Subversion Repositories HelenOS

Rev

Rev 1915 | Rev 2007 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1915 Rev 1954
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <synch/spinlock.h>
60
#include <synch/spinlock.h>
61
#include <synch/mutex.h>
61
#include <synch/mutex.h>
62
#include <adt/list.h>
62
#include <adt/list.h>
63
#include <adt/btree.h>
63
#include <adt/btree.h>
64
#include <proc/task.h>
64
#include <proc/task.h>
65
#include <proc/thread.h>
65
#include <proc/thread.h>
66
#include <arch/asm.h>
66
#include <arch/asm.h>
67
#include <panic.h>
67
#include <panic.h>
68
#include <debug.h>
68
#include <debug.h>
69
#include <print.h>
69
#include <print.h>
70
#include <memstr.h>
70
#include <memstr.h>
71
#include <macros.h>
71
#include <macros.h>
72
#include <arch.h>
72
#include <arch.h>
73
#include <errno.h>
73
#include <errno.h>
74
#include <config.h>
74
#include <config.h>
75
#include <align.h>
75
#include <align.h>
76
#include <arch/types.h>
76
#include <arch/types.h>
77
#include <typedefs.h>
77
#include <typedefs.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
/**
81
/**
82
 * Each architecture decides what functions will be used to carry out
82
 * Each architecture decides what functions will be used to carry out
83
 * address space operations such as creating or locking page tables.
83
 * address space operations such as creating or locking page tables.
84
 */
84
 */
85
as_operations_t *as_operations = NULL;
85
as_operations_t *as_operations = NULL;
86
 
86
 
87
/**
87
/**
88
 * Slab for as_t objects.
88
 * Slab for as_t objects.
89
 */
89
 */
90
static slab_cache_t *as_slab;
90
static slab_cache_t *as_slab;
91
 
91
 
92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
92
/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
93
SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
94
 
94
 
95
/**
95
/**
96
 * This list contains address spaces that are not active on any
96
 * This list contains address spaces that are not active on any
97
 * processor and that have valid ASID.
97
 * processor and that have valid ASID.
98
 */
98
 */
99
LIST_INITIALIZE(inactive_as_with_asid_head);
99
LIST_INITIALIZE(inactive_as_with_asid_head);
100
 
100
 
101
/** Kernel address space. */
101
/** Kernel address space. */
102
as_t *AS_KERNEL = NULL;
102
as_t *AS_KERNEL = NULL;
103
 
103
 
104
static int area_flags_to_page_flags(int aflags);
104
static int area_flags_to_page_flags(int aflags);
105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
105
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
106
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107
static void sh_info_remove_reference(share_info_t *sh_info);
107
static void sh_info_remove_reference(share_info_t *sh_info);
108
 
108
 
109
static int as_constructor(void *obj, int flags)
109
static int as_constructor(void *obj, int flags)
110
{
110
{
111
    as_t *as = (as_t *) obj;
111
    as_t *as = (as_t *) obj;
112
    int rc;
112
    int rc;
113
 
113
 
114
    link_initialize(&as->inactive_as_with_asid_link);
114
    link_initialize(&as->inactive_as_with_asid_link);
115
    mutex_initialize(&as->lock);   
115
    mutex_initialize(&as->lock);   
116
   
116
   
117
    rc = as_constructor_arch(as, flags);
117
    rc = as_constructor_arch(as, flags);
118
   
118
   
119
    return rc;
119
    return rc;
120
}
120
}
121
 
121
 
122
static int as_destructor(void *obj)
122
static int as_destructor(void *obj)
123
{
123
{
124
    as_t *as = (as_t *) obj;
124
    as_t *as = (as_t *) obj;
125
 
125
 
126
    return as_destructor_arch(as);
126
    return as_destructor_arch(as);
127
}
127
}
128
 
128
 
129
/** Initialize address space subsystem. */
129
/** Initialize address space subsystem. */
130
void as_init(void)
130
void as_init(void)
131
{
131
{
132
    as_arch_init();
132
    as_arch_init();
133
   
133
   
134
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
134
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
135
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
136
   
136
   
137
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
137
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
138
    if (!AS_KERNEL)
138
    if (!AS_KERNEL)
139
        panic("can't create kernel address space\n");
139
        panic("can't create kernel address space\n");
140
   
140
   
141
}
141
}
142
 
142
 
143
/** Create address space.
143
/** Create address space.
144
 *
144
 *
145
 * @param flags Flags that influence way in wich the address space is created.
145
 * @param flags Flags that influence way in wich the address space is created.
146
 */
146
 */
147
as_t *as_create(int flags)
147
as_t *as_create(int flags)
148
{
148
{
149
    as_t *as;
149
    as_t *as;
150
 
150
 
151
    as = (as_t *) slab_alloc(as_slab, 0);
151
    as = (as_t *) slab_alloc(as_slab, 0);
152
    (void) as_create_arch(as, 0);
152
    (void) as_create_arch(as, 0);
153
   
153
   
154
    btree_create(&as->as_area_btree);
154
    btree_create(&as->as_area_btree);
155
   
155
   
156
    if (flags & FLAG_AS_KERNEL)
156
    if (flags & FLAG_AS_KERNEL)
157
        as->asid = ASID_KERNEL;
157
        as->asid = ASID_KERNEL;
158
    else
158
    else
159
        as->asid = ASID_INVALID;
159
        as->asid = ASID_INVALID;
160
   
160
   
161
    as->refcount = 0;
161
    as->refcount = 0;
162
    as->cpu_refcount = 0;
162
    as->cpu_refcount = 0;
163
    as->page_table = page_table_create(flags);
163
    as->page_table = page_table_create(flags);
164
 
164
 
165
    return as;
165
    return as;
166
}
166
}
167
 
167
 
168
/** Destroy adress space.
168
/** Destroy adress space.
169
 *
169
 *
170
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
170
 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171
 * the address space can be destroyed.
171
 * the address space can be destroyed.
172
 */
172
 */
173
void as_destroy(as_t *as)
173
void as_destroy(as_t *as)
174
{
174
{
175
    ipl_t ipl;
175
    ipl_t ipl;
176
    bool cond;
176
    bool cond;
177
 
177
 
178
    ASSERT(as->refcount == 0);
178
    ASSERT(as->refcount == 0);
179
   
179
   
180
    /*
180
    /*
181
     * Since there is no reference to this area,
181
     * Since there is no reference to this area,
182
     * it is safe not to lock its mutex.
182
     * it is safe not to lock its mutex.
183
     */
183
     */
184
    ipl = interrupts_disable();
184
    ipl = interrupts_disable();
185
    spinlock_lock(&inactive_as_with_asid_lock);
185
    spinlock_lock(&inactive_as_with_asid_lock);
186
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
186
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
187
        if (as != AS && as->cpu_refcount == 0)
187
        if (as != AS && as->cpu_refcount == 0)
188
            list_remove(&as->inactive_as_with_asid_link);
188
            list_remove(&as->inactive_as_with_asid_link);
189
        asid_put(as->asid);
189
        asid_put(as->asid);
190
    }
190
    }
191
    spinlock_unlock(&inactive_as_with_asid_lock);
191
    spinlock_unlock(&inactive_as_with_asid_lock);
192
 
192
 
193
    /*
193
    /*
194
     * Destroy address space areas of the address space.
194
     * Destroy address space areas of the address space.
195
     * The B+tee must be walked carefully because it is
195
     * The B+tree must be walked carefully because it is
196
     * also being destroyed.
196
     * also being destroyed.
197
     */
197
     */
198
    for (cond = true; cond; ) {
198
    for (cond = true; cond; ) {
199
        btree_node_t *node;
199
        btree_node_t *node;
200
 
200
 
201
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
201
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
202
        node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
203
 
203
 
204
        if ((cond = node->keys)) {
204
        if ((cond = node->keys)) {
205
            as_area_destroy(as, node->key[0]);
205
            as_area_destroy(as, node->key[0]);
206
        }
206
        }
207
    }
207
    }
208
 
208
 
209
    btree_destroy(&as->as_area_btree);
209
    btree_destroy(&as->as_area_btree);
210
    page_table_destroy(as->page_table);
210
    page_table_destroy(as->page_table);
211
 
211
 
212
    interrupts_restore(ipl);
212
    interrupts_restore(ipl);
213
   
213
   
214
    slab_free(as_slab, as);
214
    slab_free(as_slab, as);
215
}
215
}
216
 
216
 
217
/** Create address space area of common attributes.
217
/** Create address space area of common attributes.
218
 *
218
 *
219
 * The created address space area is added to the target address space.
219
 * The created address space area is added to the target address space.
220
 *
220
 *
221
 * @param as Target address space.
221
 * @param as Target address space.
222
 * @param flags Flags of the area memory.
222
 * @param flags Flags of the area memory.
223
 * @param size Size of area.
223
 * @param size Size of area.
224
 * @param base Base address of area.
224
 * @param base Base address of area.
225
 * @param attrs Attributes of the area.
225
 * @param attrs Attributes of the area.
226
 * @param backend Address space area backend. NULL if no backend is used.
226
 * @param backend Address space area backend. NULL if no backend is used.
227
 * @param backend_data NULL or a pointer to an array holding two void *.
227
 * @param backend_data NULL or a pointer to an array holding two void *.
228
 *
228
 *
229
 * @return Address space area on success or NULL on failure.
229
 * @return Address space area on success or NULL on failure.
230
 */
230
 */
231
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
231
as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
232
           mem_backend_t *backend, mem_backend_data_t *backend_data)
232
           mem_backend_t *backend, mem_backend_data_t *backend_data)
233
{
233
{
234
    ipl_t ipl;
234
    ipl_t ipl;
235
    as_area_t *a;
235
    as_area_t *a;
236
   
236
   
237
    if (base % PAGE_SIZE)
237
    if (base % PAGE_SIZE)
238
        return NULL;
238
        return NULL;
239
 
239
 
240
    if (!size)
240
    if (!size)
241
        return NULL;
241
        return NULL;
242
 
242
 
243
    /* Writeable executable areas are not supported. */
243
    /* Writeable executable areas are not supported. */
244
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
244
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245
        return NULL;
245
        return NULL;
246
   
246
   
247
    ipl = interrupts_disable();
247
    ipl = interrupts_disable();
248
    mutex_lock(&as->lock);
248
    mutex_lock(&as->lock);
249
   
249
   
250
    if (!check_area_conflicts(as, base, size, NULL)) {
250
    if (!check_area_conflicts(as, base, size, NULL)) {
251
        mutex_unlock(&as->lock);
251
        mutex_unlock(&as->lock);
252
        interrupts_restore(ipl);
252
        interrupts_restore(ipl);
253
        return NULL;
253
        return NULL;
254
    }
254
    }
255
   
255
   
256
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
256
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
257
 
257
 
258
    mutex_initialize(&a->lock);
258
    mutex_initialize(&a->lock);
259
   
259
   
260
    a->as = as;
260
    a->as = as;
261
    a->flags = flags;
261
    a->flags = flags;
262
    a->attributes = attrs;
262
    a->attributes = attrs;
263
    a->pages = SIZE2FRAMES(size);
263
    a->pages = SIZE2FRAMES(size);
264
    a->base = base;
264
    a->base = base;
265
    a->sh_info = NULL;
265
    a->sh_info = NULL;
266
    a->backend = backend;
266
    a->backend = backend;
267
    if (backend_data)
267
    if (backend_data)
268
        a->backend_data = *backend_data;
268
        a->backend_data = *backend_data;
269
    else
269
    else
270
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
270
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
271
 
