Subversion Repositories HelenOS

Rev

Rev 2141 | Rev 2183 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2141 Rev 2170
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <syscall/copy.h>
77
#include <syscall/copy.h>
78
#include <arch/interrupt.h>
78
#include <arch/interrupt.h>
79
 
79
 
80
#ifdef CONFIG_VIRT_IDX_DCACHE
80
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#include <arch/mm/cache.h>
81
#include <arch/mm/cache.h>
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
 
83
 
84
#ifndef __OBJC__
84
#ifndef __OBJC__
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
#endif
95
#endif
96
 
96
 
97
/**
97
/**
-
 
98
 * This lock serializes access to the ASID subsystem.
-
 
99
 * It protects:
98
 * This lock protects inactive_as_with_asid_head list. It must be acquired
100
 * - inactive_as_with_asid_head list
-
 
101
 * - as->asid for each as of the as_t type
99
 * before as_t mutex.
102
 * - asids_allocated counter
100
 */
103
 */
101
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
104
SPINLOCK_INITIALIZE(asidlock);
102
 
105
 
103
/**
106
/**
104
 * This list contains address spaces that are not active on any
107
 * This list contains address spaces that are not active on any
105
 * processor and that have valid ASID.
108
 * processor and that have valid ASID.
106
 */
109
 */
107
LIST_INITIALIZE(inactive_as_with_asid_head);
110
LIST_INITIALIZE(inactive_as_with_asid_head);
108
 
111
 
109
/** Kernel address space. */
112
/** Kernel address space. */
110
as_t *AS_KERNEL = NULL;
113
as_t *AS_KERNEL = NULL;
111
 
114
 
112
static int area_flags_to_page_flags(int aflags);
115
static int area_flags_to_page_flags(int aflags);
113
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
116
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
114
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
117
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
115
    as_area_t *avoid_area);
118
    as_area_t *avoid_area);
116
static void sh_info_remove_reference(share_info_t *sh_info);
119
static void sh_info_remove_reference(share_info_t *sh_info);
117
 
120
 
118
#ifndef __OBJC__
121
#ifndef __OBJC__
119
static int as_constructor(void *obj, int flags)
122
static int as_constructor(void *obj, int flags)
120
{
123
{
121
    as_t *as = (as_t *) obj;
124
    as_t *as = (as_t *) obj;
122
    int rc;
125
    int rc;
123
 
126
 
124
    link_initialize(&as->inactive_as_with_asid_link);
127
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock);   
128
    mutex_initialize(&as->lock);   
126
   
129
   
127
    rc = as_constructor_arch(as, flags);
130
    rc = as_constructor_arch(as, flags);
128
   
131
   
129
    return rc;
132
    return rc;
130
}
133
}
131
 
134
 
132
static int as_destructor(void *obj)
135
static int as_destructor(void *obj)
133
{
136
{
134
    as_t *as = (as_t *) obj;
137
    as_t *as = (as_t *) obj;
135
 
138
 
136
    return as_destructor_arch(as);
139
    return as_destructor_arch(as);
137
}
140
}
138
#endif
141
#endif
139
 
142
 
140
/** Initialize address space subsystem. */
143
/** Initialize address space subsystem. */
141
void as_init(void)
144
void as_init(void)
142
{
145
{
143
    as_arch_init();
146
    as_arch_init();
144
 
147
 
145
#ifndef __OBJC__
148
#ifndef __OBJC__
146
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
149
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
147
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
150
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
148
#endif
151
#endif
149
   
152
   
150
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
153
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
151
    if (!AS_KERNEL)
154
    if (!AS_KERNEL)
152
        panic("can't create kernel address space\n");
155
        panic("can't create kernel address space\n");
153
   
156
   
154
}
157
}
155
 
158
 
156
/** Create address space.
159
/** Create address space.
157
 *
160
 *
158
 * @param flags Flags that influence way in wich the address space is created.
161
 * @param flags Flags that influence way in wich the address space is created.
159
 */
162
 */
160
as_t *as_create(int flags)
163
as_t *as_create(int flags)
161
{
164
{
162
    as_t *as;
165
    as_t *as;
163
 
166
 
164
#ifdef __OBJC__
167
#ifdef __OBJC__
165
    as = [as_t new];
168
    as = [as_t new];
166
    link_initialize(&as->inactive_as_with_asid_link);
169
    link_initialize(&as->inactive_as_with_asid_link);
167
    mutex_initialize(&as->lock);   
170
    mutex_initialize(&as->lock);   
168
    (void) as_constructor_arch(as, flags);
171
    (void) as_constructor_arch(as, flags);
169
#else
172
#else
170
    as = (as_t *) slab_alloc(as_slab, 0);
173
    as = (as_t *) slab_alloc(as_slab, 0);
171
#endif
174
#endif
172
    (void) as_create_arch(as, 0);
175
    (void) as_create_arch(as, 0);
173
   
176
   
174
    btree_create(&as->as_area_btree);
177
    btree_create(&as->as_area_btree);
175
   
178
   
176
    if (flags & FLAG_AS_KERNEL)
179
    if (flags & FLAG_AS_KERNEL)
177
        as->asid = ASID_KERNEL;
180
        as->asid = ASID_KERNEL;
178
    else
181
    else
179
        as->asid = ASID_INVALID;
182
        as->asid = ASID_INVALID;
180
   
183
   
181
    as->refcount = 0;
184
    as->refcount = 0;
182
    as->cpu_refcount = 0;
185
    as->cpu_refcount = 0;
183
#ifdef AS_PAGE_TABLE
186
#ifdef AS_PAGE_TABLE
184
    as->genarch.page_table = page_table_create(flags);
187
    as->genarch.page_table = page_table_create(flags);
185
#else
188
#else
186
    page_table_create(flags);
189
    page_table_create(flags);
187
#endif
190
#endif
188
 
191
 
189
    return as;
192
    return as;
190
}
193
}
191
 
194
 
192
/** Destroy adress space.
195
/** Destroy adress space.
193
 *
196
 *
194
 * When there are no tasks referencing this address space (i.e. its refcount is
197
 * When there are no tasks referencing this address space (i.e. its refcount is
195
 * zero), the address space can be destroyed.
198
 * zero), the address space can be destroyed.
196
 */
199
 */
197
void as_destroy(as_t *as)
200
void as_destroy(as_t *as)
198
{
201
{
199
    ipl_t ipl;
202
    ipl_t ipl;
200
    bool cond;
203
    bool cond;
201
 
204
 
202
    ASSERT(as->refcount == 0);
205
    ASSERT(as->refcount == 0);
203
   
206
   
204
    /*
207
    /*
205
     * Since there is no reference to this area,
208
     * Since there is no reference to this area,
206
     * it is safe not to lock its mutex.
209
     * it is safe not to lock its mutex.
207
     */
210
     */
-
 
211
 
208
    ipl = interrupts_disable();
212
    ipl = interrupts_disable();
209
    spinlock_lock(&inactive_as_with_asid_lock);
213
    spinlock_lock(&asidlock);
210
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
214
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
211
        if (as != AS && as->cpu_refcount == 0)
215
        if (as != AS && as->cpu_refcount == 0)
212
            list_remove(&as->inactive_as_with_asid_link);
216
            list_remove(&as->inactive_as_with_asid_link);
213
        asid_put(as->asid);
217
        asid_put(as->asid);
214
    }
218
    }
215
    spinlock_unlock(&inactive_as_with_asid_lock);
219
    spinlock_unlock(&asidlock);
216
 
220
 
217
    /*
221
    /*
218
     * Destroy address space areas of the address space.
222
     * Destroy address space areas of the address space.
219
     * The B+tree must be walked carefully because it is
223
     * The B+tree must be walked carefully because it is
220
     * also being destroyed.
224
     * also being destroyed.
221
     */
225
     */
222
    for (cond = true; cond; ) {
226
    for (cond = true; cond; ) {
223
        btree_node_t *node;
227
        btree_node_t *node;
224
 
228
 
225
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
229
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
226
        node = list_get_instance(as->as_area_btree.leaf_head.next,
230
        node = list_get_instance(as->as_area_btree.leaf_head.next,
227
            btree_node_t, leaf_link);
231
            btree_node_t, leaf_link);
228
 
232
 
229
        if ((cond = node->keys)) {
233
        if ((cond = node->keys)) {
230
            as_area_destroy(as, node->key[0]);
234
            as_area_destroy(as, node->key[0]);
231
        }
235
        }
232
    }
236
    }
233
 
237
 
234
    btree_destroy(&as->as_area_btree);
238
    btree_destroy(&as->as_area_btree);
235
#ifdef AS_PAGE_TABLE
239
#ifdef AS_PAGE_TABLE
236
    page_table_destroy(as->genarch.page_table);
240
    page_table_destroy(as->genarch.page_table);
237
#else
241
#else
238
    page_table_destroy(NULL);
242
    page_table_destroy(NULL);
239
#endif
243
#endif
240
 
244
 
241
    interrupts_restore(ipl);
245
    interrupts_restore(ipl);
242
 
246
 
243
#ifdef __OBJC__
247
#ifdef __OBJC__
244
    [as free];
248
    [as free];
245
#else
249
#else
246
    slab_free(as_slab, as);
250
    slab_free(as_slab, as);
247
#endif
251
#endif
248
}
252
}
249
 
253
 
250
/** Create address space area of common attributes.
254
/** Create address space area of common attributes.
251
 *
255
 *
252
 * The created address space area is added to the target address space.
256
 * The created address space area is added to the target address space.
253
 *
257
 *
254
 * @param as Target address space.
258
 * @param as Target address space.
255
 * @param flags Flags of the area memory.
259
 * @param flags Flags of the area memory.
256
 * @param size Size of area.
260
 * @param size Size of area.
257
 * @param base Base address of area.
261
 * @param base Base address of area.
258
 * @param attrs Attributes of the area.
262
 * @param attrs Attributes of the area.
259
 * @param backend Address space area backend. NULL if no backend is used.
263
 * @param backend Address space area backend. NULL if no backend is used.
260
 * @param backend_data NULL or a pointer to an array holding two void *.
264
 * @param backend_data NULL or a pointer to an array holding two void *.
261
 *
265
 *
262
 * @return Address space area on success or NULL on failure.
266
 * @return Address space area on success or NULL on failure.
263
 */
267
 */
264
as_area_t *
268
as_area_t *
265
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
269
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
266
           mem_backend_t *backend, mem_backend_data_t *backend_data)
270
           mem_backend_t *backend, mem_backend_data_t *backend_data)
267
{
271
{
268
    ipl_t ipl;
272
    ipl_t ipl;
269
    as_area_t *a;
273
    as_area_t *a;
270
   
274
   
271
    if (base % PAGE_SIZE)
275
    if (base % PAGE_SIZE)
272
        return NULL;
276
        return NULL;
273
 
277
 
274
    if (!size)
278
    if (!size)
275
        return NULL;
279
        return NULL;
276
 
280
 
277
    /* Writeable executable areas are not supported. */
281
    /* Writeable executable areas are not supported. */
278
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
282
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
279
        return NULL;
283
        return NULL;
280
   
284
   
281
    ipl = interrupts_disable();
285
    ipl = interrupts_disable();
282
    mutex_lock(&as->lock);
286
    mutex_lock(&as->lock);
283
   
287
   
284
    if (!check_area_conflicts(as, base, size, NULL)) {
288
    if (!check_area_conflicts(as, base, size, NULL)) {
285
        mutex_unlock(&as->lock);
289
        mutex_unlock(&as->lock);
286
        interrupts_restore(ipl);
290
        interrupts_restore(ipl);
287
        return NULL;
291
        return NULL;
288
    }
292
    }
289
   
293
   
290
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
294
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
291
 
295
 
292
    mutex_initialize(&a->lock);
296
    mutex_initialize(&a->lock);
293
   
297
   
294
    a->as = as;
298
    a->as = as;
295
    a->flags = flags;
299
    a->flags = flags;
296
    a->attributes = attrs;
300
    a->attributes = attrs;
297
    a->pages = SIZE2FRAMES(size);
301
    a->pages = SIZE2FRAMES(size);
298
    a->base = base;
302
    a->base = base;
299
    a->sh_info = NULL;
303
    a->sh_info = NULL;
300
    a->backend = backend;
304
    a->backend = backend;
301
    if (backend_data)
305
    if (backend_data)
302
        a->backend_data = *backend_data;
306
        a->backend_data = *backend_data;
303
    else
307
    else
304
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
308
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
305
            0);
309
            0);
306
 
310
 
307
    btree_create(&a->used_space);
311
    btree_create(&a->used_space);
308
   
312
   
309
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
313
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
310
 
314
 
311
    mutex_unlock(&as->lock);
315
    mutex_unlock(&as->lock);
312
    interrupts_restore(ipl);
316
    interrupts_restore(ipl);
313
 
