Subversion Repositories HelenOS

Rev

Rev 2094 | Rev 2126 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2094 Rev 2106
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <syscall/copy.h>
77
#include <syscall/copy.h>
78
#include <arch/interrupt.h>
78
#include <arch/interrupt.h>
79
 
79
 
80
#ifdef CONFIG_VIRT_IDX_DCACHE
80
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#include <arch/mm/cache.h>
81
#include <arch/mm/cache.h>
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
82
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
 
83
 
84
/**
84
/**
85
 * Each architecture decides what functions will be used to carry out
85
 * Each architecture decides what functions will be used to carry out
86
 * address space operations such as creating or locking page tables.
86
 * address space operations such as creating or locking page tables.
87
 */
87
 */
88
as_operations_t *as_operations = NULL;
88
as_operations_t *as_operations = NULL;
89
 
89
 
90
/**
90
/**
91
 * Slab for as_t objects.
91
 * Slab for as_t objects.
92
 */
92
 */
93
static slab_cache_t *as_slab;
93
static slab_cache_t *as_slab;
94
 
94
 
95
/**
95
/**
96
 * This lock protects inactive_as_with_asid_head list. It must be acquired
96
 * This lock protects inactive_as_with_asid_head list. It must be acquired
97
 * before as_t mutex.
97
 * before as_t mutex.
98
 */
98
 */
99
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
99
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
100
 
100
 
101
/**
101
/**
102
 * This list contains address spaces that are not active on any
102
 * This list contains address spaces that are not active on any
103
 * processor and that have valid ASID.
103
 * processor and that have valid ASID.
104
 */
104
 */
105
LIST_INITIALIZE(inactive_as_with_asid_head);
105
LIST_INITIALIZE(inactive_as_with_asid_head);
106
 
106
 
107
/** Kernel address space. */
107
/** Kernel address space. */
108
as_t *AS_KERNEL = NULL;
108
as_t *AS_KERNEL = NULL;
109
 
109
 
110
static int area_flags_to_page_flags(int aflags);
110
static int area_flags_to_page_flags(int aflags);
111
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
111
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
112
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
112
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
113
    as_area_t *avoid_area);
113
    as_area_t *avoid_area);
114
static void sh_info_remove_reference(share_info_t *sh_info);
114
static void sh_info_remove_reference(share_info_t *sh_info);
115
 
115
 
116
static int as_constructor(void *obj, int flags)
116
static int as_constructor(void *obj, int flags)
117
{
117
{
118
    as_t *as = (as_t *) obj;
118
    as_t *as = (as_t *) obj;
119
    int rc;
119
    int rc;
120
 
120
 
121
    link_initialize(&as->inactive_as_with_asid_link);
121
    link_initialize(&as->inactive_as_with_asid_link);
122
    mutex_initialize(&as->lock);   
122
    mutex_initialize(&as->lock);   
123
   
123
   
124
    rc = as_constructor_arch(as, flags);
124
    rc = as_constructor_arch(as, flags);
125
   
125
   
126
    return rc;
126
    return rc;
127
}
127
}
128
 
128
 
129
static int as_destructor(void *obj)
129
static int as_destructor(void *obj)
130
{
130
{
131
    as_t *as = (as_t *) obj;
131
    as_t *as = (as_t *) obj;
132
 
132
 
133
    return as_destructor_arch(as);
133
    return as_destructor_arch(as);
134
}
134
}
135
 
135
 
136
/** Initialize address space subsystem. */
136
/** Initialize address space subsystem. */
137
void as_init(void)
137
void as_init(void)
138
{
138
{
139
    as_arch_init();
139
    as_arch_init();
140
   
140
   
141
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
141
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
142
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
142
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
143
   
143
   
144
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
144
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
145
    if (!AS_KERNEL)
145
    if (!AS_KERNEL)
146
        panic("can't create kernel address space\n");
146
        panic("can't create kernel address space\n");
147
   
147
   
148
}
148
}
149
 
149
 
150
/** Create address space.
150
/** Create address space.
151
 *
151
 *
152
 * @param flags Flags that influence way in wich the address space is created.
152
 * @param flags Flags that influence way in wich the address space is created.
153
 */
153
 */
154
as_t *as_create(int flags)
154
as_t *as_create(int flags)
155
{
155
{
156
    as_t *as;
156
    as_t *as;
157
 
157
 
158
    as = (as_t *) slab_alloc(as_slab, 0);
158
    as = (as_t *) slab_alloc(as_slab, 0);
159
    (void) as_create_arch(as, 0);
159
    (void) as_create_arch(as, 0);
160
   
160
   
161
    btree_create(&as->as_area_btree);
161
    btree_create(&as->as_area_btree);
162
   
162
   
163
    if (flags & FLAG_AS_KERNEL)
163
    if (flags & FLAG_AS_KERNEL)
164
        as->asid = ASID_KERNEL;
164
        as->asid = ASID_KERNEL;
165
    else
165
    else
166
        as->asid = ASID_INVALID;
166
        as->asid = ASID_INVALID;
167
   
167
   
168
    as->refcount = 0;
168
    as->refcount = 0;
169
    as->cpu_refcount = 0;
169
    as->cpu_refcount = 0;
170
#ifdef AS_PAGE_TABLE
170
#ifdef AS_PAGE_TABLE
171
    as->page_table = page_table_create(flags);
171
    as->genarch.page_table = page_table_create(flags);
172
#else
172
#else
173
    page_table_create(flags);
173
    page_table_create(flags);
174
#endif
174
#endif
175
 
175
 
176
    return as;
176
    return as;
177
}
177
}
178
 
178
 
179
/** Destroy adress space.
179
/** Destroy adress space.
180
 *
180
 *
181
 * When there are no tasks referencing this address space (i.e. its refcount is
181
 * When there are no tasks referencing this address space (i.e. its refcount is
182
 * zero), the address space can be destroyed.
182
 * zero), the address space can be destroyed.
183
 */
183
 */
184
void as_destroy(as_t *as)
184
void as_destroy(as_t *as)
185
{
185
{
186
    ipl_t ipl;
186
    ipl_t ipl;
187
    bool cond;
187
    bool cond;
188
 
188
 
189
    ASSERT(as->refcount == 0);
189
    ASSERT(as->refcount == 0);
190
   
190
   
191
    /*
191
    /*
192
     * Since there is no reference to this area,
192
     * Since there is no reference to this area,
193
     * it is safe not to lock its mutex.
193
     * it is safe not to lock its mutex.
194
     */
194
     */
195
    ipl = interrupts_disable();
195
    ipl = interrupts_disable();
196
    spinlock_lock(&inactive_as_with_asid_lock);
196
    spinlock_lock(&inactive_as_with_asid_lock);
197
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
197
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
198
        if (as != AS && as->cpu_refcount == 0)
198
        if (as != AS && as->cpu_refcount == 0)
199
            list_remove(&as->inactive_as_with_asid_link);
199
            list_remove(&as->inactive_as_with_asid_link);
200
        asid_put(as->asid);
200
        asid_put(as->asid);
201
    }
201
    }
202
    spinlock_unlock(&inactive_as_with_asid_lock);
202
    spinlock_unlock(&inactive_as_with_asid_lock);
203
 
203
 
204
    /*
204
    /*
205
     * Destroy address space areas of the address space.
205
     * Destroy address space areas of the address space.
206
     * The B+tree must be walked carefully because it is
206
     * The B+tree must be walked carefully because it is
207
     * also being destroyed.
207
     * also being destroyed.
208
     */
208
     */
209
    for (cond = true; cond; ) {
209
    for (cond = true; cond; ) {
210
        btree_node_t *node;
210
        btree_node_t *node;
211
 
211
 
212
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
212
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
213
        node = list_get_instance(as->as_area_btree.leaf_head.next,
213
        node = list_get_instance(as->as_area_btree.leaf_head.next,
214
            btree_node_t, leaf_link);
214
            btree_node_t, leaf_link);
215
 
215
 
216
        if ((cond = node->keys)) {
216
        if ((cond = node->keys)) {
217
            as_area_destroy(as, node->key[0]);
217
            as_area_destroy(as, node->key[0]);
218
        }
218
        }
219
    }
219
    }
220
 
220
 
221
    btree_destroy(&as->as_area_btree);
221
    btree_destroy(&as->as_area_btree);
222
#ifdef AS_PAGE_TABLE
222
#ifdef AS_PAGE_TABLE
223
    page_table_destroy(as->page_table);
223
    page_table_destroy(as->genarch.page_table);
224
#else
224
#else
225
    page_table_destroy(NULL);
225
    page_table_destroy(NULL);
226
#endif
226
#endif
227
 
227
 
228
    interrupts_restore(ipl);
228
    interrupts_restore(ipl);
229
   
229
   
230
    slab_free(as_slab, as);
230
    slab_free(as_slab, as);
231
}
231
}
232
 
232
 
233
/** Create address space area of common attributes.
233
/** Create address space area of common attributes.
234
 *
234
 *
235
 * The created address space area is added to the target address space.
235
 * The created address space area is added to the target address space.
236
 *
236
 *
237
 * @param as Target address space.
237
 * @param as Target address space.
238
 * @param flags Flags of the area memory.
238
 * @param flags Flags of the area memory.
239
 * @param size Size of area.
239
 * @param size Size of area.
240
 * @param base Base address of area.
240
 * @param base Base address of area.
241
 * @param attrs Attributes of the area.
241
 * @param attrs Attributes of the area.
242
 * @param backend Address space area backend. NULL if no backend is used.
242
 * @param backend Address space area backend. NULL if no backend is used.
243
 * @param backend_data NULL or a pointer to an array holding two void *.
243
 * @param backend_data NULL or a pointer to an array holding two void *.
244
 *
244
 *
245
 * @return Address space area on success or NULL on failure.
245
 * @return Address space area on success or NULL on failure.
246
 */
246
 */
247
as_area_t *
247
as_area_t *
248
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
248
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
249
           mem_backend_t *backend, mem_backend_data_t *backend_data)
249
           mem_backend_t *backend, mem_backend_data_t *backend_data)
250
{
250
{
251
    ipl_t ipl;
251
    ipl_t ipl;
252
    as_area_t *a;
252
    as_area_t *a;
253
   
253
   
254
    if (base % PAGE_SIZE)
254
    if (base % PAGE_SIZE)
255
        return NULL;
255
        return NULL;
256
 
256
 
257
    if (!size)
257
    if (!size)
258
        return NULL;
258
        return NULL;
259
 
259
 
260
    /* Writeable executable areas are not supported. */
260
    /* Writeable executable areas are not supported. */
261
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
261
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
262
        return NULL;
262
        return NULL;
263
   
263
   
264
    ipl = interrupts_disable();
264
    ipl = interrupts_disable();
265
    mutex_lock(&as->lock);
265
    mutex_lock(&as->lock);
266
   
266
   
267
    if (!check_area_conflicts(as, base, size, NULL)) {
267
    if (!check_area_conflicts(as, base, size, NULL)) {
268
        mutex_unlock(&as->lock);
268
        mutex_unlock(&as->lock);
269
        interrupts_restore(ipl);
269
        interrupts_restore(ipl);
270
        return NULL;
270
        return NULL;
271
    }
271
    }
272
   
272
   
273
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
273
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
274
 
274
 
275
    mutex_initialize(&a->lock);
275
    mutex_initialize(&a->lock);
276
   
276
   
277
    a->as = as;
277
    a->as = as;
278
    a->flags = flags;
278
    a->flags = flags;
279
    a->attributes = attrs;
279
    a->attributes = attrs;
280
    a->pages = SIZE2FRAMES(size);
280
    a->pages = SIZE2FRAMES(size);
281
    a->base = base;
281
    a->base = base;
282
    a->sh_info = NULL;
282
    a->sh_info = NULL;
283
    a->backend = backend;
283
    a->backend = backend;
284
    if (backend_data)
284
    if (backend_data)
285
        a->backend_data = *backend_data;
285
        a->backend_data = *backend_data;
286
    else
286
    else
287
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
287
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
288
            0);
288
            0);
289
 
289
 
290
    btree_create(&a->used_space);
290
    btree_create(&a->used_space);
291
   
291
   
292
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
292
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
293
 
293
 
294
    mutex_unlock(&as->lock);
294
    mutex_unlock(&as->lock);
295
    interrupts_restore(ipl);
295
    interrupts_restore(ipl);
296
 
296
 
297
    return a;
297
    return a;
298
}
298
}
299
 
299
 
300
/** Find address space area and change it.
300
/** Find address space area and change it.
301
 *
301
 *
302
 * @param as Address space.
302
 * @param as Address space.
303
 * @param address Virtual address belonging to the area to be changed. Must be
303
 * @param address Virtual address belonging to the area to be changed. Must be
304
 *     page-aligned.
304
 *     page-aligned.
305
 * @param size New size of the virtual memory block starting at address.
305
 * @param size New size of the virtual memory block starting at address.
306
 * @param flags Flags influencing the remap operation. Currently unused.
306
 * @param flags Flags influencing the remap operation. Currently unused.
307
 *
307
 *
308
 * @return Zero on success or a value from @ref errno.h otherwise.
308
 * @return Zero on success or a value from @ref errno.h otherwise.
309
 */
309
 */
310
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
310
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
311
{
311
{
312
    as_area_t *area;
312
    as_area_t *area;
313
    ipl_t ipl;
313
    ipl_t ipl;
314
    size_t pages;
314
    size_t pages;
315
   
