Subversion Repositories HelenOS

Rev

Rev 110 | Rev 113 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 110 Rev 112
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <arch/pm.h>
29
#include <arch/pm.h>
30
#include <config.h>
30
#include <config.h>
31
#include <arch/types.h>
31
#include <arch/types.h>
32
#include <typedefs.h>
32
#include <typedefs.h>
33
#include <arch/interrupt.h>
33
#include <arch/interrupt.h>
34
#include <arch/asm.h>
34
#include <arch/asm.h>
35
#include <arch/context.h>
35
#include <arch/context.h>
36
#include <panic.h>
36
#include <panic.h>
37
 
37
 
38
/*
38
/*
39
 * Early ia32 configuration functions and data structures.
39
 * Early ia32 configuration functions and data structures.
40
 */
40
 */
41
 
41
 
42
/*
42
/*
43
 * We have no use for segmentation so we set up flat mode. In this
43
 * We have no use for segmentation so we set up flat mode. In this
44
 * mode, we use, for each privilege level, two segments spanning the
44
 * mode, we use, for each privilege level, two segments spanning the
45
 * whole memory. One is for code and one is for data.
45
 * whole memory. One is for code and one is for data.
46
 */
46
 */
47
struct descriptor gdt[GDT_ITEMS] = {
47
struct descriptor gdt[GDT_ITEMS] = {
48
    /* NULL descriptor */
48
    /* NULL descriptor */
49
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
49
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
50
    /* KTEXT descriptor */
50
    /* KTEXT descriptor */
51
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
51
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
52
    /* KDATA descriptor */
52
    /* KDATA descriptor */
53
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
53
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
54
    /* UTEXT descriptor */
54
    /* UTEXT descriptor */
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
56
    /* UDATA descriptor */
56
    /* UDATA descriptor */
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
58
    /* TSS descriptor - set up will be completed later */
58
    /* TSS descriptor - set up will be completed later */
59
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
59
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
60
};
60
};
61
 
61
 
62
static struct idescriptor idt[IDT_ITEMS];
62
static struct idescriptor idt[IDT_ITEMS];
63
 
63
 
64
static struct tss tss;
64
static struct tss tss;
65
 
65
 
66
struct tss *tss_p = NULL;
66
struct tss *tss_p = NULL;
67
 
67
 
68
/* gdtr is changed by kmp before next CPU is initialized */
68
/* gdtr is changed by kmp before next CPU is initialized */
69
struct ptr_16_32 gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
69
struct ptr_16_32 gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
70
struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
70
struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
71
 
71
 
72
void gdt_setbase(struct descriptor *d, __address base)
72
void gdt_setbase(struct descriptor *d, __address base)
73
{
73
{
74
        d->base_0_15 = KA2PA(base) & 0xffff;
74
        d->base_0_15 = base & 0xffff;
75
        d->base_16_23 = (KA2PA(base) >> 16) & 0xff;
75
        d->base_16_23 = ((base) >> 16) & 0xff;
76
        d->base_24_31 = (KA2PA(base) >> 24) & 0xff;
76
        d->base_24_31 = ((base) >> 24) & 0xff;
77
 
77
 
78
}
78
}
79
 
79
 
80
void gdt_setlimit(struct descriptor *d, __u32 limit)
80
void gdt_setlimit(struct descriptor *d, __u32 limit)
81
{
81
{
82
        d->limit_0_15 = limit & 0xffff;
82
        d->limit_0_15 = limit & 0xffff;
83
        d->limit_16_19 = (limit >> 16) & 0xf;
83
        d->limit_16_19 = (limit >> 16) & 0xf;
84
}
84
}
85
 
85
 
86
void idt_setoffset(struct idescriptor *d, __address offset)
86
void idt_setoffset(struct idescriptor *d, __address offset)
87
{
87
{
-
 
88
    /*
-
 
89
     * Offset is a linear address.
-
 
90
     */
88
    d->offset_0_15 = KA2PA(offset) & 0xffff;
91
    d->offset_0_15 = offset & 0xffff;
89
    d->offset_16_31 = KA2PA(offset) >> 16;
92
    d->offset_16_31 = offset >> 16;
90
}
93
}
91
 
