Subversion Repositories HelenOS

Rev

Rev 3061 | Rev 3175 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3061 Rev 3097
1
/*
1
/*
2
 * Copyright (c) 2001-2004 Jakub Jermar
2
 * Copyright (c) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup main
29
/** @addtogroup main
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Main initialization kernel function for all processors.
35
 * @brief   Main initialization kernel function for all processors.
36
 *
36
 *
37
 * During kernel boot, all processors, after architecture dependent
37
 * During kernel boot, all processors, after architecture dependent
38
 * initialization, start executing code found in this file. After
38
 * initialization, start executing code found in this file. After
39
 * bringing up all subsystems, control is passed to scheduler().
39
 * bringing up all subsystems, control is passed to scheduler().
40
 *
40
 *
41
 * The bootstrap processor starts executing main_bsp() while
41
 * The bootstrap processor starts executing main_bsp() while
42
 * the application processors start executing main_ap().
42
 * the application processors start executing main_ap().
43
 *
43
 *
44
 * @see scheduler()
44
 * @see scheduler()
45
 * @see main_bsp()
45
 * @see main_bsp()
46
 * @see main_ap()
46
 * @see main_ap()
47
 */
47
 */
48
 
48
 
49
#include <arch/asm.h>
49
#include <arch/asm.h>
50
#include <context.h>
50
#include <context.h>
51
#include <print.h>
51
#include <print.h>
52
#include <panic.h>
52
#include <panic.h>
53
#include <debug.h>
53
#include <debug.h>
54
#include <config.h>
54
#include <config.h>
55
#include <time/clock.h>
55
#include <time/clock.h>
56
#include <time/timeout.h>
56
#include <time/timeout.h>
57
#include <proc/scheduler.h>
57
#include <proc/scheduler.h>
58
#include <proc/thread.h>
58
#include <proc/thread.h>
59
#include <proc/task.h>
59
#include <proc/task.h>
60
#include <proc/tasklet.h>
60
#include <proc/tasklet.h>
61
#include <main/kinit.h>
61
#include <main/kinit.h>
62
#include <main/version.h>
62
#include <main/version.h>
63
#include <console/kconsole.h>
63
#include <console/kconsole.h>
64
#include <cpu.h>
64
#include <cpu.h>
65
#include <align.h>
65
#include <align.h>
66
#include <interrupt.h>
66
#include <interrupt.h>
67
#include <mm/frame.h>
67
#include <mm/frame.h>
68
#include <mm/page.h>
68
#include <mm/page.h>
69
#include <genarch/mm/page_pt.h>
69
#include <genarch/mm/page_pt.h>
70
#include <mm/tlb.h>
70
#include <mm/tlb.h>
71
#include <mm/as.h>
71
#include <mm/as.h>
72
#include <mm/slab.h>
72
#include <mm/slab.h>
73
#include <synch/waitq.h>
73
#include <synch/waitq.h>
74
#include <synch/futex.h>
74
#include <synch/futex.h>
75
#include <arch/arch.h>
75
#include <arch/arch.h>
76
#include <arch.h>
76
#include <arch.h>
77
#include <arch/faddr.h>
77
#include <arch/faddr.h>
78
#include <ipc/ipc.h>
78
#include <ipc/ipc.h>
79
#include <macros.h>
79
#include <macros.h>
80
#include <adt/btree.h>
80
#include <adt/btree.h>
81
#include <smp/smp.h>
81
#include <smp/smp.h>
82
#include <ddi/ddi.h>
82
#include <ddi/ddi.h>
-
 
83
#include <console/console.h>
83
 
84
 
84
/** Global configuration structure. */
85
/** Global configuration structure. */
85
config_t config;
86
config_t config;
86
 
87
 
87
/** Initial user-space tasks */
88
/** Initial user-space tasks */
88
init_t init = {
89
init_t init = {
89
    .cnt = 0
90
    .cnt = 0
90
};
91
};
91
 
92
 
92
/** Boot allocations. */
93
/** Boot allocations. */
93
ballocs_t ballocs = {
94
ballocs_t ballocs = {
94
    .base = NULL,
95
    .base = NULL,
95
    .size = 0
96
    .size = 0
96
};
97
};
97
 