317
 
314
    return a;
318
    return a;
315
}
319
}
316
 
320
 
317
/** Find address space area and change it.
321
/** Find address space area and change it.
318
 *
322
 *
319
 * @param as Address space.
323
 * @param as Address space.
320
 * @param address Virtual address belonging to the area to be changed. Must be
324
 * @param address Virtual address belonging to the area to be changed. Must be
321
 *     page-aligned.
325
 *     page-aligned.
322
 * @param size New size of the virtual memory block starting at address.
326
 * @param size New size of the virtual memory block starting at address.
323
 * @param flags Flags influencing the remap operation. Currently unused.
327
 * @param flags Flags influencing the remap operation. Currently unused.
324
 *
328
 *
325
 * @return Zero on success or a value from @ref errno.h otherwise.
329
 * @return Zero on success or a value from @ref errno.h otherwise.
326
 */
330
 */
327
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
331
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
328
{
332
{
329
    as_area_t *area;
333
    as_area_t *area;
330
    ipl_t ipl;
334
    ipl_t ipl;
331
    size_t pages;
335
    size_t pages;
332
   
336
   
333
    ipl = interrupts_disable();
337
    ipl = interrupts_disable();
334
    mutex_lock(&as->lock);
338
    mutex_lock(&as->lock);
335
   
339
   
336
    /*
340
    /*
337
     * Locate the area.
341
     * Locate the area.
338
     */
342
     */
339
    area = find_area_and_lock(as, address);
343
    area = find_area_and_lock(as, address);
340
    if (!area) {
344
    if (!area) {
341
        mutex_unlock(&as->lock);
345
        mutex_unlock(&as->lock);
342
        interrupts_restore(ipl);
346
        interrupts_restore(ipl);
343
        return ENOENT;
347
        return ENOENT;
344
    }
348
    }
345
 
349
 
346
    if (area->backend == &phys_backend) {
350
    if (area->backend == &phys_backend) {
347
        /*
351
        /*
348
         * Remapping of address space areas associated
352
         * Remapping of address space areas associated
349
         * with memory mapped devices is not supported.
353
         * with memory mapped devices is not supported.
350
         */
354
         */
351
        mutex_unlock(&area->lock);
355
        mutex_unlock(&area->lock);
352
        mutex_unlock(&as->lock);
356
        mutex_unlock(&as->lock);
353
        interrupts_restore(ipl);
357
        interrupts_restore(ipl);
354
        return ENOTSUP;
358
        return ENOTSUP;
355
    }
359
    }
356
    if (area->sh_info) {
360
    if (area->sh_info) {
357
        /*
361
        /*
358
         * Remapping of shared address space areas
362
         * Remapping of shared address space areas
359
         * is not supported.
363
         * is not supported.
360
         */
364
         */
361
        mutex_unlock(&area->lock);
365
        mutex_unlock(&area->lock);
362
        mutex_unlock(&as->lock);
366
        mutex_unlock(&as->lock);
363
        interrupts_restore(ipl);
367
        interrupts_restore(ipl);
364
        return ENOTSUP;
368
        return ENOTSUP;
365
    }
369
    }
366
 
370
 
367
    pages = SIZE2FRAMES((address - area->base) + size);
371
    pages = SIZE2FRAMES((address - area->base) + size);
368
    if (!pages) {
372
    if (!pages) {
369
        /*
373
        /*
370
         * Zero size address space areas are not allowed.
374
         * Zero size address space areas are not allowed.
371
         */
375
         */
372
        mutex_unlock(&area->lock);
376
        mutex_unlock(&area->lock);
373
        mutex_unlock(&as->lock);
377
        mutex_unlock(&as->lock);
374
        interrupts_restore(ipl);
378
        interrupts_restore(ipl);
375
        return EPERM;
379
        return EPERM;
376
    }
380
    }
377
   
381
   
378
    if (pages < area->pages) {
382
    if (pages < area->pages) {
379
        bool cond;
383
        bool cond;
380
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
384
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
381
 
385
 
382
        /*
386
        /*
383
         * Shrinking the area.
387
         * Shrinking the area.
384
         * No need to check for overlaps.
388
         * No need to check for overlaps.
385
         */
389
         */
386
 
390
 
387
        /*
391
        /*
388
         * Start TLB shootdown sequence.
392
         * Start TLB shootdown sequence.
389
         */
393
         */
390
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
394
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
391
            pages * PAGE_SIZE, area->pages - pages);
395
            pages * PAGE_SIZE, area->pages - pages);
392
 
396
 
393
        /*
397
        /*
394
         * Remove frames belonging to used space starting from
398
         * Remove frames belonging to used space starting from
395
         * the highest addresses downwards until an overlap with
399
         * the highest addresses downwards until an overlap with
396
         * the resized address space area is found. Note that this
400
         * the resized address space area is found. Note that this
397
         * is also the right way to remove part of the used_space
401
         * is also the right way to remove part of the used_space
398
         * B+tree leaf list.
402
         * B+tree leaf list.
399
         */    
403
         */    
400
        for (cond = true; cond;) {
404
        for (cond = true; cond;) {
401
            btree_node_t *node;
405
            btree_node_t *node;
402
       
406
       
403
            ASSERT(!list_empty(&area->used_space.leaf_head));
407
            ASSERT(!list_empty(&area->used_space.leaf_head));
404
            node =
408
            node =
405
                list_get_instance(area->used_space.leaf_head.prev,
409
                list_get_instance(area->used_space.leaf_head.prev,
406
                btree_node_t, leaf_link);
410
                btree_node_t, leaf_link);
407
            if ((cond = (bool) node->keys)) {
411
            if ((cond = (bool) node->keys)) {
408
                uintptr_t b = node->key[node->keys - 1];
412
                uintptr_t b = node->key[node->keys - 1];
409
                count_t c =
413
                count_t c =
410
                    (count_t) node->value[node->keys - 1];
414
                    (count_t) node->value[node->keys - 1];
411
                int i = 0;
415
                int i = 0;
412
           
416
           
413
                if (overlaps(b, c * PAGE_SIZE, area->base,
417
                if (overlaps(b, c * PAGE_SIZE, area->base,
414
                    pages * PAGE_SIZE)) {
418
                    pages * PAGE_SIZE)) {
415
                   
419
                   
416
                    if (b + c * PAGE_SIZE <= start_free) {
420
                    if (b + c * PAGE_SIZE <= start_free) {
417
                        /*
421
                        /*
418
                         * The whole interval fits
422
                         * The whole interval fits
419
                         * completely in the resized
423
                         * completely in the resized
420
                         * address space area.
424
                         * address space area.
421
                         */
425
                         */
422
                        break;
426
                        break;
423
                    }
427
                    }
424
       
428
       
425
                    /*
429
                    /*
426
                     * Part of the interval corresponding
430
                     * Part of the interval corresponding
427
                     * to b and c overlaps with the resized
431
                     * to b and c overlaps with the resized
428
                     * address space area.
432
                     * address space area.
429
                     */
433
                     */
430
       
434
       
431
                    cond = false;   /* we are almost done */
435
                    cond = false;   /* we are almost done */
432
                    i = (start_free - b) >> PAGE_WIDTH;
436
                    i = (start_free - b) >> PAGE_WIDTH;
433
                    if (!used_space_remove(area, start_free,
437
                    if (!used_space_remove(area, start_free,
434
                        c - i))
438
                        c - i))
435
                        panic("Could not remove used "
439
                        panic("Could not remove used "
436
                            "space.\n");
440
                            "space.\n");
437
                } else {
441
                } else {
438
                    /*
442
                    /*
439
                     * The interval of used space can be
443
                     * The interval of used space can be
440
                     * completely removed.
444
                     * completely removed.
441
                     */
445
                     */
442
                    if (!used_space_remove(area, b, c))
446
                    if (!used_space_remove(area, b, c))
443
                        panic("Could not remove used "
447
                        panic("Could not remove used "
444
                            "space.\n");
448
                            "space.\n");
445
                }
449
                }
446
           
450
           
447
                for (; i < c; i++) {
451
                for (; i < c; i++) {
448
                    pte_t *pte;
452
                    pte_t *pte;
449
           
453
           
450
                    page_table_lock(as, false);
454
                    page_table_lock(as, false);
451
                    pte = page_mapping_find(as, b +
455
                    pte = page_mapping_find(as, b +
452
                        i * PAGE_SIZE);
456
                        i * PAGE_SIZE);
453
                    ASSERT(pte && PTE_VALID(pte) &&
457
                    ASSERT(pte && PTE_VALID(pte) &&
454
                        PTE_PRESENT(pte));
458
                        PTE_PRESENT(pte));
455
                    if (area->backend &&
459
                    if (area->backend &&
456
                        area->backend->frame_free) {
460
                        area->backend->frame_free) {
457
                        area->backend->frame_free(area,
461
                        area->backend->frame_free(area,
458
                            b + i * PAGE_SIZE,
462
                            b + i * PAGE_SIZE,
459
                            PTE_GET_FRAME(pte));
463
                            PTE_GET_FRAME(pte));
460
                    }
464
                    }
461
                    page_mapping_remove(as, b +
465
                    page_mapping_remove(as, b +
462
                        i * PAGE_SIZE);
466
                        i * PAGE_SIZE);
463
                    page_table_unlock(as, false);
467
                    page_table_unlock(as, false);
464
                }
468
                }
465
            }
469
            }
466
        }
470
        }
467
 
471
 
468
        /*
472
        /*
469
         * Finish TLB shootdown sequence.
473
         * Finish TLB shootdown sequence.
470
         */
474
         */
471
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
475
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
472
            area->pages - pages);
476
            area->pages - pages);
473
        tlb_shootdown_finalize();
477
        tlb_shootdown_finalize();
474
       
478
       
475
        /*
479
        /*
476
         * Invalidate software translation caches (e.g. TSB on sparc64).
480
         * Invalidate software translation caches (e.g. TSB on sparc64).
477
         */
481
         */
478
        as_invalidate_translation_cache(as, area->base +
482
        as_invalidate_translation_cache(as, area->base +
479
            pages * PAGE_SIZE, area->pages - pages);
483
            pages * PAGE_SIZE, area->pages - pages);
480
    } else {
484
    } else {
481
        /*
485
        /*
482
         * Growing the area.
486
         * Growing the area.
483
         * Check for overlaps with other address space areas.
487
         * Check for overlaps with other address space areas.
484
         */
488
         */
485
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
489
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
486
            area)) {
490
            area)) {
487
            mutex_unlock(&area->lock);
491
            mutex_unlock(&area->lock);
488
            mutex_unlock(&as->lock);       
492
            mutex_unlock(&as->lock);       
489
            interrupts_restore(ipl);
493
            interrupts_restore(ipl);
490
            return EADDRNOTAVAIL;
494
            return EADDRNOTAVAIL;
491
        }
495
        }
492
    }
496
    }
493
 
497
 
494
    area->pages = pages;
498
    area->pages = pages;
495
   
499
   
496
    mutex_unlock(&area->lock);
500
    mutex_unlock(&area->lock);
497
    mutex_unlock(&as->lock);
501
    mutex_unlock(&as->lock);
498
    interrupts_restore(ipl);
502
    interrupts_restore(ipl);
499
 
503
 
500
    return 0;
504
    return 0;
501
}
505
}
502
 
506
 
503
/** Destroy address space area.
507
/** Destroy address space area.
504
 *
508
 *
505
 * @param as Address space.
509
 * @param as Address space.
506
 * @param address Address withing the area to be deleted.
510
 * @param address Address withing the area to be deleted.
507
 *
511
 *
508
 * @return Zero on success or a value from @ref errno.h on failure.
512
 * @return Zero on success or a value from @ref errno.h on failure.
509
 */
513
 */
510
int as_area_destroy(as_t *as, uintptr_t address)
514
int as_area_destroy(as_t *as, uintptr_t address)
511
{
515
{
512
    as_area_t *area;
516
    as_area_t *area;
513
    uintptr_t base;
517
    uintptr_t base;
514
    link_t *cur;
518
    link_t *cur;
515
    ipl_t ipl;
519
    ipl_t ipl;
516
 
520
 
517
    ipl = interrupts_disable();
521
    ipl = interrupts_disable();
518
    mutex_lock(&as->lock);
522
    mutex_lock(&as->lock);
519
 
523
 
520
    area = find_area_and_lock(as, address);
524
    area = find_area_and_lock(as, address);
521
    if (!area) {
525
    if (!area) {
522
        mutex_unlock(&as->lock);
526
        mutex_unlock(&as->lock);
523
        interrupts_restore(ipl);
527
        interrupts_restore(ipl);
524
        return ENOENT;
528
        return ENOENT;
525
    }
529
    }
526
 
530
 
527
    base = area->base;
531
    base = area->base;
528
 
532
 
529
    /*
533
    /*
530
     * Start TLB shootdown sequence.
534
     * Start TLB shootdown sequence.
531
     */
535
     */
532
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
536
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
533
 