315
   
316
    ipl = interrupts_disable();
316
    ipl = interrupts_disable();
317
    mutex_lock(&as->lock);
317
    mutex_lock(&as->lock);
318
   
318
   
319
    /*
319
    /*
320
     * Locate the area.
320
     * Locate the area.
321
     */
321
     */
322
    area = find_area_and_lock(as, address);
322
    area = find_area_and_lock(as, address);
323
    if (!area) {
323
    if (!area) {
324
        mutex_unlock(&as->lock);
324
        mutex_unlock(&as->lock);
325
        interrupts_restore(ipl);
325
        interrupts_restore(ipl);
326
        return ENOENT;
326
        return ENOENT;
327
    }
327
    }
328
 
328
 
329
    if (area->backend == &phys_backend) {
329
    if (area->backend == &phys_backend) {
330
        /*
330
        /*
331
         * Remapping of address space areas associated
331
         * Remapping of address space areas associated
332
         * with memory mapped devices is not supported.
332
         * with memory mapped devices is not supported.
333
         */
333
         */
334
        mutex_unlock(&area->lock);
334
        mutex_unlock(&area->lock);
335
        mutex_unlock(&as->lock);
335
        mutex_unlock(&as->lock);
336
        interrupts_restore(ipl);
336
        interrupts_restore(ipl);
337
        return ENOTSUP;
337
        return ENOTSUP;
338
    }
338
    }
339
    if (area->sh_info) {
339
    if (area->sh_info) {
340
        /*
340
        /*
341
         * Remapping of shared address space areas
341
         * Remapping of shared address space areas
342
         * is not supported.
342
         * is not supported.
343
         */
343
         */
344
        mutex_unlock(&area->lock);
344
        mutex_unlock(&area->lock);
345
        mutex_unlock(&as->lock);
345
        mutex_unlock(&as->lock);
346
        interrupts_restore(ipl);
346
        interrupts_restore(ipl);
347
        return ENOTSUP;
347
        return ENOTSUP;
348
    }
348
    }
349
 
349
 
350
    pages = SIZE2FRAMES((address - area->base) + size);
350
    pages = SIZE2FRAMES((address - area->base) + size);
351
    if (!pages) {
351
    if (!pages) {
352
        /*
352
        /*
353
         * Zero size address space areas are not allowed.
353
         * Zero size address space areas are not allowed.
354
         */
354
         */
355
        mutex_unlock(&area->lock);
355
        mutex_unlock(&area->lock);
356
        mutex_unlock(&as->lock);
356
        mutex_unlock(&as->lock);
357
        interrupts_restore(ipl);
357
        interrupts_restore(ipl);
358
        return EPERM;
358
        return EPERM;
359
    }
359
    }
360
   
360
   
361
    if (pages < area->pages) {
361
    if (pages < area->pages) {
362
        bool cond;
362
        bool cond;
363
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
363
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
364
 
364
 
365
        /*
365
        /*
366
         * Shrinking the area.
366
         * Shrinking the area.
367
         * No need to check for overlaps.
367
         * No need to check for overlaps.
368
         */
368
         */
369
 
369
 
370
        /*
370
        /*
371
         * Start TLB shootdown sequence.
371
         * Start TLB shootdown sequence.
372
         */
372
         */
373
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
373
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
374
            pages * PAGE_SIZE, area->pages - pages);
374
            pages * PAGE_SIZE, area->pages - pages);
375
 
375
 
376
        /*
376
        /*
377
         * Remove frames belonging to used space starting from
377
         * Remove frames belonging to used space starting from
378
         * the highest addresses downwards until an overlap with
378
         * the highest addresses downwards until an overlap with
379
         * the resized address space area is found. Note that this
379
         * the resized address space area is found. Note that this
380
         * is also the right way to remove part of the used_space
380
         * is also the right way to remove part of the used_space
381
         * B+tree leaf list.
381
         * B+tree leaf list.
382
         */    
382
         */    
383
        for (cond = true; cond;) {
383
        for (cond = true; cond;) {
384
            btree_node_t *node;
384
            btree_node_t *node;
385
       
385
       
386
            ASSERT(!list_empty(&area->used_space.leaf_head));
386
            ASSERT(!list_empty(&area->used_space.leaf_head));
387
            node =
387
            node =
388
                list_get_instance(area->used_space.leaf_head.prev,
388
                list_get_instance(area->used_space.leaf_head.prev,
389
                btree_node_t, leaf_link);
389
                btree_node_t, leaf_link);
390
            if ((cond = (bool) node->keys)) {
390
            if ((cond = (bool) node->keys)) {
391
                uintptr_t b = node->key[node->keys - 1];
391
                uintptr_t b = node->key[node->keys - 1];
392
                count_t c =
392
                count_t c =
393
                    (count_t) node->value[node->keys - 1];
393
                    (count_t) node->value[node->keys - 1];
394
                int i = 0;
394
                int i = 0;
395
           
395
           
396
                if (overlaps(b, c * PAGE_SIZE, area->base,
396
                if (overlaps(b, c * PAGE_SIZE, area->base,
397
                    pages*PAGE_SIZE)) {
397
                    pages*PAGE_SIZE)) {
398
                   
398
                   
399
                    if (b + c * PAGE_SIZE <= start_free) {
399
                    if (b + c * PAGE_SIZE <= start_free) {
400
                        /*
400
                        /*
401
                         * The whole interval fits
401
                         * The whole interval fits
402
                         * completely in the resized
402
                         * completely in the resized
403
                         * address space area.
403
                         * address space area.
404
                         */
404
                         */
405
                        break;
405
                        break;
406
                    }
406
                    }
407
       
407
       
408
                    /*
408
                    /*
409
                     * Part of the interval corresponding
409
                     * Part of the interval corresponding
410
                     * to b and c overlaps with the resized
410
                     * to b and c overlaps with the resized
411
                     * address space area.
411
                     * address space area.
412
                     */
412
                     */
413
       
413
       
414
                    cond = false;   /* we are almost done */
414
                    cond = false;   /* we are almost done */
415
                    i = (start_free - b) >> PAGE_WIDTH;
415
                    i = (start_free - b) >> PAGE_WIDTH;
416
                    if (!used_space_remove(area, start_free,
416
                    if (!used_space_remove(area, start_free,
417
                        c - i))
417
                        c - i))
418
                        panic("Could not remove used "
418
                        panic("Could not remove used "
419
                            "space.\n");
419
                            "space.\n");
420
                } else {
420
                } else {
421
                    /*
421
                    /*
422
                     * The interval of used space can be
422
                     * The interval of used space can be
423
                     * completely removed.
423
                     * completely removed.
424
                     */
424
                     */
425
                    if (!used_space_remove(area, b, c))
425
                    if (!used_space_remove(area, b, c))
426
                        panic("Could not remove used "
426
                        panic("Could not remove used "
427
                            "space.\n");
427
                            "space.\n");
428
                }
428
                }
429
           
429
           
430
                for (; i < c; i++) {
430
                for (; i < c; i++) {
431
                    pte_t *pte;
431
                    pte_t *pte;
432
           
432
           
433
                    page_table_lock(as, false);
433
                    page_table_lock(as, false);
434
                    pte = page_mapping_find(as, b +
434
                    pte = page_mapping_find(as, b +
435
                        i * PAGE_SIZE);
435
                        i * PAGE_SIZE);
436
                    ASSERT(pte && PTE_VALID(pte) &&
436
                    ASSERT(pte && PTE_VALID(pte) &&
437
                        PTE_PRESENT(pte));
437
                        PTE_PRESENT(pte));
438
                    if (area->backend &&
438
                    if (area->backend &&
439
                        area->backend->frame_free) {
439
                        area->backend->frame_free) {
440
                        area->backend->frame_free(area,
440
                        area->backend->frame_free(area,
441
                            b + i * PAGE_SIZE,
441
                            b + i * PAGE_SIZE,
442
                            PTE_GET_FRAME(pte));
442
                            PTE_GET_FRAME(pte));
443
                    }
443
                    }
444
                    page_mapping_remove(as, b +
444
                    page_mapping_remove(as, b +
445
                        i * PAGE_SIZE);
445
                        i * PAGE_SIZE);
446
                    page_table_unlock(as, false);
446
                    page_table_unlock(as, false);
447
                }
447
                }
448
            }
448
            }
449
        }
449
        }
450
 
450
 
451
        /*
451
        /*
452
         * Finish TLB shootdown sequence.
452
         * Finish TLB shootdown sequence.
453
         */
453
         */
454
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
454
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
455
            area->pages - pages);
455
            area->pages - pages);
456
        tlb_shootdown_finalize();
456
        tlb_shootdown_finalize();
457
       
457
       
458
        /*
458
        /*
459
         * Invalidate software translation caches (e.g. TSB on sparc64).
459
         * Invalidate software translation caches (e.g. TSB on sparc64).
460
         */
460
         */
461
        as_invalidate_translation_cache(as, area->base +
461
        as_invalidate_translation_cache(as, area->base +
462
            pages * PAGE_SIZE, area->pages - pages);
462
            pages * PAGE_SIZE, area->pages - pages);
463
    } else {
463
    } else {
464
        /*
464
        /*
465
         * Growing the area.
465
         * Growing the area.
466
         * Check for overlaps with other address space areas.
466
         * Check for overlaps with other address space areas.
467
         */
467
         */
468
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
468
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
469
            area)) {
469
            area)) {
470
            mutex_unlock(&area->lock);
470
            mutex_unlock(&area->lock);
471
            mutex_unlock(&as->lock);       
471
            mutex_unlock(&as->lock);       
472
            interrupts_restore(ipl);
472
            interrupts_restore(ipl);
473
            return EADDRNOTAVAIL;
473
            return EADDRNOTAVAIL;
474
        }
474
        }
475
    }
475
    }
476
 
476
 
477
    area->pages = pages;
477
    area->pages = pages;
478
   
478
   
479
    mutex_unlock(&area->lock);
479
    mutex_unlock(&area->lock);
480
    mutex_unlock(&as->lock);
480
    mutex_unlock(&as->lock);
481
    interrupts_restore(ipl);
481
    interrupts_restore(ipl);
482
 
482
 
483
    return 0;
483
    return 0;
484
}
484
}
485
 
485
 
486
/** Destroy address space area.
486
/** Destroy address space area.
487
 *
487
 *
488
 * @param as Address space.
488
 * @param as Address space.
489
 * @param address Address withing the area to be deleted.
489
 * @param address Address withing the area to be deleted.
490
 *
490
 *
491
 * @return Zero on success or a value from @ref errno.h on failure.
491
 * @return Zero on success or a value from @ref errno.h on failure.
492
 */
492
 */
493
int as_area_destroy(as_t *as, uintptr_t address)
493
int as_area_destroy(as_t *as, uintptr_t address)
494
{
494
{
495
    as_area_t *area;
495
    as_area_t *area;
496
    uintptr_t base;
496
    uintptr_t base;
497
    link_t *cur;
497
    link_t *cur;
498
    ipl_t ipl;
498
    ipl_t ipl;
499
 
499
 
500
    ipl = interrupts_disable();
500
    ipl = interrupts_disable();
501
    mutex_lock(&as->lock);
501
    mutex_lock(&as->lock);
502
 
502
 
503
    area = find_area_and_lock(as, address);
503
    area = find_area_and_lock(as, address);
504
    if (!area) {
504
    if (!area) {
505
        mutex_unlock(&as->lock);
505
        mutex_unlock(&as->lock);
506
        interrupts_restore(ipl);
506
        interrupts_restore(ipl);
507
        return ENOENT;
507
        return ENOENT;
508
    }
508
    }
509
 
509
 
510
    base = area->base;
510
    base = area->base;
511
 
511
 
512
    /*
512
    /*
513
     * Start TLB shootdown sequence.
513
     * Start TLB shootdown sequence.
514
     */
514
     */
515
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
515
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
516
 
516
 
517
    /*
517
    /*
518
     * Visit only the pages mapped by used_space B+tree.
518
     * Visit only the pages mapped by used_space B+tree.
519
     */
519
     */
520
    for (cur = area->used_space.leaf_head.next;
520
    for (cur = area->used_space.leaf_head.next;
521
        cur != &area->used_space.leaf_head; cur = cur->next) {
521
        cur != &area->used_space.leaf_head; cur = cur->next) {
522
        btree_node_t *node;
522
        btree_node_t *node;
523
        int i;
523
        int i;
524
       