98
 
98
context_t ctx;
99
context_t ctx;
99
 
100
 
100
/*
101
/*
101
 * These 'hardcoded' variables will be intialized by
102
 * These 'hardcoded' variables will be intialized by
102
 * the linker or the low level assembler code with
103
 * the linker or the low level assembler code with
103
 * appropriate sizes and addresses.
104
 * appropriate sizes and addresses.
104
 */
105
 */
105
 
106
 
106
/**< Virtual address of where the kernel is loaded. */
107
/**< Virtual address of where the kernel is loaded. */
107
uintptr_t hardcoded_load_address = 0;
108
uintptr_t hardcoded_load_address = 0;
108
/**< Size of the kernel code in bytes. */
109
/**< Size of the kernel code in bytes. */
109
size_t hardcoded_ktext_size = 0;
110
size_t hardcoded_ktext_size = 0;
110
/**< Size of the kernel data in bytes. */
111
/**< Size of the kernel data in bytes. */
111
size_t hardcoded_kdata_size = 0;
112
size_t hardcoded_kdata_size = 0;
112
/**< Lowest safe stack virtual address. */
113
/**< Lowest safe stack virtual address. */
113
uintptr_t stack_safe = 0;      
114
uintptr_t stack_safe = 0;      
114
 
115
 
115
void main_bsp(void);
116
void main_bsp(void);
116
void main_ap(void);
117
void main_ap(void);
117
 
118
 
118
/*
119
/*
119
 * These two functions prevent stack from underflowing during the
120
 * These two functions prevent stack from underflowing during the
120
 * kernel boot phase when SP is set to the very top of the reserved
121
 * kernel boot phase when SP is set to the very top of the reserved
121
 * space. The stack could get corrupted by a fooled compiler-generated
122
 * space. The stack could get corrupted by a fooled compiler-generated
122
 * pop sequence otherwise.
123
 * pop sequence otherwise.
123
 */
124
 */
124
static void main_bsp_separated_stack(void);
125
static void main_bsp_separated_stack(void);
125
#ifdef CONFIG_SMP
126
#ifdef CONFIG_SMP
126
static void main_ap_separated_stack(void);
127
static void main_ap_separated_stack(void);
127
#endif
128
#endif
128
 
129
 
129
#define CONFIG_STACK_SIZE   ((1 << STACK_FRAMES) * STACK_SIZE)
130
#define CONFIG_STACK_SIZE   ((1 << STACK_FRAMES) * STACK_SIZE)
130
 
131
 
131
/** Main kernel routine for bootstrap CPU.
132
/** Main kernel routine for bootstrap CPU.
132
 *
133
 *
133
 * Initializes the kernel by bootstrap CPU.
134
 * Initializes the kernel by bootstrap CPU.
134
 * This function passes control directly to
135
 * This function passes control directly to
135
 * main_bsp_separated_stack().
136
 * main_bsp_separated_stack().
136
 *
137
 *
137
 * Assuming interrupts_disable().
138
 * Assuming interrupts_disable().
138
 *
139
 *
139
 */
140
 */
140
void main_bsp(void)
141
void main_bsp(void)
141
{
142
{
142
    LOG();
143
    LOG();
143
   
144
   
144
    config.cpu_count = 1;
145
    config.cpu_count = 1;
145
    config.cpu_active = 1;
146
    config.cpu_active = 1;
146
   
147
   
147
    config.base = hardcoded_load_address;
148
    config.base = hardcoded_load_address;
148
    config.kernel_size = ALIGN_UP(hardcoded_ktext_size +
149
    config.kernel_size = ALIGN_UP(hardcoded_ktext_size +
149
        hardcoded_kdata_size, PAGE_SIZE);
150
        hardcoded_kdata_size, PAGE_SIZE);
150
    config.stack_size = CONFIG_STACK_SIZE;
151
    config.stack_size = CONFIG_STACK_SIZE;
151
   
152
   
152
    /* Initialy the stack is placed just after the kernel */
153
    /* Initialy the stack is placed just after the kernel */
153
    config.stack_base = config.base + config.kernel_size;
154
    config.stack_base = config.base + config.kernel_size;
154
   
