Subversion Repositories HelenOS

Rev

Rev 2124 | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 2124 Rev 2474
1
/*
1
/*
2
 * Copyright (c) 2006 Ondrej Palkovsky
2
 * Copyright (c) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Slab allocator.
35
 * @brief   Slab allocator.
36
 *
36
 *
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
37
 * The slab allocator is closely modelled after OpenSolaris slab allocator.
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
38
 * @see http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
39
 *
39
 *
40
 * with the following exceptions:
40
 * with the following exceptions:
41
 * @li empty slabs are deallocated immediately
41
 * @li empty slabs are deallocated immediately
42
 *     (in Linux they are kept in linked list, in Solaris ???)
42
 *     (in Linux they are kept in linked list, in Solaris ???)
43
 * @li empty magazines are deallocated when not needed
43
 * @li empty magazines are deallocated when not needed
44
 *     (in Solaris they are held in linked list in slab cache)
44
 *     (in Solaris they are held in linked list in slab cache)
45
 *
45
 *
46
 * Following features are not currently supported but would be easy to do:
46
 * Following features are not currently supported but would be easy to do:
47
 * @li cache coloring
47
 * @li cache coloring
48
 * @li dynamic magazine growing (different magazine sizes are already
48
 * @li dynamic magazine growing (different magazine sizes are already
49
 *     supported, but we would need to adjust allocation strategy)
49
 *     supported, but we would need to adjust allocation strategy)
50
 *
50
 *
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
51
 * The slab allocator supports per-CPU caches ('magazines') to facilitate
52
 * good SMP scaling.
52
 * good SMP scaling.
53
 *
53
 *
54
 * When a new object is being allocated, it is first checked, if it is
54
 * When a new object is being allocated, it is first checked, if it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
55
 * available in a CPU-bound magazine. If it is not found there, it is
56
 * allocated from a CPU-shared slab - if a partially full one is found,
56
 * allocated from a CPU-shared slab - if a partially full one is found,
57
 * it is used, otherwise a new one is allocated.
57
 * it is used, otherwise a new one is allocated.
58
 *
58
 *
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
59
 * When an object is being deallocated, it is put to a CPU-bound magazine.
60
 * If there is no such magazine, a new one is allocated (if this fails,
60
 * If there is no such magazine, a new one is allocated (if this fails,
61
 * the object is deallocated into slab). If the magazine is full, it is
61
 * the object is deallocated into slab). If the magazine is full, it is
62
 * put into cpu-shared list of magazines and a new one is allocated.
62
 * put into cpu-shared list of magazines and a new one is allocated.
63
 *
63
 *
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
64
 * The CPU-bound magazine is actually a pair of magazines in order to avoid
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
65
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
66
 * size boundary. LIFO order is enforced, which should avoid fragmentation
67
 * as much as possible.
67
 * as much as possible.
68
 *  
68
 *  
69
 * Every cache contains list of full slabs and list of partially full slabs.
69
 * Every cache contains list of full slabs and list of partially full slabs.
70
 * Empty slabs are immediately freed (thrashing will be avoided because
70
 * Empty slabs are immediately freed (thrashing will be avoided because
71
 * of magazines).
71
 * of magazines).
72
 *
72
 *
73
 * The slab information structure is kept inside the data area, if possible.
73
 * The slab information structure is kept inside the data area, if possible.
74
 * The cache can be marked that it should not use magazines. This is used
74
 * The cache can be marked that it should not use magazines. This is used
75
 * only for slab related caches to avoid deadlocks and infinite recursion
75
 * only for slab related caches to avoid deadlocks and infinite recursion
76
 * (the slab allocator uses itself for allocating all it's control structures).
76
 * (the slab allocator uses itself for allocating all it's control structures).
77
 *
77
 *
78
 * The slab allocator allocates a lot of space and does not free it. When
78
 * The slab allocator allocates a lot of space and does not free it. When
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
79
 * the frame allocator fails to allocate a frame, it calls slab_reclaim().
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
80
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
81
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
82
 * is deallocated in each cache (this algorithm should probably change).
82
 * is deallocated in each cache (this algorithm should probably change).
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
83
 * The brutal reclaim removes all cached objects, even from CPU-bound
84
 * magazines.
84
 * magazines.
85
 *
85
 *
86
 * @todo
86
 * @todo
87
 * For better CPU-scaling the magazine allocation strategy should
87
 * For better CPU-scaling the magazine allocation strategy should
88
 * be extended. Currently, if the cache does not have magazine, it asks
88
 * be extended. Currently, if the cache does not have magazine, it asks
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
89
 * for non-cpu cached magazine cache to provide one. It might be feasible
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
90
 * to add cpu-cached magazine cache (which would allocate it's magazines
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
91
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
92
 * buffer. The other possibility is to use the per-cache
92
 * buffer. The other possibility is to use the per-cache
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
93
 * 'empty-magazine-list', which decreases competing for 1 per-system
94
 * magazine cache.
94
 * magazine cache.
95
 *
95
 *
96
 * @todo
96
 * @todo
97
 * it might be good to add granularity of locks even to slab level,
97
 * it might be good to add granularity of locks even to slab level,
98
 * we could then try_spinlock over all partial slabs and thus improve
98
 * we could then try_spinlock over all partial slabs and thus improve
99
 * scalability even on slab level
99
 * scalability even on slab level
100
 */
100
 */
101
 
101
 
102
#include <synch/spinlock.h>
102
#include <synch/spinlock.h>
103
#include <mm/slab.h>
103
#include <mm/slab.h>
104
#include <adt/list.h>
104
#include <adt/list.h>
105
#include <memstr.h>
105
#include <memstr.h>
106
#include <align.h>
106
#include <align.h>
107
#include <mm/frame.h>
107
#include <mm/frame.h>
108
#include <config.h>
108
#include <config.h>
109
#include <print.h>
109
#include <print.h>
110
#include <arch.h>
110
#include <arch.h>
111
#include <panic.h>
111
#include <panic.h>
112
#include <debug.h>
112
#include <debug.h>
113
#include <bitops.h>
113
#include <bitops.h>
114
#include <macros.h>
114
#include <macros.h>
115
 
115
 
116
SPINLOCK_INITIALIZE(slab_cache_lock);
116
SPINLOCK_INITIALIZE(slab_cache_lock);
117
static LIST_INITIALIZE(slab_cache_list);
117
static LIST_INITIALIZE(slab_cache_list);
118
 