524
       
525
        node = list_get_instance(cur, btree_node_t, leaf_link);
525
        node = list_get_instance(cur, btree_node_t, leaf_link);
526
        for (i = 0; i < node->keys; i++) {
526
        for (i = 0; i < node->keys; i++) {
527
            uintptr_t b = node->key[i];
527
            uintptr_t b = node->key[i];
528
            count_t j;
528
            count_t j;
529
            pte_t *pte;
529
            pte_t *pte;
530
           
530
           
531
            for (j = 0; j < (count_t) node->value[i]; j++) {
531
            for (j = 0; j < (count_t) node->value[i]; j++) {
532
                page_table_lock(as, false);
532
                page_table_lock(as, false);
533
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
533
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
534
                ASSERT(pte && PTE_VALID(pte) &&
534
                ASSERT(pte && PTE_VALID(pte) &&
535
                    PTE_PRESENT(pte));
535
                    PTE_PRESENT(pte));
536
                if (area->backend &&
536
                if (area->backend &&
537
                    area->backend->frame_free) {
537
                    area->backend->frame_free) {
538
                    area->backend->frame_free(area, b +
538
                    area->backend->frame_free(area, b +
539
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
539
                    j * PAGE_SIZE, PTE_GET_FRAME(pte));
540
                }
540
                }
541
                page_mapping_remove(as, b + j * PAGE_SIZE);            
541
                page_mapping_remove(as, b + j * PAGE_SIZE);            
542
                page_table_unlock(as, false);
542
                page_table_unlock(as, false);
543
            }
543
            }
544
        }
544
        }
545
    }
545
    }
546
 
546
 
547
    /*
547
    /*
548
     * Finish TLB shootdown sequence.
548
     * Finish TLB shootdown sequence.
549
     */
549
     */
550
    tlb_invalidate_pages(as->asid, area->base, area->pages);
550
    tlb_invalidate_pages(as->asid, area->base, area->pages);
551
    tlb_shootdown_finalize();
551
    tlb_shootdown_finalize();
552
   
552
   
553
    /*
553
    /*
554
     * Invalidate potential software translation caches (e.g. TSB on
554
     * Invalidate potential software translation caches (e.g. TSB on
555
     * sparc64).
555
     * sparc64).
556
     */
556
     */
557
    as_invalidate_translation_cache(as, area->base, area->pages);
557
    as_invalidate_translation_cache(as, area->base, area->pages);
558
   
558
   
559
    btree_destroy(&area->used_space);
559
    btree_destroy(&area->used_space);
560
 
560
 
561
    area->attributes |= AS_AREA_ATTR_PARTIAL;
561
    area->attributes |= AS_AREA_ATTR_PARTIAL;
562
   
562
   
563
    if (area->sh_info)
563
    if (area->sh_info)
564
        sh_info_remove_reference(area->sh_info);
564
        sh_info_remove_reference(area->sh_info);
565
       
565
       
566
    mutex_unlock(&area->lock);
566
    mutex_unlock(&area->lock);
567
 
567
 
568
    /*
568
    /*
569
     * Remove the empty area from address space.
569
     * Remove the empty area from address space.
570
     */
570
     */
571
    btree_remove(&as->as_area_btree, base, NULL);
571
    btree_remove(&as->as_area_btree, base, NULL);
572
   
572
   
573
    free(area);
573
    free(area);
574
   
574
   
575
    mutex_unlock(&as->lock);
575
    mutex_unlock(&as->lock);
576
    interrupts_restore(ipl);
576
    interrupts_restore(ipl);
577
    return 0;
577
    return 0;
578
}
578
}
579
 
579
 
580
/** Share address space area with another or the same address space.
580
/** Share address space area with another or the same address space.
581
 *
581
 *
582
 * Address space area mapping is shared with a new address space area.
582
 * Address space area mapping is shared with a new address space area.
583
 * If the source address space area has not been shared so far,
583
 * If the source address space area has not been shared so far,
584
 * a new sh_info is created. The new address space area simply gets the
584
 * a new sh_info is created. The new address space area simply gets the
585
 * sh_info of the source area. The process of duplicating the
585
 * sh_info of the source area. The process of duplicating the
586
 * mapping is done through the backend share function.
586
 * mapping is done through the backend share function.
587
 *
587
 *
588
 * @param src_as Pointer to source address space.
588
 * @param src_as Pointer to source address space.
589
 * @param src_base Base address of the source address space area.
589
 * @param src_base Base address of the source address space area.
590
 * @param acc_size Expected size of the source area.
590
 * @param acc_size Expected size of the source area.
591
 * @param dst_as Pointer to destination address space.
591
 * @param dst_as Pointer to destination address space.
592
 * @param dst_base Target base address.
592
 * @param dst_base Target base address.
593
 * @param dst_flags_mask Destination address space area flags mask.
593
 * @param dst_flags_mask Destination address space area flags mask.
594
 *
594
 *
595
 * @return Zero on success or ENOENT if there is no such task or if there is no
595
 * @return Zero on success or ENOENT if there is no such task or if there is no
596
 * such address space area, EPERM if there was a problem in accepting the area
596
 * such address space area, EPERM if there was a problem in accepting the area
597
 * or ENOMEM if there was a problem in allocating destination address space
597
 * or ENOMEM if there was a problem in allocating destination address space
598
 * area. ENOTSUP is returned if the address space area backend does not support
598
 * area. ENOTSUP is returned if the address space area backend does not support
599
 * sharing or if the kernel detects an attempt to create an illegal address
599
 * sharing or if the kernel detects an attempt to create an illegal address
600
 * alias.
600
 * alias.
601
 */
601
 */
602
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
602
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
603
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
603
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
604
{
604
{
605
    ipl_t ipl;
605
    ipl_t ipl;
606
    int src_flags;
606
    int src_flags;
607
    size_t src_size;
607
    size_t src_size;
608
    as_area_t *src_area, *dst_area;
608
    as_area_t *src_area, *dst_area;
609
    share_info_t *sh_info;
609
    share_info_t *sh_info;
610
    mem_backend_t *src_backend;
610
    mem_backend_t *src_backend;
611
    mem_backend_data_t src_backend_data;
611
    mem_backend_data_t src_backend_data;
612
   
612
   
613
    ipl = interrupts_disable();
613
    ipl = interrupts_disable();
614
    mutex_lock(&src_as->lock);
614
    mutex_lock(&src_as->lock);
615
    src_area = find_area_and_lock(src_as, src_base);
615
    src_area = find_area_and_lock(src_as, src_base);
616
    if (!src_area) {
616
    if (!src_area) {
617
        /*
617
        /*
618
         * Could not find the source address space area.
618
         * Could not find the source address space area.
619
         */
619
         */
620
        mutex_unlock(&src_as->lock);
620
        mutex_unlock(&src_as->lock);
621
        interrupts_restore(ipl);
621
        interrupts_restore(ipl);
622
        return ENOENT;
622
        return ENOENT;
623
    }
623
    }
624
 
624
 
625
    if (!src_area->backend || !src_area->backend->share) {
625
    if (!src_area->backend || !src_area->backend->share) {
626
        /*
626
        /*
627
         * There is no backend or the backend does not
627
         * There is no backend or the backend does not
628
         * know how to share the area.
628
         * know how to share the area.
629
         */
629
         */
630
        mutex_unlock(&src_area->lock);
630
        mutex_unlock(&src_area->lock);
631
        mutex_unlock(&src_as->lock);
631
        mutex_unlock(&src_as->lock);
632
        interrupts_restore(ipl);
632
        interrupts_restore(ipl);
633
        return ENOTSUP;
633
        return ENOTSUP;
634
    }
634
    }
635
   
635
   
636
    src_size = src_area->pages * PAGE_SIZE;
636
    src_size = src_area->pages * PAGE_SIZE;
637
    src_flags = src_area->flags;
637
    src_flags = src_area->flags;
638
    src_backend = src_area->backend;
638
    src_backend = src_area->backend;
639
    src_backend_data = src_area->backend_data;
639
    src_backend_data = src_area->backend_data;
640
 
640
 
641
    /* Share the cacheable flag from the original mapping */
641
    /* Share the cacheable flag from the original mapping */
642
    if (src_flags & AS_AREA_CACHEABLE)
642
    if (src_flags & AS_AREA_CACHEABLE)
643
        dst_flags_mask |= AS_AREA_CACHEABLE;
643
        dst_flags_mask |= AS_AREA_CACHEABLE;
644
 
644
 
645
    if (src_size != acc_size ||
645
    if (src_size != acc_size ||
646
        (src_flags & dst_flags_mask) != dst_flags_mask) {
646
        (src_flags & dst_flags_mask) != dst_flags_mask) {
647
        mutex_unlock(&src_area->lock);
647
        mutex_unlock(&src_area->lock);
648
        mutex_unlock(&src_as->lock);
648
        mutex_unlock(&src_as->lock);
649
        interrupts_restore(ipl);
649
        interrupts_restore(ipl);
650
        return EPERM;
650
        return EPERM;
651
    }
651
    }
652
 
652
 
653
#ifdef CONFIG_VIRT_IDX_DCACHE
653
#ifdef CONFIG_VIRT_IDX_DCACHE
654
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
654
    if (!(dst_flags_mask & AS_AREA_EXEC)) {
655
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
655
        if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
656
            /*
656
            /*
657
             * Refuse to create an illegal address alias.
657
             * Refuse to create an illegal address alias.
658
             */
658
             */
659
            mutex_unlock(&src_area->lock);
659
            mutex_unlock(&src_area->lock);
660
            mutex_unlock(&src_as->lock);
660
            mutex_unlock(&src_as->lock);
661
            interrupts_restore(ipl);
661
            interrupts_restore(ipl);
662
            return ENOTSUP;
662
            return ENOTSUP;
663
        }
663
        }
664
    }
664
    }
665
#endif /* CONFIG_VIRT_IDX_DCACHE */
665
#endif /* CONFIG_VIRT_IDX_DCACHE */
666
 
666
 
667
    /*
667
    /*
668
     * Now we are committed to sharing the area.
668
     * Now we are committed to sharing the area.
669
     * First, prepare the area for sharing.
669
     * First, prepare the area for sharing.
670
     * Then it will be safe to unlock it.
670
     * Then it will be safe to unlock it.
671
     */
671
     */
672
    sh_info = src_area->sh_info;
672
    sh_info = src_area->sh_info;
673
    if (!sh_info) {
673
    if (!sh_info) {
674
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
674
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
675
        mutex_initialize(&sh_info->lock);
675
        mutex_initialize(&sh_info->lock);
676
        sh_info->refcount = 2;
676
        sh_info->refcount = 2;
677
        btree_create(&sh_info->pagemap);
677
        btree_create(&sh_info->pagemap);
678
        src_area->sh_info = sh_info;
678
        src_area->sh_info = sh_info;
679
    } else {
679
    } else {
680
        mutex_lock(&sh_info->lock);
680
        mutex_lock(&sh_info->lock);
681
        sh_info->refcount++;
681
        sh_info->refcount++;
682
        mutex_unlock(&sh_info->lock);
682
        mutex_unlock(&sh_info->lock);
683
    }
683
    }
684
 
684
 
685
    src_area->backend->share(src_area);
685
    src_area->backend->share(src_area);
686
 
686
 
687
    mutex_unlock(&src_area->lock);
687
    mutex_unlock(&src_area->lock);
688
    mutex_unlock(&src_as->lock);
688
    mutex_unlock(&src_as->lock);
689
 
689
 
690
    /*
690
    /*
691
     * Create copy of the source address space area.
691
     * Create copy of the source address space area.
692
     * The destination area is created with AS_AREA_ATTR_PARTIAL
692
     * The destination area is created with AS_AREA_ATTR_PARTIAL
693
     * attribute set which prevents race condition with
693
     * attribute set which prevents race condition with
694
     * preliminary as_page_fault() calls.
694
     * preliminary as_page_fault() calls.
695
     * The flags of the source area are masked against dst_flags_mask
695
     * The flags of the source area are masked against dst_flags_mask
696
     * to support sharing in less privileged mode.
696
     * to support sharing in less privileged mode.
697
     */
697
     */
698
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
698
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
699
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
699
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
700
    if (!dst_area) {
700
    if (!dst_area) {
701
        /*
701
        /*
702
         * Destination address space area could not be created.
702
         * Destination address space area could not be created.
703
         */
703
         */
704
        sh_info_remove_reference(sh_info);
704
        sh_info_remove_reference(sh_info);
705
       
705
       
706
        interrupts_restore(ipl);
706
        interrupts_restore(ipl);
707
        return ENOMEM;
707
        return ENOMEM;
708
    }
708
    }
709
 
709
 
710
    /*
710
    /*
711
     * Now the destination address space area has been
711
     * Now the destination address space area has been
712
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
712
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
713
     * attribute and set the sh_info.
713
     * attribute and set the sh_info.
714
     */
714
     */
715
    mutex_lock(&dst_as->lock); 
715
    mutex_lock(&dst_as->lock); 
716
    mutex_lock(&dst_area->lock);
716
    mutex_lock(&dst_area->lock);
717
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
717
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
718
    dst_area->sh_info = sh_info;
718
    dst_area->sh_info = sh_info;
719
    mutex_unlock(&dst_area->lock);
719
    mutex_unlock(&dst_area->lock);
720
    mutex_unlock(&dst_as->lock);   
720
    mutex_unlock(&dst_as->lock);   
721
 
