Subversion Repositories HelenOS-historic

Rev

Rev 898 | Rev 907 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 898 Rev 906
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <mm/frame.h>
32
#include <mm/frame.h>
33
#include <mm/page.h>
33
#include <mm/page.h>
34
#include <mm/as.h>
34
#include <mm/as.h>
35
#include <arch/asm.h>
35
#include <arch/asm.h>
36
#include <arch/faddr.h>
36
#include <arch/faddr.h>
37
#include <arch/atomic.h>
37
#include <arch/atomic.h>
38
#include <synch/spinlock.h>
38
#include <synch/spinlock.h>
39
#include <config.h>
39
#include <config.h>
40
#include <context.h>
40
#include <context.h>
41
#include <func.h>
41
#include <func.h>
42
#include <arch.h>
42
#include <arch.h>
43
#include <adt/list.h>
43
#include <adt/list.h>
44
#include <panic.h>
44
#include <panic.h>
45
#include <typedefs.h>
45
#include <typedefs.h>
46
#include <cpu.h>
46
#include <cpu.h>
47
#include <print.h>
47
#include <print.h>
48
#include <debug.h>
48
#include <debug.h>
49
 
49
 
50
static void scheduler_separated_stack(void);
50
static void scheduler_separated_stack(void);
51
 
51
 
52
atomic_t nrdy;  /**< Number of ready threads in the system. */
52
atomic_t nrdy;  /**< Number of ready threads in the system. */
53
 
53
 
54
/** Take actions before new thread runs.
54
/** Take actions before new thread runs.
55
 *
55
 *
56
 * Perform actions that need to be
56
 * Perform actions that need to be
57
 * taken before the newly selected
57
 * taken before the newly selected
58
 * tread is passed control.
58
 * tread is passed control.
59
 *
59
 *
60
 * THREAD->lock is locked on entry
60
 * THREAD->lock is locked on entry
61
 *
61
 *
62
 */
62
 */
63
void before_thread_runs(void)
63
void before_thread_runs(void)
64
{
64
{
65
    before_thread_runs_arch();
65
    before_thread_runs_arch();
66
    #ifdef CONFIG_FPU_LAZY
66
#ifdef CONFIG_FPU_LAZY
67
    if(THREAD==CPU->fpu_owner)
67
    if(THREAD==CPU->fpu_owner)
68
        fpu_enable();
68
        fpu_enable();
69
    else
69
    else
70
        fpu_disable();
70
        fpu_disable();
71
    #else
71
#else
72
    fpu_enable();
72
    fpu_enable();
73
    if (THREAD->fpu_context_exists)
73
    if (THREAD->fpu_context_exists)
74
        fpu_context_restore(&(THREAD->saved_fpu_context));
74
        fpu_context_restore(THREAD->saved_fpu_context);
75
    else {
75
    else {
76
        fpu_init(&(THREAD->saved_fpu_context));
76
        fpu_init();
77
        THREAD->fpu_context_exists=1;
77
        THREAD->fpu_context_exists=1;
78
    }
78
    }
79
    #endif
79
#endif
80
}
80
}
81
 
81
 
82
/** Take actions after THREAD had run.
82
/** Take actions after THREAD had run.
83
 *
83
 *
84
 * Perform actions that need to be
84
 * Perform actions that need to be
85
 * taken after the running thread
85
 * taken after the running thread
86
 * had been preempted by the scheduler.
86
 * had been preempted by the scheduler.
87
 *
87
 *
88
 * THREAD->lock is locked on entry
88
 * THREAD->lock is locked on entry
89
 *
89
 *
90
 */
90
 */
91
void after_thread_ran(void)
91
void after_thread_ran(void)
92
{
92
{
93
    after_thread_ran_arch();
93
    after_thread_ran_arch();
94
}
94
}
95
 
95
 
96
#ifdef CONFIG_FPU_LAZY
96
#ifdef CONFIG_FPU_LAZY
97
void scheduler_fpu_lazy_request(void)
97
void scheduler_fpu_lazy_request(void)
98
{
98
{
99
    fpu_enable();
99
    fpu_enable();
100
    spinlock_lock(&CPU->lock);
100
    spinlock_lock(&CPU->lock);
101
 
101
 
102
    /* Save old context */
102
    /* Save old context */
103
    if (CPU->fpu_owner != NULL) {  
103
    if (CPU->fpu_owner != NULL) {  
104
        spinlock_lock(&CPU->fpu_owner->lock);
104
        spinlock_lock(&CPU->fpu_owner->lock);
105
        fpu_context_save(&CPU->fpu_owner->saved_fpu_context);
105
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
106
        /* don't prevent migration */
106
        /* don't prevent migration */
107
        CPU->fpu_owner->fpu_context_engaged=0;
107
        CPU->fpu_owner->fpu_context_engaged=0;
108
        spinlock_unlock(&CPU->fpu_owner->lock);
108
        spinlock_unlock(&CPU->fpu_owner->lock);
109
    }
109
    }
110
 