155
   
155
    /* Avoid placing stack on top of init */
156
    /* Avoid placing stack on top of init */
156
    count_t i;
157
    count_t i;
157
    for (i = 0; i < init.cnt; i++) {
158
    for (i = 0; i < init.cnt; i++) {
158
        if (PA_overlaps(config.stack_base, config.stack_size,
159
        if (PA_overlaps(config.stack_base, config.stack_size,
159
            init.tasks[i].addr, init.tasks[i].size))
160
            init.tasks[i].addr, init.tasks[i].size))
160
            config.stack_base = ALIGN_UP(init.tasks[i].addr +
161
            config.stack_base = ALIGN_UP(init.tasks[i].addr +
161
                init.tasks[i].size, config.stack_size);
162
                init.tasks[i].size, config.stack_size);
162
    }
163
    }
163
 
164
 
164
    /* Avoid placing stack on top of boot allocations. */
165
    /* Avoid placing stack on top of boot allocations. */
165
    if (ballocs.size) {
166
    if (ballocs.size) {
166
        if (PA_overlaps(config.stack_base, config.stack_size,
167
        if (PA_overlaps(config.stack_base, config.stack_size,
167
            ballocs.base, ballocs.size))
168
            ballocs.base, ballocs.size))
168
            config.stack_base = ALIGN_UP(ballocs.base +
169
            config.stack_base = ALIGN_UP(ballocs.base +
169
                ballocs.size, PAGE_SIZE);
170
                ballocs.size, PAGE_SIZE);
170
    }
171
    }
171
   
172
   
172
    if (config.stack_base < stack_safe)
173
    if (config.stack_base < stack_safe)
173
        config.stack_base = ALIGN_UP(stack_safe, PAGE_SIZE);
174
        config.stack_base = ALIGN_UP(stack_safe, PAGE_SIZE);
174
   
175
   
175
    version_print();
176
    version_print();
176
   
177
   
177
    LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
178
    LOG("\nconfig.base=%#" PRIp " config.kernel_size=%" PRIs
178
        "\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
179
        "\nconfig.stack_base=%#" PRIp " config.stack_size=%" PRIs,
179
        config.base, config.kernel_size,
180
        config.base, config.kernel_size,
180
        config.stack_base, config.stack_size);
181
        config.stack_base, config.stack_size);
181
   
182
   
182
    context_save(&ctx);
183
    context_save(&ctx);
183
    context_set(&ctx, FADDR(main_bsp_separated_stack), config.stack_base,
184
    context_set(&ctx, FADDR(main_bsp_separated_stack), config.stack_base,
184
        THREAD_STACK_SIZE);
185
        THREAD_STACK_SIZE);
185
    context_restore(&ctx);
186
    context_restore(&ctx);
186
    /* not reached */
187
    /* not reached */
187
}
188
}
188
 
189
 
189
 
190
 
190
/** Main kernel routine for bootstrap CPU using new stack.
191
/** Main kernel routine for bootstrap CPU using new stack.
191
 *
192
 *
192
 * Second part of main_bsp().
193
 * Second part of main_bsp().
193
 *
194
 *
194
 */
195
 */
195
void main_bsp_separated_stack(void)
196
void main_bsp_separated_stack(void)
196
{
197
{
197
    LOG();
198
    LOG();
198
   
199
   
199
    the_initialize(THE);
200
    the_initialize(THE);
200
 
201
 
201
    /*
202
    /*
202
     * kconsole data structures must be initialized very early
203
     * kconsole data structures must be initialized very early
203
     * because other subsystems will register their respective
204
     * because other subsystems will register their respective
204
     * commands.
205
     * commands.
205
     */
206
     */
206
    LOG_EXEC(kconsole_init());
207
    LOG_EXEC(kconsole_init());
207
   
208
   
208
    /*
209
    /*
209
     * Exception handler initialization, before architecture
210
     * Exception handler initialization, before architecture
210
     * starts adding its own handlers
211
     * starts adding its own handlers
211
     */
212
     */
212
    LOG_EXEC(exc_init());
213
    LOG_EXEC(exc_init());
213
 
214
 
214
    /*
215
    /*
215
     * Memory management subsystems initialization.
216
     * Memory management subsystems initialization.
216
     */
217
     */
217
    LOG_EXEC(arch_pre_mm_init());
218
    LOG_EXEC(arch_pre_mm_init());
218
    LOG_EXEC(frame_init());
219
    LOG_EXEC(frame_init());
219
   