271
 
272
    btree_create(&a->used_space);
272
    btree_create(&a->used_space);
273
   
273
   
274
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
274
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
275
 
275
 
276
    mutex_unlock(&as->lock);
276
    mutex_unlock(&as->lock);
277
    interrupts_restore(ipl);
277
    interrupts_restore(ipl);
278
 
278
 
279
    return a;
279
    return a;
280
}
280
}
281
 
281
 
282
/** Find address space area and change it.
282
/** Find address space area and change it.
283
 *
283
 *
284
 * @param as Address space.
284
 * @param as Address space.
285
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
285
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286
 * @param size New size of the virtual memory block starting at address.
286
 * @param size New size of the virtual memory block starting at address.
287
 * @param flags Flags influencing the remap operation. Currently unused.
287
 * @param flags Flags influencing the remap operation. Currently unused.
288
 *
288
 *
289
 * @return Zero on success or a value from @ref errno.h otherwise.
289
 * @return Zero on success or a value from @ref errno.h otherwise.
290
 */
290
 */
291
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
291
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
292
{
292
{
293
    as_area_t *area;
293
    as_area_t *area;
294
    ipl_t ipl;
294
    ipl_t ipl;
295
    size_t pages;
295
    size_t pages;
296
   
296
   
297
    ipl = interrupts_disable();
297
    ipl = interrupts_disable();
298
    mutex_lock(&as->lock);
298
    mutex_lock(&as->lock);
299
   
299
   
300
    /*
300
    /*
301
     * Locate the area.
301
     * Locate the area.
302
     */
302
     */
303
    area = find_area_and_lock(as, address);
303
    area = find_area_and_lock(as, address);
304
    if (!area) {
304
    if (!area) {
305
        mutex_unlock(&as->lock);
305
        mutex_unlock(&as->lock);
306
        interrupts_restore(ipl);
306
        interrupts_restore(ipl);
307
        return ENOENT;
307
        return ENOENT;
308
    }
308
    }
309
 
309
 
310
    if (area->backend == &phys_backend) {
310
    if (area->backend == &phys_backend) {
311
        /*
311
        /*
312
         * Remapping of address space areas associated
312
         * Remapping of address space areas associated
313
         * with memory mapped devices is not supported.
313
         * with memory mapped devices is not supported.
314
         */
314
         */
315
        mutex_unlock(&area->lock);
315
        mutex_unlock(&area->lock);
316
        mutex_unlock(&as->lock);
316
        mutex_unlock(&as->lock);
317
        interrupts_restore(ipl);
317
        interrupts_restore(ipl);
318
        return ENOTSUP;
318
        return ENOTSUP;
319
    }
319
    }
320
    if (area->sh_info) {
320
    if (area->sh_info) {
321
        /*
321
        /*
322
         * Remapping of shared address space areas
322
         * Remapping of shared address space areas
323
         * is not supported.
323
         * is not supported.
324
         */
324
         */
325
        mutex_unlock(&area->lock);
325
        mutex_unlock(&area->lock);
326
        mutex_unlock(&as->lock);
326
        mutex_unlock(&as->lock);
327
        interrupts_restore(ipl);
327
        interrupts_restore(ipl);
328
        return ENOTSUP;
328
        return ENOTSUP;
329
    }
329
    }
330
 
330
 
331
    pages = SIZE2FRAMES((address - area->base) + size);
331
    pages = SIZE2FRAMES((address - area->base) + size);
332
    if (!pages) {
332
    if (!pages) {
333
        /*
333
        /*
334
         * Zero size address space areas are not allowed.
334
         * Zero size address space areas are not allowed.
335
         */
335
         */
336
        mutex_unlock(&area->lock);
336
        mutex_unlock(&area->lock);
337
        mutex_unlock(&as->lock);
337
        mutex_unlock(&as->lock);
338
        interrupts_restore(ipl);
338
        interrupts_restore(ipl);
339
        return EPERM;
339
        return EPERM;
340
    }
340
    }
341
   
341
   
342
    if (pages < area->pages) {
342
    if (pages < area->pages) {
343
        bool cond;
343
        bool cond;
344
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
344
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
345
 
345
 
346
        /*
346
        /*
347
         * Shrinking the area.
347
         * Shrinking the area.
348
         * No need to check for overlaps.
348
         * No need to check for overlaps.
349
         */
349
         */
350
 
350
 
351
        /*
351
        /*
352
         * Start TLB shootdown sequence.
352
         * Start TLB shootdown sequence.
353
         */
353
         */
354
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
354
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
355
 
355
 
356
        /*
356
        /*
357
         * Remove frames belonging to used space starting from
357
         * Remove frames belonging to used space starting from
358
         * the highest addresses downwards until an overlap with
358
         * the highest addresses downwards until an overlap with
359
         * the resized address space area is found. Note that this
359
         * the resized address space area is found. Note that this
360
         * is also the right way to remove part of the used_space
360
         * is also the right way to remove part of the used_space
361
         * B+tree leaf list.
361
         * B+tree leaf list.
362
         */    
362
         */    
363
        for (cond = true; cond;) {
363
        for (cond = true; cond;) {
364
            btree_node_t *node;
364
            btree_node_t *node;
365
       
365
       
366
            ASSERT(!list_empty(&area->used_space.leaf_head));
366
            ASSERT(!list_empty(&area->used_space.leaf_head));
367
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
367
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368
            if ((cond = (bool) node->keys)) {
368
            if ((cond = (bool) node->keys)) {
369
                uintptr_t b = node->key[node->keys - 1];
369
                uintptr_t b = node->key[node->keys - 1];
370
                count_t c = (count_t) node->value[node->keys - 1];
370
                count_t c = (count_t) node->value[node->keys - 1];
371
                int i = 0;
371
                int i = 0;
372
           
372
           
373
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
373
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
374
                   
374
                   
375
                    if (b + c*PAGE_SIZE <= start_free) {
375
                    if (b + c*PAGE_SIZE <= start_free) {
376
                        /*
376
                        /*
377
                         * The whole interval fits completely
377
                         * The whole interval fits completely
378
                         * in the resized address space area.
378
                         * in the resized address space area.
379
                         */
379
                         */
380
                        break;
380
                        break;
381
                    }
381
                    }
382
       
382
       
383
                    /*
383
                    /*
384
                     * Part of the interval corresponding to b and c
384
                     * Part of the interval corresponding to b and c
385
                     * overlaps with the resized address space area.
385
                     * overlaps with the resized address space area.
386
                     */
386
                     */
387
       
387
       
388
                    cond = false;   /* we are almost done */
388
                    cond = false;   /* we are almost done */
389
                    i = (start_free - b) >> PAGE_WIDTH;
389
                    i = (start_free - b) >> PAGE_WIDTH;
390
                    if (!used_space_remove(area, start_free, c - i))
390
                    if (!used_space_remove(area, start_free, c - i))
391
                        panic("Could not remove used space.\n");
391
                        panic("Could not remove used space.\n");
392
                } else {
392
                } else {
393
                    /*
393
                    /*
394
                     * The interval of used space can be completely removed.
394
                     * The interval of used space can be completely removed.
395
                     */
395
                     */
396
                    if (!used_space_remove(area, b, c))
396
                    if (!used_space_remove(area, b, c))
397
                        panic("Could not remove used space.\n");
397
                        panic("Could not remove used space.\n");
398
                }
398
                }
399
           
399
           
400
                for (; i < c; i++) {
400
                for (; i < c; i++) {
401
                    pte_t *pte;
401
                    pte_t *pte;
402
           
402
           
403
                    page_table_lock(as, false);
403
                    page_table_lock(as, false);
404
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
404
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
405
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
405
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
406
                    if (area->backend && area->backend->frame_free) {
406
                    if (area->backend && area->backend->frame_free) {
407
                        area->backend->frame_free(area,
407
                        area->backend->frame_free(area,
408
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
408
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
409
                    }
409
                    }
410
                    page_mapping_remove(as, b + i*PAGE_SIZE);
410
                    page_mapping_remove(as, b + i*PAGE_SIZE);
411
                    page_table_unlock(as, false);
411
                    page_table_unlock(as, false);
412
                }
412
                }
413
            }
413
            }
414
        }
414
        }
415
 
415
 
416
        /*
416
        /*
417
         * Finish TLB shootdown sequence.
417
         * Finish TLB shootdown sequence.
418
         */
418
         */
419
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
419
        tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
420
        tlb_shootdown_finalize();
420
        tlb_shootdown_finalize();
421
       
421
       
422
        /*
422
        /*
423
         * Invalidate software translation caches (e.g. TSB on sparc64).
423
         * Invalidate software translation caches (e.g. TSB on sparc64).
424
         */
424
         */
425
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
425
        as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
426
    } else {
426
    } else {
427
        /*
427
        /*
428
         * Growing the area.
428
         * Growing the area.
429
         * Check for overlaps with other address space areas.
429
         * Check for overlaps with other address space areas.
430
         */
430
         */
431
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
431
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
432
            mutex_unlock(&area->lock);
432
            mutex_unlock(&area->lock);
433
            mutex_unlock(&as->lock);       
433
            mutex_unlock(&as->lock);       
434
            interrupts_restore(ipl);
434
            interrupts_restore(ipl);
435
            return EADDRNOTAVAIL;
435
            return EADDRNOTAVAIL;
436
        }
436
        }
437
    }
437
    }
438
 
438
 
439
    area->pages = pages;
439
    area->pages = pages;
440
   
440
   
441
    mutex_unlock(&area->lock);
441
    mutex_unlock(&area->lock);
442
    mutex_unlock(&as->lock);
442
    mutex_unlock(&as->lock);
443
    interrupts_restore(ipl);
443
    interrupts_restore(ipl);
444
 
444
 
445
    return 0;
445
    return 0;
446
}
446
}
447
 
447
 
448
/** Destroy address space area.
448
/** Destroy address space area.
449
 *
449
 *
450
 * @param as Address space.
450
 * @param as Address space.
451
 * @param address Address withing the area to be deleted.
451
 * @param address Address withing the area to be deleted.
452
 *
452
 *
453
 * @return Zero on success or a value from @ref errno.h on failure.
453
 * @return Zero on success or a value from @ref errno.h on failure.
454
 */
454
 */
455
int as_area_destroy(as_t *as, uintptr_t address)
455
int as_area_destroy(as_t *as, uintptr_t address)
456
{
456
{
457
    as_area_t *area;
457
    as_area_t *area;
458
    uintptr_t base;
458
    uintptr_t base;
459
    link_t *cur;
459
    link_t *cur;
460
    ipl_t ipl;
460
    ipl_t ipl;
461
 
461
 
462
    ipl = interrupts_disable();
462
    ipl = interrupts_disable();
463
    mutex_lock(&as->lock);
463
    mutex_lock(&as->lock);
464
 
464
 
465
    area = find_area_and_lock(as, address);
465
    area = find_area_and_lock(as, address);
466
    if (!area) {
466
    if (!area) {
467
        mutex_unlock(&as->lock);
467
        mutex_unlock(&as->lock);
468
        interrupts_restore(ipl);
468
        interrupts_restore(ipl);
469
        return ENOENT;
469
        return ENOENT;
470
    }
470
    }
471
 
