Subversion Repositories HelenOS-historic

Rev

Rev 787 | Rev 814 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 787 Rev 788
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <mm/heap.h>
32
#include <mm/heap.h>
33
#include <mm/frame.h>
33
#include <mm/frame.h>
34
#include <mm/page.h>
34
#include <mm/page.h>
35
#include <mm/as.h>
35
#include <mm/as.h>
36
#include <arch/asm.h>
36
#include <arch/asm.h>
37
#include <arch/faddr.h>
37
#include <arch/faddr.h>
38
#include <arch/atomic.h>
38
#include <arch/atomic.h>
39
#include <synch/spinlock.h>
39
#include <synch/spinlock.h>
40
#include <config.h>
40
#include <config.h>
41
#include <context.h>
41
#include <context.h>
42
#include <func.h>
42
#include <func.h>
43
#include <arch.h>
43
#include <arch.h>
44
#include <list.h>
44
#include <adt/list.h>
45
#include <panic.h>
45
#include <panic.h>
46
#include <typedefs.h>
46
#include <typedefs.h>
47
#include <cpu.h>
47
#include <cpu.h>
48
#include <print.h>
48
#include <print.h>
49
#include <debug.h>
49
#include <debug.h>
50
 
50
 
51
atomic_t nrdy;
51
atomic_t nrdy;
52
 
52
 
53
/** Take actions before new thread runs
53
/** Take actions before new thread runs
54
 *
54
 *
55
 * Perform actions that need to be
55
 * Perform actions that need to be
56
 * taken before the newly selected
56
 * taken before the newly selected
57
 * tread is passed control.
57
 * tread is passed control.
58
 *
58
 *
59
 */
59
 */
60
void before_thread_runs(void)
60
void before_thread_runs(void)
61
{
61
{
62
    before_thread_runs_arch();
62
    before_thread_runs_arch();
63
#ifdef CONFIG_FPU_LAZY
63
#ifdef CONFIG_FPU_LAZY
64
    if(THREAD==CPU->fpu_owner)
64
    if(THREAD==CPU->fpu_owner)
65
        fpu_enable();
65
        fpu_enable();
66
    else
66
    else
67
        fpu_disable();
67
        fpu_disable();
68
#else
68
#else
69
    fpu_enable();
69
    fpu_enable();
70
    if (THREAD->fpu_context_exists)
70
    if (THREAD->fpu_context_exists)
71
        fpu_context_restore(&(THREAD->saved_fpu_context));
71
        fpu_context_restore(&(THREAD->saved_fpu_context));
72
    else {
72
    else {
73
        fpu_init();
73
        fpu_init();
74
        THREAD->fpu_context_exists=1;
74
        THREAD->fpu_context_exists=1;
75
    }
75
    }
76
#endif
76
#endif
77
}
77
}
78
 
78
 
79
#ifdef CONFIG_FPU_LAZY
79
#ifdef CONFIG_FPU_LAZY
80
void scheduler_fpu_lazy_request(void)
80
void scheduler_fpu_lazy_request(void)
81
{
81
{
82
    fpu_enable();
82
    fpu_enable();
83
    if (CPU->fpu_owner != NULL) {  
83
    if (CPU->fpu_owner != NULL) {  
84
        fpu_context_save(&CPU->fpu_owner->saved_fpu_context);
84
        fpu_context_save(&CPU->fpu_owner->saved_fpu_context);
85
        /* don't prevent migration */
85
        /* don't prevent migration */
86
        CPU->fpu_owner->fpu_context_engaged=0;
86
        CPU->fpu_owner->fpu_context_engaged=0;
87
    }
87
    }
88
    if (THREAD->fpu_context_exists)
88
    if (THREAD->fpu_context_exists)
89
        fpu_context_restore(&THREAD->saved_fpu_context);
89
        fpu_context_restore(&THREAD->saved_fpu_context);
90
    else {
90
    else {
91
        fpu_init();
91
        fpu_init();
92
        THREAD->fpu_context_exists=1;
92
        THREAD->fpu_context_exists=1;
93
    }
93
    }
94
    CPU->fpu_owner=THREAD;
94
    CPU->fpu_owner=THREAD;
95
    THREAD->fpu_context_engaged = 1;
95
    THREAD->fpu_context_engaged = 1;
96
}
96
}
97
#endif
97
#endif
98
 