220
   
220
    /* Initialize at least 1 memory segment big enough for slab to work. */
221
    /* Initialize at least 1 memory segment big enough for slab to work. */
221
    LOG_EXEC(slab_cache_init());
222
    LOG_EXEC(slab_cache_init());
222
    LOG_EXEC(btree_init());
223
    LOG_EXEC(btree_init());
223
    LOG_EXEC(as_init());
224
    LOG_EXEC(as_init());
224
    LOG_EXEC(page_init());
225
    LOG_EXEC(page_init());
225
    LOG_EXEC(tlb_init());
226
    LOG_EXEC(tlb_init());
226
    LOG_EXEC(ddi_init());
227
    LOG_EXEC(ddi_init());
227
    LOG_EXEC(tasklet_init());
228
    LOG_EXEC(tasklet_init());
228
    LOG_EXEC(arch_post_mm_init());
229
    LOG_EXEC(arch_post_mm_init());
229
    LOG_EXEC(arch_pre_smp_init());
230
    LOG_EXEC(arch_pre_smp_init());
230
    LOG_EXEC(smp_init());
231
    LOG_EXEC(smp_init());
231
   
232
   
232
    /* Slab must be initialized after we know the number of processors. */
233
    /* Slab must be initialized after we know the number of processors. */
233
    LOG_EXEC(slab_enable_cpucache());
234
    LOG_EXEC(slab_enable_cpucache());
234
   
235
   
235
    printf("Detected %" PRIc " CPU(s), %" PRIu64" MB free memory\n",
236
    printf("Detected %" PRIc " CPU(s), %" PRIu64" MB free memory\n",
236
        config.cpu_count, SIZE2MB(zone_total_size()));
237
        config.cpu_count, SIZE2MB(zone_total_size()));
237
   
238
   
238
    LOG_EXEC(cpu_init());
239
    LOG_EXEC(cpu_init());
239
   
240
   
240
    LOG_EXEC(calibrate_delay_loop());
241
    LOG_EXEC(calibrate_delay_loop());
241
    LOG_EXEC(clock_counter_init());
242
    LOG_EXEC(clock_counter_init());
242
    LOG_EXEC(timeout_init());
243
    LOG_EXEC(timeout_init());
243
    LOG_EXEC(scheduler_init());
244
    LOG_EXEC(scheduler_init());
244
    LOG_EXEC(task_init());
245
    LOG_EXEC(task_init());
245
    LOG_EXEC(thread_init());
246
    LOG_EXEC(thread_init());
246
    LOG_EXEC(futex_init());
247
    LOG_EXEC(futex_init());
247
   
248
   
248
    if (init.cnt > 0) {
249
    if (init.cnt > 0) {
249
        count_t i;
250
        count_t i;
250
        for (i = 0; i < init.cnt; i++)
251
        for (i = 0; i < init.cnt; i++)
251
            printf("init[%" PRIc "].addr=%#" PRIp
252
            printf("init[%" PRIc "].addr=%#" PRIp
252
                ", init[%" PRIc "].size=%#" PRIs "\n",
253
                ", init[%" PRIc "].size=%#" PRIs "\n",
253
                i, init.tasks[i].addr,
254
                i, init.tasks[i].addr,
254
                i, init.tasks[i].size);
255
                i, init.tasks[i].size);
255
    } else
256
    } else
256
        printf("No init binaries found\n");
257
        printf("No init binaries found\n");
257
   
258
   
258
    LOG_EXEC(ipc_init());
259
    LOG_EXEC(ipc_init());
-
 
260
    LOG_EXEC(klog_init());
259
 
261
 
260
    /*
262
    /*
261
     * Create kernel task.
263
     * Create kernel task.
262
     */
264
     */
263
    task_t *kernel = task_create(AS_KERNEL, "kernel");
265
    task_t *kernel = task_create(AS_KERNEL, "kernel");
264
    if (!kernel)
266
    if (!kernel)
265
        panic("Can't create kernel task\n");
267
        panic("Can't create kernel task\n");
266
   
268
   
267
    /*
269
    /*
268
     * Create the first thread.
270
     * Create the first thread.
269
     */
271
     */
270
    thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit", true);
272
    thread_t *kinit_thread = thread_create(kinit, NULL, kernel, 0, "kinit", true);
271
    if (!kinit_thread)
273
    if (!kinit_thread)
272
        panic("Can't create kinit thread\n");
274
        panic("Can't create kinit thread\n");
273
    LOG_EXEC(thread_ready(kinit_thread));
275
    LOG_EXEC(thread_ready(kinit_thread));
274
   