721
 
722
    interrupts_restore(ipl);
722
    interrupts_restore(ipl);
723
   
723
   
724
    return 0;
724
    return 0;
725
}
725
}
726
 
726
 
727
/** Check access mode for address space area.
727
/** Check access mode for address space area.
728
 *
728
 *
729
 * The address space area must be locked prior to this call.
729
 * The address space area must be locked prior to this call.
730
 *
730
 *
731
 * @param area Address space area.
731
 * @param area Address space area.
732
 * @param access Access mode.
732
 * @param access Access mode.
733
 *
733
 *
734
 * @return False if access violates area's permissions, true otherwise.
734
 * @return False if access violates area's permissions, true otherwise.
735
 */
735
 */
736
bool as_area_check_access(as_area_t *area, pf_access_t access)
736
bool as_area_check_access(as_area_t *area, pf_access_t access)
737
{
737
{
738
    int flagmap[] = {
738
    int flagmap[] = {
739
        [PF_ACCESS_READ] = AS_AREA_READ,
739
        [PF_ACCESS_READ] = AS_AREA_READ,
740
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
740
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
741
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
741
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
742
    };
742
    };
743
 
743
 
744
    if (!(area->flags & flagmap[access]))
744
    if (!(area->flags & flagmap[access]))
745
        return false;
745
        return false;
746
   
746
   
747
    return true;
747
    return true;
748
}
748
}
749
 
749
 
750
/** Handle page fault within the current address space.
750
/** Handle page fault within the current address space.
751
 *
751
 *
752
 * This is the high-level page fault handler. It decides
752
 * This is the high-level page fault handler. It decides
753
 * whether the page fault can be resolved by any backend
753
 * whether the page fault can be resolved by any backend
754
 * and if so, it invokes the backend to resolve the page
754
 * and if so, it invokes the backend to resolve the page
755
 * fault.
755
 * fault.
756
 *
756
 *
757
 * Interrupts are assumed disabled.
757
 * Interrupts are assumed disabled.
758
 *
758
 *
759
 * @param page Faulting page.
759
 * @param page Faulting page.
760
 * @param access Access mode that caused the fault (i.e. read/write/exec).
760
 * @param access Access mode that caused the fault (i.e. read/write/exec).
761
 * @param istate Pointer to interrupted state.
761
 * @param istate Pointer to interrupted state.
762
 *
762
 *
763
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
763
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
764
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
764
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
765
 */
765
 */
766
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
766
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
767
{
767
{
768
    pte_t *pte;
768
    pte_t *pte;
769
    as_area_t *area;
769
    as_area_t *area;
770
   
770
   
771
    if (!THREAD)
771
    if (!THREAD)
772
        return AS_PF_FAULT;
772
        return AS_PF_FAULT;
773
       
773
       
774
    ASSERT(AS);
774
    ASSERT(AS);
775
 
775
 
776
    mutex_lock(&AS->lock);
776
    mutex_lock(&AS->lock);
777
    area = find_area_and_lock(AS, page);   
777
    area = find_area_and_lock(AS, page);   
778
    if (!area) {
778
    if (!area) {
779
        /*
779
        /*
780
         * No area contained mapping for 'page'.
780
         * No area contained mapping for 'page'.
781
         * Signal page fault to low-level handler.
781
         * Signal page fault to low-level handler.
782
         */
782
         */
783
        mutex_unlock(&AS->lock);
783
        mutex_unlock(&AS->lock);
784
        goto page_fault;
784
        goto page_fault;
785
    }
785
    }
786
 
786
 
787
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
787
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
788
        /*
788
        /*
789
         * The address space area is not fully initialized.
789
         * The address space area is not fully initialized.
790
         * Avoid possible race by returning error.
790
         * Avoid possible race by returning error.
791
         */
791
         */
792
        mutex_unlock(&area->lock);
792
        mutex_unlock(&area->lock);
793
        mutex_unlock(&AS->lock);
793
        mutex_unlock(&AS->lock);
794
        goto page_fault;       
794
        goto page_fault;       
795
    }
795
    }
796
 
796
 
797
    if (!area->backend || !area->backend->page_fault) {
797
    if (!area->backend || !area->backend->page_fault) {
798
        /*
798
        /*
799
         * The address space area is not backed by any backend
799
         * The address space area is not backed by any backend
800
         * or the backend cannot handle page faults.
800
         * or the backend cannot handle page faults.
801
         */
801
         */
802
        mutex_unlock(&area->lock);
802
        mutex_unlock(&area->lock);
803
        mutex_unlock(&AS->lock);
803
        mutex_unlock(&AS->lock);
804
        goto page_fault;       
804
        goto page_fault;       
805
    }
805
    }
806
 
806
 
807
    page_table_lock(AS, false);
807
    page_table_lock(AS, false);
808
   
808
   
809
    /*
809
    /*
810
     * To avoid race condition between two page faults
810
     * To avoid race condition between two page faults
811
     * on the same address, we need to make sure
811
     * on the same address, we need to make sure
812
     * the mapping has not been already inserted.
812
     * the mapping has not been already inserted.
813
     */
813
     */
814
    if ((pte = page_mapping_find(AS, page))) {
814
    if ((pte = page_mapping_find(AS, page))) {
815
        if (PTE_PRESENT(pte)) {
815
        if (PTE_PRESENT(pte)) {
816
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
816
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
817
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
817
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
818
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
818
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
819
                page_table_unlock(AS, false);
819
                page_table_unlock(AS, false);
820
                mutex_unlock(&area->lock);
820
                mutex_unlock(&area->lock);
821
                mutex_unlock(&AS->lock);
821
                mutex_unlock(&AS->lock);
822
                return AS_PF_OK;
822
                return AS_PF_OK;
823
            }
823
            }
824
        }
824
        }
825
    }
825
    }
826
   
826
   
827
    /*
827
    /*
828
     * Resort to the backend page fault handler.
828
     * Resort to the backend page fault handler.
829
     */
829
     */
830
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
830
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
831
        page_table_unlock(AS, false);
831
        page_table_unlock(AS, false);
832
        mutex_unlock(&area->lock);
832
        mutex_unlock(&area->lock);
833
        mutex_unlock(&AS->lock);
833
        mutex_unlock(&AS->lock);
834
        goto page_fault;
834
        goto page_fault;
835
    }
835
    }
836
   
836
   
837
    page_table_unlock(AS, false);
837
    page_table_unlock(AS, false);
838
    mutex_unlock(&area->lock);
838
    mutex_unlock(&area->lock);
839
    mutex_unlock(&AS->lock);
839
    mutex_unlock(&AS->lock);
840
    return AS_PF_OK;
840
    return AS_PF_OK;
841
 
841
 
842
page_fault:
842
page_fault:
843
    if (THREAD->in_copy_from_uspace) {
843
    if (THREAD->in_copy_from_uspace) {
844
        THREAD->in_copy_from_uspace = false;
844
        THREAD->in_copy_from_uspace = false;
845
        istate_set_retaddr(istate,
845
        istate_set_retaddr(istate,
846
            (uintptr_t) &memcpy_from_uspace_failover_address);
846
            (uintptr_t) &memcpy_from_uspace_failover_address);
847
    } else if (THREAD->in_copy_to_uspace) {
847
    } else if (THREAD->in_copy_to_uspace) {
848
        THREAD->in_copy_to_uspace = false;
848
        THREAD->in_copy_to_uspace = false;
849
        istate_set_retaddr(istate,
849
        istate_set_retaddr(istate,
850
            (uintptr_t) &memcpy_to_uspace_failover_address);
850
            (uintptr_t) &memcpy_to_uspace_failover_address);
851
    } else {
851
    } else {
852
        return AS_PF_FAULT;
852
        return AS_PF_FAULT;
853
    }
853
    }
854
 
854
 
855
    return AS_PF_DEFER;
855
    return AS_PF_DEFER;
856
}
856
}
857
 
857
 
858
/** Switch address spaces.
858
/** Switch address spaces.
859
 *
859
 *
860
 * Note that this function cannot sleep as it is essentially a part of
860
 * Note that this function cannot sleep as it is essentially a part of
861
 * scheduling. Sleeping here would lead to deadlock on wakeup.
861
 * scheduling. Sleeping here would lead to deadlock on wakeup.
862
 *
862
 *
863
 * @param old Old address space or NULL.
863
 * @param old Old address space or NULL.
864
 * @param new New address space.
864
 * @param new New address space.
865
 */
865
 */
866
void as_switch(as_t *old, as_t *replace)
866
void as_switch(as_t *old_as, as_t *new_as)
867
{
867
{
868
    ipl_t ipl;
868
    ipl_t ipl;
869
    bool needs_asid = false;
869
    bool needs_asid = false;
870
   
870
   
871
    ipl = interrupts_disable();
871
    ipl = interrupts_disable();
872
    spinlock_lock(&inactive_as_with_asid_lock);
872
    spinlock_lock(&inactive_as_with_asid_lock);
873
 
873
 
874
    /*
874
    /*
875
     * First, take care of the old address space.
875
     * First, take care of the old address space.
876
     */
876
     */
877
    if (old) {
877
    if (old_as) {
878
        mutex_lock_active(&old->lock);
878
        mutex_lock_active(&old_as->lock);
879
        ASSERT(old->cpu_refcount);
879
        ASSERT(old_as->cpu_refcount);
880
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
880
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
881
            /*
881
            /*
882
             * The old address space is no longer active on
882
             * The old address space is no longer active on
883
             * any processor. It can be appended to the
883
             * any processor. It can be appended to the
884
             * list of inactive address spaces with assigned
884
             * list of inactive address spaces with assigned
885
             * ASID.
885
             * ASID.
886
             */
886
             */
887
             ASSERT(old->asid != ASID_INVALID);
887
             ASSERT(old_as->asid != ASID_INVALID);
888
             list_append(&old->inactive_as_with_asid_link,
888
             list_append(&old_as->inactive_as_with_asid_link,
889
                 &inactive_as_with_asid_head);
889
                 &inactive_as_with_asid_head);
890
        }
890
        }
891
        mutex_unlock(&old->lock);
891
        mutex_unlock(&old_as->lock);
892
 
892
 
893
        /*
893
        /*
894
         * Perform architecture-specific tasks when the address space
894
         * Perform architecture-specific tasks when the address space
895
         * is being removed from the CPU.
895
         * is being removed from the CPU.
896
         */
896
         */
897
        as_deinstall_arch(old);
897
        as_deinstall_arch(old_as);
898
    }
898
    }
899
 
899
 
900
    /*
900
    /*
901
     * Second, prepare the new address space.
901
     * Second, prepare the new address space.
902
     */
902
     */
903
    mutex_lock_active(&replace->lock);
903
    mutex_lock_active(&new_as->lock);
904
    if ((replace->cpu_refcount++ == 0) && (replace != AS_KERNEL)) {
904
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
905
        if (replace->asid != ASID_INVALID) {
905
        if (new_as->asid != ASID_INVALID) {
906
            list_remove(&replace->inactive_as_with_asid_link);
906
            list_remove(&new_as->inactive_as_with_asid_link);
907
        } else {
907
        } else {
908
            /*
908
            /*
909
             * Defer call to asid_get() until replace->lock is released.
909
             * Defer call to asid_get() until new_as->lock is released.
910
             */
910
             */
911
            needs_asid = true;
911
            needs_asid = true;
912
        }
912
        }
913
    }
913
    }
-
 
914
#ifdef AS_PAGE_TABLE
914
    SET_PTL0_ADDRESS(replace->page_table);
915
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
-
 
916
#endif
915
    mutex_unlock(&replace->lock);
917
    mutex_unlock(&new_as->lock);
916
 
918
 
917
    if (needs_asid) {
919
    if (needs_asid) {
918
        /*
920
        /*
919
         * Allocation of new ASID was deferred
921
         * Allocation of new ASID was deferred
920
         * until now in order to avoid deadlock.
922
         * until now in order to avoid deadlock.
921
         */
923
         */
922
        asid_t asid;
924
        asid_t asid;
923
       
925
       
924
        asid = asid_get();
926
        asid = asid_get();
925
        mutex_lock_active(&replace->lock);
927
        mutex_lock_active(&new_as->lock);
926
        replace->asid = asid;
928
        new_as->asid = asid;
927
        mutex_unlock(&replace->lock);
929
        mutex_unlock(&new_as->lock);
928
    }
930
    }
929
    spinlock_unlock(&inactive_as_with_asid_lock);
931
    spinlock_unlock(&inactive_as_with_asid_lock);
930
    interrupts_restore(ipl);
932
    interrupts_restore(ipl);
931
   