110
 
111
    spinlock_lock(&THREAD->lock);
111
    spinlock_lock(&THREAD->lock);
112
    if (THREAD->fpu_context_exists) {
112
    if (THREAD->fpu_context_exists) {
113
        fpu_context_restore(&THREAD->saved_fpu_context);
113
        fpu_context_restore(THREAD->saved_fpu_context);
114
    } else {
114
    } else {
-
 
115
        /* Allocate FPU context */
115
        fpu_init(&(THREAD->saved_fpu_context));
116
        if (!THREAD->saved_fpu_context) {
-
 
117
            /* Might sleep */
-
 
118
            spinlock_unlock(&THREAD->lock);
-
 
119
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
-
 
120
                                   0);
-
 
121
            spinlock_lock(&THREAD->lock);
-
 
122
        }
-
 
123
        fpu_init();
116
        THREAD->fpu_context_exists=1;
124
        THREAD->fpu_context_exists=1;
117
    }
125
    }
118
    CPU->fpu_owner=THREAD;
126
    CPU->fpu_owner=THREAD;
119
    THREAD->fpu_context_engaged = 1;
127
    THREAD->fpu_context_engaged = 1;
120
    spinlock_unlock(&THREAD->lock);
128
    spinlock_unlock(&THREAD->lock);
121
 
129
 
122
    spinlock_unlock(&CPU->lock);
130
    spinlock_unlock(&CPU->lock);
123
}
131
}
124
#endif
132
#endif
125
 
133
 
126
/** Initialize scheduler
134
/** Initialize scheduler
127
 *
135
 *
128
 * Initialize kernel scheduler.
136
 * Initialize kernel scheduler.
129
 *
137
 *
130
 */
138
 */
131
void scheduler_init(void)
139
void scheduler_init(void)
132
{
140
{
133
}
141
}
134
 
142
 
135
/** Get thread to be scheduled
143
/** Get thread to be scheduled
136
 *
144
 *
137
 * Get the optimal thread to be scheduled
145
 * Get the optimal thread to be scheduled
138
 * according to thread accounting and scheduler
146
 * according to thread accounting and scheduler
139
 * policy.
147
 * policy.
140
 *
148
 *
141
 * @return Thread to be scheduled.
149
 * @return Thread to be scheduled.
142
 *
150
 *
143
 */
151
 */
144
static thread_t *find_best_thread(void)
152
static thread_t *find_best_thread(void)
145
{
153
{
146
    thread_t *t;
154
    thread_t *t;
147
    runq_t *r;
155
    runq_t *r;
148
    int i;
156
    int i;
149
 
157
 
150
    ASSERT(CPU != NULL);
158
    ASSERT(CPU != NULL);
151
 
159
 
152
loop:
160
loop:
153
    interrupts_enable();
161
    interrupts_enable();
154
   
162
   
155
    if (atomic_get(&CPU->nrdy) == 0) {
163
    if (atomic_get(&CPU->nrdy) == 0) {
156
        /*
164
        /*
157
         * For there was nothing to run, the CPU goes to sleep
165
         * For there was nothing to run, the CPU goes to sleep
158
         * until a hardware interrupt or an IPI comes.
166
         * until a hardware interrupt or an IPI comes.
159
         * This improves energy saving and hyperthreading.
167
         * This improves energy saving and hyperthreading.
160
         */
168
         */
161
 
169
 
162
        /*
170
        /*
163
         * An interrupt might occur right now and wake up a thread.
171
         * An interrupt might occur right now and wake up a thread.
164
         * In such case, the CPU will continue to go to sleep
172
         * In such case, the CPU will continue to go to sleep
165
         * even though there is a runnable thread.
173
         * even though there is a runnable thread.
166
         */
174
         */
167
 
175
 
168
         cpu_sleep();
176
         cpu_sleep();
169
         goto loop;
177
         goto loop;
170
    }
178
    }
171
 