537
 
534
    /*
538
    /*
535
     * Visit only the pages mapped by used_space B+tree.
539
     * Visit only the pages mapped by used_space B+tree.
536
     */
540
     */
537
    for (cur = area->used_space.leaf_head.next;
541
    for (cur = area->used_space.leaf_head.next;
538
        cur != &area->used_space.leaf_head; cur = cur->next) {
542
        cur != &area->used_space.leaf_head; cur = cur->next) {
539
        btree_node_t *node;
543
        btree_node_t *node;
540
        int i;
544
        int i;
541
       
545
       
542
        node = list_get_instance(cur, btree_node_t, leaf_link);
546
        node = list_get_instance(cur, btree_node_t, leaf_link);
543
        for (i = 0; i < node->keys; i++) {
547
        for (i = 0; i < node->keys; i++) {
544
            uintptr_t b = node->key[i];
548
            uintptr_t b = node->key[i];
545
            count_t j;
549
            count_t j;
546
            pte_t *pte;
550
            pte_t *pte;
547
           
551
           
548
            for (j = 0; j < (count_t) node->value[i]; j++) {
552
            for (j = 0; j < (count_t) node->value[i]; j++) {
549
                page_table_lock(as, false);
553
                page_table_lock(as, false);
550
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
554
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
551
                ASSERT(pte && PTE_VALID(pte) &&
555
                ASSERT(pte && PTE_VALID(pte) &&
552
                    PTE_PRESENT(pte));
556
                    PTE_PRESENT(pte));
553
                if (area->backend &&
557
                if (area->backend &&
554
                    area->backend->frame_free) {
558
                    area->backend->frame_free) {
555
                    area->backend->frame_free(area, b +
559
                    area->backend->frame_free(area, b +
556
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
560
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
557
                }
561
                }
558
                page_mapping_remove(as, b + j * PAGE_SIZE);            
562
                page_mapping_remove(as, b + j * PAGE_SIZE);            
559
                page_table_unlock(as, false);
563
                page_table_unlock(as, false);
560
            }
564
            }
561
        }
565
        }
562
    }
566
    }
563
 
567
 
564
    /*
568
    /*
565
     * Finish TLB shootdown sequence.
569
     * Finish TLB shootdown sequence.
566
     */
570
     */
567
    tlb_invalidate_pages(as->asid, area->base, area->pages);
571
    tlb_invalidate_pages(as->asid, area->base, area->pages);
568
    tlb_shootdown_finalize();
572
    tlb_shootdown_finalize();
569
   
573
   
570
    /*
574
    /*
571
     * Invalidate potential software translation caches (e.g. TSB on
575
     * Invalidate potential software translation caches (e.g. TSB on
572
     * sparc64).
576
     * sparc64).
573
     */
577
     */
574
    as_invalidate_translation_cache(as, area->base, area->pages);
578
    as_invalidate_translation_cache(as, area->base, area->pages);
575
   
579
   
576
    btree_destroy(&area->used_space);
580
    btree_destroy(&area->used_space);
577
 
581
 
578
    area->attributes |= AS_AREA_ATTR_PARTIAL;
582
    area->attributes |= AS_AREA_ATTR_PARTIAL;
579
   
583
   
580
    if (area->sh_info)
584
    if (area->sh_info)
581
        sh_info_remove_reference(area->sh_info);
585
        sh_info_remove_reference(area->sh_info);
582
       
586
       
583
    mutex_unlock(&area->lock);
587
    mutex_unlock(&area->lock);
584
 
588
 
585
    /*
589
    /*
586
     * Remove the empty area from address space.
590
     * Remove the empty area from address space.
587
     */
591
     */
588
    btree_remove(&as->as_area_btree, base, NULL);
592
    btree_remove(&as->as_area_btree, base, NULL);
589
   
593
   
590
    free(area);
594
    free(area);
591
   
595
   
592
    mutex_unlock(&as->lock);
596
    mutex_unlock(&as->lock);
593
    interrupts_restore(ipl);
597
    interrupts_restore(ipl);
594
    return 0;
598
    return 0;
595
}
599
}
596
 
600
 
597
/** Share address space area with another or the same address space.
601
/** Share address space area with another or the same address space.
598
 *
602
 *
599
 * Address space area mapping is shared with a new address space area.
603
 * Address space area mapping is shared with a new address space area.
600
 * If the source address space area has not been shared so far,
604
 * If the source address space area has not been shared so far,
601
 * a new sh_info is created. The new address space area simply gets the
605
 * a new sh_info is created. The new address space area simply gets the
602
 * sh_info of the source area. The process of duplicating the
606
 * sh_info of the source area. The process of duplicating the
603
 * mapping is done through the backend share function.
607
 * mapping is done through the backend share function.
604
 *
608
 *
605
 * @param src_as Pointer to source address space.
609
 * @param src_as Pointer to source address space.
606
 * @param src_base Base address of the source address space area.
610
 * @param src_base Base address of the source address space area.
607
 * @param acc_size Expected size of the source area.
611
 * @param acc_size Expected size of the source area.
608
 * @param dst_as Pointer to destination address space.
612
 * @param dst_as Pointer to destination address space.
609
 * @param dst_base Target base address.
613
 * @param dst_base Target base address.
610
 * @param dst_flags_mask Destination address space area flags mask.
614
 * @param dst_flags_mask Destination address space area flags mask.
611
 *
615
 *
612
 * @return Zero on success or ENOENT if there is no such task or if there is no
616
 * @return Zero on success or ENOENT if there is no such task or if there is no
613
 * such address space area, EPERM if there was a problem in accepting the area
617
 * such address space area, EPERM if there was a problem in accepting the area
614
 * or ENOMEM if there was a problem in allocating destination address space
618
 * or ENOMEM if there was a problem in allocating destination address space
615
 * area. ENOTSUP is returned if the address space area backend does not support
619
 * area. ENOTSUP is returned if the address space area backend does not support
616
 * sharing.
620
 * sharing.
617
 */
621
 */
618
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
622
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
619
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
623
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
620
{
624
{
621
    ipl_t ipl;
625
    ipl_t ipl;
622
    int src_flags;
626
    int src_flags;
623
    size_t src_size;
627
    size_t src_size;
624
    as_area_t *src_area, *dst_area;
628
    as_area_t *src_area, *dst_area;
625
    share_info_t *sh_info;
629
    share_info_t *sh_info;
626
    mem_backend_t *src_backend;
630
    mem_backend_t *src_backend;
627
    mem_backend_data_t src_backend_data;
631
    mem_backend_data_t src_backend_data;
628
   
632
   
629
    ipl = interrupts_disable();
633
    ipl = interrupts_disable();
630
    mutex_lock(&src_as->lock);
634
    mutex_lock(&src_as->lock);
631
    src_area = find_area_and_lock(src_as, src_base);
635
    src_area = find_area_and_lock(src_as, src_base);
632
    if (!src_area) {
636
    if (!src_area) {
633
        /*
637
        /*
634
         * Could not find the source address space area.
638
         * Could not find the source address space area.
635
         */
639
         */
636
        mutex_unlock(&src_as->lock);
640
        mutex_unlock(&src_as->lock);
637
        interrupts_restore(ipl);
641
        interrupts_restore(ipl);
638
        return ENOENT;
642
        return ENOENT;
639
    }
643
    }
640
 
644
 
641
    if (!src_area->backend || !src_area->backend->share) {
645
    if (!src_area->backend || !src_area->backend->share) {
642
        /*
646
        /*
643
         * There is no backend or the backend does not
647
         * There is no backend or the backend does not
644
         * know how to share the area.
648
         * know how to share the area.
645
         */
649
         */
646
        mutex_unlock(&src_area->lock);
650
        mutex_unlock(&src_area->lock);
647
        mutex_unlock(&src_as->lock);
651
        mutex_unlock(&src_as->lock);
648
        interrupts_restore(ipl);
652
        interrupts_restore(ipl);
649
        return ENOTSUP;
653
        return ENOTSUP;
650
    }
654
    }
651
   
655
   
652
    src_size = src_area->pages * PAGE_SIZE;
656
    src_size = src_area->pages * PAGE_SIZE;
653
    src_flags = src_area->flags;
657
    src_flags = src_area->flags;
654
    src_backend = src_area->backend;
658
    src_backend = src_area->backend;
655
    src_backend_data = src_area->backend_data;
659
    src_backend_data = src_area->backend_data;
656
 
660
 
657
    /* Share the cacheable flag from the original mapping */
661
    /* Share the cacheable flag from the original mapping */
658
    if (src_flags & AS_AREA_CACHEABLE)
662
    if (src_flags & AS_AREA_CACHEABLE)
659
        dst_flags_mask |= AS_AREA_CACHEABLE;
663
        dst_flags_mask |= AS_AREA_CACHEABLE;
660
 
664
 
661
    if (src_size != acc_size ||
665
    if (src_size != acc_size ||
662
        (src_flags & dst_flags_mask) != dst_flags_mask) {
666
        (src_flags & dst_flags_mask) != dst_flags_mask) {
663
        mutex_unlock(&src_area->lock);
667
        mutex_unlock(&src_area->lock);
664
        mutex_unlock(&src_as->lock);
668
        mutex_unlock(&src_as->lock);
665
        interrupts_restore(ipl);
669
        interrupts_restore(ipl);
666
        return EPERM;
670
        return EPERM;
667
    }
671
    }
668
 
672
 
669
    /*
673
    /*
670
     * Now we are committed to sharing the area.
674
     * Now we are committed to sharing the area.
671
     * First, prepare the area for sharing.
675
     * First, prepare the area for sharing.
672
     * Then it will be safe to unlock it.
676
     * Then it will be safe to unlock it.
673
     */
677
     */
674
    sh_info = src_area->sh_info;
678
    sh_info = src_area->sh_info;
675
    if (!sh_info) {
679
    if (!sh_info) {
676
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
680
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
677
        mutex_initialize(&sh_info->lock);
681
        mutex_initialize(&sh_info->lock);
678
        sh_info->refcount = 2;
682
        sh_info->refcount = 2;
679
        btree_create(&sh_info->pagemap);
683
        btree_create(&sh_info->pagemap);
680
        src_area->sh_info = sh_info;
684
        src_area->sh_info = sh_info;
681
    } else {
685
    } else {
682
        mutex_lock(&sh_info->lock);
686
        mutex_lock(&sh_info->lock);
683
        sh_info->refcount++;
687
        sh_info->refcount++;
684
        mutex_unlock(&sh_info->lock);
688
        mutex_unlock(&sh_info->lock);
685
    }
689
    }
686
 
690
 
687
    src_area->backend->share(src_area);
691
    src_area->backend->share(src_area);
688
 
692
 
689
    mutex_unlock(&src_area->lock);
693
    mutex_unlock(&src_area->lock);
690
    mutex_unlock(&src_as->lock);
694
    mutex_unlock(&src_as->lock);
691
 
695
 
692
    /*
696
    /*
693
     * Create copy of the source address space area.
697
     * Create copy of the source address space area.
694
     * The destination area is created with AS_AREA_ATTR_PARTIAL
698
     * The destination area is created with AS_AREA_ATTR_PARTIAL
695
     * attribute set which prevents race condition with
699
     * attribute set which prevents race condition with
696
     * preliminary as_page_fault() calls.
700
     * preliminary as_page_fault() calls.
697
     * The flags of the source area are masked against dst_flags_mask
701
     * The flags of the source area are masked against dst_flags_mask
698
     * to support sharing in less privileged mode.
702
     * to support sharing in less privileged mode.
699
     */
703
     */
700
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
704
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
701
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
705
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
702
    if (!dst_area) {
706
    if (!dst_area) {
703
        /*
707
        /*
704
         * Destination address space area could not be created.
708
         * Destination address space area could not be created.
705
         */
709
         */
706
        sh_info_remove_reference(sh_info);
710
        sh_info_remove_reference(sh_info);
707
       
711
       
708
        interrupts_restore(ipl);
712
        interrupts_restore(ipl);
709
        return ENOMEM;
713
        return ENOMEM;
710
    }
714
    }
711
 
715
 
712
    /*
716
    /*
713
     * Now the destination address space area has been
717
     * Now the destination address space area has been
714
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
718
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
715
     * attribute and set the sh_info.
719
     * attribute and set the sh_info.
716
     */
720
     */
717
    mutex_lock(&dst_as->lock); 
721
    mutex_lock(&dst_as->lock); 
718
    mutex_lock(&dst_area->lock);
722
    mutex_lock(&dst_area->lock);
719
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
723
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
720
    dst_area->sh_info = sh_info;
724
    dst_area->sh_info = sh_info;
721
    mutex_unlock(&dst_area->lock);
725
    mutex_unlock(&dst_area->lock);
722
    mutex_unlock(&dst_as->lock);   
726
    mutex_unlock(&dst_as->lock);   
723
 