471
 
472
    base = area->base;
472
    base = area->base;
473
 
473
 
474
    /*
474
    /*
475
     * Start TLB shootdown sequence.
475
     * Start TLB shootdown sequence.
476
     */
476
     */
477
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
477
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
478
 
478
 
479
    /*
479
    /*
480
     * Visit only the pages mapped by used_space B+tree.
480
     * Visit only the pages mapped by used_space B+tree.
481
     */
481
     */
482
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
482
    for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
483
        btree_node_t *node;
483
        btree_node_t *node;
484
        int i;
484
        int i;
485
       
485
       
486
        node = list_get_instance(cur, btree_node_t, leaf_link);
486
        node = list_get_instance(cur, btree_node_t, leaf_link);
487
        for (i = 0; i < node->keys; i++) {
487
        for (i = 0; i < node->keys; i++) {
488
            uintptr_t b = node->key[i];
488
            uintptr_t b = node->key[i];
489
            count_t j;
489
            count_t j;
490
            pte_t *pte;
490
            pte_t *pte;
491
           
491
           
492
            for (j = 0; j < (count_t) node->value[i]; j++) {
492
            for (j = 0; j < (count_t) node->value[i]; j++) {
493
                page_table_lock(as, false);
493
                page_table_lock(as, false);
494
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
494
                pte = page_mapping_find(as, b + j*PAGE_SIZE);
495
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
495
                ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
496
                if (area->backend && area->backend->frame_free) {
496
                if (area->backend && area->backend->frame_free) {
497
                    area->backend->frame_free(area,
497
                    area->backend->frame_free(area,
498
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
498
                        b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
499
                }
499
                }
500
                page_mapping_remove(as, b + j*PAGE_SIZE);              
500
                page_mapping_remove(as, b + j*PAGE_SIZE);              
501
                page_table_unlock(as, false);
501
                page_table_unlock(as, false);
502
            }
502
            }
503
        }
503
        }
504
    }
504
    }
505
 
505
 
506
    /*
506
    /*
507
     * Finish TLB shootdown sequence.
507
     * Finish TLB shootdown sequence.
508
     */
508
     */
509
    tlb_invalidate_pages(as->asid, area->base, area->pages);
509
    tlb_invalidate_pages(as->asid, area->base, area->pages);
510
    tlb_shootdown_finalize();
510
    tlb_shootdown_finalize();
511
   
511
   
512
    /*
512
    /*
513
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
513
     * Invalidate potential software translation caches (e.g. TSB on sparc64).
514
     */
514
     */
515
    as_invalidate_translation_cache(as, area->base, area->pages);
515
    as_invalidate_translation_cache(as, area->base, area->pages);
516
   
516
   
517
    btree_destroy(&area->used_space);
517
    btree_destroy(&area->used_space);
518
 
518
 
519
    area->attributes |= AS_AREA_ATTR_PARTIAL;
519
    area->attributes |= AS_AREA_ATTR_PARTIAL;
520
   
520
   
521
    if (area->sh_info)
521
    if (area->sh_info)
522
        sh_info_remove_reference(area->sh_info);
522
        sh_info_remove_reference(area->sh_info);
523
       
523
       
524
    mutex_unlock(&area->lock);
524
    mutex_unlock(&area->lock);
525
 
525
 
526
    /*
526
    /*
527
     * Remove the empty area from address space.
527
     * Remove the empty area from address space.
528
     */
528
     */
529
    btree_remove(&as->as_area_btree, base, NULL);
529
    btree_remove(&as->as_area_btree, base, NULL);
530
   
530
   
531
    free(area);
531
    free(area);
532
   
532
   
533
    mutex_unlock(&as->lock);
533
    mutex_unlock(&as->lock);
534
    interrupts_restore(ipl);
534
    interrupts_restore(ipl);
535
    return 0;
535
    return 0;
536
}
536
}
537
 
537
 
538
/** Share address space area with another or the same address space.
538
/** Share address space area with another or the same address space.
539
 *
539
 *
540
 * Address space area mapping is shared with a new address space area.
540
 * Address space area mapping is shared with a new address space area.
541
 * If the source address space area has not been shared so far,
541
 * If the source address space area has not been shared so far,
542
 * a new sh_info is created. The new address space area simply gets the
542
 * a new sh_info is created. The new address space area simply gets the
543
 * sh_info of the source area. The process of duplicating the
543
 * sh_info of the source area. The process of duplicating the
544
 * mapping is done through the backend share function.
544
 * mapping is done through the backend share function.
545
 *
545
 *
546
 * @param src_as Pointer to source address space.
546
 * @param src_as Pointer to source address space.
547
 * @param src_base Base address of the source address space area.
547
 * @param src_base Base address of the source address space area.
548
 * @param acc_size Expected size of the source area.
548
 * @param acc_size Expected size of the source area.
549
 * @param dst_as Pointer to destination address space.
549
 * @param dst_as Pointer to destination address space.
550
 * @param dst_base Target base address.
550
 * @param dst_base Target base address.
551
 * @param dst_flags_mask Destination address space area flags mask.
551
 * @param dst_flags_mask Destination address space area flags mask.
552
 *
552
 *
553
 * @return Zero on success or ENOENT if there is no such task or
553
 * @return Zero on success or ENOENT if there is no such task or
554
 *     if there is no such address space area,
554
 *     if there is no such address space area,
555
 *     EPERM if there was a problem in accepting the area or
555
 *     EPERM if there was a problem in accepting the area or
556
 *     ENOMEM if there was a problem in allocating destination
556
 *     ENOMEM if there was a problem in allocating destination
557
 *     address space area. ENOTSUP is returned if an attempt
557
 *     address space area. ENOTSUP is returned if an attempt
558
 *     to share non-anonymous address space area is detected.
558
 *     to share non-anonymous address space area is detected.
559
 */
559
 */
560
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
560
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
561
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
561
          as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
562
{
562
{
563
    ipl_t ipl;
563
    ipl_t ipl;
564
    int src_flags;
564
    int src_flags;
565
    size_t src_size;
565
    size_t src_size;
566
    as_area_t *src_area, *dst_area;
566
    as_area_t *src_area, *dst_area;
567
    share_info_t *sh_info;
567
    share_info_t *sh_info;
568
    mem_backend_t *src_backend;
568
    mem_backend_t *src_backend;
569
    mem_backend_data_t src_backend_data;
569
    mem_backend_data_t src_backend_data;
570
   
570
   
571
    ipl = interrupts_disable();
571
    ipl = interrupts_disable();
572
    mutex_lock(&src_as->lock);
572
    mutex_lock(&src_as->lock);
573
    src_area = find_area_and_lock(src_as, src_base);
573
    src_area = find_area_and_lock(src_as, src_base);
574
    if (!src_area) {
574
    if (!src_area) {
575
        /*
575
        /*
576
         * Could not find the source address space area.
576
         * Could not find the source address space area.
577
         */
577
         */
578
        mutex_unlock(&src_as->lock);
578
        mutex_unlock(&src_as->lock);
579
        interrupts_restore(ipl);
579
        interrupts_restore(ipl);
580
        return ENOENT;
580
        return ENOENT;
581
    }
581
    }
582
   
582
   
583
    if (!src_area->backend || !src_area->backend->share) {
583
    if (!src_area->backend || !src_area->backend->share) {
584
        /*
584
        /*
585
         * There is no backend or the backend does not
585
         * There is no backend or the backend does not
586
         * know how to share the area.
586
         * know how to share the area.
587
         */
587
         */
588
        mutex_unlock(&src_area->lock);
588
        mutex_unlock(&src_area->lock);
589
        mutex_unlock(&src_as->lock);
589
        mutex_unlock(&src_as->lock);
590
        interrupts_restore(ipl);
590
        interrupts_restore(ipl);
591
        return ENOTSUP;
591
        return ENOTSUP;
592
    }
592
    }
593
   
593
   
594
    src_size = src_area->pages * PAGE_SIZE;
594
    src_size = src_area->pages * PAGE_SIZE;
595
    src_flags = src_area->flags;
595
    src_flags = src_area->flags;
596
    src_backend = src_area->backend;
596
    src_backend = src_area->backend;
597
    src_backend_data = src_area->backend_data;
597
    src_backend_data = src_area->backend_data;
598
 
598
 
599
    /* Share the cacheable flag from the original mapping */
599
    /* Share the cacheable flag from the original mapping */
600
    if (src_flags & AS_AREA_CACHEABLE)
600
    if (src_flags & AS_AREA_CACHEABLE)
601
        dst_flags_mask |= AS_AREA_CACHEABLE;
601
        dst_flags_mask |= AS_AREA_CACHEABLE;
602
 
602
 
603
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
603
    if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
604
        mutex_unlock(&src_area->lock);
604
        mutex_unlock(&src_area->lock);
605
        mutex_unlock(&src_as->lock);
605
        mutex_unlock(&src_as->lock);
606
        interrupts_restore(ipl);
606
        interrupts_restore(ipl);
607
        return EPERM;
607
        return EPERM;
608
    }
608
    }
609
 
609
 
610
    /*
610
    /*
611
     * Now we are committed to sharing the area.
611
     * Now we are committed to sharing the area.
612
     * First prepare the area for sharing.
612
     * First, prepare the area for sharing.
613
     * Then it will be safe to unlock it.
613
     * Then it will be safe to unlock it.
614
     */
614
     */
615
    sh_info = src_area->sh_info;
615
    sh_info = src_area->sh_info;
616
    if (!sh_info) {
616
    if (!sh_info) {
617
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
617
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
618
        mutex_initialize(&sh_info->lock);
618
        mutex_initialize(&sh_info->lock);
619
        sh_info->refcount = 2;
619
        sh_info->refcount = 2;
620
        btree_create(&sh_info->pagemap);
620
        btree_create(&sh_info->pagemap);
621
        src_area->sh_info = sh_info;
621
        src_area->sh_info = sh_info;
622
    } else {
622
    } else {
623
        mutex_lock(&sh_info->lock);
623
        mutex_lock(&sh_info->lock);
624
        sh_info->refcount++;
624
        sh_info->refcount++;
625
        mutex_unlock(&sh_info->lock);
625
        mutex_unlock(&sh_info->lock);
626
    }
626
    }
627
 
627
 
628
    src_area->backend->share(src_area);
628
    src_area->backend->share(src_area);
629
 
629
 
630
    mutex_unlock(&src_area->lock);
630
    mutex_unlock(&src_area->lock);
631
    mutex_unlock(&src_as->lock);
631
    mutex_unlock(&src_as->lock);
632
 
632
 
633
    /*
633
    /*
634
     * Create copy of the source address space area.
634
     * Create copy of the source address space area.
635
     * The destination area is created with AS_AREA_ATTR_PARTIAL
635
     * The destination area is created with AS_AREA_ATTR_PARTIAL
636
     * attribute set which prevents race condition with
636
     * attribute set which prevents race condition with
637
     * preliminary as_page_fault() calls.
637
     * preliminary as_page_fault() calls.
638
     * The flags of the source area are masked against dst_flags_mask
638
     * The flags of the source area are masked against dst_flags_mask
639
     * to support sharing in less privileged mode.
639
     * to support sharing in less privileged mode.
640
     */
640
     */
641
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
641
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
642
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
642
                  AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
643
    if (!dst_area) {
643
    if (!dst_area) {
644
        /*
644
        /*
645
         * Destination address space area could not be created.
645
         * Destination address space area could not be created.
646
         */
646
         */
647
        sh_info_remove_reference(sh_info);
647
        sh_info_remove_reference(sh_info);
648
       