179
 
172
    interrupts_disable();
180
    interrupts_disable();
173
   
181
   
174
    for (i = 0; i<RQ_COUNT; i++) {
182
    for (i = 0; i<RQ_COUNT; i++) {
175
        r = &CPU->rq[i];
183
        r = &CPU->rq[i];
176
        spinlock_lock(&r->lock);
184
        spinlock_lock(&r->lock);
177
        if (r->n == 0) {
185
        if (r->n == 0) {
178
            /*
186
            /*
179
             * If this queue is empty, try a lower-priority queue.
187
             * If this queue is empty, try a lower-priority queue.
180
             */
188
             */
181
            spinlock_unlock(&r->lock);
189
            spinlock_unlock(&r->lock);
182
            continue;
190
            continue;
183
        }
191
        }
184
 
192
 
185
        atomic_dec(&CPU->nrdy);
193
        atomic_dec(&CPU->nrdy);
186
        atomic_dec(&nrdy);
194
        atomic_dec(&nrdy);
187
        r->n--;
195
        r->n--;
188
 
196
 
189
        /*
197
        /*
190
         * Take the first thread from the queue.
198
         * Take the first thread from the queue.
191
         */
199
         */
192
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
200
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
193
        list_remove(&t->rq_link);
201
        list_remove(&t->rq_link);
194
 
202
 
195
        spinlock_unlock(&r->lock);
203
        spinlock_unlock(&r->lock);
196
 
204
 
197
        spinlock_lock(&t->lock);
205
        spinlock_lock(&t->lock);
198
        t->cpu = CPU;
206
        t->cpu = CPU;
199
 
207
 
200
        t->ticks = us2ticks((i+1)*10000);
208
        t->ticks = us2ticks((i+1)*10000);
201
        t->priority = i;    /* correct rq index */
209
        t->priority = i;    /* correct rq index */
202
 
210
 
203
        /*
211
        /*
204
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
212
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
205
         */
213
         */
206
        t->flags &= ~X_STOLEN;
214
        t->flags &= ~X_STOLEN;
207
        spinlock_unlock(&t->lock);
215
        spinlock_unlock(&t->lock);
208
 
216
 
209
        return t;
217
        return t;
210
    }
218
    }
211
    goto loop;
219
    goto loop;
212
 
220
 
213
}
221
}
214
 
222
 
215
/** Prevent rq starvation
223
/** Prevent rq starvation
216
 *
224
 *
217
 * Prevent low priority threads from starving in rq's.
225
 * Prevent low priority threads from starving in rq's.
218
 *
226
 *
219
 * When the function decides to relink rq's, it reconnects
227
 * When the function decides to relink rq's, it reconnects
220
 * respective pointers so that in result threads with 'pri'
228
 * respective pointers so that in result threads with 'pri'
221
 * greater or equal 'start' are moved to a higher-priority queue.
229
 * greater or equal 'start' are moved to a higher-priority queue.
222
 *
230
 *
223
 * @param start Threshold priority.
231
 * @param start Threshold priority.
224
 *
232
 *
225
 */
233
 */
226
static void relink_rq(int start)
234
static void relink_rq(int start)
227
{
235
{
228
    link_t head;
236
    link_t head;
229
    runq_t *r;
237
    runq_t *r;
230
    int i, n;
238
    int i, n;
231
 
239
 
232
    list_initialize(&head);
240
    list_initialize(&head);
233
    spinlock_lock(&CPU->lock);
241
    spinlock_lock(&CPU->lock);
234
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
242
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
235
        for (i = start; i<RQ_COUNT-1; i++) {
243
        for (i = start; i<RQ_COUNT-1; i++) {
236
            /* remember and empty rq[i + 1] */
244
            /* remember and empty rq[i + 1] */
237
            r = &CPU->rq[i + 1];
245
            r = &CPU->rq[i + 1];
238
            spinlock_lock(&r->lock);
246
            spinlock_lock(&r->lock);
239
            list_concat(&head, &r->rq_head);
247
            list_concat(&head, &r->rq_head);
240
            n = r->n;
248
            n = r->n;
241
            r->n = 0;
249
            r->n = 0;
242
            spinlock_unlock(&r->lock);
250
            spinlock_unlock(&r->lock);
243
       
251
       
244
            /* append rq[i + 1] to rq[i] */
252
            /* append rq[i + 1] to rq[i] */
245
            r = &CPU->rq[i];
253
            r = &CPU->rq[i];
246
            spinlock_lock(&r->lock);
254
            spinlock_lock(&r->lock);
247
            list_concat(&r->rq_head, &head);
255
            list_concat(&r->rq_head, &head);
248
            r->n += n;
256
            r->n += n;
249
            spinlock_unlock(&r->lock);
257
            spinlock_unlock(&r->lock);
250
        }
258
        }
251
        CPU->needs_relink = 0;
259
        CPU->needs_relink = 0;
252
    }
260
    }
253
    spinlock_unlock(&CPU->lock);
261
    spinlock_unlock(&CPU->lock);
254
 
