The interval is between both neigbouring intervals,
1281
             * The interval is between both neigbouring intervals,
1261
             * but cannot be merged with any of them.
1282
             * but cannot be merged with any of them.
1262
             */
1283
             */
1263
            btree_insert(&a->used_space, page, (void *) count, leaf);
1284
            btree_insert(&a->used_space, page, (void *) count, leaf);
1264
            return 1;
1285
            return 1;
1265
        }
1286
        }
1266
    } else if (page >= leaf->key[leaf->keys - 1]) {
1287
    } else if (page >= leaf->key[leaf->keys - 1]) {
1267
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1288
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1268
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1289
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1269
   
1290
   
1270
        /*
1291
        /*
1271
         * Investigate the border case in which the right neighbour does not
1292
         * Investigate the border case in which the right neighbour does not
1272
         * exist but the interval fits from the right.
1293
         * exist but the interval fits from the right.
1273
         */
1294
         */
1274
         
1295
         
1275
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1296
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1276
            /* The interval intersects with the left interval. */
1297
            /* The interval intersects with the left interval. */
1277
            return 0;
1298
            return 0;
1278
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1299
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1279
            /* The interval can be added by growing the left interval. */
1300
            /* The interval can be added by growing the left interval. */
1280
            leaf->value[leaf->keys - 1] += count;
1301
            leaf->value[leaf->keys - 1] += count;
1281
            return 1;
1302
            return 1;
1282
        } else {
1303
        } else {
1283
            /*
1304
            /*
1284
             * The interval doesn't adjoin with the left interval.
1305
             * The interval doesn't adjoin with the left interval.
1285
             * It must be added individually.
1306
             * It must be added individually.
1286
             */
1307
             */
1287
            btree_insert(&a->used_space, page, (void *) count, leaf);
1308
            btree_insert(&a->used_space, page, (void *) count, leaf);
1288
            return 1;
1309
            return 1;
1289
        }
1310
        }
1290
    }
1311
    }
1291
   
1312
   
1292
    /*
1313
    /*
1293
     * Note that if the algorithm made it thus far, the interval can fit only
1314
     * Note that if the algorithm made it thus far, the interval can fit only
1294
     * between two other intervals of the leaf. The two border cases were already
1315
     * between two other intervals of the leaf. The two border cases were already
1295
     * resolved.
1316
     * resolved.
1296
     */
1317
     */
1297
    for (i = 1; i < leaf->keys; i++) {
1318
    for (i = 1; i < leaf->keys; i++) {
1298
        if (page < leaf->key[i]) {
1319
        if (page < leaf->key[i]) {
1299
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1320
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1300
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1321
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1301
 
1322
 
1302
            /*
1323
            /*
1303
             * The interval fits between left_pg and right_pg.
1324
             * The interval fits between left_pg and right_pg.
1304
             */
1325
             */
1305
 
1326
 
1306
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1327
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1307
                /* The interval intersects with the left interval. */
1328
                /* The interval intersects with the left interval. */
1308
                return 0;
1329
                return 0;
1309
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1330
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1310
                /* The interval intersects with the right interval. */
1331
                /* The interval intersects with the right interval. */
1311
                return 0;          
1332
                return 0;          
1312
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1333
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1313
                /* The interval can be added by merging the two already present intervals. */
1334
                /* The interval can be added by merging the two already present intervals. */
1314
                leaf->value[i - 1] += count + right_cnt;
1335
                leaf->value[i - 1] += count + right_cnt;
1315
                btree_remove(&a->used_space, right_pg, leaf);
1336
                btree_remove(&a->used_space, right_pg, leaf);
1316
                return 1;
1337
                return 1;
1317
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1338
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1318
                /* The interval can be added by simply growing the left interval. */
1339
                /* The interval can be added by simply growing the left interval. */
1319
                leaf->value[i - 1] += count;
1340
                leaf->value[i - 1] += count;
1320
                return 1;
1341
                return 1;
1321
            } else if (page + count*PAGE_SIZE == right_pg) {
1342
            } else if (page + count*PAGE_SIZE == right_pg) {
1322
                /*
1343
                /*
1323
                     * The interval can be addded by simply moving base of the right
1344
                     * The interval can be addded by simply moving base of the right
1324
                 * interval down and increasing its size accordingly.
1345
                 * interval down and increasing its size accordingly.
1325
                 */
1346
                 */
1326
                leaf->value[i] += count;
1347
                leaf->value[i] += count;
1327
                leaf->key[i] = page;
1348
                leaf->key[i] = page;
1328
                return 1;
1349
                return 1;
1329
            } else {
1350
            } else {
1330
                /*
1351
                /*
1331
                 * The interval is between both neigbouring intervals,
1352
                 * The interval is between both neigbouring intervals,
1332
                 * but cannot be merged with any of them.
1353
                 * but cannot be merged with any of them.
1333
                 */
1354
                 */
1334
                btree_insert(&a->used_space, page, (void *) count, leaf);
1355
                btree_insert(&a->used_space, page, (void *) count, leaf);
1335
                return 1;
1356
                return 1;
1336
            }
1357
            }
1337
        }
1358
        }
1338
    }
1359
    }
1339
 