933
   
932
    /*
934
    /*
933
     * Perform architecture-specific steps.
935
     * Perform architecture-specific steps.
934
     * (e.g. write ASID to hardware register etc.)
936
     * (e.g. write ASID to hardware register etc.)
935
     */
937
     */
936
    as_install_arch(replace);
938
    as_install_arch(new_as);
937
   
939
   
938
    AS = replace;
940
    AS = new_as;
939
}
941
}
940
 
942
 
941
/** Convert address space area flags to page flags.
943
/** Convert address space area flags to page flags.
942
 *
944
 *
943
 * @param aflags Flags of some address space area.
945
 * @param aflags Flags of some address space area.
944
 *
946
 *
945
 * @return Flags to be passed to page_mapping_insert().
947
 * @return Flags to be passed to page_mapping_insert().
946
 */
948
 */
947
int area_flags_to_page_flags(int aflags)
949
int area_flags_to_page_flags(int aflags)
948
{
950
{
949
    int flags;
951
    int flags;
950
 
952
 
951
    flags = PAGE_USER | PAGE_PRESENT;
953
    flags = PAGE_USER | PAGE_PRESENT;
952
   
954
   
953
    if (aflags & AS_AREA_READ)
955
    if (aflags & AS_AREA_READ)
954
        flags |= PAGE_READ;
956
        flags |= PAGE_READ;
955
       
957
       
956
    if (aflags & AS_AREA_WRITE)
958
    if (aflags & AS_AREA_WRITE)
957
        flags |= PAGE_WRITE;
959
        flags |= PAGE_WRITE;
958
   
960
   
959
    if (aflags & AS_AREA_EXEC)
961
    if (aflags & AS_AREA_EXEC)
960
        flags |= PAGE_EXEC;
962
        flags |= PAGE_EXEC;
961
   
963
   
962
    if (aflags & AS_AREA_CACHEABLE)
964
    if (aflags & AS_AREA_CACHEABLE)
963
        flags |= PAGE_CACHEABLE;
965
        flags |= PAGE_CACHEABLE;
964
       
966
       
965
    return flags;
967
    return flags;
966
}
968
}
967
 
969
 
968
/** Compute flags for virtual address translation subsytem.
970
/** Compute flags for virtual address translation subsytem.
969
 *
971
 *
970
 * The address space area must be locked.
972
 * The address space area must be locked.
971
 * Interrupts must be disabled.
973
 * Interrupts must be disabled.
972
 *
974
 *
973
 * @param a Address space area.
975
 * @param a Address space area.
974
 *
976
 *
975
 * @return Flags to be used in page_mapping_insert().
977
 * @return Flags to be used in page_mapping_insert().
976
 */
978
 */
977
int as_area_get_flags(as_area_t *a)
979
int as_area_get_flags(as_area_t *a)
978
{
980
{
979
    return area_flags_to_page_flags(a->flags);
981
    return area_flags_to_page_flags(a->flags);
980
}
982
}
981
 
983
 
982
/** Create page table.
984
/** Create page table.
983
 *
985
 *
984
 * Depending on architecture, create either address space
986
 * Depending on architecture, create either address space
985
 * private or global page table.
987
 * private or global page table.
986
 *
988
 *
987
 * @param flags Flags saying whether the page table is for kernel address space.
989
 * @param flags Flags saying whether the page table is for kernel address space.
988
 *
990
 *
989
 * @return First entry of the page table.
991
 * @return First entry of the page table.
990
 */
992
 */
991
pte_t *page_table_create(int flags)
993
pte_t *page_table_create(int flags)
992
{
994
{
993
        ASSERT(as_operations);
995
        ASSERT(as_operations);
994
        ASSERT(as_operations->page_table_create);
996
        ASSERT(as_operations->page_table_create);
995
 
997
 
996
        return as_operations->page_table_create(flags);
998
        return as_operations->page_table_create(flags);
997
}
999
}
998
 
1000
 
999
/** Destroy page table.
1001
/** Destroy page table.
1000
 *
1002
 *
1001
 * Destroy page table in architecture specific way.
1003
 * Destroy page table in architecture specific way.
1002
 *
1004
 *
1003
 * @param page_table Physical address of PTL0.
1005
 * @param page_table Physical address of PTL0.
1004
 */
1006
 */
1005
void page_table_destroy(pte_t *page_table)
1007
void page_table_destroy(pte_t *page_table)
1006
{
1008
{
1007
        ASSERT(as_operations);
1009
        ASSERT(as_operations);
1008
        ASSERT(as_operations->page_table_destroy);
1010
        ASSERT(as_operations->page_table_destroy);
1009
 
1011
 
1010
        as_operations->page_table_destroy(page_table);
1012
        as_operations->page_table_destroy(page_table);
1011
}
1013
}
1012
 
1014
 
1013
/** Lock page table.
1015
/** Lock page table.
1014
 *
1016
 *
1015
 * This function should be called before any page_mapping_insert(),
1017
 * This function should be called before any page_mapping_insert(),
1016
 * page_mapping_remove() and page_mapping_find().
1018
 * page_mapping_remove() and page_mapping_find().
1017
 *
1019
 *
1018
 * Locking order is such that address space areas must be locked
1020
 * Locking order is such that address space areas must be locked
1019
 * prior to this call. Address space can be locked prior to this
1021
 * prior to this call. Address space can be locked prior to this
1020
 * call in which case the lock argument is false.
1022
 * call in which case the lock argument is false.
1021
 *
1023
 *
1022
 * @param as Address space.
1024
 * @param as Address space.
1023
 * @param lock If false, do not attempt to lock as->lock.
1025
 * @param lock If false, do not attempt to lock as->lock.
1024
 */
1026
 */
1025
void page_table_lock(as_t *as, bool lock)
1027
void page_table_lock(as_t *as, bool lock)
1026
{
1028
{
1027
    ASSERT(as_operations);
1029
    ASSERT(as_operations);
1028
    ASSERT(as_operations->page_table_lock);
1030
    ASSERT(as_operations->page_table_lock);
1029
 
1031
 
1030
    as_operations->page_table_lock(as, lock);
1032
    as_operations->page_table_lock(as, lock);
1031
}
1033
}
1032
 
1034
 
1033
/** Unlock page table.
1035
/** Unlock page table.
1034
 *
1036
 *
1035
 * @param as Address space.
1037
 * @param as Address space.
1036
 * @param unlock If false, do not attempt to unlock as->lock.
1038
 * @param unlock If false, do not attempt to unlock as->lock.
1037
 */
1039
 */
1038
void page_table_unlock(as_t *as, bool unlock)
1040
void page_table_unlock(as_t *as, bool unlock)
1039
{
1041
{
1040
    ASSERT(as_operations);
1042
    ASSERT(as_operations);
1041
    ASSERT(as_operations->page_table_unlock);
1043
    ASSERT(as_operations->page_table_unlock);
1042
 
1044
 
1043
    as_operations->page_table_unlock(as, unlock);
1045
    as_operations->page_table_unlock(as, unlock);
1044
}
1046
}
1045
 
1047
 
1046
 
1048
 
1047
/** Find address space area and lock it.
1049
/** Find address space area and lock it.
1048
 *
1050
 *
1049
 * The address space must be locked and interrupts must be disabled.
1051
 * The address space must be locked and interrupts must be disabled.
1050
 *
1052
 *
1051
 * @param as Address space.
1053
 * @param as Address space.
1052
 * @param va Virtual address.
1054
 * @param va Virtual address.
1053
 *
1055
 *
1054
 * @return Locked address space area containing va on success or NULL on
1056
 * @return Locked address space area containing va on success or NULL on
1055
 *     failure.
1057
 *     failure.
1056
 */
1058
 */
1057
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1059
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1058
{
1060
{
1059
    as_area_t *a;
1061
    as_area_t *a;
1060
    btree_node_t *leaf, *lnode;
1062
    btree_node_t *leaf, *lnode;
1061
    int i;
1063
    int i;
1062
   
1064
   
1063
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1065
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1064
    if (a) {
1066
    if (a) {
1065
        /* va is the base address of an address space area */
1067
        /* va is the base address of an address space area */
1066
        mutex_lock(&a->lock);
1068
        mutex_lock(&a->lock);
1067
        return a;
1069
        return a;
1068
    }
1070
    }
1069
   
1071
   
1070
    /*
1072
    /*
1071
     * Search the leaf node and the righmost record of its left neighbour
1073
     * Search the leaf node and the righmost record of its left neighbour
1072
     * to find out whether this is a miss or va belongs to an address
1074
     * to find out whether this is a miss or va belongs to an address
1073
     * space area found there.
1075
     * space area found there.
1074
     */
1076
     */
1075
   
1077
   
1076
    /* First, search the leaf node itself. */
1078
    /* First, search the leaf node itself. */
1077
    for (i = 0; i < leaf->keys; i++) {
1079
    for (i = 0; i < leaf->keys; i++) {
1078
        a = (as_area_t *) leaf->value[i];
1080
        a = (as_area_t *) leaf->value[i];
1079
        mutex_lock(&a->lock);
1081
        mutex_lock(&a->lock);
1080
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1082
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1081
            return a;
1083
            return a;
1082
        }
1084
        }
1083
        mutex_unlock(&a->lock);
1085
        mutex_unlock(&a->lock);
1084
    }
1086
    }
1085
 
1087
 
1086
    /*
1088
    /*
1087
     * Second, locate the left neighbour and test its last record.
1089
     * Second, locate the left neighbour and test its last record.
1088
     * Because of its position in the B+tree, it must have base < va.
1090
     * Because of its position in the B+tree, it must have base < va.
1089
     */
1091
     */
1090
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1092
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1091
    if (lnode) {
1093
    if (lnode) {
1092
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1094
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1093
        mutex_lock(&a->lock);
1095
        mutex_lock(&a->lock);
1094
        if (va < a->base + a->pages * PAGE_SIZE) {
1096
        if (va < a->base + a->pages * PAGE_SIZE) {
1095
            return a;
1097
            return a;
1096
        }
1098
        }
1097
        mutex_unlock(&a->lock);
1099
        mutex_unlock(&a->lock);
1098
    }
1100
    }
1099
 
1101
 
1100
    return NULL;
1102
    return NULL;
1101
}
1103
}
1102
 
1104
 
1103
/** Check area conflicts with other areas.
1105
/** Check area conflicts with other areas.
1104
 *
1106
 *
1105
 * The address space must be locked and interrupts must be disabled.
1107
 * The address space must be locked and interrupts must be disabled.
1106
 *
1108
 *
1107
 * @param as Address space.
1109
 * @param as Address space.
1108
 * @param va Starting virtual address of the area being tested.
1110
 * @param va Starting virtual address of the area being tested.
1109
 * @param size Size of the area being tested.
1111
 * @param size Size of the area being tested.
1110
 * @param avoid_area Do not touch this area.
1112
 * @param avoid_area Do not touch this area.
1111
 *
1113
 *
1112
 * @return True if there is no conflict, false otherwise.
1114
 * @return True if there is no conflict, false otherwise.
1113
 */
1115
 */
1114
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1116
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1115
              as_area_t *avoid_area)
1117
              as_area_t *avoid_area)
1116
{
1118
{
1117
    as_area_t *a;
1119
    as_area_t *a;
1118
    btree_node_t *leaf, *node;
1120
    btree_node_t *leaf, *node;
1119
    int i;
1121
    int i;
1120
   
1122
   
1121
    /*
1123
    /*
1122
     * We don't want any area to have conflicts with NULL page.
1124
     * We don't want any area to have conflicts with NULL page.
1123
     */
1125
     */
1124
    if (overlaps(va, size, NULL, PAGE_SIZE))
1126
    if (overlaps(va, size, NULL, PAGE_SIZE))
1125
        return false;
1127
        return false;
1126
   
1128
   
1127
    /*
1129
    /*
1128
     * The leaf node is found in O(log n), where n is proportional to
1130
     * The leaf node is found in O(log n), where n is proportional to
1129
     * the number of address space areas belonging to as.
1131
     * the number of address space areas belonging to as.
1130
     * The check for conflicts is then attempted on the rightmost
1132
     * The check for conflicts is then attempted on the rightmost
1131
     * record in the left neighbour, the leftmost record in the right
1133
     * record in the left neighbour, the leftmost record in the right
1132
     * neighbour and all records in the leaf node itself.
1134
     * neighbour and all records in the leaf node itself.
1133
     */
1135
     */
1134
   
1136
   
1135
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1137
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1136
        if (a != avoid_area)
1138
        if (a != avoid_area)
1137
            return false;
1139
            return false;
1138
    }
1140
    }
1139
   
