Subversion Repositories HelenOS

Rev

Rev 1851 | Rev 1890 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1851 Rev 1889
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
77
#include <typedefs.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
/**
81
/**
82
 * Each architecture decides what functions will be used to carry out
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
83
 * address space operations such as creating or locking page tables.
84
 */
84
 */
85
as_operations_t *as_operations = NULL;
85
as_operations_t *as_operations = NULL;
86
 
86
 
87
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
87
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
88
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
88
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
89
 
89
 
90
/**
90
/**
91
 * This list contains address spaces that are not active on any
91
 * This list contains address spaces that are not active on any
92
 * processor and that have valid ASID.
92
 * processor and that have valid ASID.
93
 */
93
 */
94
LIST_INITIALIZE(inactive_as_with_asid_head);
94
LIST_INITIALIZE(inactive_as_with_asid_head);
95
 
95
 
96
/** Kernel address space. */
96
/** Kernel address space. */
97
as_t *AS_KERNEL = NULL;
97
as_t *AS_KERNEL = NULL;
98
 
98
 
99
static int area_flags_to_page_flags(int aflags);
99
static int area_flags_to_page_flags(int aflags);
100
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
100
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
101
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
101
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
102
static void sh_info_remove_reference(share_info_t *sh_info);
102
static void sh_info_remove_reference(share_info_t *sh_info);
103
 
103
 
104
/** Initialize address space subsystem. */
104
/** Initialize address space subsystem. */
105
void as_init(void)
105
void as_init(void)
106
{
106
{
107
    as_arch_init();
107
    as_arch_init();
108
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
108
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
109
    if (!AS_KERNEL)
109
    if (!AS_KERNEL)
110
        panic("can't create kernel address space\n");
110
        panic("can't create kernel address space\n");
111
   
111
   
112
}
112
}
113
 
113
 
114
/** Create address space.
114
/** Create address space.
115
 *
115
 *
116
 * @param flags Flags that influence way in wich the address space is created.
116
 * @param flags Flags that influence way in wich the address space is created.
117
 */
117
 */
118
as_t *as_create(int flags)
118
as_t *as_create(int flags)
119
{
119
{
120
    as_t *as;
120
    as_t *as;
121
 
121
 
122
    as = (as_t *) malloc(sizeof(as_t), 0);
122
    as = (as_t *) malloc(sizeof(as_t), 0);
123
    link_initialize(&as->inactive_as_with_asid_link);
123
    link_initialize(&as->inactive_as_with_asid_link);
124
    mutex_initialize(&as->lock);
124
    mutex_initialize(&as->lock);
125
    btree_create(&as->as_area_btree);
125
    btree_create(&as->as_area_btree);
126
   
126
   
127
    if (flags & FLAG_AS_KERNEL)
127
    if (flags & FLAG_AS_KERNEL)
128
        as->asid = ASID_KERNEL;
128
        as->asid = ASID_KERNEL;
129
    else
129
    else
130
        as->asid = ASID_INVALID;
130
        as->asid = ASID_INVALID;
131
   
131
   
132
    as->refcount = 0;
132
    as->refcount = 0;
133
    as->cpu_refcount = 0;
133
    as->cpu_refcount = 0;
134
    as->page_table = page_table_create(flags);
134
    as->page_table = page_table_create(flags);
135
 
135
 
136
    return as;
136
    return as;
137
}
137
}
138
 
138
 
139
/** Destroy adress space.
139
/** Destroy adress space.
140
 *
140
 *
141
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
141
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
142
 * the address space can be destroyed.
142
 * the address space can be destroyed.
143
 */
143
 */
144
void as_destroy(as_t *as)
144
void as_destroy(as_t *as)
145
{
145
{
146
    ipl_t ipl;
146
    ipl_t ipl;
147
    bool cond;
147
    bool cond;
148
 
148
 
149
    ASSERT(as->refcount == 0);
149
    ASSERT(as->refcount == 0);
150
   
150
   
151
    /*
151
    /*
152
     * Since there is no reference to this area,
152
     * Since there is no reference to this area,
153
     * it is safe not to lock its mutex.
153
     * it is safe not to lock its mutex.
154
     */
154
     */
155
    ipl = interrupts_disable();
155
    ipl = interrupts_disable();
156
    spinlock_lock(&inactive_as_with_asid_lock);
156
    spinlock_lock(&inactive_as_with_asid_lock);
157
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
157
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
158
        if (as != AS && as->cpu_refcount == 0)
158
        if (as != AS && as->cpu_refcount == 0)
159
            list_remove(&as->inactive_as_with_asid_link);
159
            list_remove(&as->inactive_as_with_asid_link);
160
        asid_put(as->asid);
160
        asid_put(as->asid);
161
    }
161
    }
162
    spinlock_unlock(&inactive_as_with_asid_lock);
162
    spinlock_unlock(&inactive_as_with_asid_lock);
163
 
163
 
164
    /*
164
    /*
165
     * Destroy address space areas of the address space.
165
     * Destroy address space areas of the address space.
166
     * The B+tee must be walked carefully because it is
166
     * The B+tee must be walked carefully because it is
167
     * also being destroyed.
167
     * also being destroyed.
168
     */
168
     */
169
    for (cond = true; cond; ) {
169
    for (cond = true; cond; ) {
170
        btree_node_t *node;
170
        btree_node_t *node;
171
 
171
 
172
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
172
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
173
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
173
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
174
 
174
 
175
        if ((cond = node->keys)) {
175
        if ((cond = node->keys)) {
176
            as_area_destroy(as, node->key[0]);
176
            as_area_destroy(as, node->key[0]);
177
        }
177
        }
178
    }
178
    }
179
 
179
 
180
    btree_destroy(&as->as_area_btree);
180
    btree_destroy(&as->as_area_btree);
181
    page_table_destroy(as->page_table);
181
    page_table_destroy(as->page_table);
182
 
182
 
183
    interrupts_restore(ipl);
183
    interrupts_restore(ipl);
184
   
184
   
185
    free(as);
185
    free(as);
186
}
186
}
187
 
187
 
188
/** Create address space area of common attributes.
188
/** Create address space area of common attributes.
189
 *
189
 *
190
 * The created address space area is added to the target address space.
190
 * The created address space area is added to the target address space.
191
 *
191
 *
192
 * @param as Target address space.
192
 * @param as Target address space.
193
 * @param flags Flags of the area memory.
193
 * @param flags Flags of the area memory.
194
 * @param size Size of area.
194
 * @param size Size of area.
195
 * @param base Base address of area.
195
 * @param base Base address of area.
196
 * @param attrs Attributes of the area.
196
 * @param attrs Attributes of the area.
197
 * @param backend Address space area backend. NULL if no backend is used.
197
 * @param backend Address space area backend. NULL if no backend is used.
198
 * @param backend_data NULL or a pointer to an array holding two void *.
198
 * @param backend_data NULL or a pointer to an array holding two void *.
199
 *
199
 *
200
 * @return Address space area on success or NULL on failure.
200
 * @return Address space area on success or NULL on failure.
201
 */
201
 */
202
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
202
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
203
           mem_backend_t *backend, mem_backend_data_t *backend_data)
203
           mem_backend_t *backend, mem_backend_data_t *backend_data)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    as_area_t *a;
206
    as_area_t *a;
207
   
207
   
208
    if (base % PAGE_SIZE)
208
    if (base % PAGE_SIZE)
209
        return NULL;
209
        return NULL;
210
 
210
 
211
    if (!size)
211
    if (!size)
212
        return NULL;
212
        return NULL;
213
 
213
 
214
    /* Writeable executable areas are not supported. */
214
    /* Writeable executable areas are not supported. */
215
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
215
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
216
        return NULL;
216
        return NULL;
217
   
217
   
218
    ipl = interrupts_disable();
218
    ipl = interrupts_disable();
219
    mutex_lock(&as->lock);
219
    mutex_lock(&as->lock);
220
   
220
   
221
    if (!check_area_conflicts(as, base, size, NULL)) {
221
    if (!check_area_conflicts(as, base, size, NULL)) {
222
        mutex_unlock(&as->lock);
222
        mutex_unlock(&as->lock);
223
        interrupts_restore(ipl);
223
        interrupts_restore(ipl);
224
        return NULL;
224
        return NULL;
225
    }
225
    }
226
   
226
   
227
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
227
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
228
 
228
 
229
    mutex_initialize(&a->lock);
229
    mutex_initialize(&a->lock);
230
   
230
   
231
    a->as = as;
231
    a->as = as;
232
    a->flags = flags;
232
    a->flags = flags;
233
    a->attributes = attrs;
233
    a->attributes = attrs;
234
    a->pages = SIZE2FRAMES(size);
234
    a->pages = SIZE2FRAMES(size);
235
    a->base = base;
235
    a->base = base;
236
    a->sh_info = NULL;
236
    a->sh_info = NULL;
237
    a->backend = backend;
237
    a->backend = backend;
238
    if (backend_data)
238
    if (backend_data)
239
        a->backend_data = *backend_data;
239
        a->backend_data = *backend_data;
240
    else
240
    else
241
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
241
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
242
 
242
 
243
    btree_create(&a->used_space);
243
    btree_create(&a->used_space);
244
   
244
   
245
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
245
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
246
 
246
 
247
    mutex_unlock(&as->lock);
247
    mutex_unlock(&as->lock);
248
    interrupts_restore(ipl);
248
    interrupts_restore(ipl);
249
 
249
 
250
    return a;
250
    return a;
251
}
251
}
252
 
252
 
253
/** Find address space area and change it.
253
/** Find address space area and change it.
254
 *
254
 *
255
 * @param as Address space.
255
 * @param as Address space.
256
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
256
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
257
 * @param size New size of the virtual memory block starting at address.
257
 * @param size New size of the virtual memory block starting at address.
258
 * @param flags Flags influencing the remap operation. Currently unused.
258
 * @param flags Flags influencing the remap operation. Currently unused.
259
 *
259
 *
260
 * @return Zero on success or a value from @ref errno.h otherwise.
260
 * @return Zero on success or a value from @ref errno.h otherwise.
261
 */
261
 */
262
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
262
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
263
{
263
{
264
    as_area_t *area;
264
    as_area_t *area;
265
    ipl_t ipl;
265
    ipl_t ipl;
266
    size_t pages;
266
    size_t pages;
267
   
267
   
268
    ipl = interrupts_disable();
268
    ipl = interrupts_disable();
269
    mutex_lock(&as->lock);
269
    mutex_lock(&as->lock);
270
   