727
 
724
    interrupts_restore(ipl);
728
    interrupts_restore(ipl);
725
   
729
   
726
    return 0;
730
    return 0;
727
}
731
}
728
 
732
 
729
/** Check access mode for address space area.
733
/** Check access mode for address space area.
730
 *
734
 *
731
 * The address space area must be locked prior to this call.
735
 * The address space area must be locked prior to this call.
732
 *
736
 *
733
 * @param area Address space area.
737
 * @param area Address space area.
734
 * @param access Access mode.
738
 * @param access Access mode.
735
 *
739
 *
736
 * @return False if access violates area's permissions, true otherwise.
740
 * @return False if access violates area's permissions, true otherwise.
737
 */
741
 */
738
bool as_area_check_access(as_area_t *area, pf_access_t access)
742
bool as_area_check_access(as_area_t *area, pf_access_t access)
739
{
743
{
740
    int flagmap[] = {
744
    int flagmap[] = {
741
        [PF_ACCESS_READ] = AS_AREA_READ,
745
        [PF_ACCESS_READ] = AS_AREA_READ,
742
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
746
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
743
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
747
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
744
    };
748
    };
745
 
749
 
746
    if (!(area->flags & flagmap[access]))
750
    if (!(area->flags & flagmap[access]))
747
        return false;
751
        return false;
748
   
752
   
749
    return true;
753
    return true;
750
}
754
}
751
 
755
 
752
/** Handle page fault within the current address space.
756
/** Handle page fault within the current address space.
753
 *
757
 *
754
 * This is the high-level page fault handler. It decides
758
 * This is the high-level page fault handler. It decides
755
 * whether the page fault can be resolved by any backend
759
 * whether the page fault can be resolved by any backend
756
 * and if so, it invokes the backend to resolve the page
760
 * and if so, it invokes the backend to resolve the page
757
 * fault.
761
 * fault.
758
 *
762
 *
759
 * Interrupts are assumed disabled.
763
 * Interrupts are assumed disabled.
760
 *
764
 *
761
 * @param page Faulting page.
765
 * @param page Faulting page.
762
 * @param access Access mode that caused the fault (i.e. read/write/exec).
766
 * @param access Access mode that caused the fault (i.e. read/write/exec).
763
 * @param istate Pointer to interrupted state.
767
 * @param istate Pointer to interrupted state.
764
 *
768
 *
765
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
769
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
766
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
770
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
767
 */
771
 */
768
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
772
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
769
{
773
{
770
    pte_t *pte;
774
    pte_t *pte;
771
    as_area_t *area;
775
    as_area_t *area;
772
   
776
   
773
    if (!THREAD)
777
    if (!THREAD)
774
        return AS_PF_FAULT;
778
        return AS_PF_FAULT;
775
       
779
       
776
    ASSERT(AS);
780
    ASSERT(AS);
777
 
781
 
778
    mutex_lock(&AS->lock);
782
    mutex_lock(&AS->lock);
779
    area = find_area_and_lock(AS, page);   
783
    area = find_area_and_lock(AS, page);   
780
    if (!area) {
784
    if (!area) {
781
        /*
785
        /*
782
         * No area contained mapping for 'page'.
786
         * No area contained mapping for 'page'.
783
         * Signal page fault to low-level handler.
787
         * Signal page fault to low-level handler.
784
         */
788
         */
785
        mutex_unlock(&AS->lock);
789
        mutex_unlock(&AS->lock);
786
        goto page_fault;
790
        goto page_fault;
787
    }
791
    }
788
 
792
 
789
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
793
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
790
        /*
794
        /*
791
         * The address space area is not fully initialized.
795
         * The address space area is not fully initialized.
792
         * Avoid possible race by returning error.
796
         * Avoid possible race by returning error.
793
         */
797
         */
794
        mutex_unlock(&area->lock);
798
        mutex_unlock(&area->lock);
795
        mutex_unlock(&AS->lock);
799
        mutex_unlock(&AS->lock);
796
        goto page_fault;       
800
        goto page_fault;       
797
    }
801
    }
798
 
802
 
799
    if (!area->backend || !area->backend->page_fault) {
803
    if (!area->backend || !area->backend->page_fault) {
800
        /*
804
        /*
801
         * The address space area is not backed by any backend
805
         * The address space area is not backed by any backend
802
         * or the backend cannot handle page faults.
806
         * or the backend cannot handle page faults.
803
         */
807
         */
804
        mutex_unlock(&area->lock);
808
        mutex_unlock(&area->lock);
805
        mutex_unlock(&AS->lock);
809
        mutex_unlock(&AS->lock);
806
        goto page_fault;       
810
        goto page_fault;       
807
    }
811
    }
808
 
812
 
809
    page_table_lock(AS, false);
813
    page_table_lock(AS, false);
810
   
814
   
811
    /*
815
    /*
812
     * To avoid race condition between two page faults
816
     * To avoid race condition between two page faults
813
     * on the same address, we need to make sure
817
     * on the same address, we need to make sure
814
     * the mapping has not been already inserted.
818
     * the mapping has not been already inserted.
815
     */
819
     */
816
    if ((pte = page_mapping_find(AS, page))) {
820
    if ((pte = page_mapping_find(AS, page))) {
817
        if (PTE_PRESENT(pte)) {
821
        if (PTE_PRESENT(pte)) {
818
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
822
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
819
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
823
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
820
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
824
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
821
                page_table_unlock(AS, false);
825
                page_table_unlock(AS, false);
822
                mutex_unlock(&area->lock);
826
                mutex_unlock(&area->lock);
823
                mutex_unlock(&AS->lock);
827
                mutex_unlock(&AS->lock);
824
                return AS_PF_OK;
828
                return AS_PF_OK;
825
            }
829
            }
826
        }
830
        }
827
    }
831
    }
828
   
832
   
829
    /*
833
    /*
830
     * Resort to the backend page fault handler.
834
     * Resort to the backend page fault handler.
831
     */
835
     */
832
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
836
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
833
        page_table_unlock(AS, false);
837
        page_table_unlock(AS, false);
834
        mutex_unlock(&area->lock);
838
        mutex_unlock(&area->lock);
835
        mutex_unlock(&AS->lock);
839
        mutex_unlock(&AS->lock);
836
        goto page_fault;
840
        goto page_fault;
837
    }
841
    }
838
   
842
   
839
    page_table_unlock(AS, false);
843
    page_table_unlock(AS, false);
840
    mutex_unlock(&area->lock);
844
    mutex_unlock(&area->lock);
841
    mutex_unlock(&AS->lock);
845
    mutex_unlock(&AS->lock);
842
    return AS_PF_OK;
846
    return AS_PF_OK;
843
 
847
 
844
page_fault:
848
page_fault:
845
    if (THREAD->in_copy_from_uspace) {
849
    if (THREAD->in_copy_from_uspace) {
846
        THREAD->in_copy_from_uspace = false;
850
        THREAD->in_copy_from_uspace = false;
847
        istate_set_retaddr(istate,
851
        istate_set_retaddr(istate,
848
            (uintptr_t) &memcpy_from_uspace_failover_address);
852
            (uintptr_t) &memcpy_from_uspace_failover_address);
849
    } else if (THREAD->in_copy_to_uspace) {
853
    } else if (THREAD->in_copy_to_uspace) {
850
        THREAD->in_copy_to_uspace = false;
854
        THREAD->in_copy_to_uspace = false;
851
        istate_set_retaddr(istate,
855
        istate_set_retaddr(istate,
852
            (uintptr_t) &memcpy_to_uspace_failover_address);
856
            (uintptr_t) &memcpy_to_uspace_failover_address);
853
    } else {
857
    } else {
854
        return AS_PF_FAULT;
858
        return AS_PF_FAULT;
855
    }
859
    }
856
 
860
 
857
    return AS_PF_DEFER;
861
    return AS_PF_DEFER;
858
}
862
}
859
 
863
 
860
/** Switch address spaces.
864
/** Switch address spaces.
861
 *
865
 *
862
 * Note that this function cannot sleep as it is essentially a part of
866
 * Note that this function cannot sleep as it is essentially a part of
863
 * scheduling. Sleeping here would lead to deadlock on wakeup.
867
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
-
 
868
 * thing which is forbidden in this context is locking the address space.
864
 *
869
 *
865
 * @param old Old address space or NULL.
870
 * @param old Old address space or NULL.
866
 * @param new New address space.
871
 * @param new New address space.
867
 */
872
 */
868
void as_switch(as_t *old_as, as_t *new_as)
873
void as_switch(as_t *old_as, as_t *new_as)
869
{
874
{
870
    ipl_t ipl;
-
 
871
    bool needs_asid = false;
-
 
872
   
-
 
873
    ipl = interrupts_disable();
-
 
874
    spinlock_lock(&inactive_as_with_asid_lock);
875
    spinlock_lock(&asidlock);
875
 
876
 
876
    /*
877
    /*
877
     * First, take care of the old address space.
878
     * First, take care of the old address space.
878
     */
879
     */
879
    if (old_as) {
880
    if (old_as) {
880
        mutex_lock_active(&old_as->lock);
-
 
881
        ASSERT(old_as->cpu_refcount);
881
        ASSERT(old_as->cpu_refcount);
882
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
882
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
883
            /*
883
            /*
884
             * The old address space is no longer active on
884
             * The old address space is no longer active on
885
             * any processor. It can be appended to the
885
             * any processor. It can be appended to the
886
             * list of inactive address spaces with assigned
886
             * list of inactive address spaces with assigned
887
             * ASID.
887
             * ASID.
888
             */
888
             */
889
            ASSERT(old_as->asid != ASID_INVALID);
889
            ASSERT(old_as->asid != ASID_INVALID);
890
            list_append(&old_as->inactive_as_with_asid_link,
890
            list_append(&old_as->inactive_as_with_asid_link,
891
                &inactive_as_with_asid_head);
891
                &inactive_as_with_asid_head);
892
        }
892
        }
893
        mutex_unlock(&old_as->lock);
-
 
894
 
893
 
895
        /*
894
        /*
896
         * Perform architecture-specific tasks when the address space
895
         * Perform architecture-specific tasks when the address space
897
         * is being removed from the CPU.
896
         * is being removed from the CPU.
898
         */
897
         */
899
        as_deinstall_arch(old_as);
898
        as_deinstall_arch(old_as);
900
    }
899
    }
901
 
900
 
902
    /*
901
    /*
903
     * Second, prepare the new address space.
902
     * Second, prepare the new address space.
904
     */
903
     */
905
    mutex_lock_active(&new_as->lock);
-
 
906
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
904
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
907
        if (new_as->asid != ASID_INVALID) {
905
        if (new_as->asid != ASID_INVALID)
908
            list_remove(&new_as->inactive_as_with_asid_link);
906
            list_remove(&new_as->inactive_as_with_asid_link);
909
        } else {
907
        else
910
            /*
-
 
911
             * Defer call to asid_get() until new_as->lock is released.
-
 
912
             */
-
 
913
            needs_asid = true;
908
            new_as->asid = asid_get();
914
        }
-
 
915
    }
909
    }
916
#ifdef AS_PAGE_TABLE
910
#ifdef AS_PAGE_TABLE
917
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
911
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
918
#endif
912
#endif
919
    mutex_unlock(&new_as->lock);
-
 
920
 
-
 
921
    if (needs_asid) {
-
 
922
        /*
-
 
923
         * Allocation of new ASID was deferred
-
 
924
         * until now in order to avoid deadlock.
-
 
925
         */
-
 
926
        asid_t asid;
-
 
927
       
-
 
928
        asid = asid_get();
-
 
929
        mutex_lock_active(&new_as->lock);
-
 
930
        new_as->asid = asid;
-
 
931
        mutex_unlock(&new_as->lock);
-
 
932
    }
-
 
933
    spinlock_unlock(&inactive_as_with_asid_lock);
-
 
934
    interrupts_restore(ipl);
-
 
935
   
913
   
936
    /*
914
    /*
937
     * Perform architecture-specific steps.
915
     * Perform architecture-specific steps.
938
     * (e.g. write ASID to hardware register etc.)
916
     * (e.g. write ASID to hardware register etc.)
939
     */
917
     */
940
    as_install_arch(new_as);
918
    as_install_arch(new_as);
-
 
919
 
-
 
920
    spinlock_unlock(&asidlock);
941
   
921
   
942
    AS = new_as;
922
    AS = new_as;
943
}
923
}
944
 
924
 
945
/** Convert address space area flags to page flags.
925
/** Convert address space area flags to page flags.
946
 *
926
 *
947
 * @param aflags Flags of some address space area.
927
 * @param aflags Flags of some address space area.
948
 *
928
 *
949
 * @return Flags to be passed to page_mapping_insert().
929
 * @return Flags to be passed to page_mapping_insert().
950
 */
930
 */
951
int area_flags_to_page_flags(int aflags)
931
int area_flags_to_page_flags(int aflags)
952
{
932
{
953
    int flags;
933
    int flags;
954
 
934
 
955
    flags = PAGE_USER | PAGE_PRESENT;
935
    flags = PAGE_USER | PAGE_PRESENT;
956
   
936
   
957
    if (aflags & AS_AREA_READ)
937
    if (aflags & AS_AREA_READ)
958
        flags |= PAGE_READ;
938
        flags |= PAGE_READ;
959
       