262
 
255
}
263
}
256
 
264
 
257
/** The scheduler
265
/** The scheduler
258
 *
266
 *
259
 * The thread scheduling procedure.
267
 * The thread scheduling procedure.
260
 * Passes control directly to
268
 * Passes control directly to
261
 * scheduler_separated_stack().
269
 * scheduler_separated_stack().
262
 *
270
 *
263
 */
271
 */
264
void scheduler(void)
272
void scheduler(void)
265
{
273
{
266
    volatile ipl_t ipl;
274
    volatile ipl_t ipl;
267
 
275
 
268
    ASSERT(CPU != NULL);
276
    ASSERT(CPU != NULL);
269
 
277
 
270
    ipl = interrupts_disable();
278
    ipl = interrupts_disable();
271
 
279
 
272
    if (atomic_get(&haltstate))
280
    if (atomic_get(&haltstate))
273
        halt();
281
        halt();
274
 
282
 
275
    if (THREAD) {
283
    if (THREAD) {
276
        spinlock_lock(&THREAD->lock);
284
        spinlock_lock(&THREAD->lock);
277
        #ifndef CONFIG_FPU_LAZY
285
#ifndef CONFIG_FPU_LAZY
278
        fpu_context_save(&(THREAD->saved_fpu_context));
286
        fpu_context_save(THREAD->saved_fpu_context);
279
        #endif
287
#endif
280
        if (!context_save(&THREAD->saved_context)) {
288
        if (!context_save(&THREAD->saved_context)) {
281
            /*
289
            /*
282
             * This is the place where threads leave scheduler();
290
             * This is the place where threads leave scheduler();
283
             */
291
             */
284
            spinlock_unlock(&THREAD->lock);
292
            spinlock_unlock(&THREAD->lock);
285
            interrupts_restore(THREAD->saved_context.ipl);
293
            interrupts_restore(THREAD->saved_context.ipl);
286
            return;
294
            return;
287
        }
295
        }
288
 
296
 
289
        /*
297
        /*
290
         * Interrupt priority level of preempted thread is recorded here
298
         * Interrupt priority level of preempted thread is recorded here
291
         * to facilitate scheduler() invocations from interrupts_disable()'d
299
         * to facilitate scheduler() invocations from interrupts_disable()'d
292
         * code (e.g. waitq_sleep_timeout()).
300
         * code (e.g. waitq_sleep_timeout()).
293
         */
301
         */
294
        THREAD->saved_context.ipl = ipl;
302
        THREAD->saved_context.ipl = ipl;
295
    }
303
    }
296
 
304
 
297
    /*
305
    /*
298
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
306
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
299
     * and preemption counter. At this point THE could be coming either
307
     * and preemption counter. At this point THE could be coming either
300
     * from THREAD's or CPU's stack.
308
     * from THREAD's or CPU's stack.
301
     */
309
     */
302
    the_copy(THE, (the_t *) CPU->stack);
310
    the_copy(THE, (the_t *) CPU->stack);
303
 
311
 
304
    /*
312
    /*
305
     * We may not keep the old stack.
313
     * We may not keep the old stack.
306
     * Reason: If we kept the old stack and got blocked, for instance, in
314
     * Reason: If we kept the old stack and got blocked, for instance, in
307
     * find_best_thread(), the old thread could get rescheduled by another
315
     * find_best_thread(), the old thread could get rescheduled by another
308
     * CPU and overwrite the part of its own stack that was also used by
316
     * CPU and overwrite the part of its own stack that was also used by
309
     * the scheduler on this CPU.
317
     * the scheduler on this CPU.
310
     *
318
     *
311
     * Moreover, we have to bypass the compiler-generated POP sequence
319
     * Moreover, we have to bypass the compiler-generated POP sequence
312
     * which is fooled by SP being set to the very top of the stack.
320
     * which is fooled by SP being set to the very top of the stack.
313
     * Therefore the scheduler() function continues in
321
     * Therefore the scheduler() function continues in
314
     * scheduler_separated_stack().
322
     * scheduler_separated_stack().
315
     */
323
     */
316
    context_save(&CPU->saved_context);
324
    context_save(&CPU->saved_context);
317
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
325
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
318
    context_restore(&CPU->saved_context);
326
    context_restore(&CPU->saved_context);
319
    /* not reached */
327
    /* not reached */
320
}
328
}
321
 