1360
 
1340
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1361
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1341
}
1362
}
1342
 
1363
 
1343
/** Mark portion of address space area as unused.
1364
/** Mark portion of address space area as unused.
1344
 *
1365
 *
1345
 * The address space area must be already locked.
1366
 * The address space area must be already locked.
1346
 *
1367
 *
1347
 * @param a Address space area.
1368
 * @param a Address space area.
1348
 * @param page First page to be marked.
1369
 * @param page First page to be marked.
1349
 * @param count Number of page to be marked.
1370
 * @param count Number of page to be marked.
1350
 *
1371
 *
1351
 * @return 0 on failure and 1 on success.
1372
 * @return 0 on failure and 1 on success.
1352
 */
1373
 */
1353
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1374
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1354
{
1375
{
1355
    btree_node_t *leaf, *node;
1376
    btree_node_t *leaf, *node;
1356
    count_t pages;
1377
    count_t pages;
1357
    int i;
1378
    int i;
1358
 
1379
 
1359
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1380
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1360
    ASSERT(count);
1381
    ASSERT(count);
1361
 
1382
 
1362
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1383
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1363
    if (pages) {
1384
    if (pages) {
1364
        /*
1385
        /*
1365
         * We are lucky, page is the beginning of some interval.
1386
         * We are lucky, page is the beginning of some interval.
1366
         */
1387
         */
1367
        if (count > pages) {
1388
        if (count > pages) {
1368
            return 0;
1389
            return 0;
1369
        } else if (count == pages) {
1390
        } else if (count == pages) {
1370
            btree_remove(&a->used_space, page, leaf);
1391
            btree_remove(&a->used_space, page, leaf);
1371
            return 1;
1392
            return 1;
1372
        } else {
1393
        } else {
1373
            /*
1394
            /*
1374
             * Find the respective interval.
1395
             * Find the respective interval.
1375
             * Decrease its size and relocate its start address.
1396
             * Decrease its size and relocate its start address.
1376
             */
1397
             */
1377
            for (i = 0; i < leaf->keys; i++) {
1398
            for (i = 0; i < leaf->keys; i++) {
1378
                if (leaf->key[i] == page) {
1399
                if (leaf->key[i] == page) {
1379
                    leaf->key[i] += count*PAGE_SIZE;
1400
                    leaf->key[i] += count*PAGE_SIZE;
1380
                    leaf->value[i] -= count;
1401
                    leaf->value[i] -= count;
1381
                    return 1;
1402
                    return 1;
1382
                }
1403
                }
1383
            }
1404
            }
1384
            goto error;
1405
            goto error;
1385
        }
1406
        }
1386
    }
1407
    }
1387
 
1408
 
1388
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1409
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1389
    if (node && page < leaf->key[0]) {
1410
    if (node && page < leaf->key[0]) {
1390
        uintptr_t left_pg = node->key[node->keys - 1];
1411
        uintptr_t left_pg = node->key[node->keys - 1];
1391
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1412
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1392
 
1413
 
1393
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1414
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1394
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1415
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1395
                /*
1416
                /*
1396
                 * The interval is contained in the rightmost interval
1417
                 * The interval is contained in the rightmost interval
1397
                 * of the left neighbour and can be removed by
1418
                 * of the left neighbour and can be removed by
1398
                 * updating the size of the bigger interval.
1419
                 * updating the size of the bigger interval.
1399
                 */
1420
                 */
1400
                node->value[node->keys - 1] -= count;
1421
                node->value[node->keys - 1] -= count;
1401
                return 1;
1422
                return 1;
1402
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1423
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1403
                count_t new_cnt;
1424
                count_t new_cnt;
1404
               