939
       
960
    if (aflags & AS_AREA_WRITE)
940
    if (aflags & AS_AREA_WRITE)
961
        flags |= PAGE_WRITE;
941
        flags |= PAGE_WRITE;
962
   
942
   
963
    if (aflags & AS_AREA_EXEC)
943
    if (aflags & AS_AREA_EXEC)
964
        flags |= PAGE_EXEC;
944
        flags |= PAGE_EXEC;
965
   
945
   
966
    if (aflags & AS_AREA_CACHEABLE)
946
    if (aflags & AS_AREA_CACHEABLE)
967
        flags |= PAGE_CACHEABLE;
947
        flags |= PAGE_CACHEABLE;
968
       
948
       
969
    return flags;
949
    return flags;
970
}
950
}
971
 
951
 
972
/** Compute flags for virtual address translation subsytem.
952
/** Compute flags for virtual address translation subsytem.
973
 *
953
 *
974
 * The address space area must be locked.
954
 * The address space area must be locked.
975
 * Interrupts must be disabled.
955
 * Interrupts must be disabled.
976
 *
956
 *
977
 * @param a Address space area.
957
 * @param a Address space area.
978
 *
958
 *
979
 * @return Flags to be used in page_mapping_insert().
959
 * @return Flags to be used in page_mapping_insert().
980
 */
960
 */
981
int as_area_get_flags(as_area_t *a)
961
int as_area_get_flags(as_area_t *a)
982
{
962
{
983
    return area_flags_to_page_flags(a->flags);
963
    return area_flags_to_page_flags(a->flags);
984
}
964
}
985
 
965
 
986
/** Create page table.
966
/** Create page table.
987
 *
967
 *
988
 * Depending on architecture, create either address space
968
 * Depending on architecture, create either address space
989
 * private or global page table.
969
 * private or global page table.
990
 *
970
 *
991
 * @param flags Flags saying whether the page table is for kernel address space.
971
 * @param flags Flags saying whether the page table is for kernel address space.
992
 *
972
 *
993
 * @return First entry of the page table.
973
 * @return First entry of the page table.
994
 */
974
 */
995
pte_t *page_table_create(int flags)
975
pte_t *page_table_create(int flags)
996
{
976
{
997
#ifdef __OBJC__
977
#ifdef __OBJC__
998
    return [as_t page_table_create: flags];
978
    return [as_t page_table_create: flags];
999
#else
979
#else
1000
    ASSERT(as_operations);
980
    ASSERT(as_operations);
1001
    ASSERT(as_operations->page_table_create);
981
    ASSERT(as_operations->page_table_create);
1002
   
982
   
1003
    return as_operations->page_table_create(flags);
983
    return as_operations->page_table_create(flags);
1004
#endif
984
#endif
1005
}
985
}
1006
 
986
 
1007
/** Destroy page table.
987
/** Destroy page table.
1008
 *
988
 *
1009
 * Destroy page table in architecture specific way.
989
 * Destroy page table in architecture specific way.
1010
 *
990
 *
1011
 * @param page_table Physical address of PTL0.
991
 * @param page_table Physical address of PTL0.
1012
 */
992
 */
1013
void page_table_destroy(pte_t *page_table)
993
void page_table_destroy(pte_t *page_table)
1014
{
994
{
1015
#ifdef __OBJC__
995
#ifdef __OBJC__
1016
    return [as_t page_table_destroy: page_table];
996
    return [as_t page_table_destroy: page_table];
1017
#else
997
#else
1018
    ASSERT(as_operations);
998
    ASSERT(as_operations);
1019
    ASSERT(as_operations->page_table_destroy);
999
    ASSERT(as_operations->page_table_destroy);
1020
   
1000
   
1021
    as_operations->page_table_destroy(page_table);
1001
    as_operations->page_table_destroy(page_table);
1022
#endif
1002
#endif
1023
}
1003
}
1024
 
1004
 
1025
/** Lock page table.
1005
/** Lock page table.
1026
 *
1006
 *
1027
 * This function should be called before any page_mapping_insert(),
1007
 * This function should be called before any page_mapping_insert(),
1028
 * page_mapping_remove() and page_mapping_find().
1008
 * page_mapping_remove() and page_mapping_find().
1029
 *
1009
 *
1030
 * Locking order is such that address space areas must be locked
1010
 * Locking order is such that address space areas must be locked
1031
 * prior to this call. Address space can be locked prior to this
1011
 * prior to this call. Address space can be locked prior to this
1032
 * call in which case the lock argument is false.
1012
 * call in which case the lock argument is false.
1033
 *
1013
 *
1034
 * @param as Address space.
1014
 * @param as Address space.
1035
 * @param lock If false, do not attempt to lock as->lock.
1015
 * @param lock If false, do not attempt to lock as->lock.
1036
 */
1016
 */
1037
void page_table_lock(as_t *as, bool lock)
1017
void page_table_lock(as_t *as, bool lock)
1038
{
1018
{
1039
#ifdef __OBJC__
1019
#ifdef __OBJC__
1040
    [as page_table_lock: lock];
1020
    [as page_table_lock: lock];
1041
#else
1021
#else
1042
    ASSERT(as_operations);
1022
    ASSERT(as_operations);
1043
    ASSERT(as_operations->page_table_lock);
1023
    ASSERT(as_operations->page_table_lock);
1044
   
1024
   
1045
    as_operations->page_table_lock(as, lock);
1025
    as_operations->page_table_lock(as, lock);
1046
#endif
1026
#endif
1047
}
1027
}
1048
 
1028
 
1049
/** Unlock page table.
1029
/** Unlock page table.
1050
 *
1030
 *
1051
 * @param as Address space.
1031
 * @param as Address space.
1052
 * @param unlock If false, do not attempt to unlock as->lock.
1032
 * @param unlock If false, do not attempt to unlock as->lock.
1053
 */
1033
 */
1054
void page_table_unlock(as_t *as, bool unlock)
1034
void page_table_unlock(as_t *as, bool unlock)
1055
{
1035
{
1056
#ifdef __OBJC__
1036
#ifdef __OBJC__
1057
    [as page_table_unlock: unlock];
1037
    [as page_table_unlock: unlock];
1058
#else
1038
#else
1059
    ASSERT(as_operations);
1039
    ASSERT(as_operations);
1060
    ASSERT(as_operations->page_table_unlock);
1040
    ASSERT(as_operations->page_table_unlock);
1061
   
1041
   
1062
    as_operations->page_table_unlock(as, unlock);
1042
    as_operations->page_table_unlock(as, unlock);
1063
#endif
1043
#endif
1064
}
1044
}
1065
 
1045
 
1066
 
1046
 
1067
/** Find address space area and lock it.
1047
/** Find address space area and lock it.
1068
 *
1048
 *
1069
 * The address space must be locked and interrupts must be disabled.
1049
 * The address space must be locked and interrupts must be disabled.
1070
 *
1050
 *
1071
 * @param as Address space.
1051
 * @param as Address space.
1072
 * @param va Virtual address.
1052
 * @param va Virtual address.
1073
 *
1053
 *
1074
 * @return Locked address space area containing va on success or NULL on
1054
 * @return Locked address space area containing va on success or NULL on
1075
 *     failure.
1055
 *     failure.
1076
 */
1056
 */
1077
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1057
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1078
{
1058
{
1079
    as_area_t *a;
1059
    as_area_t *a;
1080
    btree_node_t *leaf, *lnode;
1060
    btree_node_t *leaf, *lnode;
1081
    int i;
1061
    int i;
1082
   
1062
   
1083
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1063
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1084
    if (a) {
1064
    if (a) {
1085
        /* va is the base address of an address space area */
1065
        /* va is the base address of an address space area */
1086
        mutex_lock(&a->lock);
1066
        mutex_lock(&a->lock);
1087
        return a;
1067
        return a;
1088
    }
1068
    }
1089
   
1069
   
1090
    /*
1070
    /*
1091
     * Search the leaf node and the righmost record of its left neighbour
1071
     * Search the leaf node and the righmost record of its left neighbour
1092
     * to find out whether this is a miss or va belongs to an address
1072
     * to find out whether this is a miss or va belongs to an address
1093
     * space area found there.
1073
     * space area found there.
1094
     */
1074
     */
1095
   
1075
   
1096
    /* First, search the leaf node itself. */
1076
    /* First, search the leaf node itself. */
1097
    for (i = 0; i < leaf->keys; i++) {
1077
    for (i = 0; i < leaf->keys; i++) {
1098
        a = (as_area_t *) leaf->value[i];
1078
        a = (as_area_t *) leaf->value[i];
1099
        mutex_lock(&a->lock);
1079
        mutex_lock(&a->lock);
1100
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1080
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1101
            return a;
1081
            return a;
1102
        }
1082
        }
1103
        mutex_unlock(&a->lock);
1083
        mutex_unlock(&a->lock);
1104
    }
1084
    }
1105
 
1085
 
1106
    /*
1086
    /*
1107
     * Second, locate the left neighbour and test its last record.
1087
     * Second, locate the left neighbour and test its last record.
1108
     * Because of its position in the B+tree, it must have base < va.
1088
     * Because of its position in the B+tree, it must have base < va.
1109
     */
1089
     */
1110
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1090
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1111
    if (lnode) {
1091
    if (lnode) {
1112
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1092
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1113
        mutex_lock(&a->lock);
1093
        mutex_lock(&a->lock);
1114
        if (va < a->base + a->pages * PAGE_SIZE) {
1094
        if (va < a->base + a->pages * PAGE_SIZE) {
1115
            return a;
1095
            return a;
1116
        }
1096
        }
1117
        mutex_unlock(&a->lock);
1097
        mutex_unlock(&a->lock);
1118
    }
1098
    }
1119
 
1099
 
1120
    return NULL;
1100
    return NULL;
1121
}
1101
}
1122
 
1102
 
1123
/** Check area conflicts with other areas.
1103
/** Check area conflicts with other areas.
1124
 *
1104
 *
1125
 * The address space must be locked and interrupts must be disabled.
1105
 * The address space must be locked and interrupts must be disabled.
1126
 *
1106
 *
1127
 * @param as Address space.
1107
 * @param as Address space.
1128
 * @param va Starting virtual address of the area being tested.
1108
 * @param va Starting virtual address of the area being tested.
1129
 * @param size Size of the area being tested.
1109
 * @param size Size of the area being tested.
1130
 * @param avoid_area Do not touch this area.
1110
 * @param avoid_area Do not touch this area.
1131
 *
1111
 *
1132
 * @return True if there is no conflict, false otherwise.
1112
 * @return True if there is no conflict, false otherwise.
1133
 */
1113
 */
1134
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1114
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1135
              as_area_t *avoid_area)
1115
              as_area_t *avoid_area)
1136
{
1116
{
1137
    as_area_t *a;
1117
    as_area_t *a;
1138
    btree_node_t *leaf, *node;
1118
    btree_node_t *leaf, *node;
1139
    int i;
1119
    int i;
1140
   
1120
   
1141
    /*
1121
    /*
1142
     * We don't want any area to have conflicts with NULL page.
1122
     * We don't want any area to have conflicts with NULL page.
1143
     */
1123
     */
1144
    if (overlaps(va, size, NULL, PAGE_SIZE))
1124
    if (overlaps(va, size, NULL, PAGE_SIZE))
1145
        return false;
1125
        return false;
1146
   
1126
   
1147
    /*
1127
    /*
1148
     * The leaf node is found in O(log n), where n is proportional to
1128
     * The leaf node is found in O(log n), where n is proportional to
1149
     * the number of address space areas belonging to as.
1129
     * the number of address space areas belonging to as.
1150
     * The check for conflicts is then attempted on the rightmost
1130
     * The check for conflicts is then attempted on the rightmost
1151
     * record in the left neighbour, the leftmost record in the right
1131
     * record in the left neighbour, the leftmost record in the right
1152
     * neighbour and all records in the leaf node itself.
1132
     * neighbour and all records in the leaf node itself.
1153
     */
1133
     */
1154
   
1134
   
1155
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1135
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1156
        if (a != avoid_area)
1136
        if (a != avoid_area)
1157
            return false;
1137
            return false;
1158
    }
1138
    }
1159
   
1139
   
1160
    /* First, check the two border cases. */
1140
    /* First, check the two border cases. */
1161
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1141
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1162
        a = (as_area_t *) node->value[node->keys - 1];
1142
        a = (as_area_t *) node->value[node->keys - 1];
1163
        mutex_lock(&a->lock);
1143
        mutex_lock(&a->lock);
1164
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1144
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1165
            mutex_unlock(&a->lock);
1145
            mutex_unlock(&a->lock);
1166
            return false;
1146
            return false;
1167
        }
1147
        }
1168
        mutex_unlock(&a->lock);
1148
        mutex_unlock(&a->lock);
1169
    }
1149
    }
1170
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1150
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1171
    if (node) {
1151
    if (node) {
1172
        a = (as_area_t *) node->value[0];
1152
        a = (as_area_t *) node->value[0];
1173
        mutex_lock(&a->lock);
1153
        mutex_lock(&a->lock);
1174
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1154
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1175
            mutex_unlock(&a->lock);
1155
            mutex_unlock(&a->lock);
1176
            return false;
1156
            return false;
1177
        }
1157
        }
1178
        mutex_unlock(&a->lock);
1158
        mutex_unlock(&a->lock);
1179
    }
1159
    }
1180
   