270
   
271
    /*
271
    /*
272
     * Locate the area.
272
     * Locate the area.
273
     */
273
     */
274
    area = find_area_and_lock(as, address);
274
    area = find_area_and_lock(as, address);
275
    if (!area) {
275
    if (!area) {
276
        mutex_unlock(&as->lock);
276
        mutex_unlock(&as->lock);
277
        interrupts_restore(ipl);
277
        interrupts_restore(ipl);
278
        return ENOENT;
278
        return ENOENT;
279
    }
279
    }
280
 
280
 
281
    if (area->backend == &phys_backend) {
281
    if (area->backend == &phys_backend) {
282
        /*
282
        /*
283
         * Remapping of address space areas associated
283
         * Remapping of address space areas associated
284
         * with memory mapped devices is not supported.
284
         * with memory mapped devices is not supported.
285
         */
285
         */
286
        mutex_unlock(&area->lock);
286
        mutex_unlock(&area->lock);
287
        mutex_unlock(&as->lock);
287
        mutex_unlock(&as->lock);
288
        interrupts_restore(ipl);
288
        interrupts_restore(ipl);
289
        return ENOTSUP;
289
        return ENOTSUP;
290
    }
290
    }
291
    if (area->sh_info) {
291
    if (area->sh_info) {
292
        /*
292
        /*
293
         * Remapping of shared address space areas
293
         * Remapping of shared address space areas
294
         * is not supported.
294
         * is not supported.
295
         */
295
         */
296
        mutex_unlock(&area->lock);
296
        mutex_unlock(&area->lock);
297
        mutex_unlock(&as->lock);
297
        mutex_unlock(&as->lock);
298
        interrupts_restore(ipl);
298
        interrupts_restore(ipl);
299
        return ENOTSUP;
299
        return ENOTSUP;
300
    }
300
    }
301
 
301
 
302
    pages = SIZE2FRAMES((address - area->base) + size);
302
    pages = SIZE2FRAMES((address - area->base) + size);
303
    if (!pages) {
303
    if (!pages) {
304
        /*
304
        /*
305
         * Zero size address space areas are not allowed.
305
         * Zero size address space areas are not allowed.
306
         */
306
         */
307
        mutex_unlock(&area->lock);
307
        mutex_unlock(&area->lock);
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return EPERM;
310
        return EPERM;
311
    }
311
    }
312
   
312
   
313
    if (pages < area->pages) {
313
    if (pages < area->pages) {
314
        bool cond;
314
        bool cond;
315
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
315
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
316
 
316
 
317
        /*
317
        /*
318
         * Shrinking the area.
318
         * Shrinking the area.
319
         * No need to check for overlaps.
319
         * No need to check for overlaps.
320
         */
320
         */
321
 
321
 
322
        /*
322
        /*
323
         * Start TLB shootdown sequence.
323
         * Start TLB shootdown sequence.
324
         */
324
         */
325
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
325
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
326
 
326
 
327
        /*
327
        /*
328
         * Remove frames belonging to used space starting from
328
         * Remove frames belonging to used space starting from
329
         * the highest addresses downwards until an overlap with
329
         * the highest addresses downwards until an overlap with
330
         * the resized address space area is found. Note that this
330
         * the resized address space area is found. Note that this
331
         * is also the right way to remove part of the used_space
331
         * is also the right way to remove part of the used_space
332
         * B+tree leaf list.
332
         * B+tree leaf list.
333
         */    
333
         */    
334
        for (cond = true; cond;) {
334
        for (cond = true; cond;) {
335
            btree_node_t *node;
335
            btree_node_t *node;
336
       
336
       
337
            ASSERT(!list_empty(&area->used_space.leaf_head));
337
            ASSERT(!list_empty(&area->used_space.leaf_head));
338
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
338
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
339
            if ((cond = (bool) node->keys)) {
339
            if ((cond = (bool) node->keys)) {
340
                uintptr_t b = node->key[node->keys - 1];
340
                uintptr_t b = node->key[node->keys - 1];
341
                count_t c = (count_t) node->value[node->keys - 1];
341
                count_t c = (count_t) node->value[node->keys - 1];
342
                int i = 0;
342
                int i = 0;
343
           
343
           
344
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
344
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
345
                   
345
                   
346
                    if (b + c*PAGE_SIZE <= start_free) {
346
                    if (b + c*PAGE_SIZE <= start_free) {
347
                        /*
347
                        /*
348
                         * The whole interval fits completely
348
                         * The whole interval fits completely
349
                         * in the resized address space area.
349
                         * in the resized address space area.
350
                         */
350
                         */
351
                        break;
351
                        break;
352
                    }
352
                    }
353
       
353
       
354
                    /*
354
                    /*
355
                     * Part of the interval corresponding to b and c
355
                     * Part of the interval corresponding to b and c
356
                     * overlaps with the resized address space area.
356
                     * overlaps with the resized address space area.
357
                     */
357
                     */
358
       
358
       
359
                    cond = false;   /* we are almost done */
359
                    cond = false;   /* we are almost done */
360
                    i = (start_free - b) >> PAGE_WIDTH;
360
                    i = (start_free - b) >> PAGE_WIDTH;
361
                    if (!used_space_remove(area, start_free, c - i))
361
                    if (!used_space_remove(area, start_free, c - i))
362
                        panic("Could not remove used space.");
362
                        panic("Could not remove used space.\n");
363
                } else {
363
                } else {
364
                    /*
364
                    /*
365
                     * The interval of used space can be completely removed.
365
                     * The interval of used space can be completely removed.
366
                     */
366
                     */
367
                    if (!used_space_remove(area, b, c))
367
                    if (!used_space_remove(area, b, c))
368
                        panic("Could not remove used space.\n");
368
                        panic("Could not remove used space.\n");
369
                }
369
                }
370
           
370
           
371
                for (; i < c; i++) {
371
                for (; i < c; i++) {
372
                    pte_t *pte;
372
                    pte_t *pte;
373
           
373
           
374
                    page_table_lock(as, false);
374
                    page_table_lock(as, false);
375
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
375
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
376
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
376
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
377
                    if (area->backend && area->backend->frame_free) {
377
                    if (area->backend && area->backend->frame_free) {
378
                        area->backend->frame_free(area,
378
                        area->backend->frame_free(area,
379
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
379
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
380
                    }
380
                    }
381
                    page_mapping_remove(as, b + i*PAGE_SIZE);
381
                    page_mapping_remove(as, b + i*PAGE_SIZE);
382
                    page_table_unlock(as, false);
382
                    page_table_unlock(as, false);
383
                }
383
                }
384
            }
384
            }
385
        }
385
        }
386
 
386
 
387
        /*
387
        /*
388
         * Finish TLB shootdown sequence.
388
         * Finish TLB shootdown sequence.
389
         */
389
         */
390
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
390
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
391
        tlb_shootdown_finalize();
391
        tlb_shootdown_finalize();
-
 
392
       
-
 
393
        /*
-
 
394
         * Invalidate software translation caches (e.g. TSB on sparc64).
-
 
395
         */
-
 
396
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
392
    } else {
397
    } else {
393
        /*
398
        /*
394
         * Growing the area.
399
         * Growing the area.
395
         * Check for overlaps with other address space areas.
400
         * Check for overlaps with other address space areas.
396
         */
401
         */
397
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
402
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
398
            mutex_unlock(&area->lock);
403
            mutex_unlock(&area->lock);
399
            mutex_unlock(&as->lock);       
404
            mutex_unlock(&as->lock);       
400
            interrupts_restore(ipl);
405
            interrupts_restore(ipl);
401
            return EADDRNOTAVAIL;
406
            return EADDRNOTAVAIL;
402
        }
407
        }
403
    }
408
    }
404
 
409
 
405
    area->pages = pages;
410
    area->pages = pages;
406
   
411
   
407
    mutex_unlock(&area->lock);
412
    mutex_unlock(&area->lock);
408
    mutex_unlock(&as->lock);
413
    mutex_unlock(&as->lock);
409
    interrupts_restore(ipl);
414
    interrupts_restore(ipl);
410
 
415
 
411
    return 0;
416
    return 0;
412
}
417
}
413
 
418
 
414
/** Destroy address space area.
419
/** Destroy address space area.
415
 *
420
 *
416
 * @param as Address space.
421
 * @param as Address space.
417
 * @param address Address withing the area to be deleted.
422
 * @param address Address withing the area to be deleted.
418
 *
423
 *
419
 * @return Zero on success or a value from @ref errno.h on failure.
424
 * @return Zero on success or a value from @ref errno.h on failure.
420
 */
425
 */
421
int as_area_destroy(as_t *as, uintptr_t address)
426
int as_area_destroy(as_t *as, uintptr_t address)
422
{
427
{
423
    as_area_t *area;
428
    as_area_t *area;
424
    uintptr_t base;
429
    uintptr_t base;
425
    link_t *cur;
430
    link_t *cur;
426
    ipl_t ipl;
431
    ipl_t ipl;
427
 
432
 
428
    ipl = interrupts_disable();
433
    ipl = interrupts_disable();
429
    mutex_lock(&as->lock);
434
    mutex_lock(&as->lock);
430
 
435
 
431
    area = find_area_and_lock(as, address);
436
    area = find_area_and_lock(as, address);
432
    if (!area) {
437
    if (!area) {
433
        mutex_unlock(&as->lock);
438
        mutex_unlock(&as->lock);
434
        interrupts_restore(ipl);
439
        interrupts_restore(ipl);
435
        return ENOENT;
440
        return ENOENT;
436
    }
441
    }
437
 
442
 
438
    base = area->base;
443
    base = area->base;
439
 
444
 
440
    /*
445
    /*
441
     * Start TLB shootdown sequence.
446
     * Start TLB shootdown sequence.
442
     */
447
     */
443
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
448
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
444
 
449
 
445
    /*
450
    /*
446
     * Visit only the pages mapped by used_space B+tree.
451
     * Visit only the pages mapped by used_space B+tree.
447
     */
452
     */
448
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
453
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
449
        btree_node_t *node;
454
        btree_node_t *node;
450
        int i;
455
        int i;
451
       
456
       
452
        node = list_get_instance(cur, btree_node_t, leaf_link);
457
        node = list_get_instance(cur, btree_node_t, leaf_link);
453
        for (i = 0; i < node->keys; i++) {
458
        for (i = 0; i < node->keys; i++) {
454
            uintptr_t b = node->key[i];
459
            uintptr_t b = node->key[i];
455
            count_t j;
460
            count_t j;
456
            pte_t *pte;
461
            pte_t *pte;
457
           
462
           
458
            for (j = 0; j < (count_t) node->value[i]; j++) {
463
            for (j = 0; j < (count_t) node->value[i]; j++) {
459
                page_table_lock(as, false);
464
                page_table_lock(as, false);
460
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
465
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
461
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
466
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
462
                if (area->backend && area->backend->frame_free) {
467
                if (area->backend && area->backend->frame_free) {
463
                    area->backend->frame_free(area,
468
                    area->backend->frame_free(area,
464
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
469
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
465
                }
470
                }
466
                page_mapping_remove(as, b + j*PAGE_SIZE);
471
                page_mapping_remove(as, b + j*PAGE_SIZE);              
467
                page_table_unlock(as, false);
472
                page_table_unlock(as, false);
468
            }
473
            }
469
        }
474
        }
470
    }
475
    }
471
 