1425
               
1405
                /*
1426
                /*
1406
                 * The interval is contained in the rightmost interval
1427
                 * The interval is contained in the rightmost interval
1407
                 * of the left neighbour but its removal requires
1428
                 * of the left neighbour but its removal requires
1408
                 * both updating the size of the original interval and
1429
                 * both updating the size of the original interval and
1409
                 * also inserting a new interval.
1430
                 * also inserting a new interval.
1410
                 */
1431
                 */
1411
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1432
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1412
                node->value[node->keys - 1] -= count + new_cnt;
1433
                node->value[node->keys - 1] -= count + new_cnt;
1413
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1434
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1414
                return 1;
1435
                return 1;
1415
            }
1436
            }
1416
        }
1437
        }
1417
        return 0;
1438
        return 0;
1418
    } else if (page < leaf->key[0]) {
1439
    } else if (page < leaf->key[0]) {
1419
        return 0;
1440
        return 0;
1420
    }
1441
    }
1421
   
1442
   
1422
    if (page > leaf->key[leaf->keys - 1]) {
1443
    if (page > leaf->key[leaf->keys - 1]) {
1423
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1444
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1424
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1445
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1425
 
1446
 
1426
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1447
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1427
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1448
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1428
                /*
1449
                /*
1429
                 * The interval is contained in the rightmost interval
1450
                 * The interval is contained in the rightmost interval
1430
                 * of the leaf and can be removed by updating the size
1451
                 * of the leaf and can be removed by updating the size
1431
                 * of the bigger interval.
1452
                 * of the bigger interval.
1432
                 */
1453
                 */
1433
                leaf->value[leaf->keys - 1] -= count;
1454
                leaf->value[leaf->keys - 1] -= count;
1434
                return 1;
1455
                return 1;
1435
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1456
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1436
                count_t new_cnt;
1457
                count_t new_cnt;
1437
               
1458
               
1438
                /*
1459
                /*
1439
                 * The interval is contained in the rightmost interval
1460
                 * The interval is contained in the rightmost interval
1440
                 * of the leaf but its removal requires both updating
1461
                 * of the leaf but its removal requires both updating
1441
                 * the size of the original interval and
1462
                 * the size of the original interval and
1442
                 * also inserting a new interval.
1463
                 * also inserting a new interval.
1443
                 */
1464
                 */
1444
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1465
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1445
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1466
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1446
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1467
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1447
                return 1;
1468
                return 1;
1448
            }
1469
            }
1449
        }
1470
        }
1450
        return 0;
1471
        return 0;
1451
    }  
1472
    }  
1452
   
1473
   
1453
    /*
1474
    /*
1454
     * The border cases have been already resolved.
1475
     * The border cases have been already resolved.
1455
     * Now the interval can be only between intervals of the leaf.
1476
     * Now the interval can be only between intervals of the leaf.
1456
     */
1477
     */
1457
    for (i = 1; i < leaf->keys - 1; i++) {
1478
    for (i = 1; i < leaf->keys - 1; i++) {
1458
        if (page < leaf->key[i]) {
1479
        if (page < leaf->key[i]) {
1459
            uintptr_t left_pg = leaf->key[i - 1];
1480
            uintptr_t left_pg = leaf->key[i - 1];
1460
            count_t left_cnt = (count_t) leaf->value[i - 1];
1481
            count_t left_cnt = (count_t) leaf->value[i - 1];
1461
 
1482
 
1462
            /*
1483
            /*
1463
             * Now the interval is between intervals corresponding to (i - 1) and i.
1484
             * Now the interval is between intervals corresponding to (i - 1) and i.
1464
             */
1485
             */
1465
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1486
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1466
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1487
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1467
                    /*
1488
                    /*
1468
                    * The interval is contained in the interval (i - 1)
1489
                    * The interval is contained in the interval (i - 1)
1469
                     * of the leaf and can be removed by updating the size
1490
                     * of the leaf and can be removed by updating the size
1470
                     * of the bigger interval.
1491
                     * of the bigger interval.
1471
                     */
1492
                     */
1472
                    leaf->value[i - 1] -= count;
1493
                    leaf->value[i - 1] -= count;
1473
                    return 1;
1494
                    return 1;
1474
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1495
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1475
                    count_t new_cnt;
1496
                    count_t new_cnt;
1476
               