1160
   
1181
    /* Second, check the leaf node. */
1161
    /* Second, check the leaf node. */
1182
    for (i = 0; i < leaf->keys; i++) {
1162
    for (i = 0; i < leaf->keys; i++) {
1183
        a = (as_area_t *) leaf->value[i];
1163
        a = (as_area_t *) leaf->value[i];
1184
   
1164
   
1185
        if (a == avoid_area)
1165
        if (a == avoid_area)
1186
            continue;
1166
            continue;
1187
   
1167
   
1188
        mutex_lock(&a->lock);
1168
        mutex_lock(&a->lock);
1189
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1169
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1190
            mutex_unlock(&a->lock);
1170
            mutex_unlock(&a->lock);
1191
            return false;
1171
            return false;
1192
        }
1172
        }
1193
        mutex_unlock(&a->lock);
1173
        mutex_unlock(&a->lock);
1194
    }
1174
    }
1195
 
1175
 
1196
    /*
1176
    /*
1197
     * So far, the area does not conflict with other areas.
1177
     * So far, the area does not conflict with other areas.
1198
     * Check if it doesn't conflict with kernel address space.
1178
     * Check if it doesn't conflict with kernel address space.
1199
     */  
1179
     */  
1200
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1180
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1201
        return !overlaps(va, size,
1181
        return !overlaps(va, size,
1202
            KERNEL_ADDRESS_SPACE_START,
1182
            KERNEL_ADDRESS_SPACE_START,
1203
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1183
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1204
    }
1184
    }
1205
 
1185
 
1206
    return true;
1186
    return true;
1207
}
1187
}
1208
 
1188
 
1209
/** Return size of the address space area with given base.  */
1189
/** Return size of the address space area with given base.  */
1210
size_t as_get_size(uintptr_t base)
1190
size_t as_get_size(uintptr_t base)
1211
{
1191
{
1212
    ipl_t ipl;
1192
    ipl_t ipl;
1213
    as_area_t *src_area;
1193
    as_area_t *src_area;
1214
    size_t size;
1194
    size_t size;
1215
 
1195
 
1216
    ipl = interrupts_disable();
1196
    ipl = interrupts_disable();
1217
    src_area = find_area_and_lock(AS, base);
1197
    src_area = find_area_and_lock(AS, base);
1218
    if (src_area){
1198
    if (src_area){
1219
        size = src_area->pages * PAGE_SIZE;
1199
        size = src_area->pages * PAGE_SIZE;
1220
        mutex_unlock(&src_area->lock);
1200
        mutex_unlock(&src_area->lock);
1221
    } else {
1201
    } else {
1222
        size = 0;
1202
        size = 0;
1223
    }
1203
    }
1224
    interrupts_restore(ipl);
1204
    interrupts_restore(ipl);
1225
    return size;
1205
    return size;
1226
}
1206
}
1227
 
1207
 
1228
/** Mark portion of address space area as used.
1208
/** Mark portion of address space area as used.
1229
 *
1209
 *
1230
 * The address space area must be already locked.
1210
 * The address space area must be already locked.
1231
 *
1211
 *
1232
 * @param a Address space area.
1212
 * @param a Address space area.
1233
 * @param page First page to be marked.
1213
 * @param page First page to be marked.
1234
 * @param count Number of page to be marked.
1214
 * @param count Number of page to be marked.
1235
 *
1215
 *
1236
 * @return 0 on failure and 1 on success.
1216
 * @return 0 on failure and 1 on success.
1237
 */
1217
 */
1238
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1218
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1239
{
1219
{
1240
    btree_node_t *leaf, *node;
1220
    btree_node_t *leaf, *node;
1241
    count_t pages;
1221
    count_t pages;
1242
    int i;
1222
    int i;
1243
 
1223
 
1244
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1224
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1245
    ASSERT(count);
1225
    ASSERT(count);
1246
 
1226
 
1247
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1227
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1248
    if (pages) {
1228
    if (pages) {
1249
        /*
1229
        /*
1250
         * We hit the beginning of some used space.
1230
         * We hit the beginning of some used space.
1251
         */
1231
         */
1252
        return 0;
1232
        return 0;
1253
    }
1233
    }
1254
 
1234
 
1255
    if (!leaf->keys) {
1235
    if (!leaf->keys) {
1256
        btree_insert(&a->used_space, page, (void *) count, leaf);
1236
        btree_insert(&a->used_space, page, (void *) count, leaf);
1257
        return 1;
1237
        return 1;
1258
    }
1238
    }
1259
 
1239
 
1260
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1240
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1261
    if (node) {
1241
    if (node) {
1262
        uintptr_t left_pg = node->key[node->keys - 1];
1242
        uintptr_t left_pg = node->key[node->keys - 1];
1263
        uintptr_t right_pg = leaf->key[0];
1243
        uintptr_t right_pg = leaf->key[0];
1264
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1244
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1265
        count_t right_cnt = (count_t) leaf->value[0];
1245
        count_t right_cnt = (count_t) leaf->value[0];
1266
       
1246
       
1267
        /*
1247
        /*
1268
         * Examine the possibility that the interval fits
1248
         * Examine the possibility that the interval fits
1269
         * somewhere between the rightmost interval of
1249
         * somewhere between the rightmost interval of
1270
         * the left neigbour and the first interval of the leaf.
1250
         * the left neigbour and the first interval of the leaf.
1271
         */
1251
         */
1272
         
1252
         
1273
        if (page >= right_pg) {
1253
        if (page >= right_pg) {
1274
            /* Do nothing. */
1254
            /* Do nothing. */
1275
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1255
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1276
            left_cnt * PAGE_SIZE)) {
1256
            left_cnt * PAGE_SIZE)) {
1277
            /* The interval intersects with the left interval. */
1257
            /* The interval intersects with the left interval. */
1278
            return 0;
1258
            return 0;
1279
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1259
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1280
            right_cnt * PAGE_SIZE)) {
1260
            right_cnt * PAGE_SIZE)) {
1281
            /* The interval intersects with the right interval. */
1261
            /* The interval intersects with the right interval. */
1282
            return 0;          
1262
            return 0;          
1283
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1263
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1284
            (page + count * PAGE_SIZE == right_pg)) {
1264
            (page + count * PAGE_SIZE == right_pg)) {
1285
            /*
1265
            /*
1286
             * The interval can be added by merging the two already
1266
             * The interval can be added by merging the two already
1287
             * present intervals.
1267
             * present intervals.
1288
             */
1268
             */
1289
            node->value[node->keys - 1] += count + right_cnt;
1269
            node->value[node->keys - 1] += count + right_cnt;
1290
            btree_remove(&a->used_space, right_pg, leaf);
1270
            btree_remove(&a->used_space, right_pg, leaf);
1291
            return 1;
1271
            return 1;
1292
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1272
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1293
            /*
1273
            /*
1294
             * The interval can be added by simply growing the left
1274
             * The interval can be added by simply growing the left
1295
             * interval.
1275
             * interval.
1296
             */
1276
             */
1297
            node->value[node->keys - 1] += count;
1277
            node->value[node->keys - 1] += count;
1298
            return 1;
1278
            return 1;
1299
        } else if (page + count * PAGE_SIZE == right_pg) {
1279
        } else if (page + count * PAGE_SIZE == right_pg) {
1300
            /*
1280
            /*
1301
             * The interval can be addded by simply moving base of
1281
             * The interval can be addded by simply moving base of
1302
             * the right interval down and increasing its size
1282
             * the right interval down and increasing its size
1303
             * accordingly.
1283
             * accordingly.
1304
             */
1284
             */
1305
            leaf->value[0] += count;
1285
            leaf->value[0] += count;
1306
            leaf->key[0] = page;
1286
            leaf->key[0] = page;
1307
            return 1;
1287
            return 1;
1308
        } else {
1288
        } else {
1309
            /*
1289
            /*
1310
             * The interval is between both neigbouring intervals,
1290
             * The interval is between both neigbouring intervals,
1311
             * but cannot be merged with any of them.
1291
             * but cannot be merged with any of them.
1312
             */
1292
             */
1313
            btree_insert(&a->used_space, page, (void *) count,
1293
            btree_insert(&a->used_space, page, (void *) count,
1314
                leaf);
1294
                leaf);
1315
            return 1;
1295
            return 1;
1316
        }
1296
        }
1317
    } else if (page < leaf->key[0]) {
1297
    } else if (page < leaf->key[0]) {
1318
        uintptr_t right_pg = leaf->key[0];
1298
        uintptr_t right_pg = leaf->key[0];
1319
        count_t right_cnt = (count_t) leaf->value[0];
1299
        count_t right_cnt = (count_t) leaf->value[0];
1320
   
1300
   
1321
        /*
1301
        /*
1322
         * Investigate the border case in which the left neighbour does
1302
         * Investigate the border case in which the left neighbour does
1323
         * not exist but the interval fits from the left.
1303
         * not exist but the interval fits from the left.
1324
         */
1304
         */
1325
         
1305
         
1326
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1306
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1327
            right_cnt * PAGE_SIZE)) {
1307
            right_cnt * PAGE_SIZE)) {
1328
            /* The interval intersects with the right interval. */
1308
            /* The interval intersects with the right interval. */
1329
            return 0;
1309
            return 0;
1330
        } else if (page + count * PAGE_SIZE == right_pg) {
1310
        } else if (page + count * PAGE_SIZE == right_pg) {
1331
            /*
1311
            /*
1332
             * The interval can be added by moving the base of the
1312
             * The interval can be added by moving the base of the
1333
             * right interval down and increasing its size
1313
             * right interval down and increasing its size
1334
             * accordingly.
1314
             * accordingly.
1335
             */
1315
             */
1336
            leaf->key[0] = page;
1316
            leaf->key[0] = page;
1337
            leaf->value[0] += count;
1317
            leaf->value[0] += count;
1338
            return 1;
1318
            return 1;
1339
        } else {
1319
        } else {
1340
            /*
1320
            /*
1341
             * The interval doesn't adjoin with the right interval.
1321
             * The interval doesn't adjoin with the right interval.
1342
             * It must be added individually.
1322
             * It must be added individually.
1343
             */
1323
             */
1344
            btree_insert(&a->used_space, page, (void *) count,
1324
            btree_insert(&a->used_space, page, (void *) count,
1345
                leaf);
1325
                leaf);
1346
            return 1;
1326
            return 1;
1347
        }
1327
        }
1348
    }
1328
    }
1349
 
1329
 
1350
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1330
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1351
    if (node) {
1331
    if (node) {
1352
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1332
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1353
        uintptr_t right_pg = node->key[0];
1333
        uintptr_t right_pg = node->key[0];
1354
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1334
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1355
        count_t right_cnt = (count_t) node->value[0];
1335
        count_t right_cnt = (count_t) node->value[0];
1356
       
1336
       
1357
        /*
1337
        /*
1358
         * Examine the possibility that the interval fits
1338
         * Examine the possibility that the interval fits
1359
         * somewhere between the leftmost interval of
1339
         * somewhere between the leftmost interval of
1360
         * the right neigbour and the last interval of the leaf.
1340
         * the right neigbour and the last interval of the leaf.
1361
         */
1341
         */
1362
 