1141
   
1140
    /* First, check the two border cases. */
1142
    /* First, check the two border cases. */
1141
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1143
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1142
        a = (as_area_t *) node->value[node->keys - 1];
1144
        a = (as_area_t *) node->value[node->keys - 1];
1143
        mutex_lock(&a->lock);
1145
        mutex_lock(&a->lock);
1144
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1146
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1145
            mutex_unlock(&a->lock);
1147
            mutex_unlock(&a->lock);
1146
            return false;
1148
            return false;
1147
        }
1149
        }
1148
        mutex_unlock(&a->lock);
1150
        mutex_unlock(&a->lock);
1149
    }
1151
    }
1150
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1152
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1151
    if (node) {
1153
    if (node) {
1152
        a = (as_area_t *) node->value[0];
1154
        a = (as_area_t *) node->value[0];
1153
        mutex_lock(&a->lock);
1155
        mutex_lock(&a->lock);
1154
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1156
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1155
            mutex_unlock(&a->lock);
1157
            mutex_unlock(&a->lock);
1156
            return false;
1158
            return false;
1157
        }
1159
        }
1158
        mutex_unlock(&a->lock);
1160
        mutex_unlock(&a->lock);
1159
    }
1161
    }
1160
   
1162
   
1161
    /* Second, check the leaf node. */
1163
    /* Second, check the leaf node. */
1162
    for (i = 0; i < leaf->keys; i++) {
1164
    for (i = 0; i < leaf->keys; i++) {
1163
        a = (as_area_t *) leaf->value[i];
1165
        a = (as_area_t *) leaf->value[i];
1164
   
1166
   
1165
        if (a == avoid_area)
1167
        if (a == avoid_area)
1166
            continue;
1168
            continue;
1167
   
1169
   
1168
        mutex_lock(&a->lock);
1170
        mutex_lock(&a->lock);
1169
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1171
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1170
            mutex_unlock(&a->lock);
1172
            mutex_unlock(&a->lock);
1171
            return false;
1173
            return false;
1172
        }
1174
        }
1173
        mutex_unlock(&a->lock);
1175
        mutex_unlock(&a->lock);
1174
    }
1176
    }
1175
 
1177
 
1176
    /*
1178
    /*
1177
     * So far, the area does not conflict with other areas.
1179
     * So far, the area does not conflict with other areas.
1178
     * Check if it doesn't conflict with kernel address space.
1180
     * Check if it doesn't conflict with kernel address space.
1179
     */  
1181
     */  
1180
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1182
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1181
        return !overlaps(va, size,
1183
        return !overlaps(va, size,
1182
            KERNEL_ADDRESS_SPACE_START,
1184
            KERNEL_ADDRESS_SPACE_START,
1183
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1185
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1184
    }
1186
    }
1185
 
1187
 
1186
    return true;
1188
    return true;
1187
}
1189
}
1188
 
1190
 
1189
/** Return size of the address space area with given base.  */
1191
/** Return size of the address space area with given base.  */
1190
size_t as_get_size(uintptr_t base)
1192
size_t as_get_size(uintptr_t base)
1191
{
1193
{
1192
    ipl_t ipl;
1194
    ipl_t ipl;
1193
    as_area_t *src_area;
1195
    as_area_t *src_area;
1194
    size_t size;
1196
    size_t size;
1195
 
1197
 
1196
    ipl = interrupts_disable();
1198
    ipl = interrupts_disable();
1197
    src_area = find_area_and_lock(AS, base);
1199
    src_area = find_area_and_lock(AS, base);
1198
    if (src_area){
1200
    if (src_area){
1199
        size = src_area->pages * PAGE_SIZE;
1201
        size = src_area->pages * PAGE_SIZE;
1200
        mutex_unlock(&src_area->lock);
1202
        mutex_unlock(&src_area->lock);
1201
    } else {
1203
    } else {
1202
        size = 0;
1204
        size = 0;
1203
    }
1205
    }
1204
    interrupts_restore(ipl);
1206
    interrupts_restore(ipl);
1205
    return size;
1207
    return size;
1206
}
1208
}
1207
 
1209
 
1208
/** Mark portion of address space area as used.
1210
/** Mark portion of address space area as used.
1209
 *
1211
 *
1210
 * The address space area must be already locked.
1212
 * The address space area must be already locked.
1211
 *
1213
 *
1212
 * @param a Address space area.
1214
 * @param a Address space area.
1213
 * @param page First page to be marked.
1215
 * @param page First page to be marked.
1214
 * @param count Number of page to be marked.
1216
 * @param count Number of page to be marked.
1215
 *
1217
 *
1216
 * @return 0 on failure and 1 on success.
1218
 * @return 0 on failure and 1 on success.
1217
 */
1219
 */
1218
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1220
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1219
{
1221
{
1220
    btree_node_t *leaf, *node;
1222
    btree_node_t *leaf, *node;
1221
    count_t pages;
1223
    count_t pages;
1222
    int i;
1224
    int i;
1223
 
1225
 
1224
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1226
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1225
    ASSERT(count);
1227
    ASSERT(count);
1226
 
1228
 
1227
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1229
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1228
    if (pages) {
1230
    if (pages) {
1229
        /*
1231
        /*
1230
         * We hit the beginning of some used space.
1232
         * We hit the beginning of some used space.
1231
         */
1233
         */
1232
        return 0;
1234
        return 0;
1233
    }
1235
    }
1234
 
1236
 
1235
    if (!leaf->keys) {
1237
    if (!leaf->keys) {
1236
        btree_insert(&a->used_space, page, (void *) count, leaf);
1238
        btree_insert(&a->used_space, page, (void *) count, leaf);
1237
        return 1;
1239
        return 1;
1238
    }
1240
    }
1239
 
1241
 
1240
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1242
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1241
    if (node) {
1243
    if (node) {
1242
        uintptr_t left_pg = node->key[node->keys - 1];
1244
        uintptr_t left_pg = node->key[node->keys - 1];
1243
        uintptr_t right_pg = leaf->key[0];
1245
        uintptr_t right_pg = leaf->key[0];
1244
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1246
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1245
        count_t right_cnt = (count_t) leaf->value[0];
1247
        count_t right_cnt = (count_t) leaf->value[0];
1246
       
1248
       
1247
        /*
1249
        /*
1248
         * Examine the possibility that the interval fits
1250
         * Examine the possibility that the interval fits
1249
         * somewhere between the rightmost interval of
1251
         * somewhere between the rightmost interval of
1250
         * the left neigbour and the first interval of the leaf.
1252
         * the left neigbour and the first interval of the leaf.
1251
         */
1253
         */
1252
         
1254
         
1253
        if (page >= right_pg) {
1255
        if (page >= right_pg) {
1254
            /* Do nothing. */
1256
            /* Do nothing. */
1255
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1257
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1256
            left_cnt * PAGE_SIZE)) {
1258
            left_cnt * PAGE_SIZE)) {
1257
            /* The interval intersects with the left interval. */
1259
            /* The interval intersects with the left interval. */
1258
            return 0;
1260
            return 0;
1259
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1261
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1260
            right_cnt * PAGE_SIZE)) {
1262
            right_cnt * PAGE_SIZE)) {
1261
            /* The interval intersects with the right interval. */
1263
            /* The interval intersects with the right interval. */
1262
            return 0;          
1264
            return 0;          
1263
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1265
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1264
            (page + count * PAGE_SIZE == right_pg)) {
1266
            (page + count * PAGE_SIZE == right_pg)) {
1265
            /*
1267
            /*
1266
             * The interval can be added by merging the two already
1268
             * The interval can be added by merging the two already
1267
             * present intervals.
1269
             * present intervals.
1268
             */
1270
             */
1269
            node->value[node->keys - 1] += count + right_cnt;
1271
            node->value[node->keys - 1] += count + right_cnt;
1270
            btree_remove(&a->used_space, right_pg, leaf);
1272
            btree_remove(&a->used_space, right_pg, leaf);
1271
            return 1;
1273
            return 1;
1272
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1274
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1273
            /*
1275
            /*
1274
             * The interval can be added by simply growing the left
1276
             * The interval can be added by simply growing the left
1275
             * interval.
1277
             * interval.
1276
             */
1278
             */
1277
            node->value[node->keys - 1] += count;
1279
            node->value[node->keys - 1] += count;
1278
            return 1;
1280
            return 1;
1279
        } else if (page + count * PAGE_SIZE == right_pg) {
1281
        } else if (page + count * PAGE_SIZE == right_pg) {
1280
            /*
1282
            /*
1281
             * The interval can be addded by simply moving base of
1283
             * The interval can be addded by simply moving base of
1282
             * the right interval down and increasing its size
1284
             * the right interval down and increasing its size
1283
             * accordingly.
1285
             * accordingly.
1284
             */
1286
             */
1285
            leaf->value[0] += count;
1287
            leaf->value[0] += count;
1286
            leaf->key[0] = page;
1288
            leaf->key[0] = page;
1287
            return 1;
1289
            return 1;
1288
        } else {
1290
        } else {
1289
            /*
1291
            /*
1290
             * The interval is between both neigbouring intervals,
1292
             * The interval is between both neigbouring intervals,
1291
             * but cannot be merged with any of them.
1293
             * but cannot be merged with any of them.
1292
             */
1294
             */
1293
            btree_insert(&a->used_space, page, (void *) count,
1295
            btree_insert(&a->used_space, page, (void *) count,
1294
                leaf);
1296
                leaf);
1295
            return 1;
1297
            return 1;
1296
        }
1298
        }
1297
    } else if (page < leaf->key[0]) {
1299
    } else if (page < leaf->key[0]) {
1298
        uintptr_t right_pg = leaf->key[0];
1300
        uintptr_t right_pg = leaf->key[0];
1299
        count_t right_cnt = (count_t) leaf->value[0];
1301
        count_t right_cnt = (count_t) leaf->value[0];
1300
   
1302
   
1301
        /*
1303
        /*
1302
         * Investigate the border case in which the left neighbour does
1304
         * Investigate the border case in which the left neighbour does
1303
         * not exist but the interval fits from the left.
1305
         * not exist but the interval fits from the left.
1304
         */
1306
         */
1305
         
1307
         
1306
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1308
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1307
            right_cnt * PAGE_SIZE)) {
1309
            right_cnt * PAGE_SIZE)) {
1308
            /* The interval intersects with the right interval. */
1310
            /* The interval intersects with the right interval. */
1309
            return 0;
1311
            return 0;
1310
        } else if (page + count * PAGE_SIZE == right_pg) {
1312
        } else if (page + count * PAGE_SIZE == right_pg) {
1311
            /*
1313
            /*
1312
             * The interval can be added by moving the base of the
1314
             * The interval can be added by moving the base of the
1313
             * right interval down and increasing its size
1315
             * right interval down and increasing its size
1314
             * accordingly.
1316
             * accordingly.
1315
             */
1317
             */
1316
            leaf->key[0] = page;
1318
            leaf->key[0] = page;
1317
            leaf->value[0] += count;
1319
            leaf->value[0] += count;
1318
            return 1;
1320
            return 1;
1319
        } else {
1321
        } else {
1320
            /*
1322
            /*
1321
             * The interval doesn't adjoin with the right interval.
1323
             * The interval doesn't adjoin with the right interval.
1322
             * It must be added individually.
1324
             * It must be added individually.
1323
             */
1325
             */
1324
            btree_insert(&a->used_space, page, (void *) count,
1326
            btree_insert(&a->used_space, page, (void *) count,
1325
                leaf);
1327
                leaf);
1326
            return 1;
1328
            return 1;
1327
        }
1329
        }
1328
    }
1330
    }
1329
 
1331
 
1330
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1332
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1331
    if (node) {
1333
    if (node) {
1332
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1334
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1333
        uintptr_t right_pg = node->key[0];
1335
        uintptr_t right_pg = node->key[0];
1334
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1336
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1335
        count_t right_cnt = (count_t) node->value[0];
1337
        count_t right_cnt = (count_t) node->value[0];
1336
       
1338
       
1337
        /*
1339
        /*
1338
         * Examine the possibility that the interval fits
1340
         * Examine the possibility that the interval fits
1339
         * somewhere between the leftmost interval of
1341
         * somewhere between the leftmost interval of
1340
         * the right neigbour and the last interval of the leaf.
1342
         * the right neigbour and the last interval of the leaf.
1341
         */
1343
         */
1342
 
