Subversion Repositories HelenOS-historic

Rev

Rev 195 | Rev 212 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 195 Rev 198
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <proc/scheduler.h>
29
#include <proc/scheduler.h>
30
#include <proc/thread.h>
30
#include <proc/thread.h>
31
#include <proc/task.h>
31
#include <proc/task.h>
32
#include <cpu.h>
32
#include <cpu.h>
33
#include <mm/vm.h>
33
#include <mm/vm.h>
34
#include <config.h>
34
#include <config.h>
35
#include <context.h>
35
#include <context.h>
36
#include <func.h>
36
#include <func.h>
37
#include <arch.h>
37
#include <arch.h>
38
#include <arch/asm.h>
38
#include <arch/asm.h>
39
#include <list.h>
39
#include <list.h>
40
#include <panic.h>
40
#include <panic.h>
41
#include <typedefs.h>
41
#include <typedefs.h>
42
#include <mm/page.h>
42
#include <mm/page.h>
43
#include <synch/spinlock.h>
43
#include <synch/spinlock.h>
44
#include <arch/faddr.h>
44
#include <arch/faddr.h>
45
#include <arch/atomic.h>
45
#include <arch/atomic.h>
46
#include <print.h>
46
#include <print.h>
47
#include <mm/frame.h>
47
#include <mm/frame.h>
48
#include <mm/heap.h>
48
#include <mm/heap.h>
49
 
49
 
50
 
50
 
51
volatile int nrdy;
51
volatile int nrdy;
52
 
52
 
53
 
53
 
54
/** Take actions before new thread runs
54
/** Take actions before new thread runs
55
 *
55
 *
56
 * Perform actions that need to be
56
 * Perform actions that need to be
57
 * taken before the newly selected
57
 * taken before the newly selected
58
 * tread is passed control.
58
 * tread is passed control.
59
 *
59
 *
60
 */
60
 */
61
void before_thread_runs(void)
61
void before_thread_runs(void)
62
{
62
{
63
    before_thread_runs_arch();
63
    before_thread_runs_arch();
64
    fpu_context_restore(&(THREAD->saved_fpu_context));
64
    fpu_context_restore(&(THREAD->saved_fpu_context));
65
}
65
}
66
 
66
 
67
 
67
 
68
/** Initialize scheduler
68
/** Initialize scheduler
69
 *
69
 *
70
 * Initialize kernel scheduler.
70
 * Initialize kernel scheduler.
71
 *
71
 *
72
 */
72
 */
73
void scheduler_init(void)
73
void scheduler_init(void)
74
{
74
{
75
}
75
}
76
 
76
 
77
 
77
 
78
/** Get thread to be scheduled
78
/** Get thread to be scheduled
79
 *
79
 *
80
 * Get the optimal thread to be scheduled
80
 * Get the optimal thread to be scheduled
81
 * according to thread accounting and scheduler
81
 * according to thread accounting and scheduler
82
 * policy.
82
 * policy.
83
 *
83
 *
84
 * @return Thread to be scheduled.
84
 * @return Thread to be scheduled.
85
 *
85
 *
86
 */
86
 */
87
struct thread *find_best_thread(void)
87
struct thread *find_best_thread(void)
88
{
88
{
89
    thread_t *t;
89
    thread_t *t;
90
    runq_t *r;
90
    runq_t *r;
91
    int i, n;
91
    int i, n;
92
 
92
 
93
loop:
93
loop:
94
    cpu_priority_high();
94
    cpu_priority_high();
95
 
95
 
96
    spinlock_lock(&CPU->lock);
96
    spinlock_lock(&CPU->lock);
97
    n = CPU->nrdy;
97
    n = CPU->nrdy;
98
    spinlock_unlock(&CPU->lock);
98
    spinlock_unlock(&CPU->lock);
99
 
99
 
100
    cpu_priority_low();
100
    cpu_priority_low();
101
   
101
   
102
    if (n == 0) {
102
    if (n == 0) {
103
        #ifdef __SMP__
103
        #ifdef __SMP__
104
        /*
104
        /*
105
         * If the load balancing thread is not running, wake it up and
105
         * If the load balancing thread is not running, wake it up and
106
         * set CPU-private flag that the kcpulb has been started.
106
         * set CPU-private flag that the kcpulb has been started.
107
         */
107
         */
108
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
108
        if (test_and_set(&CPU->kcpulbstarted) == 0) {
109
            waitq_wakeup(&CPU->kcpulb_wq, 0);
109
            waitq_wakeup(&CPU->kcpulb_wq, 0);
110
            goto loop;
110
            goto loop;
111
        }
111
        }
112
        #endif /* __SMP__ */
112
        #endif /* __SMP__ */
113
       