476
 
472
    /*
477
    /*
473
     * Finish TLB shootdown sequence.
478
     * Finish TLB shootdown sequence.
474
     */
479
     */
475
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
480
    tlb_invalidate_pages(as->asid, area->base, area->pages);
476
    tlb_shootdown_finalize();
481
    tlb_shootdown_finalize();
477
   
482
   
-
 
483
    /*
-
 
484
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
-
 
485
     */
-
 
486
    as_invalidate_translation_cache(as, area->base, area->pages);
-
 
487
   
478
    btree_destroy(&area->used_space);
488
    btree_destroy(&area->used_space);
479
 
489
 
480
    area->attributes |= AS_AREA_ATTR_PARTIAL;
490
    area->attributes |= AS_AREA_ATTR_PARTIAL;
481
   
491
   
482
    if (area->sh_info)
492
    if (area->sh_info)
483
        sh_info_remove_reference(area->sh_info);
493
        sh_info_remove_reference(area->sh_info);
484
       
494
       
485
    mutex_unlock(&area->lock);
495
    mutex_unlock(&area->lock);
486
 
496
 
487
    /*
497
    /*
488
     * Remove the empty area from address space.
498
     * Remove the empty area from address space.
489
     */
499
     */
490
    btree_remove(&AS->as_area_btree, base, NULL);
500
    btree_remove(&as->as_area_btree, base, NULL);
491
   
501
   
492
    free(area);
502
    free(area);
493
   
503
   
494
    mutex_unlock(&AS->lock);
504
    mutex_unlock(&as->lock);
495
    interrupts_restore(ipl);
505
    interrupts_restore(ipl);
496
    return 0;
506
    return 0;
497
}
507
}
498
 
508
 
499
/** Share address space area with another or the same address space.
509
/** Share address space area with another or the same address space.
500
 *
510
 *
501
 * Address space area mapping is shared with a new address space area.
511
 * Address space area mapping is shared with a new address space area.
502
 * If the source address space area has not been shared so far,
512
 * If the source address space area has not been shared so far,
503
 * a new sh_info is created. The new address space area simply gets the
513
 * a new sh_info is created. The new address space area simply gets the
504
 * sh_info of the source area. The process of duplicating the
514
 * sh_info of the source area. The process of duplicating the
505
 * mapping is done through the backend share function.
515
 * mapping is done through the backend share function.
506
 *
516
 *
507
 * @param src_as Pointer to source address space.
517
 * @param src_as Pointer to source address space.
508
 * @param src_base Base address of the source address space area.
518
 * @param src_base Base address of the source address space area.
509
 * @param acc_size Expected size of the source area.
519
 * @param acc_size Expected size of the source area.
510
 * @param dst_as Pointer to destination address space.
520
 * @param dst_as Pointer to destination address space.
511
 * @param dst_base Target base address.
521
 * @param dst_base Target base address.
512
 * @param dst_flags_mask Destination address space area flags mask.
522
 * @param dst_flags_mask Destination address space area flags mask.
513
 *
523
 *
514
 * @return Zero on success or ENOENT if there is no such task or
524
 * @return Zero on success or ENOENT if there is no such task or
515
 *     if there is no such address space area,
525
 *     if there is no such address space area,
516
 *     EPERM if there was a problem in accepting the area or
526
 *     EPERM if there was a problem in accepting the area or
517
 *     ENOMEM if there was a problem in allocating destination
527
 *     ENOMEM if there was a problem in allocating destination
518
 *     address space area. ENOTSUP is returned if an attempt
528
 *     address space area. ENOTSUP is returned if an attempt
519
 *     to share non-anonymous address space area is detected.
529
 *     to share non-anonymous address space area is detected.
520
 */
530
 */
521
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
531
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
522
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
532
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
523
{
533
{
524
    ipl_t ipl;
534
    ipl_t ipl;
525
    int src_flags;
535
    int src_flags;
526
    size_t src_size;
536
    size_t src_size;
527
    as_area_t *src_area, *dst_area;
537
    as_area_t *src_area, *dst_area;
528
    share_info_t *sh_info;
538
    share_info_t *sh_info;
529
    mem_backend_t *src_backend;
539
    mem_backend_t *src_backend;
530
    mem_backend_data_t src_backend_data;
540
    mem_backend_data_t src_backend_data;
531
   
541
   
532
    ipl = interrupts_disable();
542
    ipl = interrupts_disable();
533
    mutex_lock(&src_as->lock);
543
    mutex_lock(&src_as->lock);
534
    src_area = find_area_and_lock(src_as, src_base);
544
    src_area = find_area_and_lock(src_as, src_base);
535
    if (!src_area) {
545
    if (!src_area) {
536
        /*
546
        /*
537
         * Could not find the source address space area.
547
         * Could not find the source address space area.
538
         */
548
         */
539
        mutex_unlock(&src_as->lock);
549
        mutex_unlock(&src_as->lock);
540
        interrupts_restore(ipl);
550
        interrupts_restore(ipl);
541
        return ENOENT;
551
        return ENOENT;
542
    }
552
    }
543
   
553
   
544
    if (!src_area->backend || !src_area->backend->share) {
554
    if (!src_area->backend || !src_area->backend->share) {
545
        /*
555
        /*
546
         * There is no backend or the backend does not
556
         * There is no backend or the backend does not
547
         * know how to share the area.
557
         * know how to share the area.
548
         */
558
         */
549
        mutex_unlock(&src_area->lock);
559
        mutex_unlock(&src_area->lock);
550
        mutex_unlock(&src_as->lock);
560
        mutex_unlock(&src_as->lock);
551
        interrupts_restore(ipl);
561
        interrupts_restore(ipl);
552
        return ENOTSUP;
562
        return ENOTSUP;
553
    }
563
    }
554
   
564
   
555
    src_size = src_area->pages * PAGE_SIZE;
565
    src_size = src_area->pages * PAGE_SIZE;
556
    src_flags = src_area->flags;
566
    src_flags = src_area->flags;
557
    src_backend = src_area->backend;
567
    src_backend = src_area->backend;
558
    src_backend_data = src_area->backend_data;
568
    src_backend_data = src_area->backend_data;
559
 
569
 
560
    /* Share the cacheable flag from the original mapping */
570
    /* Share the cacheable flag from the original mapping */
561
    if (src_flags & AS_AREA_CACHEABLE)
571
    if (src_flags & AS_AREA_CACHEABLE)
562
        dst_flags_mask |= AS_AREA_CACHEABLE;
572
        dst_flags_mask |= AS_AREA_CACHEABLE;
563
 
573
 
564
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
574
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
565
        mutex_unlock(&src_area->lock);
575
        mutex_unlock(&src_area->lock);
566
        mutex_unlock(&src_as->lock);
576
        mutex_unlock(&src_as->lock);
567
        interrupts_restore(ipl);
577
        interrupts_restore(ipl);
568
        return EPERM;
578
        return EPERM;
569
    }
579
    }
570
 
580
 
571
    /*
581
    /*
572
     * Now we are committed to sharing the area.
582
     * Now we are committed to sharing the area.
573
     * First prepare the area for sharing.
583
     * First prepare the area for sharing.
574
     * Then it will be safe to unlock it.
584
     * Then it will be safe to unlock it.
575
     */
585
     */
576
    sh_info = src_area->sh_info;
586
    sh_info = src_area->sh_info;
577
    if (!sh_info) {
587
    if (!sh_info) {
578
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
588
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
579
        mutex_initialize(&sh_info->lock);
589
        mutex_initialize(&sh_info->lock);
580
        sh_info->refcount = 2;
590
        sh_info->refcount = 2;
581
        btree_create(&sh_info->pagemap);
591
        btree_create(&sh_info->pagemap);
582
        src_area->sh_info = sh_info;
592
        src_area->sh_info = sh_info;
583
    } else {
593
    } else {
584
        mutex_lock(&sh_info->lock);
594
        mutex_lock(&sh_info->lock);
585
        sh_info->refcount++;
595
        sh_info->refcount++;
586
        mutex_unlock(&sh_info->lock);
596
        mutex_unlock(&sh_info->lock);
587
    }
597
    }
588
 
598
 
589
    src_area->backend->share(src_area);
599
    src_area->backend->share(src_area);
590
 
600
 
591
    mutex_unlock(&src_area->lock);
601
    mutex_unlock(&src_area->lock);
592
    mutex_unlock(&src_as->lock);
602
    mutex_unlock(&src_as->lock);
593
 
603
 
594
    /*
604
    /*
595
     * Create copy of the source address space area.
605
     * Create copy of the source address space area.
596
     * The destination area is created with AS_AREA_ATTR_PARTIAL
606
     * The destination area is created with AS_AREA_ATTR_PARTIAL
597
     * attribute set which prevents race condition with
607
     * attribute set which prevents race condition with
598
     * preliminary as_page_fault() calls.
608
     * preliminary as_page_fault() calls.
599
     * The flags of the source area are masked against dst_flags_mask
609
     * The flags of the source area are masked against dst_flags_mask
600
     * to support sharing in less privileged mode.
610
     * to support sharing in less privileged mode.
601
     */
611
     */
602
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
612
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
603
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
613
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
604
    if (!dst_area) {
614
    if (!dst_area) {
605
        /*
615
        /*
606
         * Destination address space area could not be created.
616
         * Destination address space area could not be created.
607
         */
617
         */
608
        sh_info_remove_reference(sh_info);
618
        sh_info_remove_reference(sh_info);
609
       
619
       
610
        interrupts_restore(ipl);
620
        interrupts_restore(ipl);
611
        return ENOMEM;
621
        return ENOMEM;
612
    }
622
    }
613
   
623
   
614
    /*
624
    /*
615
     * Now the destination address space area has been
625
     * Now the destination address space area has been
616
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
626
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
617
     * attribute and set the sh_info.
627
     * attribute and set the sh_info.
618
     */
628
     */
619
    mutex_lock(&dst_area->lock);
629
    mutex_lock(&dst_area->lock);
620
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
630
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
621
    dst_area->sh_info = sh_info;
631
    dst_area->sh_info = sh_info;
622
    mutex_unlock(&dst_area->lock);
632
    mutex_unlock(&dst_area->lock);
623
   