98
 
99
/** Initialize scheduler
99
/** Initialize scheduler
100
 *
100
 *
101
 * Initialize kernel scheduler.
101
 * Initialize kernel scheduler.
102
 *
102
 *
103
 */
103
 */
104
void scheduler_init(void)
104
void scheduler_init(void)
105
{
105
{
106
}
106
}
107
 
107
 
108
 
108
 
109
/** Get thread to be scheduled
109
/** Get thread to be scheduled
110
 *
110
 *
111
 * Get the optimal thread to be scheduled
111
 * Get the optimal thread to be scheduled
112
 * according to thread accounting and scheduler
112
 * according to thread accounting and scheduler
113
 * policy.
113
 * policy.
114
 *
114
 *
115
 * @return Thread to be scheduled.
115
 * @return Thread to be scheduled.
116
 *
116
 *
117
 */
117
 */
118
static thread_t *find_best_thread(void)
118
static thread_t *find_best_thread(void)
119
{
119
{
120
    thread_t *t;
120
    thread_t *t;
121
    runq_t *r;
121
    runq_t *r;
122
    int i;
122
    int i;
123
 
123
 
124
    ASSERT(CPU != NULL);
124
    ASSERT(CPU != NULL);
125
 
125
 
126
loop:
126
loop:
127
    interrupts_enable();
127
    interrupts_enable();
128
   
128
   
129
    if (atomic_get(&CPU->nrdy) == 0) {
129
    if (atomic_get(&CPU->nrdy) == 0) {
130
        /*
130
        /*
131
         * For there was nothing to run, the CPU goes to sleep
131
         * For there was nothing to run, the CPU goes to sleep
132
         * until a hardware interrupt or an IPI comes.
132
         * until a hardware interrupt or an IPI comes.
133
         * This improves energy saving and hyperthreading.
133
         * This improves energy saving and hyperthreading.
134
         */
134
         */
135
 
135
 
136
        /*
136
        /*
137
         * An interrupt might occur right now and wake up a thread.
137
         * An interrupt might occur right now and wake up a thread.
138
         * In such case, the CPU will continue to go to sleep
138
         * In such case, the CPU will continue to go to sleep
139
         * even though there is a runnable thread.
139
         * even though there is a runnable thread.
140
         */
140
         */
141
 
141
 
142
         cpu_sleep();
142
         cpu_sleep();
143
         goto loop;
143
         goto loop;
144
    }
144
    }
145
 
145
 
146
    interrupts_disable();
146
    interrupts_disable();
147
   
147
   
148
    i = 0;
148
    i = 0;
149
    for (; i<RQ_COUNT; i++) {
149
    for (; i<RQ_COUNT; i++) {
150
        r = &CPU->rq[i];
150
        r = &CPU->rq[i];
151
        spinlock_lock(&r->lock);
151
        spinlock_lock(&r->lock);
152
        if (r->n == 0) {
152
        if (r->n == 0) {
153
            /*
153
            /*
154
             * If this queue is empty, try a lower-priority queue.
154
             * If this queue is empty, try a lower-priority queue.
155
             */
155
             */
156
            spinlock_unlock(&r->lock);
156
            spinlock_unlock(&r->lock);
157
            continue;
157
            continue;
158
        }
158
        }
159
 
159
 
160
        atomic_dec(&CPU->nrdy);
160
        atomic_dec(&CPU->nrdy);
161
        atomic_dec(&nrdy);
161
        atomic_dec(&nrdy);
162
        r->n--;
162
        r->n--;
163
 
163
 
164
        /*
164
        /*
165
         * Take the first thread from the queue.
165
         * Take the first thread from the queue.
166
         */
166
         */
167
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
167
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
168
        list_remove(&t->rq_link);
168
        list_remove(&t->rq_link);
169
 
169
 
170
        spinlock_unlock(&r->lock);
170
        spinlock_unlock(&r->lock);
171
 
171
 
172
        spinlock_lock(&t->lock);
172
        spinlock_lock(&t->lock);
173
        t->cpu = CPU;
173
        t->cpu = CPU;
174
 
174
 
175
        t->ticks = us2ticks((i+1)*10000);
175
        t->ticks = us2ticks((i+1)*10000);
176
        t->priority = i;    /* eventually correct rq index */
176
        t->priority = i;    /* eventually correct rq index */
177
 