113
       
114
        /*
114
        /*
115
         * For there was nothing to run, the CPU goes to sleep
115
         * For there was nothing to run, the CPU goes to sleep
116
         * until a hardware interrupt or an IPI comes.
116
         * until a hardware interrupt or an IPI comes.
117
         * This improves energy saving and hyperthreading.
117
         * This improves energy saving and hyperthreading.
118
         * On the other hand, several hardware interrupts can be ignored.
118
         * On the other hand, several hardware interrupts can be ignored.
119
         */
119
         */
120
         cpu_sleep();
120
         cpu_sleep();
121
         goto loop;
121
         goto loop;
122
    }
122
    }
123
 
123
 
124
    cpu_priority_high();
124
    cpu_priority_high();
125
   
125
   
126
    i = 0;
126
    i = 0;
127
retry:
127
retry:
128
    for (; i<RQ_COUNT; i++) {
128
    for (; i<RQ_COUNT; i++) {
129
        r = &CPU->rq[i];
129
        r = &CPU->rq[i];
130
        spinlock_lock(&r->lock);
130
        spinlock_lock(&r->lock);
131
        if (r->n == 0) {
131
        if (r->n == 0) {
132
            /*
132
            /*
133
             * If this queue is empty, try a lower-priority queue.
133
             * If this queue is empty, try a lower-priority queue.
134
             */
134
             */
135
            spinlock_unlock(&r->lock);
135
            spinlock_unlock(&r->lock);
136
            continue;
136
            continue;
137
        }
137
        }
138
   
138
   
139
        /* avoid deadlock with relink_rq() */
139
        /* avoid deadlock with relink_rq() */
140
        if (!spinlock_trylock(&CPU->lock)) {
140
        if (!spinlock_trylock(&CPU->lock)) {
141
            /*
141
            /*
142
             * Unlock r and try again.
142
             * Unlock r and try again.
143
             */
143
             */
144
            spinlock_unlock(&r->lock);
144
            spinlock_unlock(&r->lock);
145
            goto retry;
145
            goto retry;
146
        }
146
        }
147
        CPU->nrdy--;
147
        CPU->nrdy--;
148
        spinlock_unlock(&CPU->lock);
148
        spinlock_unlock(&CPU->lock);
149
 
149
 
150
        atomic_dec(&nrdy);
150
        atomic_dec(&nrdy);
151
        r->n--;
151
        r->n--;
152
 
152
 
153
        /*
153
        /*
154
         * Take the first thread from the queue.
154
         * Take the first thread from the queue.
155
         */
155
         */
156
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
156
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
157
        list_remove(&t->rq_link);
157
        list_remove(&t->rq_link);
158
 
158
 
159
        spinlock_unlock(&r->lock);
159
        spinlock_unlock(&r->lock);
160
 
160
 
161
        spinlock_lock(&t->lock);
161
        spinlock_lock(&t->lock);
162
        t->cpu = CPU;
162
        t->cpu = CPU;
163
 
163
 
164
        t->ticks = us2ticks((i+1)*10000);
164
        t->ticks = us2ticks((i+1)*10000);
165
        t->pri = i; /* eventually correct rq index */
165
        t->pri = i; /* eventually correct rq index */
166
 
166
 
167
        /*
167
        /*
168
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
168
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
169
         */
169
         */
170
        t->flags &= ~X_STOLEN;
170
        t->flags &= ~X_STOLEN;
171
        spinlock_unlock(&t->lock);
171
        spinlock_unlock(&t->lock);
172
 
172
 
173
        return t;
173
        return t;
174
    }
174
    }
175
    goto loop;
175
    goto loop;
176
 
176
 
177
}
177
}
178
 
178
 
179
 
179
 
180
/** Prevent rq starvation
180
/** Prevent rq starvation
181
 *
181
 *
182
 * Prevent low priority threads from starving in rq's.
182
 * Prevent low priority threads from starving in rq's.
183
 *
183
 *
184
 * When the function decides to relink rq's, it reconnects
184
 * When the function decides to relink rq's, it reconnects
185
 * respective pointers so that in result threads with 'pri'
185
 * respective pointers so that in result threads with 'pri'
186
 * greater or equal 'start' are moved to a higher-priority queue.
186
 * greater or equal 'start' are moved to a higher-priority queue.
187
 *
187
 *
188
 * @param start Threshold priority.
188
 * @param start Threshold priority.
189
 *
189
 *
190
 */
190
 */
191
void relink_rq(int start)
191
void relink_rq(int start)
192
{
192
{
193
    link_t head;
193
    link_t head;
194
    runq_t *r;
194
    runq_t *r;
195
    int i, n;
195
    int i, n;
196
 