633
   
624
    interrupts_restore(ipl);
634
    interrupts_restore(ipl);
625
   
635
   
626
    return 0;
636
    return 0;
627
}
637
}
628
 
638
 
629
/** Check access mode for address space area.
639
/** Check access mode for address space area.
630
 *
640
 *
631
 * The address space area must be locked prior to this call.
641
 * The address space area must be locked prior to this call.
632
 *
642
 *
633
 * @param area Address space area.
643
 * @param area Address space area.
634
 * @param access Access mode.
644
 * @param access Access mode.
635
 *
645
 *
636
 * @return False if access violates area's permissions, true otherwise.
646
 * @return False if access violates area's permissions, true otherwise.
637
 */
647
 */
638
bool as_area_check_access(as_area_t *area, pf_access_t access)
648
bool as_area_check_access(as_area_t *area, pf_access_t access)
639
{
649
{
640
    int flagmap[] = {
650
    int flagmap[] = {
641
        [PF_ACCESS_READ] = AS_AREA_READ,
651
        [PF_ACCESS_READ] = AS_AREA_READ,
642
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
652
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
643
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
653
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
644
    };
654
    };
645
 
655
 
646
    if (!(area->flags & flagmap[access]))
656
    if (!(area->flags & flagmap[access]))
647
        return false;
657
        return false;
648
   
658
   
649
    return true;
659
    return true;
650
}
660
}
651
 
661
 
652
/** Handle page fault within the current address space.
662
/** Handle page fault within the current address space.
653
 *
663
 *
654
 * This is the high-level page fault handler. It decides
664
 * This is the high-level page fault handler. It decides
655
 * whether the page fault can be resolved by any backend
665
 * whether the page fault can be resolved by any backend
656
 * and if so, it invokes the backend to resolve the page
666
 * and if so, it invokes the backend to resolve the page
657
 * fault.
667
 * fault.
658
 *
668
 *
659
 * Interrupts are assumed disabled.
669
 * Interrupts are assumed disabled.
660
 *
670
 *
661
 * @param page Faulting page.
671
 * @param page Faulting page.
662
 * @param access Access mode that caused the fault (i.e. read/write/exec).
672
 * @param access Access mode that caused the fault (i.e. read/write/exec).
663
 * @param istate Pointer to interrupted state.
673
 * @param istate Pointer to interrupted state.
664
 *
674
 *
665
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
675
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
666
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
676
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
667
 */
677
 */
668
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
678
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
669
{
679
{
670
    pte_t *pte;
680
    pte_t *pte;
671
    as_area_t *area;
681
    as_area_t *area;
672
   
682
   
673
    if (!THREAD)
683
    if (!THREAD)
674
        return AS_PF_FAULT;
684
        return AS_PF_FAULT;
675
       
685
       
676
    ASSERT(AS);
686
    ASSERT(AS);
677
 
687
 
678
    mutex_lock(&AS->lock);
688
    mutex_lock(&AS->lock);
679
    area = find_area_and_lock(AS, page);   
689
    area = find_area_and_lock(AS, page);   
680
    if (!area) {
690
    if (!area) {
681
        /*
691
        /*
682
         * No area contained mapping for 'page'.
692
         * No area contained mapping for 'page'.
683
         * Signal page fault to low-level handler.
693
         * Signal page fault to low-level handler.
684
         */
694
         */
685
        mutex_unlock(&AS->lock);
695
        mutex_unlock(&AS->lock);
686
        goto page_fault;
696
        goto page_fault;
687
    }
697
    }
688
 
698
 
689
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
699
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
690
        /*
700
        /*
691
         * The address space area is not fully initialized.
701
         * The address space area is not fully initialized.
692
         * Avoid possible race by returning error.
702
         * Avoid possible race by returning error.
693
         */
703
         */
694
        mutex_unlock(&area->lock);
704
        mutex_unlock(&area->lock);
695
        mutex_unlock(&AS->lock);
705
        mutex_unlock(&AS->lock);
696
        goto page_fault;       
706
        goto page_fault;       
697
    }
707
    }
698
 
708
 
699
    if (!area->backend || !area->backend->page_fault) {
709
    if (!area->backend || !area->backend->page_fault) {
700
        /*
710
        /*
701
         * The address space area is not backed by any backend
711
         * The address space area is not backed by any backend
702
         * or the backend cannot handle page faults.
712
         * or the backend cannot handle page faults.
703
         */
713
         */
704
        mutex_unlock(&area->lock);
714
        mutex_unlock(&area->lock);
705
        mutex_unlock(&AS->lock);
715
        mutex_unlock(&AS->lock);
706
        goto page_fault;       
716
        goto page_fault;       
707
    }
717
    }
708
 
718
 
709
    page_table_lock(AS, false);
719
    page_table_lock(AS, false);
710
   
720
   
711
    /*
721
    /*
712
     * To avoid race condition between two page faults
722
     * To avoid race condition between two page faults
713
     * on the same address, we need to make sure
723
     * on the same address, we need to make sure
714
     * the mapping has not been already inserted.
724
     * the mapping has not been already inserted.
715
     */
725
     */
716
    if ((pte = page_mapping_find(AS, page))) {
726
    if ((pte = page_mapping_find(AS, page))) {
717
        if (PTE_PRESENT(pte)) {
727
        if (PTE_PRESENT(pte)) {
718
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
728
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
719
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
729
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
720
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
730
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
721
                page_table_unlock(AS, false);
731
                page_table_unlock(AS, false);
722
                mutex_unlock(&area->lock);
732
                mutex_unlock(&area->lock);
723
                mutex_unlock(&AS->lock);
733
                mutex_unlock(&AS->lock);
724
                return AS_PF_OK;
734
                return AS_PF_OK;
725
            }
735
            }
726
        }
736
        }
727
    }
737
    }
728
   
738
   
729
    /*
739
    /*
730
     * Resort to the backend page fault handler.
740
     * Resort to the backend page fault handler.
731
     */
741
     */
732
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
742
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
733
        page_table_unlock(AS, false);
743
        page_table_unlock(AS, false);
734
        mutex_unlock(&area->lock);
744
        mutex_unlock(&area->lock);
735
        mutex_unlock(&AS->lock);
745
        mutex_unlock(&AS->lock);
736
        goto page_fault;
746
        goto page_fault;
737
    }
747
    }
738
   
748
   
739
    page_table_unlock(AS, false);
749
    page_table_unlock(AS, false);
740
    mutex_unlock(&area->lock);
750
    mutex_unlock(&area->lock);
741
    mutex_unlock(&AS->lock);
751
    mutex_unlock(&AS->lock);
742
    return AS_PF_OK;
752
    return AS_PF_OK;
743
 
753
 
744
page_fault:
754
page_fault:
745
    if (THREAD->in_copy_from_uspace) {
755
    if (THREAD->in_copy_from_uspace) {
746
        THREAD->in_copy_from_uspace = false;
756
        THREAD->in_copy_from_uspace = false;
747
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
757
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
748
    } else if (THREAD->in_copy_to_uspace) {
758
    } else if (THREAD->in_copy_to_uspace) {
749
        THREAD->in_copy_to_uspace = false;
759
        THREAD->in_copy_to_uspace = false;
750
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
760
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
751
    } else {
761
    } else {
752
        return AS_PF_FAULT;
762
        return AS_PF_FAULT;
753
    }
763
    }
754
 
764
 
755
    return AS_PF_DEFER;
765
    return AS_PF_DEFER;
756
}
766
}
757
 
767
 
758
/** Switch address spaces.
768
/** Switch address spaces.
759
 *
769
 *
760
 * Note that this function cannot sleep as it is essentially a part of
770
 * Note that this function cannot sleep as it is essentially a part of
761
 * scheduling. Sleeping here would lead to deadlock on wakeup.
771
 * scheduling. Sleeping here would lead to deadlock on wakeup.
762
 *
772
 *
763
 * @param old Old address space or NULL.
773
 * @param old Old address space or NULL.
764
 * @param new New address space.
774
 * @param new New address space.
765
 */
775
 */
766
void as_switch(as_t *old, as_t *new)
776
void as_switch(as_t *old, as_t *new)
767
{
777
{
768
    ipl_t ipl;
778
    ipl_t ipl;
769
    bool needs_asid = false;
779
    bool needs_asid = false;
770
   
780
   
771
    ipl = interrupts_disable();
781
    ipl = interrupts_disable();
772
    spinlock_lock(&inactive_as_with_asid_lock);
782
    spinlock_lock(&inactive_as_with_asid_lock);
773
 
783
 
774
    /*
784
    /*
775
     * First, take care of the old address space.
785
     * First, take care of the old address space.
776
     */
786
     */
777
    if (old) {
787
    if (old) {
778
        mutex_lock_active(&old->lock);
788
        mutex_lock_active(&old->lock);
779
        ASSERT(old->cpu_refcount);
789
        ASSERT(old->cpu_refcount);
780
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
790
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
781
            /*
791
            /*
782
             * The old address space is no longer active on
792
             * The old address space is no longer active on
783
             * any processor. It can be appended to the
793
             * any processor. It can be appended to the
784
             * list of inactive address spaces with assigned
794
             * list of inactive address spaces with assigned
785
             * ASID.
795
             * ASID.
786
             */
796
             */
787
             ASSERT(old->asid != ASID_INVALID);
797
             ASSERT(old->asid != ASID_INVALID);
788
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
798
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
789
        }
799
        }
790
        mutex_unlock(&old->lock);
800
        mutex_unlock(&old->lock);
791
    }
801
    }
792
 
802
 
793
    /*
803
    /*
794
     * Second, prepare the new address space.
804
     * Second, prepare the new address space.
795
     */
805
     */
796
    mutex_lock_active(&new->lock);
806
    mutex_lock_active(&new->lock);
797
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
807
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
798
        if (new->asid != ASID_INVALID)
808
        if (new->asid != ASID_INVALID)
799
            list_remove(&new->inactive_as_with_asid_link);
809
            list_remove(&new->inactive_as_with_asid_link);
800
        else
810
        else
801
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
811
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
802
    }
812
    }
803
    SET_PTL0_ADDRESS(new->page_table);
813
    SET_PTL0_ADDRESS(new->page_table);
804
    mutex_unlock(&new->lock);
814
    mutex_unlock(&new->lock);
805
 
815
 
806
    if (needs_asid) {
816
    if (needs_asid) {
807
        /*
817
        /*
808
         * Allocation of new ASID was deferred
818
         * Allocation of new ASID was deferred
809
         * until now in order to avoid deadlock.
819
         * until now in order to avoid deadlock.
810
         */
820
         */
811
        asid_t asid;
821
        asid_t asid;
812
       