648
       
649
        interrupts_restore(ipl);
649
        interrupts_restore(ipl);
650
        return ENOMEM;
650
        return ENOMEM;
651
    }
651
    }
652
   
652
   
653
    /*
653
    /*
654
     * Now the destination address space area has been
654
     * Now the destination address space area has been
655
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
655
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
656
     * attribute and set the sh_info.
656
     * attribute and set the sh_info.
657
     */
657
     */
658
    mutex_lock(&dst_area->lock);
658
    mutex_lock(&dst_area->lock);
659
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
659
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
660
    dst_area->sh_info = sh_info;
660
    dst_area->sh_info = sh_info;
661
    mutex_unlock(&dst_area->lock);
661
    mutex_unlock(&dst_area->lock);
662
   
662
   
663
    interrupts_restore(ipl);
663
    interrupts_restore(ipl);
664
   
664
   
665
    return 0;
665
    return 0;
666
}
666
}
667
 
667
 
668
/** Check access mode for address space area.
668
/** Check access mode for address space area.
669
 *
669
 *
670
 * The address space area must be locked prior to this call.
670
 * The address space area must be locked prior to this call.
671
 *
671
 *
672
 * @param area Address space area.
672
 * @param area Address space area.
673
 * @param access Access mode.
673
 * @param access Access mode.
674
 *
674
 *
675
 * @return False if access violates area's permissions, true otherwise.
675
 * @return False if access violates area's permissions, true otherwise.
676
 */
676
 */
677
bool as_area_check_access(as_area_t *area, pf_access_t access)
677
bool as_area_check_access(as_area_t *area, pf_access_t access)
678
{
678
{
679
    int flagmap[] = {
679
    int flagmap[] = {
680
        [PF_ACCESS_READ] = AS_AREA_READ,
680
        [PF_ACCESS_READ] = AS_AREA_READ,
681
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
681
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
682
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
682
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
683
    };
683
    };
684
 
684
 
685
    if (!(area->flags & flagmap[access]))
685
    if (!(area->flags & flagmap[access]))
686
        return false;
686
        return false;
687
   
687
   
688
    return true;
688
    return true;
689
}
689
}
690
 
690
 
691
/** Handle page fault within the current address space.
691
/** Handle page fault within the current address space.
692
 *
692
 *
693
 * This is the high-level page fault handler. It decides
693
 * This is the high-level page fault handler. It decides
694
 * whether the page fault can be resolved by any backend
694
 * whether the page fault can be resolved by any backend
695
 * and if so, it invokes the backend to resolve the page
695
 * and if so, it invokes the backend to resolve the page
696
 * fault.
696
 * fault.
697
 *
697
 *
698
 * Interrupts are assumed disabled.
698
 * Interrupts are assumed disabled.
699
 *
699
 *
700
 * @param page Faulting page.
700
 * @param page Faulting page.
701
 * @param access Access mode that caused the fault (i.e. read/write/exec).
701
 * @param access Access mode that caused the fault (i.e. read/write/exec).
702
 * @param istate Pointer to interrupted state.
702
 * @param istate Pointer to interrupted state.
703
 *
703
 *
704
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
704
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
705
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
705
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
706
 */
706
 */
707
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
707
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
708
{
708
{
709
    pte_t *pte;
709
    pte_t *pte;
710
    as_area_t *area;
710
    as_area_t *area;
711
   
711
   
712
    if (!THREAD)
712
    if (!THREAD)
713
        return AS_PF_FAULT;
713
        return AS_PF_FAULT;
714
       
714
       
715
    ASSERT(AS);
715
    ASSERT(AS);
716
 
716
 
717
    mutex_lock(&AS->lock);
717
    mutex_lock(&AS->lock);
718
    area = find_area_and_lock(AS, page);   
718
    area = find_area_and_lock(AS, page);   
719
    if (!area) {
719
    if (!area) {
720
        /*
720
        /*
721
         * No area contained mapping for 'page'.
721
         * No area contained mapping for 'page'.
722
         * Signal page fault to low-level handler.
722
         * Signal page fault to low-level handler.
723
         */
723
         */
724
        mutex_unlock(&AS->lock);
724
        mutex_unlock(&AS->lock);
725
        goto page_fault;
725
        goto page_fault;
726
    }
726
    }
727
 
727
 
728
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
728
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
729
        /*
729
        /*
730
         * The address space area is not fully initialized.
730
         * The address space area is not fully initialized.
731
         * Avoid possible race by returning error.
731
         * Avoid possible race by returning error.
732
         */
732
         */
733
        mutex_unlock(&area->lock);
733
        mutex_unlock(&area->lock);
734
        mutex_unlock(&AS->lock);
734
        mutex_unlock(&AS->lock);
735
        goto page_fault;       
735
        goto page_fault;       
736
    }
736
    }
737
 
737
 
738
    if (!area->backend || !area->backend->page_fault) {
738
    if (!area->backend || !area->backend->page_fault) {
739
        /*
739
        /*
740
         * The address space area is not backed by any backend
740
         * The address space area is not backed by any backend
741
         * or the backend cannot handle page faults.
741
         * or the backend cannot handle page faults.
742
         */
742
         */
743
        mutex_unlock(&area->lock);
743
        mutex_unlock(&area->lock);
744
        mutex_unlock(&AS->lock);
744
        mutex_unlock(&AS->lock);
745
        goto page_fault;       
745
        goto page_fault;       
746
    }
746
    }
747
 
747
 
748
    page_table_lock(AS, false);
748
    page_table_lock(AS, false);
749
   
749
   
750
    /*
750
    /*
751
     * To avoid race condition between two page faults
751
     * To avoid race condition between two page faults
752
     * on the same address, we need to make sure
752
     * on the same address, we need to make sure
753
     * the mapping has not been already inserted.
753
     * the mapping has not been already inserted.
754
     */
754
     */
755
    if ((pte = page_mapping_find(AS, page))) {
755
    if ((pte = page_mapping_find(AS, page))) {
756
        if (PTE_PRESENT(pte)) {
756
        if (PTE_PRESENT(pte)) {
757
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
757
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
758
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
758
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
759
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
759
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
760
                page_table_unlock(AS, false);
760
                page_table_unlock(AS, false);
761
                mutex_unlock(&area->lock);
761
                mutex_unlock(&area->lock);
762
                mutex_unlock(&AS->lock);
762
                mutex_unlock(&AS->lock);
763
                return AS_PF_OK;
763
                return AS_PF_OK;
764
            }
764
            }
765
        }
765
        }
766
    }
766
    }
767
   
767
   
768
    /*
768
    /*
769
     * Resort to the backend page fault handler.
769
     * Resort to the backend page fault handler.
770
     */
770
     */
771
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
771
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
772
        page_table_unlock(AS, false);
772
        page_table_unlock(AS, false);
773
        mutex_unlock(&area->lock);
773
        mutex_unlock(&area->lock);
774
        mutex_unlock(&AS->lock);
774
        mutex_unlock(&AS->lock);
775
        goto page_fault;
775
        goto page_fault;
776
    }
776
    }
777
   
777
   
778
    page_table_unlock(AS, false);
778
    page_table_unlock(AS, false);
779
    mutex_unlock(&area->lock);
779
    mutex_unlock(&area->lock);
780
    mutex_unlock(&AS->lock);
780
    mutex_unlock(&AS->lock);
781
    return AS_PF_OK;
781
    return AS_PF_OK;
782
 
782
 
783
page_fault:
783
page_fault:
784
    if (THREAD->in_copy_from_uspace) {
784
    if (THREAD->in_copy_from_uspace) {
785
        THREAD->in_copy_from_uspace = false;
785
        THREAD->in_copy_from_uspace = false;
786
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
786
        istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
787
    } else if (THREAD->in_copy_to_uspace) {
787
    } else if (THREAD->in_copy_to_uspace) {
788
        THREAD->in_copy_to_uspace = false;
788
        THREAD->in_copy_to_uspace = false;
789
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
789
        istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
790
    } else {
790
    } else {
791
        return AS_PF_FAULT;
791
        return AS_PF_FAULT;
792
    }
792
    }
793
 
793
 
794
    return AS_PF_DEFER;
794
    return AS_PF_DEFER;
795
}
795
}
796
 
796
 
797
/** Switch address spaces.
797
/** Switch address spaces.
798
 *
798
 *
799
 * Note that this function cannot sleep as it is essentially a part of
799
 * Note that this function cannot sleep as it is essentially a part of
800
 * scheduling. Sleeping here would lead to deadlock on wakeup.
800
 * scheduling. Sleeping here would lead to deadlock on wakeup.
801
 *
801
 *
802
 * @param old Old address space or NULL.
802
 * @param old Old address space or NULL.
803
 * @param new New address space.
803
 * @param new New address space.
804
 */
804
 */
805
void as_switch(as_t *old, as_t *new)
805
void as_switch(as_t *old, as_t *new)
806
{
806
{
807
    ipl_t ipl;
807
    ipl_t ipl;
808
    bool needs_asid = false;
808
    bool needs_asid = false;
809
   
809
   
810
    ipl = interrupts_disable();
810
    ipl = interrupts_disable();
811
    spinlock_lock(&inactive_as_with_asid_lock);
811
    spinlock_lock(&inactive_as_with_asid_lock);
812
 
812
 
813
    /*
813
    /*
814
     * First, take care of the old address space.
814
     * First, take care of the old address space.
815
     */
815
     */
816
    if (old) {
816
    if (old) {
817
        mutex_lock_active(&old->lock);
817
        mutex_lock_active(&old->lock);
818
        ASSERT(old->cpu_refcount);
818
        ASSERT(old->cpu_refcount);
819
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
819
        if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
820
            /*
820
            /*
821
             * The old address space is no longer active on
821
             * The old address space is no longer active on
822
             * any processor. It can be appended to the
822
             * any processor. It can be appended to the
823
             * list of inactive address spaces with assigned
823
             * list of inactive address spaces with assigned
824
             * ASID.
824
             * ASID.
825
             */
825
             */
826
             ASSERT(old->asid != ASID_INVALID);
826
             ASSERT(old->asid != ASID_INVALID);
827
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
827
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
828
        }
828
        }
829
        mutex_unlock(&old->lock);
829
        mutex_unlock(&old->lock);
830
 
830
 
831
        /*
831
        /*
832
         * Perform architecture-specific tasks when the address space
832
         * Perform architecture-specific tasks when the address space
833
         * is being removed from the CPU.
833
         * is being removed from the CPU.
834
         */
834
         */
835
        as_deinstall_arch(old);
835
        as_deinstall_arch(old);
836
    }
836
    }
837
 
837
 
838
    /*
838
    /*
839
     * Second, prepare the new address space.
839
     * Second, prepare the new address space.
840
     */
840
     */
841
    mutex_lock_active(&new->lock);
841
    mutex_lock_active(&new->lock);
842
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
842
    if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
843
        if (new->asid != ASID_INVALID)
843
        if (new->asid != ASID_INVALID)
844
            list_remove(&new->inactive_as_with_asid_link);
844
            list_remove(&new->inactive_as_with_asid_link);
845
        else
845
        else
846
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
846
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
847
    }
847
    }
848
    SET_PTL0_ADDRESS(new->page_table);
848
    SET_PTL0_ADDRESS(new->page_table);
849
    mutex_unlock(&new->lock);
849
    mutex_unlock(&new->lock);
850
 
