Subversion Repositories HelenOS

Rev

Rev 1810 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1810 Rev 1816
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup xen32  
29
/** @addtogroup xen32  
30
 * @{
30
 * @{
31
 */
31
 */
32
/** @file
32
/** @file
33
 */
33
 */
34
 
34
 
35
#include <arch/pm.h>
35
#include <arch/pm.h>
36
#include <config.h>
36
#include <config.h>
37
#include <arch/types.h>
37
#include <arch/types.h>
38
#include <typedefs.h>
38
#include <typedefs.h>
39
#include <arch/interrupt.h>
39
#include <arch/interrupt.h>
40
#include <arch/asm.h>
40
#include <arch/asm.h>
41
#include <arch/context.h>
41
#include <arch/context.h>
42
#include <panic.h>
42
#include <panic.h>
43
#include <arch/mm/page.h>
43
#include <arch/mm/page.h>
44
#include <mm/slab.h>
44
#include <mm/slab.h>
45
#include <memstr.h>
45
#include <memstr.h>
46
#include <arch/boot/boot.h>
46
#include <arch/boot/boot.h>
47
#include <interrupt.h>
47
#include <interrupt.h>
48
 
48
 
49
/*
49
/*
50
 * Early xen32 configuration functions and data structures.
50
 * Early xen32 configuration functions and data structures.
51
 */
51
 */
52
 
52
 
53
/*
53
/*
54
 * We have no use for segmentation so we set up flat mode. In this
54
 * We have no use for segmentation so we set up flat mode. In this
55
 * mode, we use, for each privilege level, two segments spanning the
55
 * mode, we use, for each privilege level, two segments spanning the
56
 * whole memory. One is for code and one is for data.
56
 * whole memory. One is for code and one is for data.
57
 *
57
 *
58
 * One is for GS register which holds pointer to the TLS thread
58
 * One is for GS register which holds pointer to the TLS thread
59
 * structure in it's base.
59
 * structure in it's base.
60
 */
60
 */
61
descriptor_t gdt[GDT_ITEMS] = {
61
descriptor_t gdt[GDT_ITEMS] = {
62
    /* NULL descriptor */
62
    /* NULL descriptor */
63
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
63
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
64
    /* KTEXT descriptor */
64
    /* KTEXT descriptor */
65
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
65
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
66
    /* KDATA descriptor */
66
    /* KDATA descriptor */
67
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
67
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
68
    /* UTEXT descriptor */
68
    /* UTEXT descriptor */
69
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
69
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
70
    /* UDATA descriptor */
70
    /* UDATA descriptor */
71
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
71
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
72
    /* TSS descriptor - set up will be completed later */
72
    /* TSS descriptor - set up will be completed later */
73
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
73
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
74
    /* TLS descriptor */
74
    /* TLS descriptor */
75
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
75
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
76
    /* VESA Init descriptor */
-
 
77
#ifdef CONFIG_FB
-
 
78
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
-
 
79
#endif  
-
 
80
};
76
};
81
 
77
 
82
static idescriptor_t idt[IDT_ITEMS];
78
static idescriptor_t idt[IDT_ITEMS];
83
 
79
 
84
static tss_t tss;
80
static tss_t tss;
85
 
81
 
86
tss_t *tss_p = NULL;
82
tss_t *tss_p = NULL;
87
 
83
 
88
/* gdtr is changed by kmp before next CPU is initialized */
84
/* gdtr is changed by kmp before next CPU is initialized */
89
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
85
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((uintptr_t) gdt) };
90
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
86
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (uintptr_t) gdt };
91
 
87
 
92
void gdt_setbase(descriptor_t *d, uintptr_t base)
88
void gdt_setbase(descriptor_t *d, uintptr_t base)
93
{
89
{
94
    d->base_0_15 = base & 0xffff;
90
    d->base_0_15 = base & 0xffff;
95
    d->base_16_23 = ((base) >> 16) & 0xff;
91
    d->base_16_23 = ((base) >> 16) & 0xff;
96
    d->base_24_31 = ((base) >> 24) & 0xff;
92
    d->base_24_31 = ((base) >> 24) & 0xff;
97
}
93
}
98
 