118
 
119
/** Magazine cache */
119
/** Magazine cache */
120
static slab_cache_t mag_cache;
120
static slab_cache_t mag_cache;
121
/** Cache for cache descriptors */
121
/** Cache for cache descriptors */
122
static slab_cache_t slab_cache_cache;
122
static slab_cache_t slab_cache_cache;
123
/** Cache for external slab descriptors
123
/** Cache for external slab descriptors
124
 * This time we want per-cpu cache, so do not make it static
124
 * This time we want per-cpu cache, so do not make it static
125
 * - using slab for internal slab structures will not deadlock,
125
 * - using slab for internal slab structures will not deadlock,
126
 *   as all slab structures are 'small' - control structures of
126
 *   as all slab structures are 'small' - control structures of
127
 *   their caches do not require further allocation
127
 *   their caches do not require further allocation
128
 */
128
 */
129
static slab_cache_t *slab_extern_cache;
129
static slab_cache_t *slab_extern_cache;
130
/** Caches for malloc */
130
/** Caches for malloc */
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
131
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W - SLAB_MIN_MALLOC_W + 1];
132
char *malloc_names[] =  {
132
char *malloc_names[] =  {
133
    "malloc-16",
133
    "malloc-16",
134
    "malloc-32",
134
    "malloc-32",
135
    "malloc-64",
135
    "malloc-64",
136
    "malloc-128",
136
    "malloc-128",
137
    "malloc-256",
137
    "malloc-256",
138
    "malloc-512",
138
    "malloc-512",
139
    "malloc-1K",
139
    "malloc-1K",
140
    "malloc-2K",
140
    "malloc-2K",
141
    "malloc-4K",
141
    "malloc-4K",
142
    "malloc-8K",
142
    "malloc-8K",
143
    "malloc-16K",
143
    "malloc-16K",
144
    "malloc-32K",
144
    "malloc-32K",
145
    "malloc-64K",
145
    "malloc-64K",
146
    "malloc-128K",
146
    "malloc-128K",
147
    "malloc-256K"
147
    "malloc-256K"
148
};
148
};
149
 
149
 
150
/** Slab descriptor */
150
/** Slab descriptor */
151
typedef struct {
151
typedef struct {
152
    slab_cache_t *cache;    /**< Pointer to parent cache. */
152
    slab_cache_t *cache;    /**< Pointer to parent cache. */
153
    link_t link;        /**< List of full/partial slabs. */
153
    link_t link;        /**< List of full/partial slabs. */
154
    void *start;        /**< Start address of first available item. */
154
    void *start;        /**< Start address of first available item. */
155
    count_t available;  /**< Count of available items in this slab. */
155
    count_t available;  /**< Count of available items in this slab. */
156
    index_t nextavail;  /**< The index of next available item. */
156
    index_t nextavail;  /**< The index of next available item. */
157
} slab_t;
157
} slab_t;
158
 
158
 
159
#ifdef CONFIG_DEBUG
159
#ifdef CONFIG_DEBUG
160
static int _slab_initialized = 0;
160
static int _slab_initialized = 0;
161
#endif
161
#endif
162
 
162
 
163
/**************************************/
163
/**************************************/
164
/* Slab allocation functions          */
164
/* Slab allocation functions          */
165
 
165
 
166
/**
166
/**
167
 * Allocate frames for slab space and initialize
167
 * Allocate frames for slab space and initialize
168
 *
168
 *
169
 */
169
 */
170
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
170
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
171
{
171
{
172
    void *data;
172
    void *data;
173
    slab_t *slab;
173
    slab_t *slab;
174
    size_t fsize;
174
    size_t fsize;
175
    int i;
175
    int i;
176
    unsigned int zone = 0;
176
    unsigned int zone = 0;
177
   
177
   
178
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
178
    data = frame_alloc_generic(cache->order, FRAME_KA | flags, &zone);
179
    if (!data) {
179
    if (!data) {
180
        return NULL;
180
        return NULL;
181
    }
181
    }
182
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
182
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
183
        slab = slab_alloc(slab_extern_cache, flags);
183
        slab = slab_alloc(slab_extern_cache, flags);
184
        if (!slab) {
184
        if (!slab) {
185
            frame_free(KA2PA(data));
185
            frame_free(KA2PA(data));
186
            return NULL;
186
            return NULL;
187
        }
187
        }
188
    } else {
188
    } else {
189
        fsize = (PAGE_SIZE << cache->order);
189
        fsize = (PAGE_SIZE << cache->order);
190
        slab = data + fsize - sizeof(*slab);
190
        slab = data + fsize - sizeof(*slab);
191
    }
191
    }
192
   
192
   
193
    /* Fill in slab structures */
193
    /* Fill in slab structures */
194
    for (i=0; i < (1 << cache->order); i++)
194
    for (i=0; i < (1 << cache->order); i++)
195
        frame_set_parent(ADDR2PFN(KA2PA(data))+i, slab, zone);
195
        frame_set_parent(ADDR2PFN(KA2PA(data))+i, slab, zone);
196
 
196
 
197
    slab->start = data;
197
    slab->start = data;
198
    slab->available = cache->objects;
198
    slab->available = cache->objects;
199
    slab->nextavail = 0;
199
    slab->nextavail = 0;
200
    slab->cache = cache;
200
    slab->cache = cache;
201
 
201
 
202
    for (i=0; i<cache->objects;i++)
202
    for (i=0; i<cache->objects;i++)
203
        *((int *) (slab->start + i*cache->size)) = i+1;
203
        *((int *) (slab->start + i*cache->size)) = i+1;
204
 
204
 
205
    atomic_inc(&cache->allocated_slabs);
205
    atomic_inc(&cache->allocated_slabs);
206
    return slab;
206
    return slab;
207
}
207
}
208
 
208
 
209
/**
209
/**
210
 * Deallocate space associated with slab
210
 * Deallocate space associated with slab
211
 *
211
 *
212
 * @return number of freed frames
212
 * @return number of freed frames
213
 */
213
 */
214
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
214
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
215
{
215
{
216
    frame_free(KA2PA(slab->start));
216
    frame_free(KA2PA(slab->start));
217
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
217
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
218
        slab_free(slab_extern_cache, slab);
218
        slab_free(slab_extern_cache, slab);
219
 
219
 
220
    atomic_dec(&cache->allocated_slabs);
220
    atomic_dec(&cache->allocated_slabs);
221
   
221
   
222
    return 1 << cache->order;
222
    return 1 << cache->order;
223
}
223
}
224
 
224
 
225
/** Map object to slab structure */
225
/** Map object to slab structure */
226
static slab_t * obj2slab(void *obj)
226
static slab_t * obj2slab(void *obj)
227
{
227
{
228
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
228
    return (slab_t *) frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
229
}
229
}
230
 
230
 
231
/**************************************/
231
/**************************************/
232
/* Slab functions */
232
/* Slab functions */
233
 
233
 
234
 
234
 
235
/**
235
/**
236
 * Return object to slab and call a destructor
236
 * Return object to slab and call a destructor
237
 *
237
 *
238
 * @param slab If the caller knows directly slab of the object, otherwise NULL
238
 * @param slab If the caller knows directly slab of the object, otherwise NULL
239
 *
239
 *
240
 * @return Number of freed pages
240
 * @return Number of freed pages
241
 */
241
 */
242
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
242
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
243
                slab_t *slab)
243
                slab_t *slab)
244
{
244
{
245
    int freed = 0;
245
    int freed = 0;
246
 
246
 
247
    if (!slab)
247
    if (!slab)
248
        slab = obj2slab(obj);
248
        slab = obj2slab(obj);
249
 
249
 
250
    ASSERT(slab->cache == cache);
250
    ASSERT(slab->cache == cache);
251
 
251
 
252
    if (cache->destructor)
252
    if (cache->destructor)
253
        freed = cache->destructor(obj);
253
        freed = cache->destructor(obj);
254
   