850
 
851
    if (needs_asid) {
851
    if (needs_asid) {
852
        /*
852
        /*
853
         * Allocation of new ASID was deferred
853
         * Allocation of new ASID was deferred
854
         * until now in order to avoid deadlock.
854
         * until now in order to avoid deadlock.
855
         */
855
         */
856
        asid_t asid;
856
        asid_t asid;
857
       
857
       
858
        asid = asid_get();
858
        asid = asid_get();
859
        mutex_lock_active(&new->lock);
859
        mutex_lock_active(&new->lock);
860
        new->asid = asid;
860
        new->asid = asid;
861
        mutex_unlock(&new->lock);
861
        mutex_unlock(&new->lock);
862
    }
862
    }
863
    spinlock_unlock(&inactive_as_with_asid_lock);
863
    spinlock_unlock(&inactive_as_with_asid_lock);
864
    interrupts_restore(ipl);
864
    interrupts_restore(ipl);
865
   
865
   
866
    /*
866
    /*
867
     * Perform architecture-specific steps.
867
     * Perform architecture-specific steps.
868
     * (e.g. write ASID to hardware register etc.)
868
     * (e.g. write ASID to hardware register etc.)
869
     */
869
     */
870
    as_install_arch(new);
870
    as_install_arch(new);
871
   
871
   
872
    AS = new;
872
    AS = new;
873
}
873
}
874
 
874
 
875
/** Convert address space area flags to page flags.
875
/** Convert address space area flags to page flags.
876
 *
876
 *
877
 * @param aflags Flags of some address space area.
877
 * @param aflags Flags of some address space area.
878
 *
878
 *
879
 * @return Flags to be passed to page_mapping_insert().
879
 * @return Flags to be passed to page_mapping_insert().
880
 */
880
 */
881
int area_flags_to_page_flags(int aflags)
881
int area_flags_to_page_flags(int aflags)
882
{
882
{
883
    int flags;
883
    int flags;
884
 
884
 
885
    flags = PAGE_USER | PAGE_PRESENT;
885
    flags = PAGE_USER | PAGE_PRESENT;
886
   
886
   
887
    if (aflags & AS_AREA_READ)
887
    if (aflags & AS_AREA_READ)
888
        flags |= PAGE_READ;
888
        flags |= PAGE_READ;
889
       
889
       
890
    if (aflags & AS_AREA_WRITE)
890
    if (aflags & AS_AREA_WRITE)
891
        flags |= PAGE_WRITE;
891
        flags |= PAGE_WRITE;
892
   
892
   
893
    if (aflags & AS_AREA_EXEC)
893
    if (aflags & AS_AREA_EXEC)
894
        flags |= PAGE_EXEC;
894
        flags |= PAGE_EXEC;
895
   
895
   
896
    if (aflags & AS_AREA_CACHEABLE)
896
    if (aflags & AS_AREA_CACHEABLE)
897
        flags |= PAGE_CACHEABLE;
897
        flags |= PAGE_CACHEABLE;
898
       
898
       
899
    return flags;
899
    return flags;
900
}
900
}
901
 
901
 
902
/** Compute flags for virtual address translation subsytem.
902
/** Compute flags for virtual address translation subsytem.
903
 *
903
 *
904
 * The address space area must be locked.
904
 * The address space area must be locked.
905
 * Interrupts must be disabled.
905
 * Interrupts must be disabled.
906
 *
906
 *
907
 * @param a Address space area.
907
 * @param a Address space area.
908
 *
908
 *
909
 * @return Flags to be used in page_mapping_insert().
909
 * @return Flags to be used in page_mapping_insert().
910
 */
910
 */
911
int as_area_get_flags(as_area_t *a)
911
int as_area_get_flags(as_area_t *a)
912
{
912
{
913
    return area_flags_to_page_flags(a->flags);
913
    return area_flags_to_page_flags(a->flags);
914
}
914
}
915
 
915
 
916
/** Create page table.
916
/** Create page table.
917
 *
917
 *
918
 * Depending on architecture, create either address space
918
 * Depending on architecture, create either address space
919
 * private or global page table.
919
 * private or global page table.
920
 *
920
 *
921
 * @param flags Flags saying whether the page table is for kernel address space.
921
 * @param flags Flags saying whether the page table is for kernel address space.
922
 *
922
 *
923
 * @return First entry of the page table.
923
 * @return First entry of the page table.
924
 */
924
 */
925
pte_t *page_table_create(int flags)
925
pte_t *page_table_create(int flags)
926
{
926
{
927
        ASSERT(as_operations);
927
        ASSERT(as_operations);
928
        ASSERT(as_operations->page_table_create);
928
        ASSERT(as_operations->page_table_create);
929
 
929
 
930
        return as_operations->page_table_create(flags);
930
        return as_operations->page_table_create(flags);
931
}
931
}
932
 
932
 
933
/** Destroy page table.
933
/** Destroy page table.
934
 *
934
 *
935
 * Destroy page table in architecture specific way.
935
 * Destroy page table in architecture specific way.
936
 *
936
 *
937
 * @param page_table Physical address of PTL0.
937
 * @param page_table Physical address of PTL0.
938
 */
938
 */
939
void page_table_destroy(pte_t *page_table)
939
void page_table_destroy(pte_t *page_table)
940
{
940
{
941
        ASSERT(as_operations);
941
        ASSERT(as_operations);
942
        ASSERT(as_operations->page_table_destroy);
942
        ASSERT(as_operations->page_table_destroy);
943
 
943
 
944
        as_operations->page_table_destroy(page_table);
944
        as_operations->page_table_destroy(page_table);
945
}
945
}
946
 
946
 
947
/** Lock page table.
947
/** Lock page table.
948
 *
948
 *
949
 * This function should be called before any page_mapping_insert(),
949
 * This function should be called before any page_mapping_insert(),
950
 * page_mapping_remove() and page_mapping_find().
950
 * page_mapping_remove() and page_mapping_find().
951
 *
951
 *
952
 * Locking order is such that address space areas must be locked
952
 * Locking order is such that address space areas must be locked
953
 * prior to this call. Address space can be locked prior to this
953
 * prior to this call. Address space can be locked prior to this
954
 * call in which case the lock argument is false.
954
 * call in which case the lock argument is false.
955
 *
955
 *
956
 * @param as Address space.
956
 * @param as Address space.
957
 * @param lock If false, do not attempt to lock as->lock.
957
 * @param lock If false, do not attempt to lock as->lock.
958
 */
958
 */
959
void page_table_lock(as_t *as, bool lock)
959
void page_table_lock(as_t *as, bool lock)
960
{
960
{
961
    ASSERT(as_operations);
961
    ASSERT(as_operations);
962
    ASSERT(as_operations->page_table_lock);
962
    ASSERT(as_operations->page_table_lock);
963
 
963
 
964
    as_operations->page_table_lock(as, lock);
964
    as_operations->page_table_lock(as, lock);
965
}
965
}
966
 
966
 
967
/** Unlock page table.
967
/** Unlock page table.
968
 *
968
 *
969
 * @param as Address space.
969
 * @param as Address space.
970
 * @param unlock If false, do not attempt to unlock as->lock.
970
 * @param unlock If false, do not attempt to unlock as->lock.
971
 */
971
 */
972
void page_table_unlock(as_t *as, bool unlock)
972
void page_table_unlock(as_t *as, bool unlock)
973
{
973
{
974
    ASSERT(as_operations);
974
    ASSERT(as_operations);
975
    ASSERT(as_operations->page_table_unlock);
975
    ASSERT(as_operations->page_table_unlock);
976
 
976
 
977
    as_operations->page_table_unlock(as, unlock);
977
    as_operations->page_table_unlock(as, unlock);
978
}
978
}
979
 
979
 
980
 
980
 
981
/** Find address space area and lock it.
981
/** Find address space area and lock it.
982
 *
982
 *
983
 * The address space must be locked and interrupts must be disabled.
983
 * The address space must be locked and interrupts must be disabled.
984
 *
984
 *
985
 * @param as Address space.
985
 * @param as Address space.
986
 * @param va Virtual address.
986
 * @param va Virtual address.
987
 *
987
 *
988
 * @return Locked address space area containing va on success or NULL on failure.
988
 * @return Locked address space area containing va on success or NULL on failure.
989
 */
989
 */
990
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
990
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
991
{
991
{
992
    as_area_t *a;
992
    as_area_t *a;
993
    btree_node_t *leaf, *lnode;
993
    btree_node_t *leaf, *lnode;
994
    int i;
994
    int i;
995
   
995
   
996
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
996
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
997
    if (a) {
997
    if (a) {
998
        /* va is the base address of an address space area */
998
        /* va is the base address of an address space area */
999
        mutex_lock(&a->lock);
999
        mutex_lock(&a->lock);
1000
        return a;
1000
        return a;
1001
    }
1001
    }
1002
   
1002
   
1003
    /*
1003
    /*
1004
     * Search the leaf node and the righmost record of its left neighbour
1004
     * Search the leaf node and the righmost record of its left neighbour
1005
     * to find out whether this is a miss or va belongs to an address
1005
     * to find out whether this is a miss or va belongs to an address
1006
     * space area found there.
1006
     * space area found there.
1007
     */
1007
     */
1008
   
1008
   
1009
    /* First, search the leaf node itself. */
1009
    /* First, search the leaf node itself. */
1010
    for (i = 0; i < leaf->keys; i++) {
1010
    for (i = 0; i < leaf->keys; i++) {
1011
        a = (as_area_t *) leaf->value[i];
1011
        a = (as_area_t *) leaf->value[i];
1012
        mutex_lock(&a->lock);
1012
        mutex_lock(&a->lock);
1013
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1013
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1014
            return a;
1014
            return a;
1015
        }
1015
        }
1016
        mutex_unlock(&a->lock);
1016
        mutex_unlock(&a->lock);
1017
    }
1017
    }
1018
 
1018
 
1019
    /*
1019
    /*
1020
     * Second, locate the left neighbour and test its last record.
1020
     * Second, locate the left neighbour and test its last record.
1021
     * Because of its position in the B+tree, it must have base < va.
1021
     * Because of its position in the B+tree, it must have base < va.
1022
     */
1022
     */
1023
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1023
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1024
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1024
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1025
        mutex_lock(&a->lock);
1025
        mutex_lock(&a->lock);
1026
        if (va < a->base + a->pages * PAGE_SIZE) {
1026
        if (va < a->base + a->pages * PAGE_SIZE) {
1027
            return a;
1027
            return a;
1028
        }
1028
        }
1029
        mutex_unlock(&a->lock);
1029
        mutex_unlock(&a->lock);
1030
    }
1030
    }
1031
 