177
 
178
        /*
178
        /*
179
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
179
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
180
         */
180
         */
181
        t->flags &= ~X_STOLEN;
181
        t->flags &= ~X_STOLEN;
182
        spinlock_unlock(&t->lock);
182
        spinlock_unlock(&t->lock);
183
 
183
 
184
        return t;
184
        return t;
185
    }
185
    }
186
    goto loop;
186
    goto loop;
187
 
187
 
188
}
188
}
189
 
189
 
190
 
190
 
191
/** Prevent rq starvation
191
/** Prevent rq starvation
192
 *
192
 *
193
 * Prevent low priority threads from starving in rq's.
193
 * Prevent low priority threads from starving in rq's.
194
 *
194
 *
195
 * When the function decides to relink rq's, it reconnects
195
 * When the function decides to relink rq's, it reconnects
196
 * respective pointers so that in result threads with 'pri'
196
 * respective pointers so that in result threads with 'pri'
197
 * greater or equal 'start' are moved to a higher-priority queue.
197
 * greater or equal 'start' are moved to a higher-priority queue.
198
 *
198
 *
199
 * @param start Threshold priority.
199
 * @param start Threshold priority.
200
 *
200
 *
201
 */
201
 */
202
static void relink_rq(int start)
202
static void relink_rq(int start)
203
{
203
{
204
    link_t head;
204
    link_t head;
205
    runq_t *r;
205
    runq_t *r;
206
    int i, n;
206
    int i, n;
207
 
207
 
208
    list_initialize(&head);
208
    list_initialize(&head);
209
    spinlock_lock(&CPU->lock);
209
    spinlock_lock(&CPU->lock);
210
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
210
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
211
        for (i = start; i<RQ_COUNT-1; i++) {
211
        for (i = start; i<RQ_COUNT-1; i++) {
212
            /* remember and empty rq[i + 1] */
212
            /* remember and empty rq[i + 1] */
213
            r = &CPU->rq[i + 1];
213
            r = &CPU->rq[i + 1];
214
            spinlock_lock(&r->lock);
214
            spinlock_lock(&r->lock);
215
            list_concat(&head, &r->rq_head);
215
            list_concat(&head, &r->rq_head);
216
            n = r->n;
216
            n = r->n;
217
            r->n = 0;
217
            r->n = 0;
218
            spinlock_unlock(&r->lock);
218
            spinlock_unlock(&r->lock);
219
       
219
       
220
            /* append rq[i + 1] to rq[i] */
220
            /* append rq[i + 1] to rq[i] */
221
            r = &CPU->rq[i];
221
            r = &CPU->rq[i];
222
            spinlock_lock(&r->lock);
222
            spinlock_lock(&r->lock);
223
            list_concat(&r->rq_head, &head);
223
            list_concat(&r->rq_head, &head);
224
            r->n += n;
224
            r->n += n;
225
            spinlock_unlock(&r->lock);
225
            spinlock_unlock(&r->lock);
226
        }
226
        }
227
        CPU->needs_relink = 0;
227
        CPU->needs_relink = 0;
228
    }
228
    }
229
    spinlock_unlock(&CPU->lock);
229
    spinlock_unlock(&CPU->lock);
230
 
230
 
231
}
231
}
232
 
232
 
233
 
233
 
234
/** Scheduler stack switch wrapper
234
/** Scheduler stack switch wrapper
235
 *
235
 *
236
 * Second part of the scheduler() function
236
 * Second part of the scheduler() function
237
 * using new stack. Handling the actual context
237
 * using new stack. Handling the actual context
238
 * switch to a new thread.
238
 * switch to a new thread.
239
 *
239
 *
240
 * Assume THREAD->lock is held.
240
 * Assume THREAD->lock is held.
241
 */
241
 */
242
static void scheduler_separated_stack(void)
242
static void scheduler_separated_stack(void)
243
{
243
{
244
    int priority;
244
    int priority;
245
 