276
   
275
    /*
277
    /*
276
     * This call to scheduler() will return to kinit,
278
     * This call to scheduler() will return to kinit,
277
     * starting the thread of kernel threads.
279
     * starting the thread of kernel threads.
278
     */
280
     */
279
    scheduler();
281
    scheduler();
280
    /* not reached */
282
    /* not reached */
281
}
283
}
282
 
284
 
283
 
285
 
284
#ifdef CONFIG_SMP
286
#ifdef CONFIG_SMP
285
/** Main kernel routine for application CPUs.
287
/** Main kernel routine for application CPUs.
286
 *
288
 *
287
 * Executed by application processors, temporary stack
289
 * Executed by application processors, temporary stack
288
 * is at ctx.sp which was set during BSP boot.
290
 * is at ctx.sp which was set during BSP boot.
289
 * This function passes control directly to
291
 * This function passes control directly to
290
 * main_ap_separated_stack().
292
 * main_ap_separated_stack().
291
 *
293
 *
292
 * Assuming interrupts_disable()'d.
294
 * Assuming interrupts_disable()'d.
293
 *
295
 *
294
 */
296
 */
295
void main_ap(void)
297
void main_ap(void)
296
{
298
{
297
    /*
299
    /*
298
     * Incrementing the active CPU counter will guarantee that the
300
     * Incrementing the active CPU counter will guarantee that the
299
     * *_init() functions can find out that they need to
301
     * *_init() functions can find out that they need to
300
     * do initialization for AP only.
302
     * do initialization for AP only.
301
     */
303
     */
302
    config.cpu_active++;
304
    config.cpu_active++;
303
 
305
 
304
    /*
306
    /*
305
     * The THE structure is well defined because ctx.sp is used as stack.
307
     * The THE structure is well defined because ctx.sp is used as stack.
306
     */
308
     */
307
    the_initialize(THE);
309
    the_initialize(THE);
308
   
310
   
309
    arch_pre_mm_init();
311
    arch_pre_mm_init();
310
    frame_init();
312
    frame_init();
311
    page_init();
313
    page_init();
312
    tlb_init();
314
    tlb_init();
313
    arch_post_mm_init();
315
    arch_post_mm_init();
314
   
316
   
315
    cpu_init();
317
    cpu_init();
316
    calibrate_delay_loop();
318
    calibrate_delay_loop();
317
    arch_post_cpu_init();
319
    arch_post_cpu_init();
318
 
320
 
319
    the_copy(THE, (the_t *) CPU->stack);
321
    the_copy(THE, (the_t *) CPU->stack);
320
 
322
 
321
    /*
323
    /*
322
     * If we woke kmp up before we left the kernel stack, we could
324
     * If we woke kmp up before we left the kernel stack, we could
323
     * collide with another CPU coming up. To prevent this, we
325
     * collide with another CPU coming up. To prevent this, we
324
     * switch to this cpu's private stack prior to waking kmp up.
326
     * switch to this cpu's private stack prior to waking kmp up.
325
     */
327
     */
326
    context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
328
    context_set(&CPU->saved_context, FADDR(main_ap_separated_stack),
327
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
329
        (uintptr_t) CPU->stack, CPU_STACK_SIZE);
328
    context_restore(&CPU->saved_context);
330
    context_restore(&CPU->saved_context);
329
    /* not reached */
331
    /* not reached */
330
}
332
}
331
 
333
 
332
 
334
 
333
/** Main kernel routine for application CPUs using new stack.
335
/** Main kernel routine for application CPUs using new stack.
334
 *
336
 *
335
 * Second part of main_ap().
337
 * Second part of main_ap().
336
 *
338
 *
337
 */
339
 */
338
void main_ap_separated_stack(void)
340
void main_ap_separated_stack(void)
339
{
341
{
340
    /*
342
    /*
341
     * Configure timeouts for this cpu.
343
     * Configure timeouts for this cpu.
342
     */
344
     */
343
    timeout_init();
345
    timeout_init();
344
 
346
 
345
    waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
347
    waitq_wakeup(&ap_completion_wq, WAKEUP_FIRST);
346
    scheduler();
348
    scheduler();
347
    /* not reached */
349
    /* not reached */
348
}
350
}
349
#endif /* CONFIG_SMP */
351
#endif /* CONFIG_SMP */
350
 
352
 
351
/** @}
353
/** @}
352
 */
354
 */
353
 
355