822
       
813
        asid = asid_get();
823
        asid = asid_get();
814
        mutex_lock_active(&new->lock);
824
        mutex_lock_active(&new->lock);
815
        new->asid = asid;
825
        new->asid = asid;
816
        mutex_unlock(&new->lock);
826
        mutex_unlock(&new->lock);
817
    }
827
    }
818
    spinlock_unlock(&inactive_as_with_asid_lock);
828
    spinlock_unlock(&inactive_as_with_asid_lock);
819
    interrupts_restore(ipl);
829
    interrupts_restore(ipl);
820
   
830
   
821
    /*
831
    /*
822
     * Perform architecture-specific steps.
832
     * Perform architecture-specific steps.
823
     * (e.g. write ASID to hardware register etc.)
833
     * (e.g. write ASID to hardware register etc.)
824
     */
834
     */
825
    as_install_arch(new);
835
    as_install_arch(new);
826
   
836
   
827
    AS = new;
837
    AS = new;
828
}
838
}
829
 
839
 
830
/** Convert address space area flags to page flags.
840
/** Convert address space area flags to page flags.
831
 *
841
 *
832
 * @param aflags Flags of some address space area.
842
 * @param aflags Flags of some address space area.
833
 *
843
 *
834
 * @return Flags to be passed to page_mapping_insert().
844
 * @return Flags to be passed to page_mapping_insert().
835
 */
845
 */
836
int area_flags_to_page_flags(int aflags)
846
int area_flags_to_page_flags(int aflags)
837
{
847
{
838
    int flags;
848
    int flags;
839
 
849
 
840
    flags = PAGE_USER | PAGE_PRESENT;
850
    flags = PAGE_USER | PAGE_PRESENT;
841
   
851
   
842
    if (aflags & AS_AREA_READ)
852
    if (aflags & AS_AREA_READ)
843
        flags |= PAGE_READ;
853
        flags |= PAGE_READ;
844
       
854
       
845
    if (aflags & AS_AREA_WRITE)
855
    if (aflags & AS_AREA_WRITE)
846
        flags |= PAGE_WRITE;
856
        flags |= PAGE_WRITE;
847
   
857
   
848
    if (aflags & AS_AREA_EXEC)
858
    if (aflags & AS_AREA_EXEC)
849
        flags |= PAGE_EXEC;
859
        flags |= PAGE_EXEC;
850
   
860
   
851
    if (aflags & AS_AREA_CACHEABLE)
861
    if (aflags & AS_AREA_CACHEABLE)
852
        flags |= PAGE_CACHEABLE;
862
        flags |= PAGE_CACHEABLE;
853
       
863
       
854
    return flags;
864
    return flags;
855
}
865
}
856
 
866
 
857
/** Compute flags for virtual address translation subsytem.
867
/** Compute flags for virtual address translation subsytem.
858
 *
868
 *
859
 * The address space area must be locked.
869
 * The address space area must be locked.
860
 * Interrupts must be disabled.
870
 * Interrupts must be disabled.
861
 *
871
 *
862
 * @param a Address space area.
872
 * @param a Address space area.
863
 *
873
 *
864
 * @return Flags to be used in page_mapping_insert().
874
 * @return Flags to be used in page_mapping_insert().
865
 */
875
 */
866
int as_area_get_flags(as_area_t *a)
876
int as_area_get_flags(as_area_t *a)
867
{
877
{
868
    return area_flags_to_page_flags(a->flags);
878
    return area_flags_to_page_flags(a->flags);
869
}
879
}
870
 
880
 
871
/** Create page table.
881
/** Create page table.
872
 *
882
 *
873
 * Depending on architecture, create either address space
883
 * Depending on architecture, create either address space
874
 * private or global page table.
884
 * private or global page table.
875
 *
885
 *
876
 * @param flags Flags saying whether the page table is for kernel address space.
886
 * @param flags Flags saying whether the page table is for kernel address space.
877
 *
887
 *
878
 * @return First entry of the page table.
888
 * @return First entry of the page table.
879
 */
889
 */
880
pte_t *page_table_create(int flags)
890
pte_t *page_table_create(int flags)
881
{
891
{
882
        ASSERT(as_operations);
892
        ASSERT(as_operations);
883
        ASSERT(as_operations->page_table_create);
893
        ASSERT(as_operations->page_table_create);
884
 
894
 
885
        return as_operations->page_table_create(flags);
895
        return as_operations->page_table_create(flags);
886
}
896
}
887
 
897
 
888
/** Destroy page table.
898
/** Destroy page table.
889
 *
899
 *
890
 * Destroy page table in architecture specific way.
900
 * Destroy page table in architecture specific way.
891
 *
901
 *
892
 * @param page_table Physical address of PTL0.
902
 * @param page_table Physical address of PTL0.
893
 */
903
 */
894
void page_table_destroy(pte_t *page_table)
904
void page_table_destroy(pte_t *page_table)
895
{
905
{
896
        ASSERT(as_operations);
906
        ASSERT(as_operations);
897
        ASSERT(as_operations->page_table_destroy);
907
        ASSERT(as_operations->page_table_destroy);
898
 
908
 
899
        as_operations->page_table_destroy(page_table);
909
        as_operations->page_table_destroy(page_table);
900
}
910
}
901
 
911
 
902
/** Lock page table.
912
/** Lock page table.
903
 *
913
 *
904
 * This function should be called before any page_mapping_insert(),
914
 * This function should be called before any page_mapping_insert(),
905
 * page_mapping_remove() and page_mapping_find().
915
 * page_mapping_remove() and page_mapping_find().
906
 *
916
 *
907
 * Locking order is such that address space areas must be locked
917
 * Locking order is such that address space areas must be locked
908
 * prior to this call. Address space can be locked prior to this
918
 * prior to this call. Address space can be locked prior to this
909
 * call in which case the lock argument is false.
919
 * call in which case the lock argument is false.
910
 *
920
 *
911
 * @param as Address space.
921
 * @param as Address space.
912
 * @param lock If false, do not attempt to lock as->lock.
922
 * @param lock If false, do not attempt to lock as->lock.
913
 */
923
 */
914
void page_table_lock(as_t *as, bool lock)
924
void page_table_lock(as_t *as, bool lock)
915
{
925
{
916
    ASSERT(as_operations);
926
    ASSERT(as_operations);
917
    ASSERT(as_operations->page_table_lock);
927
    ASSERT(as_operations->page_table_lock);
918
 
928
 
919
    as_operations->page_table_lock(as, lock);
929
    as_operations->page_table_lock(as, lock);
920
}
930
}
921
 
931
 
922
/** Unlock page table.
932
/** Unlock page table.
923
 *
933
 *
924
 * @param as Address space.
934
 * @param as Address space.
925
 * @param unlock If false, do not attempt to unlock as->lock.
935
 * @param unlock If false, do not attempt to unlock as->lock.
926
 */
936
 */
927
void page_table_unlock(as_t *as, bool unlock)
937
void page_table_unlock(as_t *as, bool unlock)
928
{
938
{
929
    ASSERT(as_operations);
939
    ASSERT(as_operations);
930
    ASSERT(as_operations->page_table_unlock);
940
    ASSERT(as_operations->page_table_unlock);
931
 
941
 
932
    as_operations->page_table_unlock(as, unlock);
942
    as_operations->page_table_unlock(as, unlock);
933
}
943
}
934
 
944
 
935
 
945
 
936
/** Find address space area and lock it.
946
/** Find address space area and lock it.
937
 *
947
 *
938
 * The address space must be locked and interrupts must be disabled.
948
 * The address space must be locked and interrupts must be disabled.
939
 *
949
 *
940
 * @param as Address space.
950
 * @param as Address space.
941
 * @param va Virtual address.
951
 * @param va Virtual address.
942
 *
952
 *
943
 * @return Locked address space area containing va on success or NULL on failure.
953
 * @return Locked address space area containing va on success or NULL on failure.
944
 */
954
 */
945
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
955
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
946
{
956
{
947
    as_area_t *a;
957
    as_area_t *a;
948
    btree_node_t *leaf, *lnode;
958
    btree_node_t *leaf, *lnode;
949
    int i;
959
    int i;
950
   
960
   
951
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
961
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
952
    if (a) {
962
    if (a) {
953
        /* va is the base address of an address space area */
963
        /* va is the base address of an address space area */
954
        mutex_lock(&a->lock);
964
        mutex_lock(&a->lock);
955
        return a;
965
        return a;
956
    }
966
    }
957
   
967
   
958
    /*
968
    /*
959
     * Search the leaf node and the righmost record of its left neighbour
969
     * Search the leaf node and the righmost record of its left neighbour
960
     * to find out whether this is a miss or va belongs to an address
970
     * to find out whether this is a miss or va belongs to an address
961
     * space area found there.
971
     * space area found there.
962
     */
972
     */
963
   
973
   
964
    /* First, search the leaf node itself. */
974
    /* First, search the leaf node itself. */
965
    for (i = 0; i < leaf->keys; i++) {
975
    for (i = 0; i < leaf->keys; i++) {
966
        a = (as_area_t *) leaf->value[i];
976
        a = (as_area_t *) leaf->value[i];
967
        mutex_lock(&a->lock);
977
        mutex_lock(&a->lock);
968
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
978
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
969
            return a;
979
            return a;
970
        }
980
        }
971
        mutex_unlock(&a->lock);
981
        mutex_unlock(&a->lock);
972
    }
982
    }
973
 
983
 
974
    /*
984
    /*
975
     * Second, locate the left neighbour and test its last record.
985
     * Second, locate the left neighbour and test its last record.
976
     * Because of its position in the B+tree, it must have base < va.
986
     * Because of its position in the B+tree, it must have base < va.
977
     */
987
     */
978
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
988
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
979
        a = (as_area_t *) lnode->value[lnode->keys - 1];
989
        a = (as_area_t *) lnode->value[lnode->keys - 1];
980
        mutex_lock(&a->lock);
990
        mutex_lock(&a->lock);
981
        if (va < a->base + a->pages * PAGE_SIZE) {
991
        if (va < a->base + a->pages * PAGE_SIZE) {
982
            return a;
992
            return a;
983
        }
993
        }
984
        mutex_unlock(&a->lock);
994
        mutex_unlock(&a->lock);
985
    }
995
    }
986
 
996
 
987
    return NULL;
997
    return NULL;
988
}
998
}
989
 
999
 
990
/** Check area conflicts with other areas.
1000
/** Check area conflicts with other areas.
991
 *
1001
 *
992
 * The address space must be locked and interrupts must be disabled.
1002
 * The address space must be locked and interrupts must be disabled.
993
 *
1003
 *
994
 * @param as Address space.
1004
 * @param as Address space.
995
 * @param va Starting virtual address of the area being tested.
1005
 * @param va Starting virtual address of the area being tested.
996
 * @param size Size of the area being tested.
1006
 * @param size Size of the area being tested.
997
 * @param avoid_area Do not touch this area.
1007
 * @param avoid_area Do not touch this area.
998
 *
1008
 *
999
 * @return True if there is no conflict, false otherwise.
1009
 * @return True if there is no conflict, false otherwise.
1000
 */
1010
 */
1001
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1011
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1002
{
1012
{
1003
    as_area_t *a;
1013
    as_area_t *a;
1004
    btree_node_t *leaf, *node;
1014
    btree_node_t *leaf, *node;
1005
    int i;
1015
    int i;
1006
   