1497
               
1477
                    /*
1498
                    /*
1478
                     * The interval is contained in the interval (i - 1)
1499
                     * The interval is contained in the interval (i - 1)
1479
                     * of the leaf but its removal requires both updating
1500
                     * of the leaf but its removal requires both updating
1480
                     * the size of the original interval and
1501
                     * the size of the original interval and
1481
                     * also inserting a new interval.
1502
                     * also inserting a new interval.
1482
                     */
1503
                     */
1483
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1504
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1484
                    leaf->value[i - 1] -= count + new_cnt;
1505
                    leaf->value[i - 1] -= count + new_cnt;
1485
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1506
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1486
                    return 1;
1507
                    return 1;
1487
                }
1508
                }
1488
            }
1509
            }
1489
            return 0;
1510
            return 0;
1490
        }
1511
        }
1491
    }
1512
    }
1492
 
1513
 
1493
error:
1514
error:
1494
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1515
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1495
}
1516
}
1496
 
1517
 
1497
/** Remove reference to address space area share info.
1518
/** Remove reference to address space area share info.
1498
 *
1519
 *
1499
 * If the reference count drops to 0, the sh_info is deallocated.
1520
 * If the reference count drops to 0, the sh_info is deallocated.
1500
 *
1521
 *
1501
 * @param sh_info Pointer to address space area share info.
1522
 * @param sh_info Pointer to address space area share info.
1502
 */
1523
 */
1503
void sh_info_remove_reference(share_info_t *sh_info)
1524
void sh_info_remove_reference(share_info_t *sh_info)
1504
{
1525
{
1505
    bool dealloc = false;
1526
    bool dealloc = false;
1506
 
1527
 
1507
    mutex_lock(&sh_info->lock);
1528
    mutex_lock(&sh_info->lock);
1508
    ASSERT(sh_info->refcount);
1529
    ASSERT(sh_info->refcount);
1509
    if (--sh_info->refcount == 0) {
1530
    if (--sh_info->refcount == 0) {
1510
        dealloc = true;
1531
        dealloc = true;
1511
        link_t *cur;
1532
        link_t *cur;
1512
       
1533
       
1513
        /*
1534
        /*
1514
         * Now walk carefully the pagemap B+tree and free/remove
1535
         * Now walk carefully the pagemap B+tree and free/remove
1515
         * reference from all frames found there.
1536
         * reference from all frames found there.
1516
         */
1537
         */
1517
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1538
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1518
            btree_node_t *node;
1539
            btree_node_t *node;
1519
            int i;
1540
            int i;
1520
           
1541
           
1521
            node = list_get_instance(cur, btree_node_t, leaf_link);
1542
            node = list_get_instance(cur, btree_node_t, leaf_link);
1522
            for (i = 0; i < node->keys; i++)
1543
            for (i = 0; i < node->keys; i++)
1523
                frame_free((uintptr_t) node->value[i]);
1544
                frame_free((uintptr_t) node->value[i]);
1524
        }
1545
        }
1525
       
1546
       
1526
    }
1547
    }
1527
    mutex_unlock(&sh_info->lock);
1548
    mutex_unlock(&sh_info->lock);
1528
   
1549
   
1529
    if (dealloc) {
1550
    if (dealloc) {
1530
        btree_destroy(&sh_info->pagemap);
1551
        btree_destroy(&sh_info->pagemap);
1531
        free(sh_info);
1552
        free(sh_info);
1532
    }
1553
    }
1533
}
1554
}
1534
 
1555
 
1535
/*
1556
/*
1536
 * Address space related syscalls.
1557
 * Address space related syscalls.
1537
 */
1558
 */
1538
 
1559
 
1539
/** Wrapper for as_area_create(). */
1560
/** Wrapper for as_area_create(). */
1540
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1561
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1541
{
1562
{
1542
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1563
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1543
        return (unative_t) address;
1564
        return (unative_t) address;
1544
    else
1565
    else
1545
        return (unative_t) -1;
1566
        return (unative_t) -1;
1546
}
1567
}
1547
 
1568
 
1548
/** Wrapper for as_area_resize(). */
1569
/** Wrapper for as_area_resize(). */
1549
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1570
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1550
{
1571
{
1551
    return (unative_t) as_area_resize(AS, address, size, 0);
1572
    return (unative_t) as_area_resize(AS, address, size, 0);
1552
}
1573
}
1553
 
1574
 
1554
/** Wrapper for as_area_destroy(). */
1575
/** Wrapper for as_area_destroy(). */
1555
unative_t sys_as_area_destroy(uintptr_t address)
1576
unative_t sys_as_area_destroy(uintptr_t address)
1556
{
1577
{
1557
    return (unative_t) as_area_destroy(AS, address);
1578
    return (unative_t) as_area_destroy(AS, address);
1558
}
1579
}
1559
 
1580
 
1560
/** @}
1581
/** @}
1561
 */
1582
 */
1562
 
1583