196
 
197
    list_initialize(&head);
197
    list_initialize(&head);
198
    spinlock_lock(&CPU->lock);
198
    spinlock_lock(&CPU->lock);
199
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
199
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
200
        for (i = start; i<RQ_COUNT-1; i++) {
200
        for (i = start; i<RQ_COUNT-1; i++) {
201
            /* remember and empty rq[i + 1] */
201
            /* remember and empty rq[i + 1] */
202
            r = &CPU->rq[i + 1];
202
            r = &CPU->rq[i + 1];
203
            spinlock_lock(&r->lock);
203
            spinlock_lock(&r->lock);
204
            list_concat(&head, &r->rq_head);
204
            list_concat(&head, &r->rq_head);
205
            n = r->n;
205
            n = r->n;
206
            r->n = 0;
206
            r->n = 0;
207
            spinlock_unlock(&r->lock);
207
            spinlock_unlock(&r->lock);
208
       
208
       
209
            /* append rq[i + 1] to rq[i] */
209
            /* append rq[i + 1] to rq[i] */
210
            r = &CPU->rq[i];
210
            r = &CPU->rq[i];
211
            spinlock_lock(&r->lock);
211
            spinlock_lock(&r->lock);
212
            list_concat(&r->rq_head, &head);
212
            list_concat(&r->rq_head, &head);
213
            r->n += n;
213
            r->n += n;
214
            spinlock_unlock(&r->lock);
214
            spinlock_unlock(&r->lock);
215
        }
215
        }
216
        CPU->needs_relink = 0;
216
        CPU->needs_relink = 0;
217
    }
217
    }
218
    spinlock_unlock(&CPU->lock);               
218
    spinlock_unlock(&CPU->lock);               
219
 
219
 
220
}
220
}
221
 
221
 
222
 
222
 
223
/** The scheduler
223
/** The scheduler
224
 *
224
 *
225
 * The thread scheduling procedure.
225
 * The thread scheduling procedure.
226
 *
226
 *
227
 */
227
 */
228
void scheduler(void)
228
void scheduler(void)
229
{
229
{
230
    volatile pri_t pri;
230
    volatile pri_t pri;
231
 
231
 
232
    pri = cpu_priority_high();
232
    pri = cpu_priority_high();
233
 
233
 
234
    if (haltstate)
234
    if (haltstate)
235
        halt();
235
        halt();
236
 
236
 
237
    if (THREAD) {
237
    if (THREAD) {
238
        spinlock_lock(&THREAD->lock);
238
        spinlock_lock(&THREAD->lock);
239
        fpu_context_save(&(THREAD->saved_fpu_context));
239
        fpu_context_save(&(THREAD->saved_fpu_context));
240
        if (!context_save(&THREAD->saved_context)) {
240
        if (!context_save(&THREAD->saved_context)) {
241
            /*
241
            /*
242
             * This is the place where threads leave scheduler();
242
             * This is the place where threads leave scheduler();
243
             */
243
             */
244
            before_thread_runs();
244
            before_thread_runs();
245
            spinlock_unlock(&THREAD->lock);
245
            spinlock_unlock(&THREAD->lock);
246
            cpu_priority_restore(THREAD->saved_context.pri);
246
            cpu_priority_restore(THREAD->saved_context.pri);
247
            return;
247
            return;
248
        }
248
        }
249
 
249
 
250
        /*
250
        /*
251
         * CPU priority of preempted thread is recorded here
251
         * CPU priority of preempted thread is recorded here
252
         * to facilitate scheduler() invocations from
252
         * to facilitate scheduler() invocations from
253
         * cpu_priority_high()'ed code (e.g. waitq_sleep_timeout()).
253
         * cpu_priority_high()'ed code (e.g. waitq_sleep_timeout()).
254
         */
254
         */
255
        THREAD->saved_context.pri = pri;
255
        THREAD->saved_context.pri = pri;
256
    }
256
    }
257
 