329
 
322
/** Scheduler stack switch wrapper
330
/** Scheduler stack switch wrapper
323
 *
331
 *
324
 * Second part of the scheduler() function
332
 * Second part of the scheduler() function
325
 * using new stack. Handling the actual context
333
 * using new stack. Handling the actual context
326
 * switch to a new thread.
334
 * switch to a new thread.
327
 *
335
 *
328
 * Assume THREAD->lock is held.
336
 * Assume THREAD->lock is held.
329
 */
337
 */
330
void scheduler_separated_stack(void)
338
void scheduler_separated_stack(void)
331
{
339
{
332
    int priority;
340
    int priority;
333
 
341
 
334
    ASSERT(CPU != NULL);
342
    ASSERT(CPU != NULL);
335
 
343
 
336
    if (THREAD) {
344
    if (THREAD) {
337
        /* must be run after the switch to scheduler stack */
345
        /* must be run after the switch to scheduler stack */
338
        after_thread_ran();
346
        after_thread_ran();
339
 
347
 
340
        switch (THREAD->state) {
348
        switch (THREAD->state) {
341
            case Running:
349
            case Running:
342
            THREAD->state = Ready;
350
            THREAD->state = Ready;
343
            spinlock_unlock(&THREAD->lock);
351
            spinlock_unlock(&THREAD->lock);
344
            thread_ready(THREAD);
352
            thread_ready(THREAD);
345
            break;
353
            break;
346
 
354
 
347
            case Exiting:
355
            case Exiting:
348
            thread_destroy(THREAD);
356
            thread_destroy(THREAD);
349
            break;
357
            break;
350
           
358
           
351
            case Sleeping:
359
            case Sleeping:
352
            /*
360
            /*
353
             * Prefer the thread after it's woken up.
361
             * Prefer the thread after it's woken up.
354
             */
362
             */
355
            THREAD->priority = -1;
363
            THREAD->priority = -1;
356
 
364
 
357
            /*
365
            /*
358
             * We need to release wq->lock which we locked in waitq_sleep().
366
             * We need to release wq->lock which we locked in waitq_sleep().
359
             * Address of wq->lock is kept in THREAD->sleep_queue.
367
             * Address of wq->lock is kept in THREAD->sleep_queue.
360
             */
368
             */
361
            spinlock_unlock(&THREAD->sleep_queue->lock);
369
            spinlock_unlock(&THREAD->sleep_queue->lock);
362
 
370
 
363
            /*
371
            /*
364
             * Check for possible requests for out-of-context invocation.
372
             * Check for possible requests for out-of-context invocation.
365
             */
373
             */
366
            if (THREAD->call_me) {
374
            if (THREAD->call_me) {
367
                THREAD->call_me(THREAD->call_me_with);
375
                THREAD->call_me(THREAD->call_me_with);
368
                THREAD->call_me = NULL;
376
                THREAD->call_me = NULL;
369
                THREAD->call_me_with = NULL;
377
                THREAD->call_me_with = NULL;
370
            }
378
            }
371
 
379
 
372
            spinlock_unlock(&THREAD->lock);
380
            spinlock_unlock(&THREAD->lock);
373
 
381
 
374
            break;
382
            break;
375
 
383
 
376
            default:
384
            default:
377
            /*
385
            /*
378
             * Entering state is unexpected.
386
             * Entering state is unexpected.
379
             */
387
             */
380
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
388
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
381
            break;
389
            break;
382
        }
390
        }
383
 
391
 
384
        THREAD = NULL;
392
        THREAD = NULL;
385
    }
393
    }
386
 
394
 
387
    THREAD = find_best_thread();
395
    THREAD = find_best_thread();
388
   
396
   
389
    spinlock_lock(&THREAD->lock);
397
    spinlock_lock(&THREAD->lock);
390
    priority = THREAD->priority;
398
    priority = THREAD->priority;
391
    spinlock_unlock(&THREAD->lock);
399
    spinlock_unlock(&THREAD->lock);
392
 
400
 
393
    relink_rq(priority);       
401
    relink_rq(priority);       
394
 
402
 
395
    spinlock_lock(&THREAD->lock);  
403
    spinlock_lock(&THREAD->lock);  
396
 
404
 
397
    /*
405
    /*
398
     * If both the old and the new task are the same, lots of work is avoided.
406
     * If both the old and the new task are the same, lots of work is avoided.
399
     */
407
     */
400
    if (TASK != THREAD->task) {
408
    if (TASK != THREAD->task) {
401
        as_t *as1 = NULL;
409
        as_t *as1 = NULL;
402
        as_t *as2;
410
        as_t *as2;
403
 
411
 
404
        if (TASK) {
412
        if (TASK) {
405
            spinlock_lock(&TASK->lock);
413
            spinlock_lock(&TASK->lock);
406
            as1 = TASK->as;
414
            as1 = TASK->as;
407
            spinlock_unlock(&TASK->lock);
415
            spinlock_unlock(&TASK->lock);
408
        }
416
        }
409
 