1342
 
1363
        if (page < left_pg) {
1343
        if (page < left_pg) {
1364
            /* Do nothing. */
1344
            /* Do nothing. */
1365
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1345
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1366
            left_cnt * PAGE_SIZE)) {
1346
            left_cnt * PAGE_SIZE)) {
1367
            /* The interval intersects with the left interval. */
1347
            /* The interval intersects with the left interval. */
1368
            return 0;
1348
            return 0;
1369
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1349
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1370
            right_cnt * PAGE_SIZE)) {
1350
            right_cnt * PAGE_SIZE)) {
1371
            /* The interval intersects with the right interval. */
1351
            /* The interval intersects with the right interval. */
1372
            return 0;          
1352
            return 0;          
1373
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1353
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1374
            (page + count * PAGE_SIZE == right_pg)) {
1354
            (page + count * PAGE_SIZE == right_pg)) {
1375
            /*
1355
            /*
1376
             * The interval can be added by merging the two already
1356
             * The interval can be added by merging the two already
1377
             * present intervals.
1357
             * present intervals.
1378
             * */
1358
             * */
1379
            leaf->value[leaf->keys - 1] += count + right_cnt;
1359
            leaf->value[leaf->keys - 1] += count + right_cnt;
1380
            btree_remove(&a->used_space, right_pg, node);
1360
            btree_remove(&a->used_space, right_pg, node);
1381
            return 1;
1361
            return 1;
1382
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1362
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1383
            /*
1363
            /*
1384
             * The interval can be added by simply growing the left
1364
             * The interval can be added by simply growing the left
1385
             * interval.
1365
             * interval.
1386
             * */
1366
             * */
1387
            leaf->value[leaf->keys - 1] +=  count;
1367
            leaf->value[leaf->keys - 1] +=  count;
1388
            return 1;
1368
            return 1;
1389
        } else if (page + count * PAGE_SIZE == right_pg) {
1369
        } else if (page + count * PAGE_SIZE == right_pg) {
1390
            /*
1370
            /*
1391
             * The interval can be addded by simply moving base of
1371
             * The interval can be addded by simply moving base of
1392
             * the right interval down and increasing its size
1372
             * the right interval down and increasing its size
1393
             * accordingly.
1373
             * accordingly.
1394
             */
1374
             */
1395
            node->value[0] += count;
1375
            node->value[0] += count;
1396
            node->key[0] = page;
1376
            node->key[0] = page;
1397
            return 1;
1377
            return 1;
1398
        } else {
1378
        } else {
1399
            /*
1379
            /*
1400
             * The interval is between both neigbouring intervals,
1380
             * The interval is between both neigbouring intervals,
1401
             * but cannot be merged with any of them.
1381
             * but cannot be merged with any of them.
1402
             */
1382
             */
1403
            btree_insert(&a->used_space, page, (void *) count,
1383
            btree_insert(&a->used_space, page, (void *) count,
1404
                leaf);
1384
                leaf);
1405
            return 1;
1385
            return 1;
1406
        }
1386
        }
1407
    } else if (page >= leaf->key[leaf->keys - 1]) {
1387
    } else if (page >= leaf->key[leaf->keys - 1]) {
1408
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1388
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1409
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1389
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1410
   
1390
   
1411
        /*
1391
        /*
1412
         * Investigate the border case in which the right neighbour
1392
         * Investigate the border case in which the right neighbour
1413
         * does not exist but the interval fits from the right.
1393
         * does not exist but the interval fits from the right.
1414
         */
1394
         */
1415
         
1395
         
1416
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1396
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1417
            left_cnt * PAGE_SIZE)) {
1397
            left_cnt * PAGE_SIZE)) {
1418
            /* The interval intersects with the left interval. */
1398
            /* The interval intersects with the left interval. */
1419
            return 0;
1399
            return 0;
1420
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1400
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1421
            /*
1401
            /*
1422
             * The interval can be added by growing the left
1402
             * The interval can be added by growing the left
1423
             * interval.
1403
             * interval.
1424
             */
1404
             */
1425
            leaf->value[leaf->keys - 1] += count;
1405
            leaf->value[leaf->keys - 1] += count;
1426
            return 1;
1406
            return 1;
1427
        } else {
1407
        } else {
1428
            /*
1408
            /*
1429
             * The interval doesn't adjoin with the left interval.
1409
             * The interval doesn't adjoin with the left interval.
1430
             * It must be added individually.
1410
             * It must be added individually.
1431
             */
1411
             */
1432
            btree_insert(&a->used_space, page, (void *) count,
1412
            btree_insert(&a->used_space, page, (void *) count,
1433
                leaf);
1413
                leaf);
1434
            return 1;
1414
            return 1;
1435
        }
1415
        }
1436
    }
1416
    }
1437
   
1417
   
1438
    /*
1418
    /*
1439
     * Note that if the algorithm made it thus far, the interval can fit
1419
     * Note that if the algorithm made it thus far, the interval can fit
1440
     * only between two other intervals of the leaf. The two border cases
1420
     * only between two other intervals of the leaf. The two border cases
1441
     * were already resolved.
1421
     * were already resolved.
1442
     */
1422
     */
1443
    for (i = 1; i < leaf->keys; i++) {
1423
    for (i = 1; i < leaf->keys; i++) {
1444
        if (page < leaf->key[i]) {
1424
        if (page < leaf->key[i]) {
1445
            uintptr_t left_pg = leaf->key[i - 1];
1425
            uintptr_t left_pg = leaf->key[i - 1];
1446
            uintptr_t right_pg = leaf->key[i];
1426
            uintptr_t right_pg = leaf->key[i];
1447
            count_t left_cnt = (count_t) leaf->value[i - 1];
1427
            count_t left_cnt = (count_t) leaf->value[i - 1];
1448
            count_t right_cnt = (count_t) leaf->value[i];
1428
            count_t right_cnt = (count_t) leaf->value[i];
1449
 
1429
 
1450
            /*
1430
            /*
1451
             * The interval fits between left_pg and right_pg.
1431
             * The interval fits between left_pg and right_pg.
1452
             */
1432
             */
1453
 
1433
 
1454
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1434
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1455
                left_cnt * PAGE_SIZE)) {
1435
                left_cnt * PAGE_SIZE)) {
1456
                /*
1436
                /*
1457
                 * The interval intersects with the left
1437
                 * The interval intersects with the left
1458
                 * interval.
1438
                 * interval.
1459
                 */
1439
                 */
1460
                return 0;
1440
                return 0;
1461
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1441
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1462
                right_cnt * PAGE_SIZE)) {
1442
                right_cnt * PAGE_SIZE)) {
1463
                /*
1443
                /*
1464
                 * The interval intersects with the right
1444
                 * The interval intersects with the right
1465
                 * interval.
1445
                 * interval.
1466
                 */
1446
                 */
1467
                return 0;          
1447
                return 0;          
1468
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1448
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1469
                (page + count * PAGE_SIZE == right_pg)) {
1449
                (page + count * PAGE_SIZE == right_pg)) {
1470
                /*
1450
                /*
1471
                 * The interval can be added by merging the two
1451
                 * The interval can be added by merging the two
1472
                 * already present intervals.
1452
                 * already present intervals.
1473
                 */
1453
                 */
1474
                leaf->value[i - 1] += count + right_cnt;
1454
                leaf->value[i - 1] += count + right_cnt;
1475
                btree_remove(&a->used_space, right_pg, leaf);
1455
                btree_remove(&a->used_space, right_pg, leaf);
1476
                return 1;
1456
                return 1;
1477
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1457
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1478
                /*
1458
                /*
1479
                 * The interval can be added by simply growing
1459
                 * The interval can be added by simply growing
1480
                 * the left interval.
1460
                 * the left interval.
1481
                 */
1461
                 */
1482
                leaf->value[i - 1] += count;
1462
                leaf->value[i - 1] += count;
1483
                return 1;
1463
                return 1;
1484
            } else if (page + count * PAGE_SIZE == right_pg) {
1464
            } else if (page + count * PAGE_SIZE == right_pg) {
1485
                /*
1465
                /*
1486
                     * The interval can be addded by simply moving
1466
                     * The interval can be addded by simply moving
1487
                 * base of the right interval down and
1467
                 * base of the right interval down and
1488
                 * increasing its size accordingly.
1468
                 * increasing its size accordingly.
1489
                 */
1469
                 */
1490
                leaf->value[i] += count;
1470
                leaf->value[i] += count;
1491
                leaf->key[i] = page;
1471
                leaf->key[i] = page;
1492
                return 1;
1472
                return 1;
1493
            } else {
1473
            } else {
1494
                /*
1474
                /*
1495
                 * The interval is between both neigbouring
1475
                 * The interval is between both neigbouring
1496
                 * intervals, but cannot be merged with any of
1476
                 * intervals, but cannot be merged with any of
1497
                 * them.
1477
                 * them.
1498
                 */
1478
                 */
1499
                btree_insert(&a->used_space, page,
1479
                btree_insert(&a->used_space, page,
1500
                    (void *) count, leaf);
1480
                    (void *) count, leaf);
1501
                return 1;
1481
                return 1;
1502
            }
1482
            }
1503
        }
1483
        }
1504
    }
1484
    }
1505
 
1485
 
1506
    panic("Inconsistency detected while adding %d pages of used space at "
1486
    panic("Inconsistency detected while adding %d pages of used space at "
1507
        "%p.\n", count, page);
1487
        "%p.\n", count, page);
1508
}
1488
}
1509
 
1489
 
1510
/** Mark portion of address space area as unused.
1490
/** Mark portion of address space area as unused.
1511
 *
1491
 *
1512
 * The address space area must be already locked.
1492
 * The address space area must be already locked.
1513
 *
1493
 *
1514
 * @param a Address space area.
1494
 * @param a Address space area.
1515
 * @param page First page to be marked.
1495
 * @param page First page to be marked.
1516
 * @param count Number of page to be marked.
1496
 * @param count Number of page to be marked.
1517
 *
1497
 *
1518
 * @return 0 on failure and 1 on success.
1498
 * @return 0 on failure and 1 on success.
1519
 */
1499
 */
1520
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1500
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1521
{
1501
{
1522
    btree_node_t *leaf, *node;
1502
    btree_node_t *leaf, *node;
1523
    count_t pages;
1503
    count_t pages;
1524
    int i;
1504
    int i;
1525
 
1505
 
1526
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1506
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1527
    ASSERT(count);
1507
    ASSERT(count);
1528
 
1508
 
1529
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1509
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1530
    if (pages) {
1510
    if (pages) {
1531
        /*
1511
        /*
1532
         * We are lucky, page is the beginning of some interval.
1512
         * We are lucky, page is the beginning of some interval.
1533
         */
1513
         */
1534
        if (count > pages) {
1514
        if (count > pages) {
1535
            return 0;
1515
            return 0;
1536
        } else if (count == pages) {
1516
        } else if (count == pages) {
1537
            btree_remove(&a->used_space, page, leaf);
1517
            btree_remove(&a->used_space, page, leaf);
1538
            return 1;
1518
            return 1;
1539
        } else {
1519
        } else {
1540
            /*
1520
            /*
1541
             * Find the respective interval.
1521
             * Find the respective interval.
1542
             * Decrease its size and relocate its start address.
1522
             * Decrease its size and relocate its start address.
1543
             */
1523
             */
1544
            for (i = 0; i < leaf->keys; i++) {
1524
            for (i = 0; i < leaf->keys; i++) {
1545
                if (leaf->key[i] == page) {
1525
                if (leaf->key[i] == page) {
1546
                    leaf->key[i] += count * PAGE_SIZE;
1526
                    leaf->key[i] += count * PAGE_SIZE;
1547
                    leaf->value[i] -= count;
1527
                    leaf->value[i] -= count;
1548
                    return 1;
1528
                    return 1;
1549
                }
1529
                }
1550
            }
1530
            }
1551
            goto error;
1531
            goto error;
1552
        }
1532
        }
1553
    }
1533
    }
1554
 
1534
 
1555
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1535
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1556
    if (node && page < leaf->key[0]) {
1536
    if (node && page < leaf->key[0]) {
1557
        uintptr_t left_pg = node->key[node->keys - 1];
1537
        uintptr_t left_pg = node->key[node->keys - 1];
1558
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1538
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1559
 
1539
 
1560
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1540
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1561
            count * PAGE_SIZE)) {
1541
            count * PAGE_SIZE)) {
1562
            if (page + count * PAGE_SIZE ==
1542
            if (page + count * PAGE_SIZE ==
1563
                left_pg + left_cnt * PAGE_SIZE) {
1543
                left_pg + left_cnt * PAGE_SIZE) {
1564
                /*
1544
                /*
1565
                 * The interval is contained in the rightmost
1545
                 * The interval is contained in the rightmost
1566
                 * interval of the left neighbour and can be
1546
                 * interval of the left neighbour and can be
1567
                 * removed by updating the size of the bigger
1547
                 * removed by updating the size of the bigger
1568
                 * interval.
1548
                 * interval.
1569
                 */
1549
                 */
1570
                node->value[node->keys - 1] -= count;
1550
                node->value[node->keys - 1] -= count;
1571
                return 1;
1551
                return 1;
1572
            } else if (page + count * PAGE_SIZE <
1552
            } else if (page + count * PAGE_SIZE <
1573
                left_pg + left_cnt*PAGE_SIZE) {
1553
                left_pg + left_cnt*PAGE_SIZE) {
1574
                count_t new_cnt;
1554
                count_t new_cnt;
1575
               
1555
               
1576
                /*
1556
                /*
1577
                 * The interval is contained in the rightmost
1557
                 * The interval is contained in the rightmost
1578
                 * interval of the left neighbour but its
1558
                 * interval of the left neighbour but its
1579
                 * removal requires both updating the size of
1559
                 * removal requires both updating the size of
1580
                 * the original interval and also inserting a
1560
                 * the original interval and also inserting a
1581
                 * new interval.
1561
                 * new interval.
1582
                 */
1562
                 */
1583
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1563
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1584
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1564
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1585
                node->value[node->keys - 1] -= count + new_cnt;
1565
                node->value[node->keys - 1] -= count + new_cnt;
1586
                btree_insert(&a->used_space, page +
1566
                btree_insert(&a->used_space, page +
1587
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1567
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1588
                return 1;
1568
                return 1;
1589
            }
1569
            }
1590
        }
1570
        }
1591
        return 0;
1571
        return 0;
1592
    } else if (page < leaf->key[0]) {
1572
    } else if (page < leaf->key[0]) {
1593
        return 0;
1573
        return 0;
1594
    }
1574
    }
1595
   