1016
   
1007
    /*
1017
    /*
1008
     * We don't want any area to have conflicts with NULL page.
1018
     * We don't want any area to have conflicts with NULL page.
1009
     */
1019
     */
1010
    if (overlaps(va, size, NULL, PAGE_SIZE))
1020
    if (overlaps(va, size, NULL, PAGE_SIZE))
1011
        return false;
1021
        return false;
1012
   
1022
   
1013
    /*
1023
    /*
1014
     * The leaf node is found in O(log n), where n is proportional to
1024
     * The leaf node is found in O(log n), where n is proportional to
1015
     * the number of address space areas belonging to as.
1025
     * the number of address space areas belonging to as.
1016
     * The check for conflicts is then attempted on the rightmost
1026
     * The check for conflicts is then attempted on the rightmost
1017
     * record in the left neighbour, the leftmost record in the right
1027
     * record in the left neighbour, the leftmost record in the right
1018
     * neighbour and all records in the leaf node itself.
1028
     * neighbour and all records in the leaf node itself.
1019
     */
1029
     */
1020
   
1030
   
1021
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1031
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1022
        if (a != avoid_area)
1032
        if (a != avoid_area)
1023
            return false;
1033
            return false;
1024
    }
1034
    }
1025
   
1035
   
1026
    /* First, check the two border cases. */
1036
    /* First, check the two border cases. */
1027
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1037
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1028
        a = (as_area_t *) node->value[node->keys - 1];
1038
        a = (as_area_t *) node->value[node->keys - 1];
1029
        mutex_lock(&a->lock);
1039
        mutex_lock(&a->lock);
1030
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1040
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1031
            mutex_unlock(&a->lock);
1041
            mutex_unlock(&a->lock);
1032
            return false;
1042
            return false;
1033
        }
1043
        }
1034
        mutex_unlock(&a->lock);
1044
        mutex_unlock(&a->lock);
1035
    }
1045
    }
1036
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1046
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1037
        a = (as_area_t *) node->value[0];
1047
        a = (as_area_t *) node->value[0];
1038
        mutex_lock(&a->lock);
1048
        mutex_lock(&a->lock);
1039
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1049
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1040
            mutex_unlock(&a->lock);
1050
            mutex_unlock(&a->lock);
1041
            return false;
1051
            return false;
1042
        }
1052
        }
1043
        mutex_unlock(&a->lock);
1053
        mutex_unlock(&a->lock);
1044
    }
1054
    }
1045
   
1055
   
1046
    /* Second, check the leaf node. */
1056
    /* Second, check the leaf node. */
1047
    for (i = 0; i < leaf->keys; i++) {
1057
    for (i = 0; i < leaf->keys; i++) {
1048
        a = (as_area_t *) leaf->value[i];
1058
        a = (as_area_t *) leaf->value[i];
1049
   
1059
   
1050
        if (a == avoid_area)
1060
        if (a == avoid_area)
1051
            continue;
1061
            continue;
1052
   
1062
   
1053
        mutex_lock(&a->lock);
1063
        mutex_lock(&a->lock);
1054
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1064
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1055
            mutex_unlock(&a->lock);
1065
            mutex_unlock(&a->lock);
1056
            return false;
1066
            return false;
1057
        }
1067
        }
1058
        mutex_unlock(&a->lock);
1068
        mutex_unlock(&a->lock);
1059
    }
1069
    }
1060
 
1070
 
1061
    /*
1071
    /*
1062
     * So far, the area does not conflict with other areas.
1072
     * So far, the area does not conflict with other areas.
1063
     * Check if it doesn't conflict with kernel address space.
1073
     * Check if it doesn't conflict with kernel address space.
1064
     */  
1074
     */  
1065
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1075
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1066
        return !overlaps(va, size,
1076
        return !overlaps(va, size,
1067
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1077
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1068
    }
1078
    }
1069
 
1079
 
1070
    return true;
1080
    return true;
1071
}
1081
}
1072
 
1082
 
1073
/** Return size of the address space area with given base.  */
1083
/** Return size of the address space area with given base.  */
1074
size_t as_get_size(uintptr_t base)
1084
size_t as_get_size(uintptr_t base)
1075
{
1085
{
1076
    ipl_t ipl;
1086
    ipl_t ipl;
1077
    as_area_t *src_area;
1087
    as_area_t *src_area;
1078
    size_t size;
1088
    size_t size;
1079
 
1089
 
1080
    ipl = interrupts_disable();
1090
    ipl = interrupts_disable();
1081
    src_area = find_area_and_lock(AS, base);
1091
    src_area = find_area_and_lock(AS, base);
1082
    if (src_area){
1092
    if (src_area){
1083
        size = src_area->pages * PAGE_SIZE;
1093
        size = src_area->pages * PAGE_SIZE;
1084
        mutex_unlock(&src_area->lock);
1094
        mutex_unlock(&src_area->lock);
1085
    } else {
1095
    } else {
1086
        size = 0;
1096
        size = 0;
1087
    }
1097
    }
1088
    interrupts_restore(ipl);
1098
    interrupts_restore(ipl);
1089
    return size;
1099
    return size;
1090
}
1100
}
1091
 
1101
 
1092
/** Mark portion of address space area as used.
1102
/** Mark portion of address space area as used.
1093
 *
1103
 *
1094
 * The address space area must be already locked.
1104
 * The address space area must be already locked.
1095
 *
1105
 *
1096
 * @param a Address space area.
1106
 * @param a Address space area.
1097
 * @param page First page to be marked.
1107
 * @param page First page to be marked.
1098
 * @param count Number of page to be marked.
1108
 * @param count Number of page to be marked.
1099
 *
1109
 *
1100
 * @return 0 on failure and 1 on success.
1110
 * @return 0 on failure and 1 on success.
1101
 */
1111
 */
1102
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1112
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1103
{
1113
{
1104
    btree_node_t *leaf, *node;
1114
    btree_node_t *leaf, *node;
1105
    count_t pages;
1115
    count_t pages;
1106
    int i;
1116
    int i;
1107
 
1117
 
1108
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1118
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1109
    ASSERT(count);
1119
    ASSERT(count);
1110
 
1120
 
1111
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1121
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1112
    if (pages) {
1122
    if (pages) {
1113
        /*
1123
        /*
1114
         * We hit the beginning of some used space.
1124
         * We hit the beginning of some used space.
1115
         */
1125
         */
1116
        return 0;
1126
        return 0;
1117
    }
1127
    }
1118
 
1128
 
1119
    if (!leaf->keys) {
1129
    if (!leaf->keys) {
1120
        btree_insert(&a->used_space, page, (void *) count, leaf);
1130
        btree_insert(&a->used_space, page, (void *) count, leaf);
1121
        return 1;
1131
        return 1;
1122
    }
1132
    }
1123
 
1133
 
1124
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1134
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1125
    if (node) {
1135
    if (node) {
1126
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1136
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1127
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1137
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1128
       
1138
       
1129
        /*
1139
        /*
1130
         * Examine the possibility that the interval fits
1140
         * Examine the possibility that the interval fits
1131
         * somewhere between the rightmost interval of
1141
         * somewhere between the rightmost interval of
1132
         * the left neigbour and the first interval of the leaf.
1142
         * the left neigbour and the first interval of the leaf.
1133
         */
1143
         */
1134
         
1144
         
1135
        if (page >= right_pg) {
1145
        if (page >= right_pg) {
1136
            /* Do nothing. */
1146
            /* Do nothing. */
1137
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1147
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1138
            /* The interval intersects with the left interval. */
1148
            /* The interval intersects with the left interval. */
1139
            return 0;
1149
            return 0;
1140
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1150
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1141
            /* The interval intersects with the right interval. */
1151
            /* The interval intersects with the right interval. */
1142
            return 0;          
1152
            return 0;          
1143
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1153
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1144
            /* The interval can be added by merging the two already present intervals. */
1154
            /* The interval can be added by merging the two already present intervals. */
1145
            node->value[node->keys - 1] += count + right_cnt;
1155
            node->value[node->keys - 1] += count + right_cnt;
1146
            btree_remove(&a->used_space, right_pg, leaf);
1156
            btree_remove(&a->used_space, right_pg, leaf);
1147
            return 1;
1157
            return 1;
1148
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1158
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1149
            /* The interval can be added by simply growing the left interval. */
1159
            /* The interval can be added by simply growing the left interval. */
1150
            node->value[node->keys - 1] += count;
1160
            node->value[node->keys - 1] += count;
1151
            return 1;
1161
            return 1;
1152
        } else if (page + count*PAGE_SIZE == right_pg) {
1162
        } else if (page + count*PAGE_SIZE == right_pg) {
1153
            /*
1163
            /*
1154
             * The interval can be addded by simply moving base of the right
1164
             * The interval can be addded by simply moving base of the right
1155
             * interval down and increasing its size accordingly.
1165
             * interval down and increasing its size accordingly.
1156
             */
1166
             */
1157
            leaf->value[0] += count;
1167
            leaf->value[0] += count;
1158
            leaf->key[0] = page;
1168
            leaf->key[0] = page;
1159
            return 1;
1169
            return 1;
1160
        } else {
1170
        } else {
1161
            /*
1171
            /*
1162
             * The interval is between both neigbouring intervals,
1172
             * The interval is between both neigbouring intervals,
1163
             * but cannot be merged with any of them.
1173
             * but cannot be merged with any of them.
1164
             */
1174
             */
1165
            btree_insert(&a->used_space, page, (void *) count, leaf);
1175
            btree_insert(&a->used_space, page, (void *) count, leaf);
1166
            return 1;
1176
            return 1;
1167
        }
1177
        }
1168
    } else if (page < leaf->key[0]) {
1178
    } else if (page < leaf->key[0]) {
1169
        uintptr_t right_pg = leaf->key[0];
1179
        uintptr_t right_pg = leaf->key[0];
1170
        count_t right_cnt = (count_t) leaf->value[0];
1180
        count_t right_cnt = (count_t) leaf->value[0];
1171
   
1181
   
1172
        /*
1182
        /*
1173
         * Investigate the border case in which the left neighbour does not
1183
         * Investigate the border case in which the left neighbour does not
1174
         * exist but the interval fits from the left.
1184
         * exist but the interval fits from the left.
1175
         */
1185
         */
1176
         