417
 
410
        spinlock_lock(&THREAD->task->lock);
418
        spinlock_lock(&THREAD->task->lock);
411
        as2 = THREAD->task->as;
419
        as2 = THREAD->task->as;
412
        spinlock_unlock(&THREAD->task->lock);
420
        spinlock_unlock(&THREAD->task->lock);
413
       
421
       
414
        /*
422
        /*
415
         * Note that it is possible for two tasks to share one address space.
423
         * Note that it is possible for two tasks to share one address space.
416
         */
424
         */
417
        if (as1 != as2) {
425
        if (as1 != as2) {
418
            /*
426
            /*
419
             * Both tasks and address spaces are different.
427
             * Both tasks and address spaces are different.
420
             * Replace the old one with the new one.
428
             * Replace the old one with the new one.
421
             */
429
             */
422
            as_switch(as1, as2);
430
            as_switch(as1, as2);
423
        }
431
        }
424
        TASK = THREAD->task;   
432
        TASK = THREAD->task;
425
    }
433
    }
426
 
434
 
427
    THREAD->state = Running;
435
    THREAD->state = Running;
428
 
436
 
429
    #ifdef SCHEDULER_VERBOSE
437
#ifdef SCHEDULER_VERBOSE
430
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
438
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
431
    #endif  
439
#endif  
432
 
440
 
433
    /*
441
    /*
434
     * Some architectures provide late kernel PA2KA(identity)
442
     * Some architectures provide late kernel PA2KA(identity)
435
     * mapping in a page fault handler. However, the page fault
443
     * mapping in a page fault handler. However, the page fault
436
     * handler uses the kernel stack of the running thread and
444
     * handler uses the kernel stack of the running thread and
437
     * therefore cannot be used to map it. The kernel stack, if
445
     * therefore cannot be used to map it. The kernel stack, if
438
     * necessary, is to be mapped in before_thread_runs(). This
446
     * necessary, is to be mapped in before_thread_runs(). This
439
     * function must be executed before the switch to the new stack.
447
     * function must be executed before the switch to the new stack.
440
     */
448
     */
441
    before_thread_runs();
449
    before_thread_runs();
442
 
450
 
443
    /*
451
    /*
444
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
452
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
445
     */
453
     */
446
    the_copy(THE, (the_t *) THREAD->kstack);
454
    the_copy(THE, (the_t *) THREAD->kstack);
447
   
455
   
448
    context_restore(&THREAD->saved_context);
456
    context_restore(&THREAD->saved_context);
449
    /* not reached */
457
    /* not reached */
450
}
458
}
451
 
459
 
452
#ifdef CONFIG_SMP
460
#ifdef CONFIG_SMP
453
/** Load balancing thread
461
/** Load balancing thread
454
 *
462
 *
455
 * SMP load balancing thread, supervising thread supplies
463
 * SMP load balancing thread, supervising thread supplies
456
 * for the CPU it's wired to.
464
 * for the CPU it's wired to.
457
 *
465
 *
458
 * @param arg Generic thread argument (unused).
466
 * @param arg Generic thread argument (unused).
459
 *
467
 *
460
 */
468
 */
461
void kcpulb(void *arg)
469
void kcpulb(void *arg)
462
{
470
{
463
    thread_t *t;
471
    thread_t *t;
464
    int count, average, i, j, k = 0;
472
    int count, average, i, j, k = 0;
465
    ipl_t ipl;
473
    ipl_t ipl;
466
 
474
 
467
loop:
475
loop:
468
    /*
476
    /*
469
     * Work in 1s intervals.
477
     * Work in 1s intervals.
470
     */
478
     */
471
    thread_sleep(1);
479
    thread_sleep(1);
472
 
480
 
473
not_satisfied:
481
not_satisfied:
474
    /*
482
    /*
475
     * Calculate the number of threads that will be migrated/stolen from
483
     * Calculate the number of threads that will be migrated/stolen from
476
     * other CPU's. Note that situation can have changed between two
484
     * other CPU's. Note that situation can have changed between two
477
     * passes. Each time get the most up to date counts.
485
     * passes. Each time get the most up to date counts.
478
     */
486
     */
479
    average = atomic_get(&nrdy) / config.cpu_active + 1;
487
    average = atomic_get(&nrdy) / config.cpu_active + 1;
480
    count = average - atomic_get(&CPU->nrdy);
488
    count = average - atomic_get(&CPU->nrdy);
481
 