245
 
246
    ASSERT(CPU != NULL);
246
    ASSERT(CPU != NULL);
247
 
247
 
248
    if (THREAD) {
248
    if (THREAD) {
249
        switch (THREAD->state) {
249
        switch (THREAD->state) {
250
            case Running:
250
            case Running:
251
            THREAD->state = Ready;
251
            THREAD->state = Ready;
252
            spinlock_unlock(&THREAD->lock);
252
            spinlock_unlock(&THREAD->lock);
253
            thread_ready(THREAD);
253
            thread_ready(THREAD);
254
            break;
254
            break;
255
 
255
 
256
            case Exiting:
256
            case Exiting:
257
            thread_destroy(THREAD);
257
            thread_destroy(THREAD);
258
            break;
258
            break;
259
           
259
           
260
            case Sleeping:
260
            case Sleeping:
261
            /*
261
            /*
262
             * Prefer the thread after it's woken up.
262
             * Prefer the thread after it's woken up.
263
             */
263
             */
264
            THREAD->priority = -1;
264
            THREAD->priority = -1;
265
 
265
 
266
            /*
266
            /*
267
             * We need to release wq->lock which we locked in waitq_sleep().
267
             * We need to release wq->lock which we locked in waitq_sleep().
268
             * Address of wq->lock is kept in THREAD->sleep_queue.
268
             * Address of wq->lock is kept in THREAD->sleep_queue.
269
             */
269
             */
270
            spinlock_unlock(&THREAD->sleep_queue->lock);
270
            spinlock_unlock(&THREAD->sleep_queue->lock);
271
 
271
 
272
            /*
272
            /*
273
             * Check for possible requests for out-of-context invocation.
273
             * Check for possible requests for out-of-context invocation.
274
             */
274
             */
275
            if (THREAD->call_me) {
275
            if (THREAD->call_me) {
276
                THREAD->call_me(THREAD->call_me_with);
276
                THREAD->call_me(THREAD->call_me_with);
277
                THREAD->call_me = NULL;
277
                THREAD->call_me = NULL;
278
                THREAD->call_me_with = NULL;
278
                THREAD->call_me_with = NULL;
279
            }
279
            }
280
 
280
 
281
            spinlock_unlock(&THREAD->lock);
281
            spinlock_unlock(&THREAD->lock);
282
 
282
 
283
            break;
283
            break;
284
 
284
 
285
            default:
285
            default:
286
            /*
286
            /*
287
             * Entering state is unexpected.
287
             * Entering state is unexpected.
288
             */
288
             */
289
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
289
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
290
            break;
290
            break;
291
        }
291
        }
292
        THREAD = NULL;
292
        THREAD = NULL;
293
    }
293
    }
294
 
294
 
295
 
295
 
296
    THREAD = find_best_thread();
296
    THREAD = find_best_thread();
297
   
297
   
298
    spinlock_lock(&THREAD->lock);
298
    spinlock_lock(&THREAD->lock);
299
    priority = THREAD->priority;
299
    priority = THREAD->priority;
300
    spinlock_unlock(&THREAD->lock);
300
    spinlock_unlock(&THREAD->lock);
301
 
301
 
302
    relink_rq(priority);       
302
    relink_rq(priority);       
303
 
303
 
304
    spinlock_lock(&THREAD->lock);  
304
    spinlock_lock(&THREAD->lock);  
305
 
305
 
306
    /*
306
    /*
307
     * If both the old and the new task are the same, lots of work is avoided.
307
     * If both the old and the new task are the same, lots of work is avoided.
308
     */
308
     */
309
    if (TASK != THREAD->task) {
309
    if (TASK != THREAD->task) {
310
        as_t *as1 = NULL;
310
        as_t *as1 = NULL;
311
        as_t *as2;
311
        as_t *as2;
312
 
312
 
313
        if (TASK) {
313
        if (TASK) {
314
            spinlock_lock(&TASK->lock);
314
            spinlock_lock(&TASK->lock);
315
            as1 = TASK->as;
315
            as1 = TASK->as;
316
            spinlock_unlock(&TASK->lock);
316
            spinlock_unlock(&TASK->lock);
317
        }
317
        }
318
 
318
 
319
        spinlock_lock(&THREAD->task->lock);
319
        spinlock_lock(&THREAD->task->lock);
320
        as2 = THREAD->task->as;
320
        as2 = THREAD->task->as;
321
        spinlock_unlock(&THREAD->task->lock);
321
        spinlock_unlock(&THREAD->task->lock);
322
       