1031
 
1032
    return NULL;
1032
    return NULL;
1033
}
1033
}
1034
 
1034
 
1035
/** Check area conflicts with other areas.
1035
/** Check area conflicts with other areas.
1036
 *
1036
 *
1037
 * The address space must be locked and interrupts must be disabled.
1037
 * The address space must be locked and interrupts must be disabled.
1038
 *
1038
 *
1039
 * @param as Address space.
1039
 * @param as Address space.
1040
 * @param va Starting virtual address of the area being tested.
1040
 * @param va Starting virtual address of the area being tested.
1041
 * @param size Size of the area being tested.
1041
 * @param size Size of the area being tested.
1042
 * @param avoid_area Do not touch this area.
1042
 * @param avoid_area Do not touch this area.
1043
 *
1043
 *
1044
 * @return True if there is no conflict, false otherwise.
1044
 * @return True if there is no conflict, false otherwise.
1045
 */
1045
 */
1046
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1046
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1047
{
1047
{
1048
    as_area_t *a;
1048
    as_area_t *a;
1049
    btree_node_t *leaf, *node;
1049
    btree_node_t *leaf, *node;
1050
    int i;
1050
    int i;
1051
   
1051
   
1052
    /*
1052
    /*
1053
     * We don't want any area to have conflicts with NULL page.
1053
     * We don't want any area to have conflicts with NULL page.
1054
     */
1054
     */
1055
    if (overlaps(va, size, NULL, PAGE_SIZE))
1055
    if (overlaps(va, size, NULL, PAGE_SIZE))
1056
        return false;
1056
        return false;
1057
   
1057
   
1058
    /*
1058
    /*
1059
     * The leaf node is found in O(log n), where n is proportional to
1059
     * The leaf node is found in O(log n), where n is proportional to
1060
     * the number of address space areas belonging to as.
1060
     * the number of address space areas belonging to as.
1061
     * The check for conflicts is then attempted on the rightmost
1061
     * The check for conflicts is then attempted on the rightmost
1062
     * record in the left neighbour, the leftmost record in the right
1062
     * record in the left neighbour, the leftmost record in the right
1063
     * neighbour and all records in the leaf node itself.
1063
     * neighbour and all records in the leaf node itself.
1064
     */
1064
     */
1065
   
1065
   
1066
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1066
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1067
        if (a != avoid_area)
1067
        if (a != avoid_area)
1068
            return false;
1068
            return false;
1069
    }
1069
    }
1070
   
1070
   
1071
    /* First, check the two border cases. */
1071
    /* First, check the two border cases. */
1072
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1072
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1073
        a = (as_area_t *) node->value[node->keys - 1];
1073
        a = (as_area_t *) node->value[node->keys - 1];
1074
        mutex_lock(&a->lock);
1074
        mutex_lock(&a->lock);
1075
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1075
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1076
            mutex_unlock(&a->lock);
1076
            mutex_unlock(&a->lock);
1077
            return false;
1077
            return false;
1078
        }
1078
        }
1079
        mutex_unlock(&a->lock);
1079
        mutex_unlock(&a->lock);
1080
    }
1080
    }
1081
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1081
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1082
        a = (as_area_t *) node->value[0];
1082
        a = (as_area_t *) node->value[0];
1083
        mutex_lock(&a->lock);
1083
        mutex_lock(&a->lock);
1084
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1084
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1085
            mutex_unlock(&a->lock);
1085
            mutex_unlock(&a->lock);
1086
            return false;
1086
            return false;
1087
        }
1087
        }
1088
        mutex_unlock(&a->lock);
1088
        mutex_unlock(&a->lock);
1089
    }
1089
    }
1090
   
1090
   
1091
    /* Second, check the leaf node. */
1091
    /* Second, check the leaf node. */
1092
    for (i = 0; i < leaf->keys; i++) {
1092
    for (i = 0; i < leaf->keys; i++) {
1093
        a = (as_area_t *) leaf->value[i];
1093
        a = (as_area_t *) leaf->value[i];
1094
   
1094
   
1095
        if (a == avoid_area)
1095
        if (a == avoid_area)
1096
            continue;
1096
            continue;
1097
   
1097
   
1098
        mutex_lock(&a->lock);
1098
        mutex_lock(&a->lock);
1099
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1099
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1100
            mutex_unlock(&a->lock);
1100
            mutex_unlock(&a->lock);
1101
            return false;
1101
            return false;
1102
        }
1102
        }
1103
        mutex_unlock(&a->lock);
1103
        mutex_unlock(&a->lock);
1104
    }
1104
    }
1105
 
1105
 
1106
    /*
1106
    /*
1107
     * So far, the area does not conflict with other areas.
1107
     * So far, the area does not conflict with other areas.
1108
     * Check if it doesn't conflict with kernel address space.
1108
     * Check if it doesn't conflict with kernel address space.
1109
     */  
1109
     */  
1110
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1110
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1111
        return !overlaps(va, size,
1111
        return !overlaps(va, size,
1112
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1112
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1113
    }
1113
    }
1114
 
1114
 
1115
    return true;
1115
    return true;
1116
}
1116
}
1117
 
1117
 
1118
/** Return size of the address space area with given base.  */
1118
/** Return size of the address space area with given base.  */
1119
size_t as_get_size(uintptr_t base)
1119
size_t as_get_size(uintptr_t base)
1120
{
1120
{
1121
    ipl_t ipl;
1121
    ipl_t ipl;
1122
    as_area_t *src_area;
1122
    as_area_t *src_area;
1123
    size_t size;
1123
    size_t size;
1124
 
1124
 
1125
    ipl = interrupts_disable();
1125
    ipl = interrupts_disable();
1126
    src_area = find_area_and_lock(AS, base);
1126
    src_area = find_area_and_lock(AS, base);
1127
    if (src_area){
1127
    if (src_area){
1128
        size = src_area->pages * PAGE_SIZE;
1128
        size = src_area->pages * PAGE_SIZE;
1129
        mutex_unlock(&src_area->lock);
1129
        mutex_unlock(&src_area->lock);
1130
    } else {
1130
    } else {
1131
        size = 0;
1131
        size = 0;
1132
    }
1132
    }
1133
    interrupts_restore(ipl);
1133
    interrupts_restore(ipl);
1134
    return size;
1134
    return size;
1135
}
1135
}
1136
 
1136
 
1137
/** Mark portion of address space area as used.
1137
/** Mark portion of address space area as used.
1138
 *
1138
 *
1139
 * The address space area must be already locked.
1139
 * The address space area must be already locked.
1140
 *
1140
 *
1141
 * @param a Address space area.
1141
 * @param a Address space area.
1142
 * @param page First page to be marked.
1142
 * @param page First page to be marked.
1143
 * @param count Number of page to be marked.
1143
 * @param count Number of page to be marked.
1144
 *
1144
 *
1145
 * @return 0 on failure and 1 on success.
1145
 * @return 0 on failure and 1 on success.
1146
 */
1146
 */
1147
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1147
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1148
{
1148
{
1149
    btree_node_t *leaf, *node;
1149
    btree_node_t *leaf, *node;
1150
    count_t pages;
1150
    count_t pages;
1151
    int i;
1151
    int i;
1152
 
1152
 
1153
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1153
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1154
    ASSERT(count);
1154
    ASSERT(count);
1155
 
1155
 
1156
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1156
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1157
    if (pages) {
1157
    if (pages) {
1158
        /*
1158
        /*
1159
         * We hit the beginning of some used space.
1159
         * We hit the beginning of some used space.
1160
         */
1160
         */
1161
        return 0;
1161
        return 0;
1162
    }
1162
    }
1163
 
1163
 
1164
    if (!leaf->keys) {
1164
    if (!leaf->keys) {
1165
        btree_insert(&a->used_space, page, (void *) count, leaf);
1165
        btree_insert(&a->used_space, page, (void *) count, leaf);
1166
        return 1;
1166
        return 1;
1167
    }
1167
    }
1168
 
1168
 
1169
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1169
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1170
    if (node) {
1170
    if (node) {
1171
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1171
        uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1172
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1172
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1173
       
1173
       
1174
        /*
1174
        /*
1175
         * Examine the possibility that the interval fits
1175
         * Examine the possibility that the interval fits
1176
         * somewhere between the rightmost interval of
1176
         * somewhere between the rightmost interval of
1177
         * the left neigbour and the first interval of the leaf.
1177
         * the left neigbour and the first interval of the leaf.
1178
         */
1178
         */
1179
         
1179
         
1180
        if (page >= right_pg) {
1180
        if (page >= right_pg) {
1181
            /* Do nothing. */
1181
            /* Do nothing. */
1182
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1182
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1183
            /* The interval intersects with the left interval. */
1183
            /* The interval intersects with the left interval. */
1184
            return 0;
1184
            return 0;
1185
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1185
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1186
            /* The interval intersects with the right interval. */
1186
            /* The interval intersects with the right interval. */
1187
            return 0;          
1187
            return 0;          
1188
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1188
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1189
            /* The interval can be added by merging the two already present intervals. */
1189
            /* The interval can be added by merging the two already present intervals. */
1190
            node->value[node->keys - 1] += count + right_cnt;
1190
            node->value[node->keys - 1] += count + right_cnt;
1191
            btree_remove(&a->used_space, right_pg, leaf);
1191
            btree_remove(&a->used_space, right_pg, leaf);
1192
            return 1;
1192
            return 1;
1193
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1193
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1194
            /* The interval can be added by simply growing the left interval. */
1194
            /* The interval can be added by simply growing the left interval. */
1195
            node->value[node->keys - 1] += count;
1195
            node->value[node->keys - 1] += count;
1196
            return 1;
1196
            return 1;
1197
        } else if (page + count*PAGE_SIZE == right_pg) {
1197
        } else if (page + count*PAGE_SIZE == right_pg) {
1198
            /*
1198
            /*
1199
             * The interval can be addded by simply moving base of the right
1199
             * The interval can be addded by simply moving base of the right
1200
             * interval down and increasing its size accordingly.
1200
             * interval down and increasing its size accordingly.
1201
             */
1201
             */
1202
            leaf->value[0] += count;
1202
            leaf->value[0] += count;
1203
            leaf->key[0] = page;
1203
            leaf->key[0] = page;
1204
            return 1;
1204
            return 1;
1205
        } else {
1205
        } else {
1206
            /*
1206
            /*
1207
             * The interval is between both neigbouring intervals,
1207
             * The interval is between both neigbouring intervals,
1208
             * but cannot be merged with any of them.
1208
             * but cannot be merged with any of them.
1209
             */
1209
             */
1210
            btree_insert(&a->used_space, page, (void *) count, leaf);
1210
            btree_insert(&a->used_space, page, (void *) count, leaf);
1211
            return 1;
1211
            return 1;
1212
        }
1212
        }
1213
    } else if (page < leaf->key[0]) {
1213
    } else if (page < leaf->key[0]) {
1214
        uintptr_t right_pg = leaf->key[0];
1214
        uintptr_t right_pg = leaf->key[0];
1215
        count_t right_cnt = (count_t) leaf->value[0];
1215
        count_t right_cnt = (count_t) leaf->value[0];
1216
   
1216
   
1217
        /*
1217
        /*
1218
         * Investigate the border case in which the left neighbour does not
1218
         * Investigate the border case in which the left neighbour does not
1219
         * exist but the interval fits from the left.
1219
         * exist but the interval fits from the left.
1220
         */
1220
         */
1221
         