1575
   
1596
    if (page > leaf->key[leaf->keys - 1]) {
1576
    if (page > leaf->key[leaf->keys - 1]) {
1597
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1577
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1598
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1578
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1599
 
1579
 
1600
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1580
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1601
            count * PAGE_SIZE)) {
1581
            count * PAGE_SIZE)) {
1602
            if (page + count * PAGE_SIZE ==
1582
            if (page + count * PAGE_SIZE ==
1603
                left_pg + left_cnt * PAGE_SIZE) {
1583
                left_pg + left_cnt * PAGE_SIZE) {
1604
                /*
1584
                /*
1605
                 * The interval is contained in the rightmost
1585
                 * The interval is contained in the rightmost
1606
                 * interval of the leaf and can be removed by
1586
                 * interval of the leaf and can be removed by
1607
                 * updating the size of the bigger interval.
1587
                 * updating the size of the bigger interval.
1608
                 */
1588
                 */
1609
                leaf->value[leaf->keys - 1] -= count;
1589
                leaf->value[leaf->keys - 1] -= count;
1610
                return 1;
1590
                return 1;
1611
            } else if (page + count * PAGE_SIZE < left_pg +
1591
            } else if (page + count * PAGE_SIZE < left_pg +
1612
                left_cnt * PAGE_SIZE) {
1592
                left_cnt * PAGE_SIZE) {
1613
                count_t new_cnt;
1593
                count_t new_cnt;
1614
               
1594
               
1615
                /*
1595
                /*
1616
                 * The interval is contained in the rightmost
1596
                 * The interval is contained in the rightmost
1617
                 * interval of the leaf but its removal
1597
                 * interval of the leaf but its removal
1618
                 * requires both updating the size of the
1598
                 * requires both updating the size of the
1619
                 * original interval and also inserting a new
1599
                 * original interval and also inserting a new
1620
                 * interval.
1600
                 * interval.
1621
                 */
1601
                 */
1622
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1602
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1623
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1603
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1624
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1604
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1625
                btree_insert(&a->used_space, page +
1605
                btree_insert(&a->used_space, page +
1626
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1606
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1627
                return 1;
1607
                return 1;
1628
            }
1608
            }
1629
        }
1609
        }
1630
        return 0;
1610
        return 0;
1631
    }  
1611
    }  
1632
   
1612
   
1633
    /*
1613
    /*
1634
     * The border cases have been already resolved.
1614
     * The border cases have been already resolved.
1635
     * Now the interval can be only between intervals of the leaf.
1615
     * Now the interval can be only between intervals of the leaf.
1636
     */
1616
     */
1637
    for (i = 1; i < leaf->keys - 1; i++) {
1617
    for (i = 1; i < leaf->keys - 1; i++) {
1638
        if (page < leaf->key[i]) {
1618
        if (page < leaf->key[i]) {
1639
            uintptr_t left_pg = leaf->key[i - 1];
1619
            uintptr_t left_pg = leaf->key[i - 1];
1640
            count_t left_cnt = (count_t) leaf->value[i - 1];
1620
            count_t left_cnt = (count_t) leaf->value[i - 1];
1641
 
1621
 
1642
            /*
1622
            /*
1643
             * Now the interval is between intervals corresponding
1623
             * Now the interval is between intervals corresponding
1644
             * to (i - 1) and i.
1624
             * to (i - 1) and i.
1645
             */
1625
             */
1646
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1626
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1647
                count * PAGE_SIZE)) {
1627
                count * PAGE_SIZE)) {
1648
                if (page + count * PAGE_SIZE ==
1628
                if (page + count * PAGE_SIZE ==
1649
                    left_pg + left_cnt*PAGE_SIZE) {
1629
                    left_pg + left_cnt*PAGE_SIZE) {
1650
                    /*
1630
                    /*
1651
                     * The interval is contained in the
1631
                     * The interval is contained in the
1652
                     * interval (i - 1) of the leaf and can
1632
                     * interval (i - 1) of the leaf and can
1653
                     * be removed by updating the size of
1633
                     * be removed by updating the size of
1654
                     * the bigger interval.
1634
                     * the bigger interval.
1655
                     */
1635
                     */
1656
                    leaf->value[i - 1] -= count;
1636
                    leaf->value[i - 1] -= count;
1657
                    return 1;
1637
                    return 1;
1658
                } else if (page + count * PAGE_SIZE <
1638
                } else if (page + count * PAGE_SIZE <
1659
                    left_pg + left_cnt * PAGE_SIZE) {
1639
                    left_pg + left_cnt * PAGE_SIZE) {
1660
                    count_t new_cnt;
1640
                    count_t new_cnt;
1661
               
1641
               
1662
                    /*
1642
                    /*
1663
                     * The interval is contained in the
1643
                     * The interval is contained in the
1664
                     * interval (i - 1) of the leaf but its
1644
                     * interval (i - 1) of the leaf but its
1665
                     * removal requires both updating the
1645
                     * removal requires both updating the
1666
                     * size of the original interval and
1646
                     * size of the original interval and
1667
                     * also inserting a new interval.
1647
                     * also inserting a new interval.
1668
                     */
1648
                     */
1669
                    new_cnt = ((left_pg +
1649
                    new_cnt = ((left_pg +
1670
                        left_cnt * PAGE_SIZE) -
1650
                        left_cnt * PAGE_SIZE) -
1671
                        (page + count * PAGE_SIZE)) >>
1651
                        (page + count * PAGE_SIZE)) >>
1672
                        PAGE_WIDTH;
1652
                        PAGE_WIDTH;
1673
                    leaf->value[i - 1] -= count + new_cnt;
1653
                    leaf->value[i - 1] -= count + new_cnt;
1674
                    btree_insert(&a->used_space, page +
1654
                    btree_insert(&a->used_space, page +
1675
                        count * PAGE_SIZE, (void *) new_cnt,
1655
                        count * PAGE_SIZE, (void *) new_cnt,
1676
                        leaf);
1656
                        leaf);
1677
                    return 1;
1657
                    return 1;
1678
                }
1658
                }
1679
            }
1659
            }
1680
            return 0;
1660
            return 0;
1681
        }
1661
        }
1682
    }
1662
    }
1683
 
1663
 
1684
error:
1664
error:
1685
    panic("Inconsistency detected while removing %d pages of used space "
1665
    panic("Inconsistency detected while removing %d pages of used space "
1686
        "from %p.\n", count, page);
1666
        "from %p.\n", count, page);
1687
}
1667
}
1688
 
1668
 
1689
/** Remove reference to address space area share info.
1669
/** Remove reference to address space area share info.
1690
 *
1670
 *
1691
 * If the reference count drops to 0, the sh_info is deallocated.
1671
 * If the reference count drops to 0, the sh_info is deallocated.
1692
 *
1672
 *
1693
 * @param sh_info Pointer to address space area share info.
1673
 * @param sh_info Pointer to address space area share info.
1694
 */
1674
 */
1695
void sh_info_remove_reference(share_info_t *sh_info)
1675
void sh_info_remove_reference(share_info_t *sh_info)
1696
{
1676
{
1697
    bool dealloc = false;
1677
    bool dealloc = false;
1698
 
1678
 
1699
    mutex_lock(&sh_info->lock);
1679
    mutex_lock(&sh_info->lock);
1700
    ASSERT(sh_info->refcount);
1680
    ASSERT(sh_info->refcount);
1701
    if (--sh_info->refcount == 0) {
1681
    if (--sh_info->refcount == 0) {
1702
        dealloc = true;
1682
        dealloc = true;
1703
        link_t *cur;
1683
        link_t *cur;
1704
       
1684
       
1705
        /*
1685
        /*
1706
         * Now walk carefully the pagemap B+tree and free/remove
1686
         * Now walk carefully the pagemap B+tree and free/remove
1707
         * reference from all frames found there.
1687
         * reference from all frames found there.
1708
         */
1688
         */
1709
        for (cur = sh_info->pagemap.leaf_head.next;
1689
        for (cur = sh_info->pagemap.leaf_head.next;
1710
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1690
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1711
            btree_node_t *node;
1691
            btree_node_t *node;
1712
            int i;
1692
            int i;
1713
           
1693
           
1714
            node = list_get_instance(cur, btree_node_t, leaf_link);
1694
            node = list_get_instance(cur, btree_node_t, leaf_link);
1715
            for (i = 0; i < node->keys; i++)
1695
            for (i = 0; i < node->keys; i++)
1716
                frame_free((uintptr_t) node->value[i]);
1696
                frame_free((uintptr_t) node->value[i]);
1717
        }
1697
        }
1718
       
1698
       
1719
    }
1699
    }
1720
    mutex_unlock(&sh_info->lock);
1700
    mutex_unlock(&sh_info->lock);
1721
   
1701
   
1722
    if (dealloc) {
1702
    if (dealloc) {
1723
        btree_destroy(&sh_info->pagemap);
1703
        btree_destroy(&sh_info->pagemap);
1724
        free(sh_info);
1704
        free(sh_info);
1725
    }
1705
    }
1726
}
1706
}
1727
 
1707
 
1728
/*
1708
/*
1729
 * Address space related syscalls.
1709
 * Address space related syscalls.
1730
 */
1710
 */
1731
 
1711
 
1732
/** Wrapper for as_area_create(). */
1712
/** Wrapper for as_area_create(). */
1733
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1713
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1734
{
1714
{
1735
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1715
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1736
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1716
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1737
        return (unative_t) address;
1717
        return (unative_t) address;
1738
    else
1718
    else
1739
        return (unative_t) -1;
1719
        return (unative_t) -1;
1740
}
1720
}
1741
 
1721
 
1742
/** Wrapper for as_area_resize(). */
1722
/** Wrapper for as_area_resize(). */
1743
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1723
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1744
{
1724
{
1745
    return (unative_t) as_area_resize(AS, address, size, 0);
1725
    return (unative_t) as_area_resize(AS, address, size, 0);
1746
}
1726
}
1747
 
1727
 
1748
/** Wrapper for as_area_destroy(). */
1728
/** Wrapper for as_area_destroy(). */
1749
unative_t sys_as_area_destroy(uintptr_t address)
1729
unative_t sys_as_area_destroy(uintptr_t address)
1750
{
1730
{
1751
    return (unative_t) as_area_destroy(AS, address);
1731
    return (unative_t) as_area_destroy(AS, address);
1752
}
1732
}
1753
 
1733
 
1754
/** Print out information about address space.
1734
/** Print out information about address space.
1755
 *
1735
 *
1756
 * @param as Address space.
1736
 * @param as Address space.
1757
 */
1737
 */
1758
void as_print(as_t *as)
1738
void as_print(as_t *as)
1759
{
1739
{
1760
    ipl_t ipl;
1740
    ipl_t ipl;
1761
   
1741
   
1762
    ipl = interrupts_disable();
1742
    ipl = interrupts_disable();
1763
    mutex_lock(&as->lock);
1743
    mutex_lock(&as->lock);
1764
   
1744
   
1765
    /* print out info about address space areas */
1745
    /* print out info about address space areas */
1766
    link_t *cur;
1746
    link_t *cur;
1767
    for (cur = as->as_area_btree.leaf_head.next;
1747
    for (cur = as->as_area_btree.leaf_head.next;
1768
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1748
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1769
        btree_node_t *node;
1749
        btree_node_t *node;
1770
       
1750
       
1771
        node = list_get_instance(cur, btree_node_t, leaf_link);
1751
        node = list_get_instance(cur, btree_node_t, leaf_link);
1772
       
1752
       
1773
        int i;
1753
        int i;
1774
        for (i = 0; i < node->keys; i++) {
1754
        for (i = 0; i < node->keys; i++) {
1775
            as_area_t *area = node->value[i];
1755
            as_area_t *area = node->value[i];
1776
       
1756
       
1777
            mutex_lock(&area->lock);
1757
            mutex_lock(&area->lock);
1778
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1758
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1779
                area, area->base, area->pages, area->base,
1759
                area, area->base, area->pages, area->base,
1780
                area->base + area->pages*PAGE_SIZE);
1760
                area->base + area->pages*PAGE_SIZE);
1781
            mutex_unlock(&area->lock);
1761
            mutex_unlock(&area->lock);
1782
        }
1762
        }
1783
    }
1763
    }
1784
   
1764
   
1785
    mutex_unlock(&as->lock);
1765
    mutex_unlock(&as->lock);
1786
    interrupts_restore(ipl);
1766
    interrupts_restore(ipl);
1787
}
1767
}
1788
 
1768
 
1789
/** @}
1769
/** @}
1790
 */
1770
 */
1791
 
1771