322
       
323
        /*
323
        /*
324
         * Note that it is possible for two tasks to share one address space.
324
         * Note that it is possible for two tasks to share one address space.
325
         */
325
         */
326
        if (as1 != as2) {
326
        if (as1 != as2) {
327
            /*
327
            /*
328
             * Both tasks and address spaces are different.
328
             * Both tasks and address spaces are different.
329
             * Replace the old one with the new one.
329
             * Replace the old one with the new one.
330
             */
330
             */
331
            as_install(as2);
331
            as_install(as2);
332
        }
332
        }
333
        TASK = THREAD->task;   
333
        TASK = THREAD->task;   
334
    }
334
    }
335
 
335
 
336
    THREAD->state = Running;
336
    THREAD->state = Running;
337
 
337
 
338
    #ifdef SCHEDULER_VERBOSE
338
    #ifdef SCHEDULER_VERBOSE
339
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, CPU->nrdy);
339
    printf("cpu%d: tid %d (priority=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, CPU->nrdy);
340
    #endif  
340
    #endif  
341
 
341
 
342
    /*
342
    /*
343
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
343
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
344
     */
344
     */
345
    the_copy(THE, (the_t *) THREAD->kstack);
345
    the_copy(THE, (the_t *) THREAD->kstack);
346
   
346
   
347
    context_restore(&THREAD->saved_context);
347
    context_restore(&THREAD->saved_context);
348
    /* not reached */
348
    /* not reached */
349
}
349
}
350
 
350
 
351
 
351
 
352
/** The scheduler
352
/** The scheduler
353
 *
353
 *
354
 * The thread scheduling procedure.
354
 * The thread scheduling procedure.
355
 * Passes control directly to
355
 * Passes control directly to
356
 * scheduler_separated_stack().
356
 * scheduler_separated_stack().
357
 *
357
 *
358
 */
358
 */
359
void scheduler(void)
359
void scheduler(void)
360
{
360
{
361
    volatile ipl_t ipl;
361
    volatile ipl_t ipl;
362
 
362
 
363
    ASSERT(CPU != NULL);
363
    ASSERT(CPU != NULL);
364
 
364
 
365
    ipl = interrupts_disable();
365
    ipl = interrupts_disable();
366
 
366
 
367
    if (atomic_get(&haltstate))
367
    if (atomic_get(&haltstate))
368
        halt();
368
        halt();
369
 
369
 
370
    if (THREAD) {
370
    if (THREAD) {
371
        spinlock_lock(&THREAD->lock);
371
        spinlock_lock(&THREAD->lock);
372
#ifndef CONFIG_FPU_LAZY
372
#ifndef CONFIG_FPU_LAZY
373
        fpu_context_save(&(THREAD->saved_fpu_context));
373
        fpu_context_save(&(THREAD->saved_fpu_context));
374
#endif
374
#endif
375
        if (!context_save(&THREAD->saved_context)) {
375
        if (!context_save(&THREAD->saved_context)) {
376
            /*
376
            /*
377
             * This is the place where threads leave scheduler();
377
             * This is the place where threads leave scheduler();
378
             */
378
             */
379
            before_thread_runs();
379
            before_thread_runs();
380
            spinlock_unlock(&THREAD->lock);
380
            spinlock_unlock(&THREAD->lock);
381
            interrupts_restore(THREAD->saved_context.ipl);
381
            interrupts_restore(THREAD->saved_context.ipl);
382
            return;
382
            return;
383
        }
383
        }
384
 
384
 
385
        /*
385
        /*
386
         * Interrupt priority level of preempted thread is recorded here
386
         * Interrupt priority level of preempted thread is recorded here
387
         * to facilitate scheduler() invocations from interrupts_disable()'d
387
         * to facilitate scheduler() invocations from interrupts_disable()'d
388
         * code (e.g. waitq_sleep_timeout()).
388
         * code (e.g. waitq_sleep_timeout()).
389
         */
389
         */
390
        THREAD->saved_context.ipl = ipl;
390
        THREAD->saved_context.ipl = ipl;
391
    }
391
    }
392
 