1221
         
1222
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1222
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1223
            /* The interval intersects with the right interval. */
1223
            /* The interval intersects with the right interval. */
1224
            return 0;
1224
            return 0;
1225
        } else if (page + count*PAGE_SIZE == right_pg) {
1225
        } else if (page + count*PAGE_SIZE == right_pg) {
1226
            /*
1226
            /*
1227
             * The interval can be added by moving the base of the right interval down
1227
             * The interval can be added by moving the base of the right interval down
1228
             * and increasing its size accordingly.
1228
             * and increasing its size accordingly.
1229
             */
1229
             */
1230
            leaf->key[0] = page;
1230
            leaf->key[0] = page;
1231
            leaf->value[0] += count;
1231
            leaf->value[0] += count;
1232
            return 1;
1232
            return 1;
1233
        } else {
1233
        } else {
1234
            /*
1234
            /*
1235
             * The interval doesn't adjoin with the right interval.
1235
             * The interval doesn't adjoin with the right interval.
1236
             * It must be added individually.
1236
             * It must be added individually.
1237
             */
1237
             */
1238
            btree_insert(&a->used_space, page, (void *) count, leaf);
1238
            btree_insert(&a->used_space, page, (void *) count, leaf);
1239
            return 1;
1239
            return 1;
1240
        }
1240
        }
1241
    }
1241
    }
1242
 
1242
 
1243
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1243
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1244
    if (node) {
1244
    if (node) {
1245
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1245
        uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1246
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1246
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1247
       
1247
       
1248
        /*
1248
        /*
1249
         * Examine the possibility that the interval fits
1249
         * Examine the possibility that the interval fits
1250
         * somewhere between the leftmost interval of
1250
         * somewhere between the leftmost interval of
1251
         * the right neigbour and the last interval of the leaf.
1251
         * the right neigbour and the last interval of the leaf.
1252
         */
1252
         */
1253
 
1253
 
1254
        if (page < left_pg) {
1254
        if (page < left_pg) {
1255
            /* Do nothing. */
1255
            /* Do nothing. */
1256
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1256
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1257
            /* The interval intersects with the left interval. */
1257
            /* The interval intersects with the left interval. */
1258
            return 0;
1258
            return 0;
1259
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1259
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1260
            /* The interval intersects with the right interval. */
1260
            /* The interval intersects with the right interval. */
1261
            return 0;          
1261
            return 0;          
1262
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1262
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1263
            /* The interval can be added by merging the two already present intervals. */
1263
            /* The interval can be added by merging the two already present intervals. */
1264
            leaf->value[leaf->keys - 1] += count + right_cnt;
1264
            leaf->value[leaf->keys - 1] += count + right_cnt;
1265
            btree_remove(&a->used_space, right_pg, node);
1265
            btree_remove(&a->used_space, right_pg, node);
1266
            return 1;
1266
            return 1;
1267
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1267
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1268
            /* The interval can be added by simply growing the left interval. */
1268
            /* The interval can be added by simply growing the left interval. */
1269
            leaf->value[leaf->keys - 1] +=  count;
1269
            leaf->value[leaf->keys - 1] +=  count;
1270
            return 1;
1270
            return 1;
1271
        } else if (page + count*PAGE_SIZE == right_pg) {
1271
        } else if (page + count*PAGE_SIZE == right_pg) {
1272
            /*
1272
            /*
1273
             * The interval can be addded by simply moving base of the right
1273
             * The interval can be addded by simply moving base of the right
1274
             * interval down and increasing its size accordingly.
1274
             * interval down and increasing its size accordingly.
1275
             */
1275
             */
1276
            node->value[0] += count;
1276
            node->value[0] += count;
1277
            node->key[0] = page;
1277
            node->key[0] = page;
1278
            return 1;
1278
            return 1;
1279
        } else {
1279
        } else {
1280
            /*
1280
            /*
1281
             * The interval is between both neigbouring intervals,
1281
             * The interval is between both neigbouring intervals,
1282
             * but cannot be merged with any of them.
1282
             * but cannot be merged with any of them.
1283
             */
1283
             */
1284
            btree_insert(&a->used_space, page, (void *) count, leaf);
1284
            btree_insert(&a->used_space, page, (void *) count, leaf);
1285
            return 1;
1285
            return 1;
1286
        }
1286
        }
1287
    } else if (page >= leaf->key[leaf->keys - 1]) {
1287
    } else if (page >= leaf->key[leaf->keys - 1]) {
1288
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1288
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1289
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1289
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1290
   
1290
   
1291
        /*
1291
        /*
1292
         * Investigate the border case in which the right neighbour does not
1292
         * Investigate the border case in which the right neighbour does not
1293
         * exist but the interval fits from the right.
1293
         * exist but the interval fits from the right.
1294
         */
1294
         */
1295
         
1295
         
1296
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1296
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1297
            /* The interval intersects with the left interval. */
1297
            /* The interval intersects with the left interval. */
1298
            return 0;
1298
            return 0;
1299
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1299
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1300
            /* The interval can be added by growing the left interval. */
1300
            /* The interval can be added by growing the left interval. */
1301
            leaf->value[leaf->keys - 1] += count;
1301
            leaf->value[leaf->keys - 1] += count;
1302
            return 1;
1302
            return 1;
1303
        } else {
1303
        } else {
1304
            /*
1304
            /*
1305
             * The interval doesn't adjoin with the left interval.
1305
             * The interval doesn't adjoin with the left interval.
1306
             * It must be added individually.
1306
             * It must be added individually.
1307
             */
1307
             */
1308
            btree_insert(&a->used_space, page, (void *) count, leaf);
1308
            btree_insert(&a->used_space, page, (void *) count, leaf);
1309
            return 1;
1309
            return 1;
1310
        }
1310
        }
1311
    }
1311
    }
1312
   
1312
   
1313
    /*
1313
    /*
1314
     * Note that if the algorithm made it thus far, the interval can fit only
1314
     * Note that if the algorithm made it thus far, the interval can fit only
1315
     * between two other intervals of the leaf. The two border cases were already
1315
     * between two other intervals of the leaf. The two border cases were already
1316
     * resolved.
1316
     * resolved.
1317
     */
1317
     */
1318
    for (i = 1; i < leaf->keys; i++) {
1318
    for (i = 1; i < leaf->keys; i++) {
1319
        if (page < leaf->key[i]) {
1319
        if (page < leaf->key[i]) {
1320
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1320
            uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1321
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1321
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1322
 
1322
 
1323
            /*
1323
            /*
1324
             * The interval fits between left_pg and right_pg.
1324
             * The interval fits between left_pg and right_pg.
1325
             */
1325
             */
1326
 
1326
 
1327
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1327
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1328
                /* The interval intersects with the left interval. */
1328
                /* The interval intersects with the left interval. */
1329
                return 0;
1329
                return 0;
1330
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1330
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1331
                /* The interval intersects with the right interval. */
1331
                /* The interval intersects with the right interval. */
1332
                return 0;          
1332
                return 0;          
1333
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1333
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1334
                /* The interval can be added by merging the two already present intervals. */
1334
                /* The interval can be added by merging the two already present intervals. */
1335
                leaf->value[i - 1] += count + right_cnt;
1335
                leaf->value[i - 1] += count + right_cnt;
1336
                btree_remove(&a->used_space, right_pg, leaf);
1336
                btree_remove(&a->used_space, right_pg, leaf);
1337
                return 1;
1337
                return 1;
1338
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1338
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1339
                /* The interval can be added by simply growing the left interval. */
1339
                /* The interval can be added by simply growing the left interval. */
1340
                leaf->value[i - 1] += count;
1340
                leaf->value[i - 1] += count;
1341
                return 1;
1341
                return 1;
1342
            } else if (page + count*PAGE_SIZE == right_pg) {
1342
            } else if (page + count*PAGE_SIZE == right_pg) {
1343
                /*
1343
                /*
1344
                     * The interval can be addded by simply moving base of the right
1344
                     * The interval can be addded by simply moving base of the right
1345
                 * interval down and increasing its size accordingly.
1345
                 * interval down and increasing its size accordingly.
1346
                 */
1346
                 */
1347
                leaf->value[i] += count;
1347
                leaf->value[i] += count;
1348
                leaf->key[i] = page;
1348
                leaf->key[i] = page;
1349
                return 1;
1349
                return 1;
1350
            } else {
1350
            } else {
1351
                /*
1351
                /*
1352
                 * The interval is between both neigbouring intervals,
1352
                 * The interval is between both neigbouring intervals,
1353
                 * but cannot be merged with any of them.
1353
                 * but cannot be merged with any of them.
1354
                 */
1354
                 */
1355
                btree_insert(&a->used_space, page, (void *) count, leaf);
1355
                btree_insert(&a->used_space, page, (void *) count, leaf);
1356
                return 1;
1356
                return 1;
1357
            }
1357
            }
1358
        }
1358
        }
1359
    }
1359
    }
1360
 
1360
 
1361
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1361
    panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1362
}
1362
}
1363
 
1363
 
1364
/** Mark portion of address space area as unused.
1364
/** Mark portion of address space area as unused.
1365
 *
1365
 *
1366
 * The address space area must be already locked.
1366
 * The address space area must be already locked.
1367
 *
1367
 *
1368
 * @param a Address space area.
1368
 * @param a Address space area.
1369
 * @param page First page to be marked.
1369
 * @param page First page to be marked.
1370
 * @param count Number of page to be marked.
1370
 * @param count Number of page to be marked.
1371
 *
1371
 *
1372
 * @return 0 on failure and 1 on success.
1372
 * @return 0 on failure and 1 on success.
1373
 */
1373
 */
1374
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1374
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1375
{
1375
{
1376
    btree_node_t *leaf, *node;
1376
    btree_node_t *leaf, *node;
1377
    count_t pages;
1377
    count_t pages;
1378
    int i;
1378
    int i;
1379
 
1379
 
1380
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1380
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1381
    ASSERT(count);
1381
    ASSERT(count);
1382
 
1382
 
1383
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1383
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1384
    if (pages) {
1384
    if (pages) {
1385
        /*
1385
        /*
1386
         * We are lucky, page is the beginning of some interval.
1386
         * We are lucky, page is the beginning of some interval.
1387
         */
1387
         */
1388
        if (count > pages) {
1388
        if (count > pages) {
1389
            return 0;
1389
            return 0;
1390
        } else if (count == pages) {
1390
        } else if (count == pages) {
1391
            btree_remove(&a->used_space, page, leaf);
1391
            btree_remove(&a->used_space, page, leaf);
1392
            return 1;
1392
            return 1;
1393
        } else {
1393
        } else {
1394
            /*
1394
            /*
1395
             * Find the respective interval.
1395
             * Find the respective interval.
1396
             * Decrease its size and relocate its start address.
1396
             * Decrease its size and relocate its start address.
1397
             */
1397
             */
1398
            for (i = 0; i < leaf->keys; i++) {
1398
            for (i = 0; i < leaf->keys; i++) {
1399
                if (leaf->key[i] == page) {
1399
                if (leaf->key[i] == page) {
1400
                    leaf->key[i] += count*PAGE_SIZE;
1400
                    leaf->key[i] += count*PAGE_SIZE;
1401
                    leaf->value[i] -= count;
1401
                    leaf->value[i] -= count;
1402
                    return 1;
1402
                    return 1;
1403
                }
1403
                }
1404
            }
1404
            }
1405
            goto error;
1405
            goto error;
1406
        }
1406
        }
1407
    }
1407
    }
1408
 
1408
 
1409
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1409
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1410
    if (node && page < leaf->key[0]) {
1410
    if (node && page < leaf->key[0]) {
1411
        uintptr_t left_pg = node->key[node->keys - 1];
1411
        uintptr_t left_pg = node->key[node->keys - 1];
1412
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1412
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1413
 