94
 
92
void tss_initialize(struct tss *t)
95
void tss_initialize(struct tss *t)
93
{
96
{
94
    memsetb((__address) t, sizeof(struct tss), 0);
97
    memsetb((__address) t, sizeof(struct tss), 0);
95
}
98
}
96
 
99
 
97
/*
100
/*
98
 * This function takes care of proper setup of IDT and IDTR.
101
 * This function takes care of proper setup of IDT and IDTR.
99
 */
102
 */
100
void idt_init(void)
103
void idt_init(void)
101
{
104
{
102
    struct idescriptor *d;
105
    struct idescriptor *d;
103
    int i;
106
    int i;
104
   
107
   
105
    for (i = 0; i < IDT_ITEMS; i++) {
108
    for (i = 0; i < IDT_ITEMS; i++) {
106
        d = &idt[i];
109
        d = &idt[i];
107
 
110
 
108
        d->unused = 0;
111
        d->unused = 0;
109
        d->selector = selector(KTEXT_DES);
112
        d->selector = selector(KTEXT_DES);
110
 
113
 
111
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
114
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
112
 
115
 
113
        if (i == VECTOR_SYSCALL) {
116
        if (i == VECTOR_SYSCALL) {
114
            /*
117
            /*
115
             * The syscall interrupt gate must be calleable from userland.
118
             * The syscall interrupt gate must be calleable from userland.
116
             */
119
             */
117
            d->access |= DPL_USER;
120
            d->access |= DPL_USER;
118
        }
121
        }
119
       
122
       
120
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
123
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
121
        trap_register(i, null_interrupt);
124
        trap_register(i, null_interrupt);
122
    }
125
    }
123
    trap_register(13, gp_fault);
126
    trap_register(13, gp_fault);
124
    trap_register( 7, nm_fault);
127
    trap_register( 7, nm_fault);
125
    trap_register(12, ss_fault);
128
    trap_register(12, ss_fault);
126
}
129
}
127
 
130
 
128
 
131
 
129
void pm_init(void)
132
void pm_init(void)
130
{
133
{
131
    struct descriptor *gdt_p = (struct descriptor *) gdtr.base;
134
    struct descriptor *gdt_p = (struct descriptor *) gdtr.base;
132
 
135
 
133
    /*
136
    /*
134
     * Each CPU has its private GDT and TSS.
137
     * Each CPU has its private GDT and TSS.
135
     * All CPUs share one IDT.
138
     * All CPUs share one IDT.
136
     */
139
     */
137
 
140
 
138
    if (config.cpu_active == 1) {
141
    if (config.cpu_active == 1) {
139
        idt_init();
142
        idt_init();
140
        /*
143
        /*
141
         * NOTE: bootstrap CPU has statically allocated TSS, because
144
         * NOTE: bootstrap CPU has statically allocated TSS, because
142
         * the heap hasn't been initialized so far.
145
         * the heap hasn't been initialized so far.
143
         */
146
         */
144
        tss_p = &tss;
147
        tss_p = &tss;
145
    }
148
    }
146
    else {
149
    else {
147
        tss_p = (struct tss *) malloc(sizeof(struct tss));
150
        tss_p = (struct tss *) malloc(sizeof(struct tss));
148
        if (!tss_p)
151
        if (!tss_p)
149
            panic("could not allocate TSS\n");
152
            panic("could not allocate TSS\n");
150
    }
153
    }
151
 
154
 
152
    tss_initialize(tss_p);
155
    tss_initialize(tss_p);
153
   
156
   
154
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
157
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
155
    gdt_p[TSS_DES].special = 1;
158
    gdt_p[TSS_DES].special = 1;
156
    gdt_p[TSS_DES].granularity = 1;
159
    gdt_p[TSS_DES].granularity = 1;
157
   
160
   
158
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
161
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
159
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
162
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
160
 
163
 
161
    /*
164
    /*
162
     * As of this moment, the current CPU has its own GDT pointing
165
     * As of this moment, the current CPU has its own GDT pointing
163
     * to its own TSS. We just need to load the TR register.
166
     * to its own TSS. We just need to load the TR register.
164
     */
167
     */
165
    __asm__("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
168
    __asm__("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
166
}
169
}
167
 
170