254
   
255
    spinlock_lock(&cache->slablock);
255
    spinlock_lock(&cache->slablock);
256
    ASSERT(slab->available < cache->objects);
256
    ASSERT(slab->available < cache->objects);
257
 
257
 
258
    *((int *)obj) = slab->nextavail;
258
    *((int *)obj) = slab->nextavail;
259
    slab->nextavail = (obj - slab->start)/cache->size;
259
    slab->nextavail = (obj - slab->start)/cache->size;
260
    slab->available++;
260
    slab->available++;
261
 
261
 
262
    /* Move it to correct list */
262
    /* Move it to correct list */
263
    if (slab->available == cache->objects) {
263
    if (slab->available == cache->objects) {
264
        /* Free associated memory */
264
        /* Free associated memory */
265
        list_remove(&slab->link);
265
        list_remove(&slab->link);
266
        spinlock_unlock(&cache->slablock);
266
        spinlock_unlock(&cache->slablock);
267
 
267
 
268
        return freed + slab_space_free(cache, slab);
268
        return freed + slab_space_free(cache, slab);
269
 
269
 
270
    } else if (slab->available == 1) {
270
    } else if (slab->available == 1) {
271
        /* It was in full, move to partial */
271
        /* It was in full, move to partial */
272
        list_remove(&slab->link);
272
        list_remove(&slab->link);
273
        list_prepend(&slab->link, &cache->partial_slabs);
273
        list_prepend(&slab->link, &cache->partial_slabs);
274
    }
274
    }
275
    spinlock_unlock(&cache->slablock);
275
    spinlock_unlock(&cache->slablock);
276
    return freed;
276
    return freed;
277
}
277
}
278
 
278
 
279
/**
279
/**
280
 * Take new object from slab or create new if needed
280
 * Take new object from slab or create new if needed
281
 *
281
 *
282
 * @return Object address or null
282
 * @return Object address or null
283
 */
283
 */
284
static void * slab_obj_create(slab_cache_t *cache, int flags)
284
static void * slab_obj_create(slab_cache_t *cache, int flags)
285
{
285
{
286
    slab_t *slab;
286
    slab_t *slab;
287
    void *obj;
287
    void *obj;
288
 
288
 
289
    spinlock_lock(&cache->slablock);
289
    spinlock_lock(&cache->slablock);
290
 
290
 
291
    if (list_empty(&cache->partial_slabs)) {
291
    if (list_empty(&cache->partial_slabs)) {
292
        /* Allow recursion and reclaiming
292
        /* Allow recursion and reclaiming
293
         * - this should work, as the slab control structures
293
         * - this should work, as the slab control structures
294
         *   are small and do not need to allocate with anything
294
         *   are small and do not need to allocate with anything
295
         *   other than frame_alloc when they are allocating,
295
         *   other than frame_alloc when they are allocating,
296
         *   that's why we should get recursion at most 1-level deep
296
         *   that's why we should get recursion at most 1-level deep
297
         */
297
         */
298
        spinlock_unlock(&cache->slablock);
298
        spinlock_unlock(&cache->slablock);
299
        slab = slab_space_alloc(cache, flags);
299
        slab = slab_space_alloc(cache, flags);
300
        if (!slab)
300
        if (!slab)
301
            return NULL;
301
            return NULL;
302
        spinlock_lock(&cache->slablock);
302
        spinlock_lock(&cache->slablock);
303
    } else {
303
    } else {
304
        slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
304
        slab = list_get_instance(cache->partial_slabs.next, slab_t, link);
305
        list_remove(&slab->link);
305
        list_remove(&slab->link);
306
    }
306
    }
307
    obj = slab->start + slab->nextavail * cache->size;
307
    obj = slab->start + slab->nextavail * cache->size;
308
    slab->nextavail = *((int *)obj);
308
    slab->nextavail = *((int *)obj);
309
    slab->available--;
309
    slab->available--;
310
 
310
 
311
    if (!slab->available)
311
    if (!slab->available)
312
        list_prepend(&slab->link, &cache->full_slabs);
312
        list_prepend(&slab->link, &cache->full_slabs);
313
    else
313
    else
314
        list_prepend(&slab->link, &cache->partial_slabs);
314
        list_prepend(&slab->link, &cache->partial_slabs);
315
 
315
 
316
    spinlock_unlock(&cache->slablock);
316
    spinlock_unlock(&cache->slablock);
317
 
317
 
318
    if (cache->constructor && cache->constructor(obj, flags)) {
318
    if (cache->constructor && cache->constructor(obj, flags)) {
319
        /* Bad, bad, construction failed */
319
        /* Bad, bad, construction failed */
320
        slab_obj_destroy(cache, obj, slab);
320
        slab_obj_destroy(cache, obj, slab);
321
        return NULL;
321
        return NULL;
322
    }
322
    }
323
    return obj;
323
    return obj;
324
}
324
}
325
 
325
 
326
/**************************************/
326
/**************************************/
327
/* CPU-Cache slab functions */
327
/* CPU-Cache slab functions */
328
 
328
 
329
/**
329
/**
330
 * Finds a full magazine in cache, takes it from list
330
 * Finds a full magazine in cache, takes it from list
331
 * and returns it
331
 * and returns it
332
 *
332
 *
333
 * @param first If true, return first, else last mag
333
 * @param first If true, return first, else last mag
334
 */
334
 */
335
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
335
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
336
                        int first)
336
                        int first)
337
{
337
{
338
    slab_magazine_t *mag = NULL;
338
    slab_magazine_t *mag = NULL;
339
    link_t *cur;
339
    link_t *cur;
340
 
340
 
341
    spinlock_lock(&cache->maglock);
341
    spinlock_lock(&cache->maglock);
342
    if (!list_empty(&cache->magazines)) {
342
    if (!list_empty(&cache->magazines)) {
343
        if (first)
343
        if (first)
344
            cur = cache->magazines.next;
344
            cur = cache->magazines.next;
345
        else
345
        else
346
            cur = cache->magazines.prev;
346
            cur = cache->magazines.prev;
347
        mag = list_get_instance(cur, slab_magazine_t, link);
347
        mag = list_get_instance(cur, slab_magazine_t, link);
348
        list_remove(&mag->link);
348
        list_remove(&mag->link);
349
        atomic_dec(&cache->magazine_counter);
349
        atomic_dec(&cache->magazine_counter);
350
    }
350
    }
351
    spinlock_unlock(&cache->maglock);
351
    spinlock_unlock(&cache->maglock);
352
    return mag;
352
    return mag;
353
}
353
}
354
 
354
 
355
/** Prepend magazine to magazine list in cache */
355
/** Prepend magazine to magazine list in cache */
356
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
356
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
357
{
357
{
358
    spinlock_lock(&cache->maglock);
358
    spinlock_lock(&cache->maglock);
359
 
359
 
360
    list_prepend(&mag->link, &cache->magazines);
360
    list_prepend(&mag->link, &cache->magazines);
361
    atomic_inc(&cache->magazine_counter);
361
    atomic_inc(&cache->magazine_counter);
362
   