392
 
393
    /*
393
    /*
394
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
394
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
395
     * and preemption counter. At this point THE could be coming either
395
     * and preemption counter. At this point THE could be coming either
396
     * from THREAD's or CPU's stack.
396
     * from THREAD's or CPU's stack.
397
     */
397
     */
398
    the_copy(THE, (the_t *) CPU->stack);
398
    the_copy(THE, (the_t *) CPU->stack);
399
 
399
 
400
    /*
400
    /*
401
     * We may not keep the old stack.
401
     * We may not keep the old stack.
402
     * Reason: If we kept the old stack and got blocked, for instance, in
402
     * Reason: If we kept the old stack and got blocked, for instance, in
403
     * find_best_thread(), the old thread could get rescheduled by another
403
     * find_best_thread(), the old thread could get rescheduled by another
404
     * CPU and overwrite the part of its own stack that was also used by
404
     * CPU and overwrite the part of its own stack that was also used by
405
     * the scheduler on this CPU.
405
     * the scheduler on this CPU.
406
     *
406
     *
407
     * Moreover, we have to bypass the compiler-generated POP sequence
407
     * Moreover, we have to bypass the compiler-generated POP sequence
408
     * which is fooled by SP being set to the very top of the stack.
408
     * which is fooled by SP being set to the very top of the stack.
409
     * Therefore the scheduler() function continues in
409
     * Therefore the scheduler() function continues in
410
     * scheduler_separated_stack().
410
     * scheduler_separated_stack().
411
     */
411
     */
412
    context_save(&CPU->saved_context);
412
    context_save(&CPU->saved_context);
413
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
413
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
414
    context_restore(&CPU->saved_context);
414
    context_restore(&CPU->saved_context);
415
    /* not reached */
415
    /* not reached */
416
}
416
}
417
 
417
 
418
 
418
 
419
 
419
 
420
 
420
 
421
 
421
 
422
#ifdef CONFIG_SMP
422
#ifdef CONFIG_SMP
423
/** Load balancing thread
423
/** Load balancing thread
424
 *
424
 *
425
 * SMP load balancing thread, supervising thread supplies
425
 * SMP load balancing thread, supervising thread supplies
426
 * for the CPU it's wired to.
426
 * for the CPU it's wired to.
427
 *
427
 *
428
 * @param arg Generic thread argument (unused).
428
 * @param arg Generic thread argument (unused).
429
 *
429
 *
430
 */
430
 */
431
void kcpulb(void *arg)
431
void kcpulb(void *arg)
432
{
432
{
433
    thread_t *t;
433
    thread_t *t;
434
    int count, average, i, j, k = 0;
434
    int count, average, i, j, k = 0;
435
    ipl_t ipl;
435
    ipl_t ipl;
436
 
436
 
437
loop:
437
loop:
438
    /*
438
    /*
439
     * Work in 1s intervals.
439
     * Work in 1s intervals.
440
     */
440
     */
441
    thread_sleep(1);
441
    thread_sleep(1);
442
 
442
 
443
not_satisfied:
443
not_satisfied:
444
    /*
444
    /*
445
     * Calculate the number of threads that will be migrated/stolen from
445
     * Calculate the number of threads that will be migrated/stolen from
446
     * other CPU's. Note that situation can have changed between two
446
     * other CPU's. Note that situation can have changed between two
447
     * passes. Each time get the most up to date counts.
447
     * passes. Each time get the most up to date counts.
448
     */
448
     */
449
    average = atomic_get(&nrdy) / config.cpu_active + 1;
449
    average = atomic_get(&nrdy) / config.cpu_active + 1;
450
    count = average - atomic_get(&CPU->nrdy);
450
    count = average - atomic_get(&CPU->nrdy);
451
 
451
 
452
    if (count <= 0)
452
    if (count <= 0)
453
        goto satisfied;
453
        goto satisfied;
454
 
454
 
455
    /*
455
    /*
456
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
456
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
457
     */
457
     */
458
    for (j=RQ_COUNT-1; j >= 0; j--) {
458
    for (j=RQ_COUNT-1; j >= 0; j--) {
459
        for (i=0; i < config.cpu_active; i++) {
459
        for (i=0; i < config.cpu_active; i++) {
460
            link_t *l;
460
            link_t *l;
461
            runq_t *r;
461
            runq_t *r;
462
            cpu_t *cpu;
462
            cpu_t *cpu;
463
 