1186
         
1177
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1187
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1178
            /* The interval intersects with the right interval. */
1188
            /* The interval intersects with the right interval. */
1179
            return 0;
1189
            return 0;
1180
        } else if (page + count*PAGE_SIZE == right_pg) {
1190
        } else if (page + count*PAGE_SIZE == right_pg) {
1181
            /*
1191
            /*
1182
             * The interval can be added by moving the base of the right interval down
1192
             * The interval can be added by moving the base of the right interval down
1183
             * and increasing its size accordingly.
1193
             * and increasing its size accordingly.
1184
             */
1194
             */
1185
            leaf->key[0] = page;
1195
            leaf->key[0] = page;
1186
            leaf->value[0] += count;
1196
            leaf->value[0] += count;
1187
            return 1;
1197
            return 1;
1188
        } else {
1198
        } else {
1189
            /*
1199
            /*
1190
             * The interval doesn't adjoin with the right interval.
1200
             * The interval doesn't adjoin with the right interval.
1191
             * It must be added individually.
1201
             * It must be added individually.
1192
             */
1202
             */
1193
            btree_insert(&a->used_space, page, (void *) count, leaf);
1203
            btree_insert(&a->used_space, page, (void *) count, leaf);
1194
            return 1;
1204
            return 1;
1195
        }
1205
        }
1196
    }
1206
    }
1197
 
1207
 
1198
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1208
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1199
    if (node) {
1209
    if (node) {
1200
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1210
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1201
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1211
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1202
       
1212
       
1203
        /*
1213
        /*
1204
         * Examine the possibility that the interval fits
1214
         * Examine the possibility that the interval fits
1205
         * somewhere between the leftmost interval of
1215
         * somewhere between the leftmost interval of
1206
         * the right neigbour and the last interval of the leaf.
1216
         * the right neigbour and the last interval of the leaf.
1207
         */
1217
         */
1208
 
1218
 
1209
        if (page < left_pg) {
1219
        if (page < left_pg) {
1210
            /* Do nothing. */
1220
            /* Do nothing. */
1211
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1221
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1212
            /* The interval intersects with the left interval. */
1222
            /* The interval intersects with the left interval. */
1213
            return 0;
1223
            return 0;
1214
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1224
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1215
            /* The interval intersects with the right interval. */
1225
            /* The interval intersects with the right interval. */
1216
            return 0;          
1226
            return 0;          
1217
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1227
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1218
            /* The interval can be added by merging the two already present intervals. */
1228
            /* The interval can be added by merging the two already present intervals. */
1219
            leaf->value[leaf->keys - 1] += count + right_cnt;
1229
            leaf->value[leaf->keys - 1] += count + right_cnt;
1220
            btree_remove(&a->used_space, right_pg, node);
1230
            btree_remove(&a->used_space, right_pg, node);
1221
            return 1;
1231
            return 1;
1222
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1232
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1223
            /* The interval can be added by simply growing the left interval. */
1233
            /* The interval can be added by simply growing the left interval. */
1224
            leaf->value[leaf->keys - 1] +=  count;
1234
            leaf->value[leaf->keys - 1] +=  count;
1225
            return 1;
1235
            return 1;
1226
        } else if (page + count*PAGE_SIZE == right_pg) {
1236
        } else if (page + count*PAGE_SIZE == right_pg) {
1227
            /*
1237
            /*
1228
             * The interval can be addded by simply moving base of the right
1238
             * The interval can be addded by simply moving base of the right
1229
             * interval down and increasing its size accordingly.
1239
             * interval down and increasing its size accordingly.
1230
             */
1240
             */
1231
            node->value[0] += count;
1241
            node->value[0] += count;
1232
            node->key[0] = page;
1242
            node->key[0] = page;
1233
            return 1;
1243
            return 1;
1234
        } else {
1244
        } else {
1235
            /*
1245
            /*
1236
             * The interval is between both neigbouring intervals,
1246
             * The interval is between both neigbouring intervals,
1237
             * but cannot be merged with any of them.
1247
             * but cannot be merged with any of them.
1238
             */
1248
             */
1239
            btree_insert(&a->used_space, page, (void *) count, leaf);
1249
            btree_insert(&a->used_space, page, (void *) count, leaf);
1240
            return 1;
1250
            return 1;
1241
        }
1251
        }
1242
    } else if (page >= leaf->key[leaf->keys - 1]) {
1252
    } else if (page >= leaf->key[leaf->keys - 1]) {
1243
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1253
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1244
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1254
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1245
   
1255
   
1246
        /*
1256
        /*
1247
         * Investigate the border case in which the right neighbour does not
1257
         * Investigate the border case in which the right neighbour does not
1248
         * exist but the interval fits from the right.
1258
         * exist but the interval fits from the right.
1249
         */
1259
         */
1250
         
1260
         
1251
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1261
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1252
            /* The interval intersects with the left interval. */
1262
            /* The interval intersects with the left interval. */
1253
            return 0;
1263
            return 0;
1254
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1264
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1255
            /* The interval can be added by growing the left interval. */
1265
            /* The interval can be added by growing the left interval. */
1256
            leaf->value[leaf->keys - 1] += count;
1266
            leaf->value[leaf->keys - 1] += count;
1257
            return 1;
1267
            return 1;
1258
        } else {
1268
        } else {
1259
            /*
1269
            /*
1260
             * The interval doesn't adjoin with the left interval.
1270
             * The interval doesn't adjoin with the left interval.
1261
             * It must be added individually.
1271
             * It must be added individually.
1262
             */
1272
             */
1263
            btree_insert(&a->used_space, page, (void *) count, leaf);
1273
            btree_insert(&a->used_space, page, (void *) count, leaf);
1264
            return 1;
1274
            return 1;
1265
        }
1275
        }
1266
    }
1276
    }
1267
   
1277
   
1268
    /*
1278
    /*
1269
     * Note that if the algorithm made it thus far, the interval can fit only
1279
     * Note that if the algorithm made it thus far, the interval can fit only
1270
     * between two other intervals of the leaf. The two border cases were already
1280
     * between two other intervals of the leaf. The two border cases were already
1271
     * resolved.
1281
     * resolved.
1272
     */
1282
     */
1273
    for (i = 1; i < leaf->keys; i++) {
1283
    for (i = 1; i < leaf->keys; i++) {
1274
        if (page < leaf->key[i]) {
1284
        if (page < leaf->key[i]) {
1275
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1285
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1276
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1286
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1277
 
1287
 
1278
            /*
1288
            /*
1279
             * The interval fits between left_pg and right_pg.
1289
             * The interval fits between left_pg and right_pg.
1280
             */
1290
             */
1281
 
1291
 
1282
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1292
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1283
                /* The interval intersects with the left interval. */
1293
                /* The interval intersects with the left interval. */
1284
                return 0;
1294
                return 0;
1285
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1295
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1286
                /* The interval intersects with the right interval. */
1296
                /* The interval intersects with the right interval. */
1287
                return 0;          
1297
                return 0;          
1288
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1298
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1289
                /* The interval can be added by merging the two already present intervals. */
1299
                /* The interval can be added by merging the two already present intervals. */
1290
                leaf->value[i - 1] += count + right_cnt;
1300
                leaf->value[i - 1] += count + right_cnt;
1291
                btree_remove(&a->used_space, right_pg, leaf);
1301
                btree_remove(&a->used_space, right_pg, leaf);
1292
                return 1;
1302
                return 1;
1293
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1303
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1294
                /* The interval can be added by simply growing the left interval. */
1304
                /* The interval can be added by simply growing the left interval. */
1295
                leaf->value[i - 1] += count;
1305
                leaf->value[i - 1] += count;
1296
                return 1;
1306
                return 1;
1297
            } else if (page + count*PAGE_SIZE == right_pg) {
1307
            } else if (page + count*PAGE_SIZE == right_pg) {
1298
                /*
1308
                /*
1299
                     * The interval can be addded by simply moving base of the right
1309
                     * The interval can be addded by simply moving base of the right
1300
                 * interval down and increasing its size accordingly.
1310
                 * interval down and increasing its size accordingly.
1301
                 */
1311
                 */
1302
                leaf->value[i] += count;
1312
                leaf->value[i] += count;
1303
                leaf->key[i] = page;
1313
                leaf->key[i] = page;
1304
                return 1;
1314
                return 1;
1305
            } else {
1315
            } else {
1306
                /*
1316
                /*
1307
                 * The interval is between both neigbouring intervals,
1317
                 * The interval is between both neigbouring intervals,
1308
                 * but cannot be merged with any of them.
1318
                 * but cannot be merged with any of them.
1309
                 */
1319
                 */
1310
                btree_insert(&a->used_space, page, (void *) count, leaf);
1320
                btree_insert(&a->used_space, page, (void *) count, leaf);
1311
                return 1;
1321
                return 1;
1312
            }
1322
            }
1313
        }
1323
        }
1314
    }
1324
    }
1315
 
1325
 
1316
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1326
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1317
}
1327
}
1318
 
1328
 
1319
/** Mark portion of address space area as unused.
1329
/** Mark portion of address space area as unused.
1320
 *
1330
 *
1321
 * The address space area must be already locked.
1331
 * The address space area must be already locked.
1322
 *
1332
 *
1323
 * @param a Address space area.
1333
 * @param a Address space area.
1324
 * @param page First page to be marked.
1334
 * @param page First page to be marked.
1325
 * @param count Number of page to be marked.
1335
 * @param count Number of page to be marked.
1326
 *
1336
 *
1327
 * @return 0 on failure and 1 on success.
1337
 * @return 0 on failure and 1 on success.
1328
 */
1338
 */
1329
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1339
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1330
{
1340
{
1331
    btree_node_t *leaf, *node;
1341
    btree_node_t *leaf, *node;
1332
    count_t pages;
1342
    count_t pages;
1333
    int i;
1343
    int i;
1334
 
1344
 
1335
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1345
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1336
    ASSERT(count);
1346
    ASSERT(count);
1337
 
1347
 
1338
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1348
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1339
    if (pages) {
1349
    if (pages) {
1340
        /*
1350
        /*
1341
         * We are lucky, page is the beginning of some interval.
1351
         * We are lucky, page is the beginning of some interval.
1342
         */
1352
         */
1343
        if (count > pages) {
1353
        if (count > pages) {
1344
            return 0;
1354
            return 0;
1345
        } else if (count == pages) {
1355
        } else if (count == pages) {
1346
            btree_remove(&a->used_space, page, leaf);
1356
            btree_remove(&a->used_space, page, leaf);
1347
            return 1;
1357
            return 1;
1348
        } else {
1358
        } else {
1349
            /*
1359
            /*
1350
             * Find the respective interval.
1360
             * Find the respective interval.
1351
             * Decrease its size and relocate its start address.
1361
             * Decrease its size and relocate its start address.
1352
             */
1362
             */
1353
            for (i = 0; i < leaf->keys; i++) {
1363
            for (i = 0; i < leaf->keys; i++) {
1354
                if (leaf->key[i] == page) {
1364
                if (leaf->key[i] == page) {
1355
                    leaf->key[i] += count*PAGE_SIZE;
1365
                    leaf->key[i] += count*PAGE_SIZE;
1356
                    leaf->value[i] -= count;
1366
                    leaf->value[i] -= count;
1357
                    return 1;
1367
                    return 1;
1358
                }
1368
                }
1359
            }
1369
            }
1360
            goto error;
1370
            goto error;
1361
        }
1371
        }
1362
    }
1372
    }
1363
 