362
   
363
    spinlock_unlock(&cache->maglock);
363
    spinlock_unlock(&cache->maglock);
364
}
364
}
365
 
365
 
366
/**
366
/**
367
 * Free all objects in magazine and free memory associated with magazine
367
 * Free all objects in magazine and free memory associated with magazine
368
 *
368
 *
369
 * @return Number of freed pages
369
 * @return Number of freed pages
370
 */
370
 */
371
static count_t magazine_destroy(slab_cache_t *cache,
371
static count_t magazine_destroy(slab_cache_t *cache,
372
                slab_magazine_t *mag)
372
                slab_magazine_t *mag)
373
{
373
{
374
    int i;
374
    int i;
375
    count_t frames = 0;
375
    count_t frames = 0;
376
 
376
 
377
    for (i=0;i < mag->busy; i++) {
377
    for (i=0;i < mag->busy; i++) {
378
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
378
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
379
        atomic_dec(&cache->cached_objs);
379
        atomic_dec(&cache->cached_objs);
380
    }
380
    }
381
   
381
   
382
    slab_free(&mag_cache, mag);
382
    slab_free(&mag_cache, mag);
383
 
383
 
384
    return frames;
384
    return frames;
385
}
385
}
386
 
386
 
387
/**
387
/**
388
 * Find full magazine, set it as current and return it
388
 * Find full magazine, set it as current and return it
389
 *
389
 *
390
 * Assume cpu_magazine lock is held
390
 * Assume cpu_magazine lock is held
391
 */
391
 */
392
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
392
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
393
{
393
{
394
    slab_magazine_t *cmag, *lastmag, *newmag;
394
    slab_magazine_t *cmag, *lastmag, *newmag;
395
 
395
 
396
    cmag = cache->mag_cache[CPU->id].current;
396
    cmag = cache->mag_cache[CPU->id].current;
397
    lastmag = cache->mag_cache[CPU->id].last;
397
    lastmag = cache->mag_cache[CPU->id].last;
398
    if (cmag) { /* First try local CPU magazines */
398
    if (cmag) { /* First try local CPU magazines */
399
        if (cmag->busy)
399
        if (cmag->busy)
400
            return cmag;
400
            return cmag;
401
 
401
 
402
        if (lastmag && lastmag->busy) {
402
        if (lastmag && lastmag->busy) {
403
            cache->mag_cache[CPU->id].current = lastmag;
403
            cache->mag_cache[CPU->id].current = lastmag;
404
            cache->mag_cache[CPU->id].last = cmag;
404
            cache->mag_cache[CPU->id].last = cmag;
405
            return lastmag;
405
            return lastmag;
406
        }
406
        }
407
    }
407
    }
408
    /* Local magazines are empty, import one from magazine list */
408
    /* Local magazines are empty, import one from magazine list */
409
    newmag = get_mag_from_cache(cache, 1);
409
    newmag = get_mag_from_cache(cache, 1);
410
    if (!newmag)
410
    if (!newmag)
411
        return NULL;
411
        return NULL;
412
 
412
 
413
    if (lastmag)
413
    if (lastmag)
414
        magazine_destroy(cache, lastmag);
414
        magazine_destroy(cache, lastmag);
415
 
415
 
416
    cache->mag_cache[CPU->id].last = cmag;
416
    cache->mag_cache[CPU->id].last = cmag;
417
    cache->mag_cache[CPU->id].current = newmag;
417
    cache->mag_cache[CPU->id].current = newmag;
418
    return newmag;
418
    return newmag;
419
}
419
}
420
 
420
 
421
/**
421
/**
422
 * Try to find object in CPU-cache magazines
422
 * Try to find object in CPU-cache magazines
423
 *
423
 *
424
 * @return Pointer to object or NULL if not available
424
 * @return Pointer to object or NULL if not available
425
 */
425
 */
426
static void * magazine_obj_get(slab_cache_t *cache)
426
static void * magazine_obj_get(slab_cache_t *cache)
427
{
427
{
428
    slab_magazine_t *mag;
428
    slab_magazine_t *mag;
429
    void *obj;
429
    void *obj;
430
 
430
 
431
    if (!CPU)
431
    if (!CPU)
432
        return NULL;
432
        return NULL;
433
 
433
 
434
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
434
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
435
 
435
 
436
    mag = get_full_current_mag(cache);
436
    mag = get_full_current_mag(cache);
437
    if (!mag) {
437
    if (!mag) {
438
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
438
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
439
        return NULL;
439
        return NULL;
440
    }
440
    }
441
    obj = mag->objs[--mag->busy];
441
    obj = mag->objs[--mag->busy];
442
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
442
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
443
    atomic_dec(&cache->cached_objs);
443
    atomic_dec(&cache->cached_objs);
444
   
444
   
445
    return obj;
445
    return obj;
446
}
446
}
447
 
447
 
448
/**
448
/**
449
 * Assure that the current magazine is empty, return pointer to it, or NULL if
449
 * Assure that the current magazine is empty, return pointer to it, or NULL if
450
 * no empty magazine is available and cannot be allocated
450
 * no empty magazine is available and cannot be allocated
451
 *
451
 *
452
 * Assume mag_cache[CPU->id].lock is held
452
 * Assume mag_cache[CPU->id].lock is held
453
 *
453
 *
454
 * We have 2 magazines bound to processor.
454
 * We have 2 magazines bound to processor.
455
 * First try the current.
455
 * First try the current.
456
 *  If full, try the last.
456
 *  If full, try the last.
457
 *   If full, put to magazines list.
457
 *   If full, put to magazines list.
458
 *   allocate new, exchange last & current
458
 *   allocate new, exchange last & current
459
 *
459
 *
460
 */
460
 */
461
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
461
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
462
{
462
{
463
    slab_magazine_t *cmag,*lastmag,*newmag;
463
    slab_magazine_t *cmag,*lastmag,*newmag;
464
 
464
 
465
    cmag = cache->mag_cache[CPU->id].current;
465
    cmag = cache->mag_cache[CPU->id].current;
466
    lastmag = cache->mag_cache[CPU->id].last;
466
    lastmag = cache->mag_cache[CPU->id].last;
467
 
467
 
468
    if (cmag) {
468
    if (cmag) {
469
        if (cmag->busy < cmag->size)
469
        if (cmag->busy < cmag->size)
470
            return cmag;
470
            return cmag;
471
        if (lastmag && lastmag->busy < lastmag->size) {
471
        if (lastmag && lastmag->busy < lastmag->size) {
472
            cache->mag_cache[CPU->id].last = cmag;
472
            cache->mag_cache[CPU->id].last = cmag;
473
            cache->mag_cache[CPU->id].current = lastmag;
473
            cache->mag_cache[CPU->id].current = lastmag;
474
            return lastmag;
474
            return lastmag;
475
        }
475
        }
476
    }
476
    }
477
    /* current | last are full | nonexistent, allocate new */
477
    /* current | last are full | nonexistent, allocate new */
478
    /* We do not want to sleep just because of caching */
478
    /* We do not want to sleep just because of caching */
479
    /* Especially we do not want reclaiming to start, as
479
    /* Especially we do not want reclaiming to start, as
480
     * this would deadlock */
480
     * this would deadlock */
481
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
481
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
482
    if (!newmag)
482
    if (!newmag)
483
        return NULL;
483
        return NULL;
484
    newmag->size = SLAB_MAG_SIZE;
484
    newmag->size = SLAB_MAG_SIZE;
485
    newmag->busy = 0;
485
    newmag->busy = 0;
486
 