463
 
464
            cpu = &cpus[(i + k) % config.cpu_active];
464
            cpu = &cpus[(i + k) % config.cpu_active];
465
 
465
 
466
            /*
466
            /*
467
             * Not interested in ourselves.
467
             * Not interested in ourselves.
468
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
468
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
469
             */
469
             */
470
            if (CPU == cpu)
470
            if (CPU == cpu)
471
                continue;
471
                continue;
472
            if (atomic_get(&cpu->nrdy) <= average)
472
            if (atomic_get(&cpu->nrdy) <= average)
473
                continue;
473
                continue;
474
 
474
 
475
            ipl = interrupts_disable();
475
            ipl = interrupts_disable();
476
            r = &cpu->rq[j];
476
            r = &cpu->rq[j];
477
            spinlock_lock(&r->lock);
477
            spinlock_lock(&r->lock);
478
            if (r->n == 0) {
478
            if (r->n == 0) {
479
                spinlock_unlock(&r->lock);
479
                spinlock_unlock(&r->lock);
480
                interrupts_restore(ipl);
480
                interrupts_restore(ipl);
481
                continue;
481
                continue;
482
            }
482
            }
483
       
483
       
484
            t = NULL;
484
            t = NULL;
485
            l = r->rq_head.prev;    /* search rq from the back */
485
            l = r->rq_head.prev;    /* search rq from the back */
486
            while (l != &r->rq_head) {
486
            while (l != &r->rq_head) {
487
                t = list_get_instance(l, thread_t, rq_link);
487
                t = list_get_instance(l, thread_t, rq_link);
488
                /*
488
                /*
489
                 * We don't want to steal CPU-wired threads neither threads already stolen.
489
                 * We don't want to steal CPU-wired threads neither threads already stolen.
490
                 * The latter prevents threads from migrating between CPU's without ever being run.
490
                 * The latter prevents threads from migrating between CPU's without ever being run.
491
                 * We don't want to steal threads whose FPU context is still in CPU.
491
                 * We don't want to steal threads whose FPU context is still in CPU.
492
                 */
492
                 */
493
                spinlock_lock(&t->lock);
493
                spinlock_lock(&t->lock);
494
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
494
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
495
                    /*
495
                    /*
496
                     * Remove t from r.
496
                     * Remove t from r.
497
                     */
497
                     */
498
                    spinlock_unlock(&t->lock);
498
                    spinlock_unlock(&t->lock);
499
                   
499
                   
500
                    atomic_dec(&cpu->nrdy);
500
                    atomic_dec(&cpu->nrdy);
501
                    atomic_dec(&nrdy);
501
                    atomic_dec(&nrdy);
502
 
502
 
503
                    r->n--;
503
                    r->n--;
504
                    list_remove(&t->rq_link);
504
                    list_remove(&t->rq_link);
505
 
505
 
506
                    break;
506
                    break;
507
                }
507
                }
508
                spinlock_unlock(&t->lock);
508
                spinlock_unlock(&t->lock);
509
                l = l->prev;
509
                l = l->prev;
510
                t = NULL;
510
                t = NULL;
511
            }
511
            }
512
            spinlock_unlock(&r->lock);
512
            spinlock_unlock(&r->lock);
513
 
513
 
514
            if (t) {
514
            if (t) {
515
                /*
515
                /*
516
                 * Ready t on local CPU
516
                 * Ready t on local CPU
517
                 */
517
                 */
518
                spinlock_lock(&t->lock);
518
                spinlock_lock(&t->lock);
519
                #ifdef KCPULB_VERBOSE
519
                #ifdef KCPULB_VERBOSE
520
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
520
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
521
                #endif
521
                #endif
522
                t->flags |= X_STOLEN;
522
                t->flags |= X_STOLEN;
523
                spinlock_unlock(&t->lock);
523
                spinlock_unlock(&t->lock);
524
   
524
   
525
                thread_ready(t);
525
                thread_ready(t);
526
 
526
 
527
                interrupts_restore(ipl);
527
                interrupts_restore(ipl);
528
   
528
   
529
                if (--count == 0)
529
                if (--count == 0)
530
                    goto satisfied;
530
                    goto satisfied;
531
                   
531
                   
532
                /*
532
                /*
533
                 * We are not satisfied yet, focus on another CPU next time.
533
                 * We are not satisfied yet, focus on another CPU next time.
534
                 */
534
                 */
535
                k++;
535
                k++;
536
               