94
 
99
void gdt_setlimit(descriptor_t *d, uint32_t limit)
95
void gdt_setlimit(descriptor_t *d, uint32_t limit)
100
{
96
{
101
    d->limit_0_15 = limit & 0xffff;
97
    d->limit_0_15 = limit & 0xffff;
102
    d->limit_16_19 = (limit >> 16) & 0xf;
98
    d->limit_16_19 = (limit >> 16) & 0xf;
103
}
99
}
104
 
100
 
105
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
101
void idt_setoffset(idescriptor_t *d, uintptr_t offset)
106
{
102
{
107
    /*
103
    /*
108
     * Offset is a linear address.
104
     * Offset is a linear address.
109
     */
105
     */
110
    d->offset_0_15 = offset & 0xffff;
106
    d->offset_0_15 = offset & 0xffff;
111
    d->offset_16_31 = offset >> 16;
107
    d->offset_16_31 = offset >> 16;
112
}
108
}
113
 
109
 
114
void tss_initialize(tss_t *t)
110
void tss_initialize(tss_t *t)
115
{
111
{
116
    memsetb((uintptr_t) t, sizeof(struct tss), 0);
112
    memsetb((uintptr_t) t, sizeof(struct tss), 0);
117
}
113
}
118
 
114
 
119
/*
115
/*
120
 * This function takes care of proper setup of IDT and IDTR.
116
 * This function takes care of proper setup of IDT and IDTR.
121
 */
117
 */
122
void idt_init(void)
118
void idt_init(void)
123
{
119
{
124
    idescriptor_t *d;
120
    idescriptor_t *d;
125
    int i;
121
    int i;
126
 
122
 
127
    for (i = 0; i < IDT_ITEMS; i++) {
123
    for (i = 0; i < IDT_ITEMS; i++) {
128
        d = &idt[i];
124
        d = &idt[i];
129
 
125
 
130
        d->unused = 0;
126
        d->unused = 0;
131
        d->selector = selector(KTEXT_DES);
127
        d->selector = selector(KTEXT_DES);
132
 
128
 
133
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
129
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
134
 
130
 
135
        if (i == VECTOR_SYSCALL) {
131
        if (i == VECTOR_SYSCALL) {
136
            /*
132
            /*
137
             * The syscall interrupt gate must be calleable from userland.
133
             * The syscall interrupt gate must be calleable from userland.
138
             */
134
             */
139
            d->access |= DPL_USER;
135
            d->access |= DPL_USER;
140
        }
136
        }
141
       
137
       
142
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) + i*interrupt_handler_size);
138
        idt_setoffset(d, ((uintptr_t) interrupt_handlers) + i*interrupt_handler_size);
143
        exc_register(i, "undef", (iroutine) null_interrupt);
139
        exc_register(i, "undef", (iroutine) null_interrupt);
144
    }
140
    }
145
    exc_register(13, "gp_fault", (iroutine) gp_fault);
141
    exc_register(13, "gp_fault", (iroutine) gp_fault);
146
    exc_register( 7, "nm_fault", (iroutine) nm_fault);
142
    exc_register( 7, "nm_fault", (iroutine) nm_fault);
147
    exc_register(12, "ss_fault", (iroutine) ss_fault);
143
    exc_register(12, "ss_fault", (iroutine) ss_fault);
148
    exc_register(19, "simd_fp", (iroutine) simd_fp_exception);
144
    exc_register(19, "simd_fp", (iroutine) simd_fp_exception);
149
}
145
}
150
 
146
 
151
 
147
 
152
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
148
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
153
static void clean_IOPL_NT_flags(void)
149
static void clean_IOPL_NT_flags(void)
154
{
150
{
155
    __asm__ volatile (
151
//  __asm__ volatile (
156
        "pushfl\n"
152
//      "pushfl\n"
157
        "pop %%eax\n"
153
//      "pop %%eax\n"
158
        "and $0xffff8fff, %%eax\n"
154
//      "and $0xffff8fff, %%eax\n"
159
        "push %%eax\n"
155
//      "push %%eax\n"
160
        "popfl\n"
156
//      "popfl\n"
161
        : : : "eax"
157
//      : : : "eax"
162
    );
158
//  );
163
}
159
}
164
 