486
 
487
    /* Flush last to magazine list */
487
    /* Flush last to magazine list */
488
    if (lastmag)
488
    if (lastmag)
489
        put_mag_to_cache(cache, lastmag);
489
        put_mag_to_cache(cache, lastmag);
490
 
490
 
491
    /* Move current as last, save new as current */
491
    /* Move current as last, save new as current */
492
    cache->mag_cache[CPU->id].last = cmag; 
492
    cache->mag_cache[CPU->id].last = cmag; 
493
    cache->mag_cache[CPU->id].current = newmag;
493
    cache->mag_cache[CPU->id].current = newmag;
494
 
494
 
495
    return newmag;
495
    return newmag;
496
}
496
}
497
 
497
 
498
/**
498
/**
499
 * Put object into CPU-cache magazine
499
 * Put object into CPU-cache magazine
500
 *
500
 *
501
 * @return 0 - success, -1 - could not get memory
501
 * @return 0 - success, -1 - could not get memory
502
 */
502
 */
503
static int magazine_obj_put(slab_cache_t *cache, void *obj)
503
static int magazine_obj_put(slab_cache_t *cache, void *obj)
504
{
504
{
505
    slab_magazine_t *mag;
505
    slab_magazine_t *mag;
506
 
506
 
507
    if (!CPU)
507
    if (!CPU)
508
        return -1;
508
        return -1;
509
 
509
 
510
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
510
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
511
 
511
 
512
    mag = make_empty_current_mag(cache);
512
    mag = make_empty_current_mag(cache);
513
    if (!mag) {
513
    if (!mag) {
514
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
514
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
515
        return -1;
515
        return -1;
516
    }
516
    }
517
   
517
   
518
    mag->objs[mag->busy++] = obj;
518
    mag->objs[mag->busy++] = obj;
519
 
519
 
520
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
520
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
521
    atomic_inc(&cache->cached_objs);
521
    atomic_inc(&cache->cached_objs);
522
    return 0;
522
    return 0;
523
}
523
}
524
 
524
 
525
 
525
 
526
/**************************************/
526
/**************************************/
527
/* Slab cache functions */
527
/* Slab cache functions */
528
 
528
 
529
/** Return number of objects that fit in certain cache size */
529
/** Return number of objects that fit in certain cache size */
530
static int comp_objects(slab_cache_t *cache)
530
static int comp_objects(slab_cache_t *cache)
531
{
531
{
532
    if (cache->flags & SLAB_CACHE_SLINSIDE)
532
    if (cache->flags & SLAB_CACHE_SLINSIDE)
533
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
533
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
534
    else
534
    else
535
        return (PAGE_SIZE << cache->order) / cache->size;
535
        return (PAGE_SIZE << cache->order) / cache->size;
536
}
536
}
537
 
537
 
538
/** Return wasted space in slab */
538
/** Return wasted space in slab */
539
static int badness(slab_cache_t *cache)
539
static int badness(slab_cache_t *cache)
540
{
540
{
541
    int objects;
541
    int objects;
542
    int ssize;
542
    int ssize;
543
 
543
 
544
    objects = comp_objects(cache);
544
    objects = comp_objects(cache);
545
    ssize = PAGE_SIZE << cache->order;
545
    ssize = PAGE_SIZE << cache->order;
546
    if (cache->flags & SLAB_CACHE_SLINSIDE)
546
    if (cache->flags & SLAB_CACHE_SLINSIDE)
547
        ssize -= sizeof(slab_t);
547
        ssize -= sizeof(slab_t);
548
    return ssize - objects*cache->size;
548
    return ssize - objects*cache->size;
549
}
549
}
550
 
550
 
551
/**
551
/**
552
 * Initialize mag_cache structure in slab cache
552
 * Initialize mag_cache structure in slab cache
553
 */
553
 */
554
static void make_magcache(slab_cache_t *cache)
554
static void make_magcache(slab_cache_t *cache)
555
{
555
{
556
    int i;
556
    int i;
557
   
557
   
558
    ASSERT(_slab_initialized >= 2);
558
    ASSERT(_slab_initialized >= 2);
559
 
559
 
560
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
560
    cache->mag_cache = malloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
561
    for (i=0; i < config.cpu_count; i++) {
561
    for (i=0; i < config.cpu_count; i++) {
562
        memsetb((uintptr_t)&cache->mag_cache[i],
562
        memsetb((uintptr_t)&cache->mag_cache[i],
563
            sizeof(cache->mag_cache[i]), 0);
563
            sizeof(cache->mag_cache[i]), 0);
564
        spinlock_initialize(&cache->mag_cache[i].lock,
564
        spinlock_initialize(&cache->mag_cache[i].lock,
565
                    "slab_maglock_cpu");
565
                    "slab_maglock_cpu");
566
    }
566
    }
567
}
567
}
568
 
568
 
569
/** Initialize allocated memory as a slab cache */
569
/** Initialize allocated memory as a slab cache */
570
static void
570
static void
571
_slab_cache_create(slab_cache_t *cache,
571
_slab_cache_create(slab_cache_t *cache,
572
           char *name,
572
           char *name,
573
           size_t size,
573
           size_t size,
574
           size_t align,
574
           size_t align,
575
           int (*constructor)(void *obj, int kmflag),
575
           int (*constructor)(void *obj, int kmflag),
576
           int (*destructor)(void *obj),
576
           int (*destructor)(void *obj),
577
           int flags)
577
           int flags)
578
{
578
{
579
    int pages;
579
    int pages;
580
    ipl_t ipl;
580
    ipl_t ipl;
581
 
581
 
582
    memsetb((uintptr_t)cache, sizeof(*cache), 0);
582
    memsetb((uintptr_t)cache, sizeof(*cache), 0);
583
    cache->name = name;
583
    cache->name = name;
584
 
584
 
585
    if (align < sizeof(unative_t))
585
    if (align < sizeof(unative_t))
586
        align = sizeof(unative_t);
586
        align = sizeof(unative_t);
587
    size = ALIGN_UP(size, align);
587
    size = ALIGN_UP(size, align);
588
       
588
       
589
    cache->size = size;
589
    cache->size = size;
590
 
590
 
591
    cache->constructor = constructor;
591
    cache->constructor = constructor;
592
    cache->destructor = destructor;
592
    cache->destructor = destructor;
593
    cache->flags = flags;
593
    cache->flags = flags;
594
 
594
 
595
    list_initialize(&cache->full_slabs);
595
    list_initialize(&cache->full_slabs);
596
    list_initialize(&cache->partial_slabs);
596
    list_initialize(&cache->partial_slabs);
597
    list_initialize(&cache->magazines);
597
    list_initialize(&cache->magazines);
598
    spinlock_initialize(&cache->slablock, "slab_lock");
598
    spinlock_initialize(&cache->slablock, "slab_lock");
599
    spinlock_initialize(&cache->maglock, "slab_maglock");
599
    spinlock_initialize(&cache->maglock, "slab_maglock");
600
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
600
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
601
        make_magcache(cache);
601
        make_magcache(cache);
602
 