1344
 
1343
        if (page < left_pg) {
1345
        if (page < left_pg) {
1344
            /* Do nothing. */
1346
            /* Do nothing. */
1345
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1347
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1346
            left_cnt * PAGE_SIZE)) {
1348
            left_cnt * PAGE_SIZE)) {
1347
            /* The interval intersects with the left interval. */
1349
            /* The interval intersects with the left interval. */
1348
            return 0;
1350
            return 0;
1349
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1351
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1350
            right_cnt * PAGE_SIZE)) {
1352
            right_cnt * PAGE_SIZE)) {
1351
            /* The interval intersects with the right interval. */
1353
            /* The interval intersects with the right interval. */
1352
            return 0;          
1354
            return 0;          
1353
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1355
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1354
            (page + count * PAGE_SIZE == right_pg)) {
1356
            (page + count * PAGE_SIZE == right_pg)) {
1355
            /*
1357
            /*
1356
             * The interval can be added by merging the two already
1358
             * The interval can be added by merging the two already
1357
             * present intervals.
1359
             * present intervals.
1358
             * */
1360
             * */
1359
            leaf->value[leaf->keys - 1] += count + right_cnt;
1361
            leaf->value[leaf->keys - 1] += count + right_cnt;
1360
            btree_remove(&a->used_space, right_pg, node);
1362
            btree_remove(&a->used_space, right_pg, node);
1361
            return 1;
1363
            return 1;
1362
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1364
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1363
            /*
1365
            /*
1364
             * The interval can be added by simply growing the left
1366
             * The interval can be added by simply growing the left
1365
             * interval.
1367
             * interval.
1366
             * */
1368
             * */
1367
            leaf->value[leaf->keys - 1] +=  count;
1369
            leaf->value[leaf->keys - 1] +=  count;
1368
            return 1;
1370
            return 1;
1369
        } else if (page + count * PAGE_SIZE == right_pg) {
1371
        } else if (page + count * PAGE_SIZE == right_pg) {
1370
            /*
1372
            /*
1371
             * The interval can be addded by simply moving base of
1373
             * The interval can be addded by simply moving base of
1372
             * the right interval down and increasing its size
1374
             * the right interval down and increasing its size
1373
             * accordingly.
1375
             * accordingly.
1374
             */
1376
             */
1375
            node->value[0] += count;
1377
            node->value[0] += count;
1376
            node->key[0] = page;
1378
            node->key[0] = page;
1377
            return 1;
1379
            return 1;
1378
        } else {
1380
        } else {
1379
            /*
1381
            /*
1380
             * The interval is between both neigbouring intervals,
1382
             * The interval is between both neigbouring intervals,
1381
             * but cannot be merged with any of them.
1383
             * but cannot be merged with any of them.
1382
             */
1384
             */
1383
            btree_insert(&a->used_space, page, (void *) count,
1385
            btree_insert(&a->used_space, page, (void *) count,
1384
                leaf);
1386
                leaf);
1385
            return 1;
1387
            return 1;
1386
        }
1388
        }
1387
    } else if (page >= leaf->key[leaf->keys - 1]) {
1389
    } else if (page >= leaf->key[leaf->keys - 1]) {
1388
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1390
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1389
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1391
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1390
   
1392
   
1391
        /*
1393
        /*
1392
         * Investigate the border case in which the right neighbour
1394
         * Investigate the border case in which the right neighbour
1393
         * does not exist but the interval fits from the right.
1395
         * does not exist but the interval fits from the right.
1394
         */
1396
         */
1395
         
1397
         
1396
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1398
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1397
            left_cnt * PAGE_SIZE)) {
1399
            left_cnt * PAGE_SIZE)) {
1398
            /* The interval intersects with the left interval. */
1400
            /* The interval intersects with the left interval. */
1399
            return 0;
1401
            return 0;
1400
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1402
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1401
            /*
1403
            /*
1402
             * The interval can be added by growing the left
1404
             * The interval can be added by growing the left
1403
             * interval.
1405
             * interval.
1404
             */
1406
             */
1405
            leaf->value[leaf->keys - 1] += count;
1407
            leaf->value[leaf->keys - 1] += count;
1406
            return 1;
1408
            return 1;
1407
        } else {
1409
        } else {
1408
            /*
1410
            /*
1409
             * The interval doesn't adjoin with the left interval.
1411
             * The interval doesn't adjoin with the left interval.
1410
             * It must be added individually.
1412
             * It must be added individually.
1411
             */
1413
             */
1412
            btree_insert(&a->used_space, page, (void *) count,
1414
            btree_insert(&a->used_space, page, (void *) count,
1413
                leaf);
1415
                leaf);
1414
            return 1;
1416
            return 1;
1415
        }
1417
        }
1416
    }
1418
    }
1417
   
1419
   
1418
    /*
1420
    /*
1419
     * Note that if the algorithm made it thus far, the interval can fit
1421
     * Note that if the algorithm made it thus far, the interval can fit
1420
     * only between two other intervals of the leaf. The two border cases
1422
     * only between two other intervals of the leaf. The two border cases
1421
     * were already resolved.
1423
     * were already resolved.
1422
     */
1424
     */
1423
    for (i = 1; i < leaf->keys; i++) {
1425
    for (i = 1; i < leaf->keys; i++) {
1424
        if (page < leaf->key[i]) {
1426
        if (page < leaf->key[i]) {
1425
            uintptr_t left_pg = leaf->key[i - 1];
1427
            uintptr_t left_pg = leaf->key[i - 1];
1426
            uintptr_t right_pg = leaf->key[i];
1428
            uintptr_t right_pg = leaf->key[i];
1427
            count_t left_cnt = (count_t) leaf->value[i - 1];
1429
            count_t left_cnt = (count_t) leaf->value[i - 1];
1428
            count_t right_cnt = (count_t) leaf->value[i];
1430
            count_t right_cnt = (count_t) leaf->value[i];
1429
 
1431
 
1430
            /*
1432
            /*
1431
             * The interval fits between left_pg and right_pg.
1433
             * The interval fits between left_pg and right_pg.
1432
             */
1434
             */
1433
 
1435
 
1434
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1436
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1435
                left_cnt * PAGE_SIZE)) {
1437
                left_cnt * PAGE_SIZE)) {
1436
                /*
1438
                /*
1437
                 * The interval intersects with the left
1439
                 * The interval intersects with the left
1438
                 * interval.
1440
                 * interval.
1439
                 */
1441
                 */
1440
                return 0;
1442
                return 0;
1441
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1443
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1442
                right_cnt * PAGE_SIZE)) {
1444
                right_cnt * PAGE_SIZE)) {
1443
                /*
1445
                /*
1444
                 * The interval intersects with the right
1446
                 * The interval intersects with the right
1445
                 * interval.
1447
                 * interval.
1446
                 */
1448
                 */
1447
                return 0;          
1449
                return 0;          
1448
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1450
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1449
                (page + count * PAGE_SIZE == right_pg)) {
1451
                (page + count * PAGE_SIZE == right_pg)) {
1450
                /*
1452
                /*
1451
                 * The interval can be added by merging the two
1453
                 * The interval can be added by merging the two
1452
                 * already present intervals.
1454
                 * already present intervals.
1453
                 */
1455
                 */
1454
                leaf->value[i - 1] += count + right_cnt;
1456
                leaf->value[i - 1] += count + right_cnt;
1455
                btree_remove(&a->used_space, right_pg, leaf);
1457
                btree_remove(&a->used_space, right_pg, leaf);
1456
                return 1;
1458
                return 1;
1457
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1459
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1458
                /*
1460
                /*
1459
                 * The interval can be added by simply growing
1461
                 * The interval can be added by simply growing
1460
                 * the left interval.
1462
                 * the left interval.
1461
                 */
1463
                 */
1462
                leaf->value[i - 1] += count;
1464
                leaf->value[i - 1] += count;
1463
                return 1;
1465
                return 1;
1464
            } else if (page + count * PAGE_SIZE == right_pg) {
1466
            } else if (page + count * PAGE_SIZE == right_pg) {
1465
                /*
1467
                /*
1466
                     * The interval can be addded by simply moving
1468
                     * The interval can be addded by simply moving
1467
                 * base of the right interval down and
1469
                 * base of the right interval down and
1468
                 * increasing its size accordingly.
1470
                 * increasing its size accordingly.
1469
                 */
1471
                 */
1470
                leaf->value[i] += count;
1472
                leaf->value[i] += count;
1471
                leaf->key[i] = page;
1473
                leaf->key[i] = page;
1472
                return 1;
1474
                return 1;
1473
            } else {
1475
            } else {
1474
                /*
1476
                /*
1475
                 * The interval is between both neigbouring
1477
                 * The interval is between both neigbouring
1476
                 * intervals, but cannot be merged with any of
1478
                 * intervals, but cannot be merged with any of
1477
                 * them.
1479
                 * them.
1478
                 */
1480
                 */
1479
                btree_insert(&a->used_space, page,
1481
                btree_insert(&a->used_space, page,
1480
                    (void *) count, leaf);
1482
                    (void *) count, leaf);
1481
                return 1;
1483
                return 1;
1482
            }
1484
            }
1483
        }
1485
        }
1484
    }
1486
    }
1485
 
1487
 
1486
    panic("Inconsistency detected while adding %d pages of used space at "
1488
    panic("Inconsistency detected while adding %d pages of used space at "
1487
        "%p.\n", count, page);
1489
        "%p.\n", count, page);
1488
}
1490
}
1489
 
1491
 
1490
/** Mark portion of address space area as unused.
1492
/** Mark portion of address space area as unused.
1491
 *
1493
 *
1492
 * The address space area must be already locked.
1494
 * The address space area must be already locked.
1493
 *
1495
 *
1494
 * @param a Address space area.
1496
 * @param a Address space area.
1495
 * @param page First page to be marked.
1497
 * @param page First page to be marked.
1496
 * @param count Number of page to be marked.
1498
 * @param count Number of page to be marked.
1497
 *
1499
 *
1498
 * @return 0 on failure and 1 on success.
1500
 * @return 0 on failure and 1 on success.
1499
 */
1501
 */
1500
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1502
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1501
{
1503
{
1502
    btree_node_t *leaf, *node;
1504
    btree_node_t *leaf, *node;
1503
    count_t pages;
1505
    count_t pages;
1504
    int i;
1506
    int i;
1505
 
1507
 
1506
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1508
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1507
    ASSERT(count);
1509
    ASSERT(count);
1508
 
1510
 
1509
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1511
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1510
    if (pages) {
1512
    if (pages) {
1511
        /*
1513
        /*
1512
         * We are lucky, page is the beginning of some interval.
1514
         * We are lucky, page is the beginning of some interval.
1513
         */
1515
         */
1514
        if (count > pages) {
1516
        if (count > pages) {
1515
            return 0;
1517
            return 0;
1516
        } else if (count == pages) {
1518
        } else if (count == pages) {
1517
            btree_remove(&a->used_space, page, leaf);
1519
            btree_remove(&a->used_space, page, leaf);
1518
            return 1;
1520
            return 1;
1519
        } else {
1521
        } else {
1520
            /*
1522
            /*
1521
             * Find the respective interval.
1523
             * Find the respective interval.
1522
             * Decrease its size and relocate its start address.
1524
             * Decrease its size and relocate its start address.
1523
             */
1525
             */
1524
            for (i = 0; i < leaf->keys; i++) {
1526
            for (i = 0; i < leaf->keys; i++) {
1525
                if (leaf->key[i] == page) {
1527
                if (leaf->key[i] == page) {
1526
                    leaf->key[i] += count * PAGE_SIZE;
1528
                    leaf->key[i] += count * PAGE_SIZE;
1527
                    leaf->value[i] -= count;
1529
                    leaf->value[i] -= count;
1528
                    return 1;
1530
                    return 1;
1529
                }
1531
                }
1530
            }
1532
            }
1531
            goto error;
1533
            goto error;
1532
        }
1534
        }
1533
    }
1535
    }
1534
 
1536
 
1535
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1537
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1536
    if (node && page < leaf->key[0]) {
1538
    if (node && page < leaf->key[0]) {
1537
        uintptr_t left_pg = node->key[node->keys - 1];
1539
        uintptr_t left_pg = node->key[node->keys - 1];
1538
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1540
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1539
 
1541
 
1540
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1542
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1541
            count * PAGE_SIZE)) {
1543
            count * PAGE_SIZE)) {
1542
            if (page + count * PAGE_SIZE ==
1544
            if (page + count * PAGE_SIZE ==
1543
                left_pg + left_cnt * PAGE_SIZE) {
1545
                left_pg + left_cnt * PAGE_SIZE) {
1544
                /*
1546
                /*
1545
                 * The interval is contained in the rightmost
1547
                 * The interval is contained in the rightmost
1546
                 * interval of the left neighbour and can be
1548
                 * interval of the left neighbour and can be
1547
                 * removed by updating the size of the bigger
1549
                 * removed by updating the size of the bigger
1548
                 * interval.
1550
                 * interval.
1549
                 */
1551
                 */
1550
                node->value[node->keys - 1] -= count;
1552
                node->value[node->keys - 1] -= count;
1551
                return 1;
1553
                return 1;
1552
            } else if (page + count * PAGE_SIZE <
1554
            } else if (page + count * PAGE_SIZE <
1553
                left_pg + left_cnt*PAGE_SIZE) {
1555
                left_pg + left_cnt*PAGE_SIZE) {
1554
                count_t new_cnt;
1556
                count_t new_cnt;
1555
               
1557
               
1556
                /*
1558
                /*
1557
                 * The interval is contained in the rightmost
1559
                 * The interval is contained in the rightmost
1558
                 * interval of the left neighbour but its
1560
                 * interval of the left neighbour but its
1559
                 * removal requires both updating the size of
1561
                 * removal requires both updating the size of
1560
                 * the original interval and also inserting a
1562
                 * the original interval and also inserting a
1561
                 * new interval.
1563
                 * new interval.
1562
                 */
1564
                 */
1563
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1565
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1564
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1566
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1565
                node->value[node->keys - 1] -= count + new_cnt;
1567
                node->value[node->keys - 1] -= count + new_cnt;
1566
                btree_insert(&a->used_space, page +
1568
                btree_insert(&a->used_space, page +
1567
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1569
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1568
                return 1;
1570
                return 1;
1569
            }
1571
            }
1570
        }
1572
        }
1571
        return 0;
1573
        return 0;
1572
    } else if (page < leaf->key[0]) {
1574
    } else if (page < leaf->key[0]) {
1573
        return 0;
1575
        return 0;
1574
    }
1576
    }
1575
   