160
 
165
/* Clean AM(18) flag in CR0 register */
161
/* Clean AM(18) flag in CR0 register */
166
static void clean_AM_flag(void)
162
static void clean_AM_flag(void)
167
{
163
{
168
    __asm__ volatile (
164
//  __asm__ volatile (
169
        "mov %%cr0, %%eax\n"
165
//      "mov %%cr0, %%eax\n"
170
        "and $0xfffbffff, %%eax\n"
166
//      "and $0xfffbffff, %%eax\n"
171
        "mov %%eax, %%cr0\n"
167
//      "mov %%eax, %%cr0\n"
172
        : : : "eax"
168
//      : : : "eax"
173
    );
169
//  );
174
}
170
}
175
 
171
 
176
void pm_init(void)
172
void pm_init(void)
177
{
173
{
178
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
174
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
179
    ptr_16_32_t idtr;
175
    ptr_16_32_t idtr;
180
 
176
 
181
    /*
177
    /*
182
     * Update addresses in GDT and IDT to their virtual counterparts.
178
     * Update addresses in GDT and IDT to their virtual counterparts.
183
     */
179
     */
184
    idtr.limit = sizeof(idt);
180
    idtr.limit = sizeof(idt);
185
    idtr.base = (uintptr_t) idt;
181
    idtr.base = (uintptr_t) idt;
186
    gdtr_load(&gdtr);
182
//  gdtr_load(&gdtr);
187
    idtr_load(&idtr);
183
//  idtr_load(&idtr);
188
   
184
   
189
    /*
185
    /*
190
     * Each CPU has its private GDT and TSS.
186
     * Each CPU has its private GDT and TSS.
191
     * All CPUs share one IDT.
187
     * All CPUs share one IDT.
192
     */
188
     */
193
 
189
 
194
    if (config.cpu_active == 1) {
190
//  if (config.cpu_active == 1) {
195
        idt_init();
191
//      idt_init();
196
        /*
192
//      /*
197
         * NOTE: bootstrap CPU has statically allocated TSS, because
193
//       * NOTE: bootstrap CPU has statically allocated TSS, because
198
         * the heap hasn't been initialized so far.
194
//       * the heap hasn't been initialized so far.
199
         */
195
//       */
200
        tss_p = &tss;
196
        tss_p = &tss;
201
    }
197
//  }
202
    else {
198
//  else {
203
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
199
//      tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
204
        if (!tss_p)
200
//      if (!tss_p)
205
            panic("could not allocate TSS\n");
201
//          panic("could not allocate TSS\n");
206
    }
202
//  }
207
 
203
 
208
    tss_initialize(tss_p);
204
//  tss_initialize(tss_p);
209
   
205
   
210
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
206
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
211
    gdt_p[TSS_DES].special = 1;
207
    gdt_p[TSS_DES].special = 1;
212
    gdt_p[TSS_DES].granularity = 0;
208
    gdt_p[TSS_DES].granularity = 0;
213
   
209
   
214
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
210
    gdt_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
215
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
211
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
216
 
212
 
217
    /*
213
    /*
218
     * As of this moment, the current CPU has its own GDT pointing
214
     * As of this moment, the current CPU has its own GDT pointing
219
     * to its own TSS. We just need to load the TR register.
215
     * to its own TSS. We just need to load the TR register.
220
     */
216
     */
221
    tr_load(selector(TSS_DES));
217
//  tr_load(selector(TSS_DES));
222
   
218
   
223
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
219
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
224
    clean_AM_flag();          /* Disable alignment check */
220
    clean_AM_flag();          /* Disable alignment check */
225
}
221
}
226
 
222
 
227
void set_tls_desc(uintptr_t tls)
223
void set_tls_desc(uintptr_t tls)
228
{
224
{
229
    ptr_16_32_t cpugdtr;
225
    ptr_16_32_t cpugdtr;
230
    descriptor_t *gdt_p;
226
    descriptor_t *gdt_p;
231
 
227
 
232
    gdtr_store(&cpugdtr);
228
    gdtr_store(&cpugdtr);
233
    gdt_p = (descriptor_t *) cpugdtr.base;
229
    gdt_p = (descriptor_t *) cpugdtr.base;
234
    gdt_setbase(&gdt_p[TLS_DES], tls);
230
    gdt_setbase(&gdt_p[TLS_DES], tls);
235
    /* Reload gdt register to update GS in CPU */
231
    /* Reload gdt register to update GS in CPU */
236
    gdtr_load(&cpugdtr);
232
    gdtr_load(&cpugdtr);
237
}
233
}
238
 
234
 
239
/** @}
235
/** @}
240
 */
236
 */
241
 
237