602
 
603
    /* Compute slab sizes, object counts in slabs etc. */
603
    /* Compute slab sizes, object counts in slabs etc. */
604
    if (cache->size < SLAB_INSIDE_SIZE)
604
    if (cache->size < SLAB_INSIDE_SIZE)
605
        cache->flags |= SLAB_CACHE_SLINSIDE;
605
        cache->flags |= SLAB_CACHE_SLINSIDE;
606
 
606
 
607
    /* Minimum slab order */
607
    /* Minimum slab order */
608
    pages = SIZE2FRAMES(cache->size);
608
    pages = SIZE2FRAMES(cache->size);
609
    /* We need the 2^order >= pages */
609
    /* We need the 2^order >= pages */
610
    if (pages == 1)
610
    if (pages == 1)
611
        cache->order = 0;
611
        cache->order = 0;
612
    else
612
    else
613
        cache->order = fnzb(pages-1)+1;
613
        cache->order = fnzb(pages-1)+1;
614
 
614
 
615
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
615
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
616
        cache->order += 1;
616
        cache->order += 1;
617
    }
617
    }
618
    cache->objects = comp_objects(cache);
618
    cache->objects = comp_objects(cache);
619
    /* If info fits in, put it inside */
619
    /* If info fits in, put it inside */
620
    if (badness(cache) > sizeof(slab_t))
620
    if (badness(cache) > sizeof(slab_t))
621
        cache->flags |= SLAB_CACHE_SLINSIDE;
621
        cache->flags |= SLAB_CACHE_SLINSIDE;
622
 
622
 
623
    /* Add cache to cache list */
623
    /* Add cache to cache list */
624
    ipl = interrupts_disable();
624
    ipl = interrupts_disable();
625
    spinlock_lock(&slab_cache_lock);
625
    spinlock_lock(&slab_cache_lock);
626
 
626
 
627
    list_append(&cache->link, &slab_cache_list);
627
    list_append(&cache->link, &slab_cache_list);
628
 
628
 
629
    spinlock_unlock(&slab_cache_lock);
629
    spinlock_unlock(&slab_cache_lock);
630
    interrupts_restore(ipl);
630
    interrupts_restore(ipl);
631
}
631
}
632
 
632
 
633
/** Create slab cache  */
633
/** Create slab cache  */
634
slab_cache_t * slab_cache_create(char *name,
634
slab_cache_t * slab_cache_create(char *name,
635
                 size_t size,
635
                 size_t size,
636
                 size_t align,
636
                 size_t align,
637
                 int (*constructor)(void *obj, int kmflag),
637
                 int (*constructor)(void *obj, int kmflag),
638
                 int (*destructor)(void *obj),
638
                 int (*destructor)(void *obj),
639
                 int flags)
639
                 int flags)
640
{
640
{
641
    slab_cache_t *cache;
641
    slab_cache_t *cache;
642
 
642
 
643
    cache = slab_alloc(&slab_cache_cache, 0);
643
    cache = slab_alloc(&slab_cache_cache, 0);
644
    _slab_cache_create(cache, name, size, align, constructor, destructor,
644
    _slab_cache_create(cache, name, size, align, constructor, destructor,
645
               flags);
645
               flags);
646
    return cache;
646
    return cache;
647
}
647
}
648
 
648
 
649
/**
649
/**
650
 * Reclaim space occupied by objects that are already free
650
 * Reclaim space occupied by objects that are already free
651
 *
651
 *
652
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
652
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
653
 * @return Number of freed pages
653
 * @return Number of freed pages
654
 */
654
 */
655
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
655
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
656
{
656
{
657
    int i;
657
    int i;
658
    slab_magazine_t *mag;
658
    slab_magazine_t *mag;
659
    count_t frames = 0;
659
    count_t frames = 0;
660
    int magcount;
660
    int magcount;
661
   
661
   
662
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
662
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
663
        return 0; /* Nothing to do */
663
        return 0; /* Nothing to do */
664
 
664
 
665
    /* We count up to original magazine count to avoid
665
    /* We count up to original magazine count to avoid
666
     * endless loop
666
     * endless loop
667
     */
667
     */
668
    magcount = atomic_get(&cache->magazine_counter);
668
    magcount = atomic_get(&cache->magazine_counter);
669
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
669
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
670
        frames += magazine_destroy(cache,mag);
670
        frames += magazine_destroy(cache,mag);
671
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
671
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
672
            break;
672
            break;
673
    }
673
    }
674
   
674
   
675
    if (flags & SLAB_RECLAIM_ALL) {
675
    if (flags & SLAB_RECLAIM_ALL) {
676
        /* Free cpu-bound magazines */
676
        /* Free cpu-bound magazines */
677
        /* Destroy CPU magazines */
677
        /* Destroy CPU magazines */
678
        for (i=0; i<config.cpu_count; i++) {
678
        for (i=0; i<config.cpu_count; i++) {
679
            spinlock_lock(&cache->mag_cache[i].lock);
679
            spinlock_lock(&cache->mag_cache[i].lock);
680
 
680
 
681
            mag = cache->mag_cache[i].current;
681
            mag = cache->mag_cache[i].current;
682
            if (mag)
682
            if (mag)
683
                frames += magazine_destroy(cache, mag);
683
                frames += magazine_destroy(cache, mag);
684
            cache->mag_cache[i].current = NULL;
684
            cache->mag_cache[i].current = NULL;
685
           
685
           
686
            mag = cache->mag_cache[i].last;
686
            mag = cache->mag_cache[i].last;
687
            if (mag)
687
            if (mag)
688
                frames += magazine_destroy(cache, mag);
688
                frames += magazine_destroy(cache, mag);
689
            cache->mag_cache[i].last = NULL;
689
            cache->mag_cache[i].last = NULL;
690
 
690
 
691
            spinlock_unlock(&cache->mag_cache[i].lock);
691
            spinlock_unlock(&cache->mag_cache[i].lock);
692
        }
692
        }
693
    }
693
    }
694
 
694
 
695
    return frames;
695
    return frames;
696
}
696
}
697
 
697
 
698
/** Check that there are no slabs and remove cache from system  */
698
/** Check that there are no slabs and remove cache from system  */
699
void slab_cache_destroy(slab_cache_t *cache)
699
void slab_cache_destroy(slab_cache_t *cache)
700
{
700
{
701
    ipl_t ipl;
701
    ipl_t ipl;
702
 
702
 
703
    /* First remove cache from link, so that we don't need
703
    /* First remove cache from link, so that we don't need
704
     * to disable interrupts later
704
     * to disable interrupts later
705
     */
705
     */
706
 
706
 
707
    ipl = interrupts_disable();
707
    ipl = interrupts_disable();
708
    spinlock_lock(&slab_cache_lock);
708
    spinlock_lock(&slab_cache_lock);
709
 