1413
 
1414
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1414
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1415
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1415
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1416
                /*
1416
                /*
1417
                 * The interval is contained in the rightmost interval
1417
                 * The interval is contained in the rightmost interval
1418
                 * of the left neighbour and can be removed by
1418
                 * of the left neighbour and can be removed by
1419
                 * updating the size of the bigger interval.
1419
                 * updating the size of the bigger interval.
1420
                 */
1420
                 */
1421
                node->value[node->keys - 1] -= count;
1421
                node->value[node->keys - 1] -= count;
1422
                return 1;
1422
                return 1;
1423
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1423
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1424
                count_t new_cnt;
1424
                count_t new_cnt;
1425
               
1425
               
1426
                /*
1426
                /*
1427
                 * The interval is contained in the rightmost interval
1427
                 * The interval is contained in the rightmost interval
1428
                 * of the left neighbour but its removal requires
1428
                 * of the left neighbour but its removal requires
1429
                 * both updating the size of the original interval and
1429
                 * both updating the size of the original interval and
1430
                 * also inserting a new interval.
1430
                 * also inserting a new interval.
1431
                 */
1431
                 */
1432
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1432
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1433
                node->value[node->keys - 1] -= count + new_cnt;
1433
                node->value[node->keys - 1] -= count + new_cnt;
1434
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1434
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1435
                return 1;
1435
                return 1;
1436
            }
1436
            }
1437
        }
1437
        }
1438
        return 0;
1438
        return 0;
1439
    } else if (page < leaf->key[0]) {
1439
    } else if (page < leaf->key[0]) {
1440
        return 0;
1440
        return 0;
1441
    }
1441
    }
1442
   
1442
   
1443
    if (page > leaf->key[leaf->keys - 1]) {
1443
    if (page > leaf->key[leaf->keys - 1]) {
1444
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1444
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1445
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1445
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1446
 
1446
 
1447
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1447
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1448
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1448
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1449
                /*
1449
                /*
1450
                 * The interval is contained in the rightmost interval
1450
                 * The interval is contained in the rightmost interval
1451
                 * of the leaf and can be removed by updating the size
1451
                 * of the leaf and can be removed by updating the size
1452
                 * of the bigger interval.
1452
                 * of the bigger interval.
1453
                 */
1453
                 */
1454
                leaf->value[leaf->keys - 1] -= count;
1454
                leaf->value[leaf->keys - 1] -= count;
1455
                return 1;
1455
                return 1;
1456
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1456
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1457
                count_t new_cnt;
1457
                count_t new_cnt;
1458
               
1458
               
1459
                /*
1459
                /*
1460
                 * The interval is contained in the rightmost interval
1460
                 * The interval is contained in the rightmost interval
1461
                 * of the leaf but its removal requires both updating
1461
                 * of the leaf but its removal requires both updating
1462
                 * the size of the original interval and
1462
                 * the size of the original interval and
1463
                 * also inserting a new interval.
1463
                 * also inserting a new interval.
1464
                 */
1464
                 */
1465
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1465
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1466
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1466
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1467
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1467
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1468
                return 1;
1468
                return 1;
1469
            }
1469
            }
1470
        }
1470
        }
1471
        return 0;
1471
        return 0;
1472
    }  
1472
    }  
1473
   
1473
   
1474
    /*
1474
    /*
1475
     * The border cases have been already resolved.
1475
     * The border cases have been already resolved.
1476
     * Now the interval can be only between intervals of the leaf.
1476
     * Now the interval can be only between intervals of the leaf.
1477
     */
1477
     */
1478
    for (i = 1; i < leaf->keys - 1; i++) {
1478
    for (i = 1; i < leaf->keys - 1; i++) {
1479
        if (page < leaf->key[i]) {
1479
        if (page < leaf->key[i]) {
1480
            uintptr_t left_pg = leaf->key[i - 1];
1480
            uintptr_t left_pg = leaf->key[i - 1];
1481
            count_t left_cnt = (count_t) leaf->value[i - 1];
1481
            count_t left_cnt = (count_t) leaf->value[i - 1];
1482
 
1482
 
1483
            /*
1483
            /*
1484
             * Now the interval is between intervals corresponding to (i - 1) and i.
1484
             * Now the interval is between intervals corresponding to (i - 1) and i.
1485
             */
1485
             */
1486
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1486
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1487
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1487
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1488
                    /*
1488
                    /*
1489
                    * The interval is contained in the interval (i - 1)
1489
                    * The interval is contained in the interval (i - 1)
1490
                     * of the leaf and can be removed by updating the size
1490
                     * of the leaf and can be removed by updating the size
1491
                     * of the bigger interval.
1491
                     * of the bigger interval.
1492
                     */
1492
                     */
1493
                    leaf->value[i - 1] -= count;
1493
                    leaf->value[i - 1] -= count;
1494
                    return 1;
1494
                    return 1;
1495
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1495
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1496
                    count_t new_cnt;
1496
                    count_t new_cnt;
1497
               
1497
               
1498
                    /*
1498
                    /*
1499
                     * The interval is contained in the interval (i - 1)
1499
                     * The interval is contained in the interval (i - 1)
1500
                     * of the leaf but its removal requires both updating
1500
                     * of the leaf but its removal requires both updating
1501
                     * the size of the original interval and
1501
                     * the size of the original interval and
1502
                     * also inserting a new interval.
1502
                     * also inserting a new interval.
1503
                     */
1503
                     */
1504
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1504
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1505
                    leaf->value[i - 1] -= count + new_cnt;
1505
                    leaf->value[i - 1] -= count + new_cnt;
1506
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1506
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1507
                    return 1;
1507
                    return 1;
1508
                }
1508
                }
1509
            }
1509
            }
1510
            return 0;
1510
            return 0;
1511
        }
1511
        }
1512
    }
1512
    }
1513
 
1513
 
1514
error:
1514
error:
1515
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1515
    panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1516
}
1516
}
1517
 
1517
 
1518
/** Remove reference to address space area share info.
1518
/** Remove reference to address space area share info.
1519
 *
1519
 *
1520
 * If the reference count drops to 0, the sh_info is deallocated.
1520
 * If the reference count drops to 0, the sh_info is deallocated.
1521
 *
1521
 *
1522
 * @param sh_info Pointer to address space area share info.
1522
 * @param sh_info Pointer to address space area share info.
1523
 */
1523
 */
1524
void sh_info_remove_reference(share_info_t *sh_info)
1524
void sh_info_remove_reference(share_info_t *sh_info)
1525
{
1525
{
1526
    bool dealloc = false;
1526
    bool dealloc = false;
1527
 
1527
 
1528
    mutex_lock(&sh_info->lock);
1528
    mutex_lock(&sh_info->lock);
1529
    ASSERT(sh_info->refcount);
1529
    ASSERT(sh_info->refcount);
1530
    if (--sh_info->refcount == 0) {
1530
    if (--sh_info->refcount == 0) {
1531
        dealloc = true;
1531
        dealloc = true;
1532
        link_t *cur;
1532
        link_t *cur;
1533
       
1533
       
1534
        /*
1534
        /*
1535
         * Now walk carefully the pagemap B+tree and free/remove
1535
         * Now walk carefully the pagemap B+tree and free/remove
1536
         * reference from all frames found there.
1536
         * reference from all frames found there.
1537
         */
1537
         */
1538
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1538
        for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1539
            btree_node_t *node;
1539
            btree_node_t *node;
1540
            int i;
1540
            int i;
1541
           
1541
           
1542
            node = list_get_instance(cur, btree_node_t, leaf_link);
1542
            node = list_get_instance(cur, btree_node_t, leaf_link);
1543
            for (i = 0; i < node->keys; i++)
1543
            for (i = 0; i < node->keys; i++)
1544
                frame_free((uintptr_t) node->value[i]);
1544
                frame_free((uintptr_t) node->value[i]);
1545
        }
1545
        }
1546
       
1546
       
1547
    }
1547
    }
1548
    mutex_unlock(&sh_info->lock);
1548
    mutex_unlock(&sh_info->lock);
1549
   
1549
   
1550
    if (dealloc) {
1550
    if (dealloc) {
1551
        btree_destroy(&sh_info->pagemap);
1551
        btree_destroy(&sh_info->pagemap);
1552
        free(sh_info);
1552
        free(sh_info);
1553
    }
1553
    }
1554
}
1554
}
1555
 
1555
 
1556
/*
1556
/*
1557
 * Address space related syscalls.
1557
 * Address space related syscalls.
1558
 */
1558
 */
1559
 
1559
 
1560
/** Wrapper for as_area_create(). */
1560
/** Wrapper for as_area_create(). */
1561
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1561
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1562
{
1562
{
1563
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1563
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1564
        return (unative_t) address;
1564
        return (unative_t) address;
1565
    else
1565
    else
1566
        return (unative_t) -1;
1566
        return (unative_t) -1;
1567
}
1567
}
1568
 
1568
 
1569
/** Wrapper for as_area_resize(). */
1569
/** Wrapper for as_area_resize(). */
1570
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1570
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1571
{
1571
{
1572
    return (unative_t) as_area_resize(AS, address, size, 0);
1572
    return (unative_t) as_area_resize(AS, address, size, 0);
1573
}
1573
}
1574
 
1574
 
1575
/** Wrapper for as_area_destroy(). */
1575
/** Wrapper for as_area_destroy(). */
1576
unative_t sys_as_area_destroy(uintptr_t address)
1576
unative_t sys_as_area_destroy(uintptr_t address)
1577
{
1577
{
1578
    return (unative_t) as_area_destroy(AS, address);
1578
    return (unative_t) as_area_destroy(AS, address);
1579
}
1579
}
1580
 
1580
 
1581
/** Print out information about address space.
1581
/** Print out information about address space.
1582
 *
1582
 *
1583
 * @param as Address space.
1583
 * @param as Address space.
1584
 */
1584
 */
1585
void as_print(as_t *as)
1585
void as_print(as_t *as)
1586
{
1586
{
1587
    ipl_t ipl;
1587
    ipl_t ipl;
1588
   
1588
   
1589
    ipl = interrupts_disable();
1589
    ipl = interrupts_disable();
1590
    mutex_lock(&as->lock);
1590
    mutex_lock(&as->lock);
1591
   
1591
   
1592
    /* print out info about address space areas */
1592
    /* print out info about address space areas */
1593
    link_t *cur;
1593
    link_t *cur;
1594
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1594
    for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1595
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1595
        btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1596
       
1596
       
1597
        int i;
1597
        int i;
1598
        for (i = 0; i < node->keys; i++) {
1598
        for (i = 0; i < node->keys; i++) {
1599
            as_area_t *area = node->value[i];
1599
            as_area_t *area = node->value[i];
1600
       
1600
       
1601
            mutex_lock(&area->lock);
1601
            mutex_lock(&area->lock);
1602
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1602
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1603
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1603
                area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1604
            mutex_unlock(&area->lock);
1604
            mutex_unlock(&area->lock);
1605
        }
1605
        }
1606
    }
1606
    }
1607
   
1607
   
1608
    mutex_unlock(&as->lock);
1608
    mutex_unlock(&as->lock);
1609
    interrupts_restore(ipl);
1609
    interrupts_restore(ipl);
1610
}
1610
}
1611
 
1611
 
1612
/** @}
1612
/** @}
1613
 */
1613
 */
1614
 
1614