489
 
482
    if (count <= 0)
490
    if (count <= 0)
483
        goto satisfied;
491
        goto satisfied;
484
 
492
 
485
    /*
493
    /*
486
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
494
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
487
     */
495
     */
488
    for (j=RQ_COUNT-1; j >= 0; j--) {
496
    for (j=RQ_COUNT-1; j >= 0; j--) {
489
        for (i=0; i < config.cpu_active; i++) {
497
        for (i=0; i < config.cpu_active; i++) {
490
            link_t *l;
498
            link_t *l;
491
            runq_t *r;
499
            runq_t *r;
492
            cpu_t *cpu;
500
            cpu_t *cpu;
493
 
501
 
494
            cpu = &cpus[(i + k) % config.cpu_active];
502
            cpu = &cpus[(i + k) % config.cpu_active];
495
 
503
 
496
            /*
504
            /*
497
             * Not interested in ourselves.
505
             * Not interested in ourselves.
498
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
506
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
499
             */
507
             */
500
            if (CPU == cpu)
508
            if (CPU == cpu)
501
                continue;
509
                continue;
502
            if (atomic_get(&cpu->nrdy) <= average)
510
            if (atomic_get(&cpu->nrdy) <= average)
503
                continue;
511
                continue;
504
 
512
 
505
            ipl = interrupts_disable();
513
            ipl = interrupts_disable();
506
            r = &cpu->rq[j];
514
            r = &cpu->rq[j];
507
            spinlock_lock(&r->lock);
515
            spinlock_lock(&r->lock);
508
            if (r->n == 0) {
516
            if (r->n == 0) {
509
                spinlock_unlock(&r->lock);
517
                spinlock_unlock(&r->lock);
510
                interrupts_restore(ipl);
518
                interrupts_restore(ipl);
511
                continue;
519
                continue;
512
            }
520
            }
513
       
521
       
514
            t = NULL;
522
            t = NULL;
515
            l = r->rq_head.prev;    /* search rq from the back */
523
            l = r->rq_head.prev;    /* search rq from the back */
516
            while (l != &r->rq_head) {
524
            while (l != &r->rq_head) {
517
                t = list_get_instance(l, thread_t, rq_link);
525
                t = list_get_instance(l, thread_t, rq_link);
518
                /*
526
                /*
519
                 * We don't want to steal CPU-wired threads neither threads already stolen.
527
                 * We don't want to steal CPU-wired threads neither threads already stolen.
520
                 * The latter prevents threads from migrating between CPU's without ever being run.
528
                 * The latter prevents threads from migrating between CPU's without ever being run.
521
                 * We don't want to steal threads whose FPU context is still in CPU.
529
                 * We don't want to steal threads whose FPU context is still in CPU.
522
                 */
530
                 */
523
                spinlock_lock(&t->lock);
531
                spinlock_lock(&t->lock);
524
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
532
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
525
                    /*
533
                    /*
526
                     * Remove t from r.
534
                     * Remove t from r.
527
                     */
535
                     */
528
                    spinlock_unlock(&t->lock);
536
                    spinlock_unlock(&t->lock);
529
                   
537
                   
530
                    atomic_dec(&cpu->nrdy);
538
                    atomic_dec(&cpu->nrdy);
531
                    atomic_dec(&nrdy);
539
                    atomic_dec(&nrdy);
532
 
540
 
533
                    r->n--;
541
                    r->n--;
534
                    list_remove(&t->rq_link);
542
                    list_remove(&t->rq_link);
535
 
543
 
536
                    break;
544
                    break;
537
                }
545
                }
538
                spinlock_unlock(&t->lock);
546
                spinlock_unlock(&t->lock);
539
                l = l->prev;
547
                l = l->prev;
540
                t = NULL;
548
                t = NULL;
541
            }
549
            }
542
            spinlock_unlock(&r->lock);
550
            spinlock_unlock(&r->lock);
543
 
551
 
544
            if (t) {
552
            if (t) {
545
                /*
553
                /*
546
                 * Ready t on local CPU
554
                 * Ready t on local CPU
547
                 */
555
                 */
548
                spinlock_lock(&t->lock);
556
                spinlock_lock(&t->lock);
549
                #ifdef KCPULB_VERBOSE
557
#ifdef KCPULB_VERBOSE
550
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
558
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
551
                #endif
559
#endif
552
                t->flags |= X_STOLEN;
560
                t->flags |= X_STOLEN;
553
                spinlock_unlock(&t->lock);
561
                spinlock_unlock(&t->lock);
554
   
562
   
555
                thread_ready(t);
563
                thread_ready(t);
556
 
564
 
557
                interrupts_restore(ipl);
565
                interrupts_restore(ipl);
558
   