257
 
258
    /*
258
    /*
259
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU
259
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU
260
     * and preemption counter. At this point THE could be coming either
260
     * and preemption counter. At this point THE could be coming either
261
     * from THREAD's or CPU's stack.
261
     * from THREAD's or CPU's stack.
262
     */
262
     */
263
    the_copy(THE, (the_t *) CPU->stack);
263
    the_copy(THE, (the_t *) CPU->stack);
264
 
264
 
265
    /*
265
    /*
266
     * We may not keep the old stack.
266
     * We may not keep the old stack.
267
     * Reason: If we kept the old stack and got blocked, for instance, in
267
     * Reason: If we kept the old stack and got blocked, for instance, in
268
     * find_best_thread(), the old thread could get rescheduled by another
268
     * find_best_thread(), the old thread could get rescheduled by another
269
     * CPU and overwrite the part of its own stack that was also used by
269
     * CPU and overwrite the part of its own stack that was also used by
270
     * the scheduler on this CPU.
270
     * the scheduler on this CPU.
271
     *
271
     *
272
     * Moreover, we have to bypass the compiler-generated POP sequence
272
     * Moreover, we have to bypass the compiler-generated POP sequence
273
     * which is fooled by SP being set to the very top of the stack.
273
     * which is fooled by SP being set to the very top of the stack.
274
     * Therefore the scheduler() function continues in
274
     * Therefore the scheduler() function continues in
275
     * scheduler_separated_stack().
275
     * scheduler_separated_stack().
276
     */
276
     */
277
    context_save(&CPU->saved_context);
277
    context_save(&CPU->saved_context);
278
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), CPU->stack, CPU_STACK_SIZE);
278
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), CPU->stack, CPU_STACK_SIZE);
279
    context_restore(&CPU->saved_context);
279
    context_restore(&CPU->saved_context);
280
    /* not reached */
280
    /* not reached */
281
}
281
}
282
 
282
 
283
 
283
 
284
/** Scheduler stack switch wrapper
284
/** Scheduler stack switch wrapper
285
 *
285
 *
286
 * Second part of the scheduler() function
286
 * Second part of the scheduler() function
287
 * using new stack. Handling the actual context
287
 * using new stack. Handling the actual context
288
 * switch to a new thread.
288
 * switch to a new thread.
289
 *
289
 *
290
 */
290
 */
291
void scheduler_separated_stack(void)
291
void scheduler_separated_stack(void)
292
{
292
{
293
    int priority;
293
    int priority;
294
 
294
 
295
    if (THREAD) {
295
    if (THREAD) {
296
        switch (THREAD->state) {
296
        switch (THREAD->state) {
297
            case Running:
297
            case Running:
298
            THREAD->state = Ready;
298
            THREAD->state = Ready;
299
            spinlock_unlock(&THREAD->lock);
299
            spinlock_unlock(&THREAD->lock);
300
            thread_ready(THREAD);
300
            thread_ready(THREAD);
301
            break;
301
            break;
302
 
302
 
303
            case Exiting:
303
            case Exiting:
304
            frame_free((__address) THREAD->kstack);
304
            frame_free((__address) THREAD->kstack);
305
            if (THREAD->ustack) {
305
            if (THREAD->ustack) {
306
                frame_free((__address) THREAD->ustack);
306
                frame_free((__address) THREAD->ustack);
307
            }
307
            }
308
 
308
 
309
            /*
309
            /*
310
             * Detach from the containing task.
310
             * Detach from the containing task.
311
             */
311
             */
312
            spinlock_lock(&TASK->lock);
312
            spinlock_lock(&TASK->lock);
313
            list_remove(&THREAD->th_link);
313
            list_remove(&THREAD->th_link);
314
            spinlock_unlock(&TASK->lock);
314
            spinlock_unlock(&TASK->lock);
315
 
315
 
316
            spinlock_unlock(&THREAD->lock);
316
            spinlock_unlock(&THREAD->lock);
317
   
317
   
318
            spinlock_lock(&threads_lock);
318
            spinlock_lock(&threads_lock);
319
            list_remove(&THREAD->threads_link);
319
            list_remove(&THREAD->threads_link);
320
            spinlock_unlock(&threads_lock);
320
            spinlock_unlock(&threads_lock);
321
 
321
 
322
            spinlock_lock(&CPU->lock);
322
            spinlock_lock(&CPU->lock);
323
            if(CPU->fpu_owner==THREAD) CPU->fpu_owner=NULL;
323
            if(CPU->fpu_owner==THREAD) CPU->fpu_owner=NULL;
324
            spinlock_unlock(&CPU->lock);
324
            spinlock_unlock(&CPU->lock);
325
 