709
 
710
    list_remove(&cache->link);
710
    list_remove(&cache->link);
711
 
711
 
712
    spinlock_unlock(&slab_cache_lock);
712
    spinlock_unlock(&slab_cache_lock);
713
    interrupts_restore(ipl);
713
    interrupts_restore(ipl);
714
 
714
 
715
    /* Do not lock anything, we assume the software is correct and
715
    /* Do not lock anything, we assume the software is correct and
716
     * does not touch the cache when it decides to destroy it */
716
     * does not touch the cache when it decides to destroy it */
717
   
717
   
718
    /* Destroy all magazines */
718
    /* Destroy all magazines */
719
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
719
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
720
 
720
 
721
    /* All slabs must be empty */
721
    /* All slabs must be empty */
722
    if (!list_empty(&cache->full_slabs) \
722
    if (!list_empty(&cache->full_slabs) \
723
        || !list_empty(&cache->partial_slabs))
723
        || !list_empty(&cache->partial_slabs))
724
        panic("Destroying cache that is not empty.");
724
        panic("Destroying cache that is not empty.");
725
 
725
 
726
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
726
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
727
        free(cache->mag_cache);
727
        free(cache->mag_cache);
728
    slab_free(&slab_cache_cache, cache);
728
    slab_free(&slab_cache_cache, cache);
729
}
729
}
730
 
730
 
731
/** Allocate new object from cache - if no flags given, always returns
731
/** Allocate new object from cache - if no flags given, always returns
732
    memory */
732
    memory */
733
void * slab_alloc(slab_cache_t *cache, int flags)
733
void * slab_alloc(slab_cache_t *cache, int flags)
734
{
734
{
735
    ipl_t ipl;
735
    ipl_t ipl;
736
    void *result = NULL;
736
    void *result = NULL;
737
   
737
   
738
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
738
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
739
    ipl = interrupts_disable();
739
    ipl = interrupts_disable();
740
 
740
 
741
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
741
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
742
        result = magazine_obj_get(cache);
742
        result = magazine_obj_get(cache);
743
    }
743
    }
744
    if (!result)
744
    if (!result)
745
        result = slab_obj_create(cache, flags);
745
        result = slab_obj_create(cache, flags);
746
 
746
 
747
    interrupts_restore(ipl);
747
    interrupts_restore(ipl);
748
 
748
 
749
    if (result)
749
    if (result)
750
        atomic_inc(&cache->allocated_objs);
750
        atomic_inc(&cache->allocated_objs);
751
 
751
 
752
    return result;
752
    return result;
753
}
753
}
754
 
754
 
755
/** Return object to cache, use slab if known  */
755
/** Return object to cache, use slab if known  */
756
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
756
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
757
{
757
{
758
    ipl_t ipl;
758
    ipl_t ipl;
759
 
759
 
760
    ipl = interrupts_disable();
760
    ipl = interrupts_disable();
761
 
761
 
762
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
762
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
763
        || magazine_obj_put(cache, obj)) {
763
        || magazine_obj_put(cache, obj)) {
764
 
764
 
765
        slab_obj_destroy(cache, obj, slab);
765
        slab_obj_destroy(cache, obj, slab);
766
 
766
 
767
    }
767
    }
768
    interrupts_restore(ipl);
768
    interrupts_restore(ipl);
769
    atomic_dec(&cache->allocated_objs);
769
    atomic_dec(&cache->allocated_objs);
770
}
770
}
771
 
771
 
772
/** Return slab object to cache */
772
/** Return slab object to cache */
773
void slab_free(slab_cache_t *cache, void *obj)
773
void slab_free(slab_cache_t *cache, void *obj)
774
{
774
{
775
    _slab_free(cache, obj, NULL);
775
    _slab_free(cache, obj, NULL);
776
}
776
}
777
 
777
 
778
/* Go through all caches and reclaim what is possible */
778
/* Go through all caches and reclaim what is possible */
779
count_t slab_reclaim(int flags)
779
count_t slab_reclaim(int flags)
780
{
780
{
781
    slab_cache_t *cache;
781
    slab_cache_t *cache;
782
    link_t *cur;
782
    link_t *cur;
783
    count_t frames = 0;
783
    count_t frames = 0;
784
 
784
 
785
    spinlock_lock(&slab_cache_lock);
785
    spinlock_lock(&slab_cache_lock);
786
 
786
 
787
    /* TODO: Add assert, that interrupts are disabled, otherwise
787
    /* TODO: Add assert, that interrupts are disabled, otherwise
788
     * memory allocation from interrupts can deadlock.
788
     * memory allocation from interrupts can deadlock.
789
     */
789
     */
790
 
790
 
791
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
791
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
792
        cache = list_get_instance(cur, slab_cache_t, link);
792
        cache = list_get_instance(cur, slab_cache_t, link);
793
        frames += _slab_reclaim(cache, flags);
793
        frames += _slab_reclaim(cache, flags);
794
    }
794
    }
795
 
795
 
796
    spinlock_unlock(&slab_cache_lock);
796
    spinlock_unlock(&slab_cache_lock);
797
 
797
 
798
    return frames;
798
    return frames;
799
}
799
}
800
 
800
 
801
 
801
 
802
/* Print list of slabs */
802
/* Print list of slabs */
803
void slab_print_list(void)
803
void slab_print_list(void)
804
{
804
{
805
    slab_cache_t *cache;
805
    slab_cache_t *cache;
806
    link_t *cur;
806
    link_t *cur;
807
    ipl_t ipl;
807
    ipl_t ipl;
808
   
808
   
809
    ipl = interrupts_disable();
809
    ipl = interrupts_disable();
810
    spinlock_lock(&slab_cache_lock);
810
    spinlock_lock(&slab_cache_lock);
811
    printf("slab name        size     pages  obj/pg slabs  cached allocated ctl\n");
811
    printf("slab name        size     pages  obj/pg slabs  cached allocated ctl\n");
812
    printf("---------------- -------- ------ ------ ------ ------ --------- ---\n");
812
    printf("---------------- -------- ------ ------ ------ ------ --------- ---\n");
813
   
813
   
814
    for (cur = slab_cache_list.next; cur != &slab_cache_list; cur = cur->next) {
814
    for (cur = slab_cache_list.next; cur != &slab_cache_list; cur = cur->next) {
815
        cache = list_get_instance(cur, slab_cache_t, link);
815
        cache = list_get_instance(cur, slab_cache_t, link);
816
       
816
       
817
        printf("%-16s %8zd %6zd %6zd %6zd %6zd %9zd %-3s\n", cache->name, cache->size, (1 << cache->order), cache->objects, atomic_get(&cache->allocated_slabs), atomic_get(&cache->cached_objs), atomic_get(&cache->allocated_objs), cache->flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
817
        printf("%-16s %8zd %6zd %6zd %6zd %6zd %9zd %-3s\n", cache->name, cache->size, (1 << cache->order), cache->objects, atomic_get(&cache->allocated_slabs), atomic_get(&cache->cached_objs), atomic_get(&cache->allocated_objs), cache->flags & SLAB_CACHE_SLINSIDE ? "in" : "out");
818
    }
818
    }
819
    spinlock_unlock(&slab_cache_lock);
819
    spinlock_unlock(&slab_cache_lock);
820
    interrupts_restore(ipl);
820
    interrupts_restore(ipl);
821
}
821
}
822
 