566
   
559
                if (--count == 0)
567
                if (--count == 0)
560
                    goto satisfied;
568
                    goto satisfied;
561
                   
569
                   
562
                /*
570
                /*
563
                 * We are not satisfied yet, focus on another CPU next time.
571
                 * We are not satisfied yet, focus on another CPU next time.
564
                 */
572
                 */
565
                k++;
573
                k++;
566
               
574
               
567
                continue;
575
                continue;
568
            }
576
            }
569
            interrupts_restore(ipl);
577
            interrupts_restore(ipl);
570
        }
578
        }
571
    }
579
    }
572
 
580
 
573
    if (atomic_get(&CPU->nrdy)) {
581
    if (atomic_get(&CPU->nrdy)) {
574
        /*
582
        /*
575
         * Be a little bit light-weight and let migrated threads run.
583
         * Be a little bit light-weight and let migrated threads run.
576
         */
584
         */
577
        scheduler();
585
        scheduler();
578
    } else {
586
    } else {
579
        /*
587
        /*
580
         * We failed to migrate a single thread.
588
         * We failed to migrate a single thread.
581
         * Give up this turn.
589
         * Give up this turn.
582
         */
590
         */
583
        goto loop;
591
        goto loop;
584
    }
592
    }
585
       
593
       
586
    goto not_satisfied;
594
    goto not_satisfied;
587
 
595
 
588
satisfied:
596
satisfied:
589
    goto loop;
597
    goto loop;
590
}
598
}
591
 
599
 
592
#endif /* CONFIG_SMP */
600
#endif /* CONFIG_SMP */
593
 
601
 
594
 
602
 
595
/** Print information about threads & scheduler queues */
603
/** Print information about threads & scheduler queues */
596
void sched_print_list(void)
604
void sched_print_list(void)
597
{
605
{
598
    ipl_t ipl;
606
    ipl_t ipl;
599
    int cpu,i;
607
    int cpu,i;
600
    runq_t *r;
608
    runq_t *r;
601
    thread_t *t;
609
    thread_t *t;
602
    link_t *cur;
610
    link_t *cur;
603
 
611
 
604
    /* We are going to mess with scheduler structures,
612
    /* We are going to mess with scheduler structures,
605
     * let's not be interrupted */
613
     * let's not be interrupted */
606
    ipl = interrupts_disable();
614
    ipl = interrupts_disable();
607
    printf("Scheduler dump:\n");
615
    printf("Scheduler dump:\n");
608
    for (cpu=0;cpu < config.cpu_count; cpu++) {
616
    for (cpu=0;cpu < config.cpu_count; cpu++) {
609
 
617
 
610
        if (!cpus[cpu].active)
618
        if (!cpus[cpu].active)
611
            continue;
619
            continue;
612
 
620
 
613
        spinlock_lock(&cpus[cpu].lock);
621
        spinlock_lock(&cpus[cpu].lock);
614
        printf("cpu%d: nrdy: %d, needs_relink: %d\n",
622
        printf("cpu%d: nrdy: %d, needs_relink: %d\n",
615
               cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
623
               cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
616
       
624
       
617
        for (i=0; i<RQ_COUNT; i++) {
625
        for (i=0; i<RQ_COUNT; i++) {
618
            r = &cpus[cpu].rq[i];
626
            r = &cpus[cpu].rq[i];
619
            spinlock_lock(&r->lock);
627
            spinlock_lock(&r->lock);
620
            if (!r->n) {
628
            if (!r->n) {
621
                spinlock_unlock(&r->lock);
629
                spinlock_unlock(&r->lock);
622
                continue;
630
                continue;
623
            }
631
            }
624
            printf("\trq[%d]: ", i);
632
            printf("\trq[%d]: ", i);
625
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
633
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
626
                t = list_get_instance(cur, thread_t, rq_link);
634
                t = list_get_instance(cur, thread_t, rq_link);
627
                printf("%d(%s) ", t->tid,
635
                printf("%d(%s) ", t->tid,
628
                       thread_states[t->state]);
636
                       thread_states[t->state]);
629
            }
637
            }
630
            printf("\n");
638
            printf("\n");
631
            spinlock_unlock(&r->lock);
639
            spinlock_unlock(&r->lock);
632
        }
640
        }
633
        spinlock_unlock(&cpus[cpu].lock);
641
        spinlock_unlock(&cpus[cpu].lock);
634
    }
642
    }
635
   
643
   
636
    interrupts_restore(ipl);
644
    interrupts_restore(ipl);
637
}
645
}
638
 
646