1373
 
1364
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1374
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1365
    if (node && page < leaf->key[0]) {
1375
    if (node && page < leaf->key[0]) {
1366
        uintptr_t left_pg = node->key[node->keys - 1];
1376
        uintptr_t left_pg = node->key[node->keys - 1];
1367
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1377
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1368
 
1378
 
1369
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1379
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1370
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1380
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1371
                /*
1381
                /*
1372
                 * The interval is contained in the rightmost interval
1382
                 * The interval is contained in the rightmost interval
1373
                 * of the left neighbour and can be removed by
1383
                 * of the left neighbour and can be removed by
1374
                 * updating the size of the bigger interval.
1384
                 * updating the size of the bigger interval.
1375
                 */
1385
                 */
1376
                node->value[node->keys - 1] -= count;
1386
                node->value[node->keys - 1] -= count;
1377
                return 1;
1387
                return 1;
1378
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1388
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1379
                count_t new_cnt;
1389
                count_t new_cnt;
1380
               
1390
               
1381
                /*
1391
                /*
1382
                 * The interval is contained in the rightmost interval
1392
                 * The interval is contained in the rightmost interval
1383
                 * of the left neighbour but its removal requires
1393
                 * of the left neighbour but its removal requires
1384
                 * both updating the size of the original interval and
1394
                 * both updating the size of the original interval and
1385
                 * also inserting a new interval.
1395
                 * also inserting a new interval.
1386
                 */
1396
                 */
1387
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1397
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1388
                node->value[node->keys - 1] -= count + new_cnt;
1398
                node->value[node->keys - 1] -= count + new_cnt;
1389
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1399
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1390
                return 1;
1400
                return 1;
1391
            }
1401
            }
1392
        }
1402
        }
1393
        return 0;
1403
        return 0;
1394
    } else if (page < leaf->key[0]) {
1404
    } else if (page < leaf->key[0]) {
1395
        return 0;
1405
        return 0;
1396
    }
1406
    }
1397
   
1407
   
1398
    if (page > leaf->key[leaf->keys - 1]) {
1408
    if (page > leaf->key[leaf->keys - 1]) {
1399
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1409
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1400
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1410
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1401
 
1411
 
1402
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1412
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1403
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1413
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1404
                /*
1414
                /*
1405
                 * The interval is contained in the rightmost interval
1415
                 * The interval is contained in the rightmost interval
1406
                 * of the leaf and can be removed by updating the size
1416
                 * of the leaf and can be removed by updating the size
1407
                 * of the bigger interval.
1417
                 * of the bigger interval.
1408
                 */
1418
                 */
1409
                leaf->value[leaf->keys - 1] -= count;
1419
                leaf->value[leaf->keys - 1] -= count;
1410
                return 1;
1420
                return 1;
1411
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1421
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1412
                count_t new_cnt;
1422
                count_t new_cnt;
1413
               
1423
               
1414
                /*
1424
                /*
1415
                 * The interval is contained in the rightmost interval
1425
                 * The interval is contained in the rightmost interval
1416
                 * of the leaf but its removal requires both updating
1426
                 * of the leaf but its removal requires both updating
1417
                 * the size of the original interval and
1427
                 * the size of the original interval and
1418
                 * also inserting a new interval.
1428
                 * also inserting a new interval.
1419
                 */
1429
                 */
1420
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1430
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1421
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1431
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1422
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1432
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1423
                return 1;
1433
                return 1;
1424
            }
1434
            }
1425
        }
1435
        }
1426
        return 0;
1436
        return 0;
1427
    }  
1437
    }  
1428
   
1438
   
1429
    /*
1439
    /*
1430
     * The border cases have been already resolved.
1440
     * The border cases have been already resolved.
1431
     * Now the interval can be only between intervals of the leaf.
1441
     * Now the interval can be only between intervals of the leaf.
1432
     */
1442
     */
1433
    for (i = 1; i < leaf->keys - 1; i++) {
1443
    for (i = 1; i < leaf->keys - 1; i++) {
1434
        if (page < leaf->key[i]) {
1444
        if (page < leaf->key[i]) {
1435
            uintptr_t left_pg = leaf->key[i - 1];
1445
            uintptr_t left_pg = leaf->key[i - 1];
1436
            count_t left_cnt = (count_t) leaf->value[i - 1];
1446
            count_t left_cnt = (count_t) leaf->value[i - 1];
1437
 
1447
 
1438
            /*
1448
            /*
1439
             * Now the interval is between intervals corresponding to (i - 1) and i.
1449
             * Now the interval is between intervals corresponding to (i - 1) and i.
1440
             */
1450
             */
1441
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1451
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1442
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1452
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1443
                    /*
1453
                    /*
1444
                    * The interval is contained in the interval (i - 1)
1454
                    * The interval is contained in the interval (i - 1)
1445
                     * of the leaf and can be removed by updating the size
1455
                     * of the leaf and can be removed by updating the size
1446
                     * of the bigger interval.
1456
                     * of the bigger interval.
1447
                     */
1457
                     */
1448
                    leaf->value[i - 1] -= count;
1458
                    leaf->value[i - 1] -= count;
1449
                    return 1;
1459
                    return 1;
1450
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1460
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1451
                    count_t new_cnt;
1461
                    count_t new_cnt;
1452
               
1462
               
1453
                    /*
1463
                    /*
1454
                     * The interval is contained in the interval (i - 1)
1464
                     * The interval is contained in the interval (i - 1)
1455
                     * of the leaf but its removal requires both updating
1465
                     * of the leaf but its removal requires both updating
1456
                     * the size of the original interval and
1466
                     * the size of the original interval and
1457
                     * also inserting a new interval.
1467
                     * also inserting a new interval.
1458
                     */
1468
                     */
1459
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1469
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1460
                    leaf->value[i - 1] -= count + new_cnt;
1470
                    leaf->value[i - 1] -= count + new_cnt;
1461
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1471
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1462
                    return 1;
1472
                    return 1;
1463
                }
1473
                }
1464
            }
1474
            }
1465
            return 0;
1475
            return 0;
1466
        }
1476
        }
1467
    }
1477
    }
1468
 
1478
 
1469
error:
1479
error:
1470
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1480
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1471
}
1481
}
1472
 
1482
 
1473
/** Remove reference to address space area share info.
1483
/** Remove reference to address space area share info.
1474
 *
1484
 *
1475
 * If the reference count drops to 0, the sh_info is deallocated.
1485
 * If the reference count drops to 0, the sh_info is deallocated.
1476
 *
1486
 *
1477
 * @param sh_info Pointer to address space area share info.
1487
 * @param sh_info Pointer to address space area share info.
1478
 */
1488
 */
1479
void sh_info_remove_reference(share_info_t *sh_info)
1489
void sh_info_remove_reference(share_info_t *sh_info)
1480
{
1490
{
1481
    bool dealloc = false;
1491
    bool dealloc = false;
1482
 
1492
 
1483
    mutex_lock(&sh_info->lock);
1493
    mutex_lock(&sh_info->lock);
1484
    ASSERT(sh_info->refcount);
1494
    ASSERT(sh_info->refcount);
1485
    if (--sh_info->refcount == 0) {
1495
    if (--sh_info->refcount == 0) {
1486
        dealloc = true;
1496
        dealloc = true;
1487
        link_t *cur;
1497
        link_t *cur;
1488
       
1498
       
1489
        /*
1499
        /*
1490
         * Now walk carefully the pagemap B+tree and free/remove
1500
         * Now walk carefully the pagemap B+tree and free/remove
1491
         * reference from all frames found there.
1501
         * reference from all frames found there.
1492
         */
1502
         */
1493
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1503
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1494
            btree_node_t *node;
1504
            btree_node_t *node;
1495
            int i;
1505
            int i;
1496
           
1506
           
1497
            node = list_get_instance(cur, btree_node_t, leaf_link);
1507
            node = list_get_instance(cur, btree_node_t, leaf_link);
1498
            for (i = 0; i < node->keys; i++)
1508
            for (i = 0; i < node->keys; i++)
1499
                frame_free((uintptr_t) node->value[i]);
1509
                frame_free((uintptr_t) node->value[i]);
1500
        }
1510
        }
1501
       
1511
       
1502
    }
1512
    }
1503
    mutex_unlock(&sh_info->lock);
1513
    mutex_unlock(&sh_info->lock);
1504
   
1514
   
1505
    if (dealloc) {
1515
    if (dealloc) {
1506
        btree_destroy(&sh_info->pagemap);
1516
        btree_destroy(&sh_info->pagemap);
1507
        free(sh_info);
1517
        free(sh_info);
1508
    }
1518
    }
1509
}
1519
}
1510
 
1520
 
1511
/*
1521
/*
1512
 * Address space related syscalls.
1522
 * Address space related syscalls.
1513
 */
1523
 */
1514
 
1524
 
1515
/** Wrapper for as_area_create(). */
1525
/** Wrapper for as_area_create(). */
1516
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1526
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1517
{
1527
{
1518
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1528
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1519
        return (unative_t) address;
1529
        return (unative_t) address;
1520
    else
1530
    else
1521
        return (unative_t) -1;
1531
        return (unative_t) -1;
1522
}
1532
}
1523
 
1533
 
1524
/** Wrapper for as_area_resize(). */
1534
/** Wrapper for as_area_resize(). */
1525
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1535
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1526
{
1536
{
1527
    return (unative_t) as_area_resize(AS, address, size, 0);
1537
    return (unative_t) as_area_resize(AS, address, size, 0);
1528
}
1538
}
1529
 
1539
 
1530
/** Wrapper for as_area_destroy(). */
1540
/** Wrapper for as_area_destroy(). */
1531
unative_t sys_as_area_destroy(uintptr_t address)
1541
unative_t sys_as_area_destroy(uintptr_t address)
1532
{
1542
{
1533
    return (unative_t) as_area_destroy(AS, address);
1543
    return (unative_t) as_area_destroy(AS, address);
1534
}
1544
}
1535
 
1545
 
1536
/** @}
1546
/** @}
1537
 */
1547
 */
1538
 
1548