536
               
537
                continue;
537
                continue;
538
            }
538
            }
539
            interrupts_restore(ipl);
539
            interrupts_restore(ipl);
540
        }
540
        }
541
    }
541
    }
542
 
542
 
543
    if (atomic_get(&CPU->nrdy)) {
543
    if (atomic_get(&CPU->nrdy)) {
544
        /*
544
        /*
545
         * Be a little bit light-weight and let migrated threads run.
545
         * Be a little bit light-weight and let migrated threads run.
546
         */
546
         */
547
        scheduler();
547
        scheduler();
548
    } else {
548
    } else {
549
        /*
549
        /*
550
         * We failed to migrate a single thread.
550
         * We failed to migrate a single thread.
551
         * Give up this turn.
551
         * Give up this turn.
552
         */
552
         */
553
        goto loop;
553
        goto loop;
554
    }
554
    }
555
       
555
       
556
    goto not_satisfied;
556
    goto not_satisfied;
557
 
557
 
558
satisfied:
558
satisfied:
559
    goto loop;
559
    goto loop;
560
}
560
}
561
 
561
 
562
#endif /* CONFIG_SMP */
562
#endif /* CONFIG_SMP */
563
 
563
 
564
 
564
 
565
/** Print information about threads & scheduler queues */
565
/** Print information about threads & scheduler queues */
566
void sched_print_list(void)
566
void sched_print_list(void)
567
{
567
{
568
    ipl_t ipl;
568
    ipl_t ipl;
569
    int cpu,i;
569
    int cpu,i;
570
    runq_t *r;
570
    runq_t *r;
571
    thread_t *t;
571
    thread_t *t;
572
    link_t *cur;
572
    link_t *cur;
573
 
573
 
574
    /* We are going to mess with scheduler structures,
574
    /* We are going to mess with scheduler structures,
575
     * let's not be interrupted */
575
     * let's not be interrupted */
576
    ipl = interrupts_disable();
576
    ipl = interrupts_disable();
577
    printf("*********** Scheduler dump ***********\n");
577
    printf("*********** Scheduler dump ***********\n");
578
    for (cpu=0;cpu < config.cpu_count; cpu++) {
578
    for (cpu=0;cpu < config.cpu_count; cpu++) {
579
        if (!cpus[cpu].active)
579
        if (!cpus[cpu].active)
580
            continue;
580
            continue;
581
        spinlock_lock(&cpus[cpu].lock);
581
        spinlock_lock(&cpus[cpu].lock);
582
        printf("cpu%d: nrdy: %d needs_relink: %d\n",
582
        printf("cpu%d: nrdy: %d needs_relink: %d\n",
583
               cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
583
               cpus[cpu].id, atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
584
       
584
       
585
        for (i=0; i<RQ_COUNT; i++) {
585
        for (i=0; i<RQ_COUNT; i++) {
586
            r = &cpus[cpu].rq[i];
586
            r = &cpus[cpu].rq[i];
587
            spinlock_lock(&r->lock);
587
            spinlock_lock(&r->lock);
588
            if (!r->n) {
588
            if (!r->n) {
589
                spinlock_unlock(&r->lock);
589
                spinlock_unlock(&r->lock);
590
                continue;
590
                continue;
591
            }
591
            }
592
            printf("\tRq %d: ", i);
592
            printf("\tRq %d: ", i);
593
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
593
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
594
                t = list_get_instance(cur, thread_t, rq_link);
594
                t = list_get_instance(cur, thread_t, rq_link);
595
                printf("%d(%s) ", t->tid,
595
                printf("%d(%s) ", t->tid,
596
                       thread_states[t->state]);
596
                       thread_states[t->state]);
597
            }
597
            }
598
            printf("\n");
598
            printf("\n");
599
            spinlock_unlock(&r->lock);
599
            spinlock_unlock(&r->lock);
600
        }
600
        }
601
        spinlock_unlock(&cpus[cpu].lock);
601
        spinlock_unlock(&cpus[cpu].lock);
602
    }
602
    }
603
   
603
   
604
    interrupts_restore(ipl);
604
    interrupts_restore(ipl);
605
}
605
}
606
 
606