822
 
823
void slab_cache_init(void)
823
void slab_cache_init(void)
824
{
824
{
825
    int i, size;
825
    int i, size;
826
 
826
 
827
    /* Initialize magazine cache */
827
    /* Initialize magazine cache */
828
    _slab_cache_create(&mag_cache,
828
    _slab_cache_create(&mag_cache,
829
               "slab_magazine",
829
               "slab_magazine",
830
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
830
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
831
               sizeof(uintptr_t),
831
               sizeof(uintptr_t),
832
               NULL, NULL,
832
               NULL, NULL,
833
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
833
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
834
    /* Initialize slab_cache cache */
834
    /* Initialize slab_cache cache */
835
    _slab_cache_create(&slab_cache_cache,
835
    _slab_cache_create(&slab_cache_cache,
836
               "slab_cache",
836
               "slab_cache",
837
               sizeof(slab_cache_cache),
837
               sizeof(slab_cache_cache),
838
               sizeof(uintptr_t),
838
               sizeof(uintptr_t),
839
               NULL, NULL,
839
               NULL, NULL,
840
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
840
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
841
    /* Initialize external slab cache */
841
    /* Initialize external slab cache */
842
    slab_extern_cache = slab_cache_create("slab_extern",
842
    slab_extern_cache = slab_cache_create("slab_extern",
843
                          sizeof(slab_t),
843
                          sizeof(slab_t),
844
                          0, NULL, NULL,
844
                          0, NULL, NULL,
845
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
845
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
846
 
846
 
847
    /* Initialize structures for malloc */
847
    /* Initialize structures for malloc */
848
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
848
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
849
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
849
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
850
         i++, size <<= 1) {
850
         i++, size <<= 1) {
851
        malloc_caches[i] = slab_cache_create(malloc_names[i],
851
        malloc_caches[i] = slab_cache_create(malloc_names[i],
852
                             size, 0,
852
                             size, 0,
853
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
853
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
854
    }
854
    }
855
#ifdef CONFIG_DEBUG       
855
#ifdef CONFIG_DEBUG       
856
    _slab_initialized = 1;
856
    _slab_initialized = 1;
857
#endif
857
#endif
858
}
858
}
859
 
859
 
860
/** Enable cpu_cache
860
/** Enable cpu_cache
861
 *
861
 *
862
 * Kernel calls this function, when it knows the real number of
862
 * Kernel calls this function, when it knows the real number of
863
 * processors.
863
 * processors.
864
 * Allocate slab for cpucache and enable it on all existing
864
 * Allocate slab for cpucache and enable it on all existing
865
 * slabs that are SLAB_CACHE_MAGDEFERRED
865
 * slabs that are SLAB_CACHE_MAGDEFERRED
866
 */
866
 */
867
void slab_enable_cpucache(void)
867
void slab_enable_cpucache(void)
868
{
868
{
869
    link_t *cur;
869
    link_t *cur;
870
    slab_cache_t *s;
870
    slab_cache_t *s;
871
 
871
 
872
#ifdef CONFIG_DEBUG
872
#ifdef CONFIG_DEBUG
873
    _slab_initialized = 2;
873
    _slab_initialized = 2;
874
#endif
874
#endif
875
 
875
 
876
    spinlock_lock(&slab_cache_lock);
876
    spinlock_lock(&slab_cache_lock);
877
   
877
   
878
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
878
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
879
        s = list_get_instance(cur, slab_cache_t, link);
879
        s = list_get_instance(cur, slab_cache_t, link);
880
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
880
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
881
            continue;
881
            continue;
882
        make_magcache(s);
882
        make_magcache(s);
883
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
883
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
884
    }
884
    }
885
 
885
 
886
    spinlock_unlock(&slab_cache_lock);
886
    spinlock_unlock(&slab_cache_lock);
887
}
887
}
888
 
888
 
889
/**************************************/
889
/**************************************/
890
/* kalloc/kfree functions             */
890
/* kalloc/kfree functions             */
891
void * malloc(unsigned int size, int flags)
891
void * malloc(unsigned int size, int flags)
892
{
892
{
893
    ASSERT(_slab_initialized);
893
    ASSERT(_slab_initialized);
894
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
894
    ASSERT(size && size <= (1 << SLAB_MAX_MALLOC_W));
895
   
895
   
896
    if (size < (1 << SLAB_MIN_MALLOC_W))
896
    if (size < (1 << SLAB_MIN_MALLOC_W))
897
        size = (1 << SLAB_MIN_MALLOC_W);
897
        size = (1 << SLAB_MIN_MALLOC_W);
898
 
898
 
899
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
899
    int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
900
 
900
 
901
    return slab_alloc(malloc_caches[idx], flags);
901
    return slab_alloc(malloc_caches[idx], flags);
902
}
902
}
903
 
903
 
904
void * realloc(void *ptr, unsigned int size, int flags)
904
void * realloc(void *ptr, unsigned int size, int flags)
905
{
905
{
906
    ASSERT(_slab_initialized);
906
    ASSERT(_slab_initialized);
907
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
907
    ASSERT(size <= (1 << SLAB_MAX_MALLOC_W));
908
   
908
   
909
    void *new_ptr;
909
    void *new_ptr;
910
   
910
   
911
    if (size > 0) {
911
    if (size > 0) {
912
        if (size < (1 << SLAB_MIN_MALLOC_W))
912
        if (size < (1 << SLAB_MIN_MALLOC_W))
913
            size = (1 << SLAB_MIN_MALLOC_W);
913
            size = (1 << SLAB_MIN_MALLOC_W);
914
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
914
        int idx = fnzb(size - 1) - SLAB_MIN_MALLOC_W + 1;
915
       
915
       
916
        new_ptr = slab_alloc(malloc_caches[idx], flags);
916
        new_ptr = slab_alloc(malloc_caches[idx], flags);
917
    } else
917
    } else
918
        new_ptr = NULL;
918
        new_ptr = NULL;
919
   
919
   
920
    if ((new_ptr != NULL) && (ptr != NULL)) {
920
    if ((new_ptr != NULL) && (ptr != NULL)) {
921
        slab_t *slab = obj2slab(ptr);
921
        slab_t *slab = obj2slab(ptr);
922
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
922
        memcpy(new_ptr, ptr, min(size, slab->cache->size));
923
    }
923
    }
924
   
924
   
925
    if (ptr != NULL)
925
    if (ptr != NULL)
926
        free(ptr);
926
        free(ptr);
927
   
927
   
928
    return new_ptr;
928
    return new_ptr;
929
}
929
}
930
 
930
 
931
void free(void *ptr)
931
void free(void *ptr)
932
{
932
{
933
    if (!ptr)
933
    if (!ptr)
934
        return;
934
        return;
935
 
935
 
936
    slab_t *slab = obj2slab(ptr);
936
    slab_t *slab = obj2slab(ptr);
937
    _slab_free(slab->cache, ptr, slab);
937
    _slab_free(slab->cache, ptr, slab);
938
}
938
}
939
 
939
 
940
/** @}
940
/** @}
941
 */
941
 */
942
 
942