1577
   
1576
    if (page > leaf->key[leaf->keys - 1]) {
1578
    if (page > leaf->key[leaf->keys - 1]) {
1577
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1579
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1578
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1580
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1579
 
1581
 
1580
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1582
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1581
            count * PAGE_SIZE)) {
1583
            count * PAGE_SIZE)) {
1582
            if (page + count * PAGE_SIZE ==
1584
            if (page + count * PAGE_SIZE ==
1583
                left_pg + left_cnt * PAGE_SIZE) {
1585
                left_pg + left_cnt * PAGE_SIZE) {
1584
                /*
1586
                /*
1585
                 * The interval is contained in the rightmost
1587
                 * The interval is contained in the rightmost
1586
                 * interval of the leaf and can be removed by
1588
                 * interval of the leaf and can be removed by
1587
                 * updating the size of the bigger interval.
1589
                 * updating the size of the bigger interval.
1588
                 */
1590
                 */
1589
                leaf->value[leaf->keys - 1] -= count;
1591
                leaf->value[leaf->keys - 1] -= count;
1590
                return 1;
1592
                return 1;
1591
            } else if (page + count * PAGE_SIZE < left_pg +
1593
            } else if (page + count * PAGE_SIZE < left_pg +
1592
                left_cnt * PAGE_SIZE) {
1594
                left_cnt * PAGE_SIZE) {
1593
                count_t new_cnt;
1595
                count_t new_cnt;
1594
               
1596
               
1595
                /*
1597
                /*
1596
                 * The interval is contained in the rightmost
1598
                 * The interval is contained in the rightmost
1597
                 * interval of the leaf but its removal
1599
                 * interval of the leaf but its removal
1598
                 * requires both updating the size of the
1600
                 * requires both updating the size of the
1599
                 * original interval and also inserting a new
1601
                 * original interval and also inserting a new
1600
                 * interval.
1602
                 * interval.
1601
                 */
1603
                 */
1602
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1604
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1603
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1605
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1604
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1606
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1605
                btree_insert(&a->used_space, page +
1607
                btree_insert(&a->used_space, page +
1606
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1608
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1607
                return 1;
1609
                return 1;
1608
            }
1610
            }
1609
        }
1611
        }
1610
        return 0;
1612
        return 0;
1611
    }  
1613
    }  
1612
   
1614
   
1613
    /*
1615
    /*
1614
     * The border cases have been already resolved.
1616
     * The border cases have been already resolved.
1615
     * Now the interval can be only between intervals of the leaf.
1617
     * Now the interval can be only between intervals of the leaf.
1616
     */
1618
     */
1617
    for (i = 1; i < leaf->keys - 1; i++) {
1619
    for (i = 1; i < leaf->keys - 1; i++) {
1618
        if (page < leaf->key[i]) {
1620
        if (page < leaf->key[i]) {
1619
            uintptr_t left_pg = leaf->key[i - 1];
1621
            uintptr_t left_pg = leaf->key[i - 1];
1620
            count_t left_cnt = (count_t) leaf->value[i - 1];
1622
            count_t left_cnt = (count_t) leaf->value[i - 1];
1621
 
1623
 
1622
            /*
1624
            /*
1623
             * Now the interval is between intervals corresponding
1625
             * Now the interval is between intervals corresponding
1624
             * to (i - 1) and i.
1626
             * to (i - 1) and i.
1625
             */
1627
             */
1626
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1628
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1627
                count * PAGE_SIZE)) {
1629
                count * PAGE_SIZE)) {
1628
                if (page + count * PAGE_SIZE ==
1630
                if (page + count * PAGE_SIZE ==
1629
                    left_pg + left_cnt*PAGE_SIZE) {
1631
                    left_pg + left_cnt*PAGE_SIZE) {
1630
                    /*
1632
                    /*
1631
                     * The interval is contained in the
1633
                     * The interval is contained in the
1632
                     * interval (i - 1) of the leaf and can
1634
                     * interval (i - 1) of the leaf and can
1633
                     * be removed by updating the size of
1635
                     * be removed by updating the size of
1634
                     * the bigger interval.
1636
                     * the bigger interval.
1635
                     */
1637
                     */
1636
                    leaf->value[i - 1] -= count;
1638
                    leaf->value[i - 1] -= count;
1637
                    return 1;
1639
                    return 1;
1638
                } else if (page + count * PAGE_SIZE <
1640
                } else if (page + count * PAGE_SIZE <
1639
                    left_pg + left_cnt * PAGE_SIZE) {
1641
                    left_pg + left_cnt * PAGE_SIZE) {
1640
                    count_t new_cnt;
1642
                    count_t new_cnt;
1641
               
1643
               
1642
                    /*
1644
                    /*
1643
                     * The interval is contained in the
1645
                     * The interval is contained in the
1644
                     * interval (i - 1) of the leaf but its
1646
                     * interval (i - 1) of the leaf but its
1645
                     * removal requires both updating the
1647
                     * removal requires both updating the
1646
                     * size of the original interval and
1648
                     * size of the original interval and
1647
                     * also inserting a new interval.
1649
                     * also inserting a new interval.
1648
                     */
1650
                     */
1649
                    new_cnt = ((left_pg +
1651
                    new_cnt = ((left_pg +
1650
                        left_cnt * PAGE_SIZE) -
1652
                        left_cnt * PAGE_SIZE) -
1651
                        (page + count * PAGE_SIZE)) >>
1653
                        (page + count * PAGE_SIZE)) >>
1652
                        PAGE_WIDTH;
1654
                        PAGE_WIDTH;
1653
                    leaf->value[i - 1] -= count + new_cnt;
1655
                    leaf->value[i - 1] -= count + new_cnt;
1654
                    btree_insert(&a->used_space, page +
1656
                    btree_insert(&a->used_space, page +
1655
                        count * PAGE_SIZE, (void *) new_cnt,
1657
                        count * PAGE_SIZE, (void *) new_cnt,
1656
                        leaf);
1658
                        leaf);
1657
                    return 1;
1659
                    return 1;
1658
                }
1660
                }
1659
            }
1661
            }
1660
            return 0;
1662
            return 0;
1661
        }
1663
        }
1662
    }
1664
    }
1663
 
1665
 
1664
error:
1666
error:
1665
    panic("Inconsistency detected while removing %d pages of used space "
1667
    panic("Inconsistency detected while removing %d pages of used space "
1666
        "from %p.\n", count, page);
1668
        "from %p.\n", count, page);
1667
}
1669
}
1668
 
1670
 
1669
/** Remove reference to address space area share info.
1671
/** Remove reference to address space area share info.
1670
 *
1672
 *
1671
 * If the reference count drops to 0, the sh_info is deallocated.
1673
 * If the reference count drops to 0, the sh_info is deallocated.
1672
 *
1674
 *
1673
 * @param sh_info Pointer to address space area share info.
1675
 * @param sh_info Pointer to address space area share info.
1674
 */
1676
 */
1675
void sh_info_remove_reference(share_info_t *sh_info)
1677
void sh_info_remove_reference(share_info_t *sh_info)
1676
{
1678
{
1677
    bool dealloc = false;
1679
    bool dealloc = false;
1678
 
1680
 
1679
    mutex_lock(&sh_info->lock);
1681
    mutex_lock(&sh_info->lock);
1680
    ASSERT(sh_info->refcount);
1682
    ASSERT(sh_info->refcount);
1681
    if (--sh_info->refcount == 0) {
1683
    if (--sh_info->refcount == 0) {
1682
        dealloc = true;
1684
        dealloc = true;
1683
        link_t *cur;
1685
        link_t *cur;
1684
       
1686
       
1685
        /*
1687
        /*
1686
         * Now walk carefully the pagemap B+tree and free/remove
1688
         * Now walk carefully the pagemap B+tree and free/remove
1687
         * reference from all frames found there.
1689
         * reference from all frames found there.
1688
         */
1690
         */
1689
        for (cur = sh_info->pagemap.leaf_head.next;
1691
        for (cur = sh_info->pagemap.leaf_head.next;
1690
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1692
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1691
            btree_node_t *node;
1693
            btree_node_t *node;
1692
            int i;
1694
            int i;
1693
           
1695
           
1694
            node = list_get_instance(cur, btree_node_t, leaf_link);
1696
            node = list_get_instance(cur, btree_node_t, leaf_link);
1695
            for (i = 0; i < node->keys; i++)
1697
            for (i = 0; i < node->keys; i++)
1696
                frame_free((uintptr_t) node->value[i]);
1698
                frame_free((uintptr_t) node->value[i]);
1697
        }
1699
        }
1698
       
1700
       
1699
    }
1701
    }
1700
    mutex_unlock(&sh_info->lock);
1702
    mutex_unlock(&sh_info->lock);
1701
   
1703
   
1702
    if (dealloc) {
1704
    if (dealloc) {
1703
        btree_destroy(&sh_info->pagemap);
1705
        btree_destroy(&sh_info->pagemap);
1704
        free(sh_info);
1706
        free(sh_info);
1705
    }
1707
    }
1706
}
1708
}
1707
 
1709
 
1708
/*
1710
/*
1709
 * Address space related syscalls.
1711
 * Address space related syscalls.
1710
 */
1712
 */
1711
 
1713
 
1712
/** Wrapper for as_area_create(). */
1714
/** Wrapper for as_area_create(). */
1713
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1715
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1714
{
1716
{
1715
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1717
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1716
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1718
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1717
        return (unative_t) address;
1719
        return (unative_t) address;
1718
    else
1720
    else
1719
        return (unative_t) -1;
1721
        return (unative_t) -1;
1720
}
1722
}
1721
 
1723
 
1722
/** Wrapper for as_area_resize(). */
1724
/** Wrapper for as_area_resize(). */
1723
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1725
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1724
{
1726
{
1725
    return (unative_t) as_area_resize(AS, address, size, 0);
1727
    return (unative_t) as_area_resize(AS, address, size, 0);
1726
}
1728
}
1727
 
1729
 
1728
/** Wrapper for as_area_destroy(). */
1730
/** Wrapper for as_area_destroy(). */
1729
unative_t sys_as_area_destroy(uintptr_t address)
1731
unative_t sys_as_area_destroy(uintptr_t address)
1730
{
1732
{
1731
    return (unative_t) as_area_destroy(AS, address);
1733
    return (unative_t) as_area_destroy(AS, address);
1732
}
1734
}
1733
 
1735
 
1734
/** Print out information about address space.
1736
/** Print out information about address space.
1735
 *
1737
 *
1736
 * @param as Address space.
1738
 * @param as Address space.
1737
 */
1739
 */
1738
void as_print(as_t *as)
1740
void as_print(as_t *as)
1739
{
1741
{
1740
    ipl_t ipl;
1742
    ipl_t ipl;
1741
   
1743
   
1742
    ipl = interrupts_disable();
1744
    ipl = interrupts_disable();
1743
    mutex_lock(&as->lock);
1745
    mutex_lock(&as->lock);
1744
   
1746
   
1745
    /* print out info about address space areas */
1747
    /* print out info about address space areas */
1746
    link_t *cur;
1748
    link_t *cur;
1747
    for (cur = as->as_area_btree.leaf_head.next;
1749
    for (cur = as->as_area_btree.leaf_head.next;
1748
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1750
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1749
        btree_node_t *node;
1751
        btree_node_t *node;
1750
       
1752
       
1751
        node = list_get_instance(cur, btree_node_t, leaf_link);
1753
        node = list_get_instance(cur, btree_node_t, leaf_link);
1752
       
1754
       
1753
        int i;
1755
        int i;
1754
        for (i = 0; i < node->keys; i++) {
1756
        for (i = 0; i < node->keys; i++) {
1755
            as_area_t *area = node->value[i];
1757
            as_area_t *area = node->value[i];
1756
       
1758
       
1757
            mutex_lock(&area->lock);
1759
            mutex_lock(&area->lock);
1758
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1760
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1759
                area, area->base, area->pages, area->base,
1761
                area, area->base, area->pages, area->base,
1760
                area->base + area->pages*PAGE_SIZE);
1762
                area->base + area->pages*PAGE_SIZE);
1761
            mutex_unlock(&area->lock);
1763
            mutex_unlock(&area->lock);
1762
        }
1764
        }
1763
    }
1765
    }
1764
   
1766
   
1765
    mutex_unlock(&as->lock);
1767
    mutex_unlock(&as->lock);
1766
    interrupts_restore(ipl);
1768
    interrupts_restore(ipl);
1767
}
1769
}
1768
 
1770
 
1769
/** @}
1771
/** @}
1770
 */
1772
 */
1771
 
1773