325
 
326
            free(THREAD);
326
            free(THREAD);
327
 
327
 
328
            break;
328
            break;
329
   
329
   
330
            case Sleeping:
330
            case Sleeping:
331
            /*
331
            /*
332
             * Prefer the thread after it's woken up.
332
             * Prefer the thread after it's woken up.
333
             */
333
             */
334
            THREAD->pri = -1;
334
            THREAD->pri = -1;
335
 
335
 
336
            /*
336
            /*
337
             * We need to release wq->lock which we locked in waitq_sleep().
337
             * We need to release wq->lock which we locked in waitq_sleep().
338
             * Address of wq->lock is kept in THREAD->sleep_queue.
338
             * Address of wq->lock is kept in THREAD->sleep_queue.
339
             */
339
             */
340
            spinlock_unlock(&THREAD->sleep_queue->lock);
340
            spinlock_unlock(&THREAD->sleep_queue->lock);
341
 
341
 
342
            /*
342
            /*
343
             * Check for possible requests for out-of-context invocation.
343
             * Check for possible requests for out-of-context invocation.
344
             */
344
             */
345
            if (THREAD->call_me) {
345
            if (THREAD->call_me) {
346
                THREAD->call_me(THREAD->call_me_with);
346
                THREAD->call_me(THREAD->call_me_with);
347
                THREAD->call_me = NULL;
347
                THREAD->call_me = NULL;
348
                THREAD->call_me_with = NULL;
348
                THREAD->call_me_with = NULL;
349
            }
349
            }
350
 
350
 
351
            spinlock_unlock(&THREAD->lock);
351
            spinlock_unlock(&THREAD->lock);
352
 
352
 
353
            break;
353
            break;
354
 
354
 
355
            default:
355
            default:
356
            /*
356
            /*
357
             * Entering state is unexpected.
357
             * Entering state is unexpected.
358
             */
358
             */
359
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
359
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
360
            break;
360
            break;
361
        }
361
        }
362
        THREAD = NULL;
362
        THREAD = NULL;
363
    }
363
    }
364
    printf("*0*");
364
 
365
    THREAD = find_best_thread();
365
    THREAD = find_best_thread();
366
    printf("*1*");
-
 
367
   
366
   
368
    spinlock_lock(&THREAD->lock);
367
    spinlock_lock(&THREAD->lock);
369
    priority = THREAD->pri;
368
    priority = THREAD->pri;
370
    spinlock_unlock(&THREAD->lock);
369
    spinlock_unlock(&THREAD->lock);
371
 
370
 
372
    relink_rq(priority);       
371
    relink_rq(priority);       
373
 
372
 
374
    spinlock_lock(&THREAD->lock);  
373
    spinlock_lock(&THREAD->lock);  
375
 
374
 
376
    /*
375
    /*
377
     * If both the old and the new task are the same, lots of work is avoided.
376
     * If both the old and the new task are the same, lots of work is avoided.
378
     */
377
     */
379
    if (TASK != THREAD->task) {
378
    if (TASK != THREAD->task) {
380
        vm_t *m1 = NULL;
379
        vm_t *m1 = NULL;
381
        vm_t *m2;
380
        vm_t *m2;
382
 
381
 
383
        if (TASK) {
382
        if (TASK) {
384
            spinlock_lock(&TASK->lock);
383
            spinlock_lock(&TASK->lock);
385
            m1 = TASK->vm;
384
            m1 = TASK->vm;
386
            spinlock_unlock(&TASK->lock);
385
            spinlock_unlock(&TASK->lock);
387
        }
386
        }
388
 
387
 
389
        spinlock_lock(&THREAD->task->lock);
388
        spinlock_lock(&THREAD->task->lock);
390
        m2 = THREAD->task->vm;
389
        m2 = THREAD->task->vm;
391
        spinlock_unlock(&THREAD->task->lock);
390
        spinlock_unlock(&THREAD->task->lock);
392
       
391
       
393
        /*
392
        /*
394
         * Note that it is possible for two tasks to share one vm mapping.
393
         * Note that it is possible for two tasks to share one vm mapping.
395
         */
394
         */
396
        if (m1 != m2) {
395
        if (m1 != m2) {
397
            /*
396
            /*
398
             * Both tasks and vm mappings are different.
397
             * Both tasks and vm mappings are different.
399
             * Replace the old one with the new one.
398
             * Replace the old one with the new one.
400
             */
399
             */
401
            vm_install(m2);
400
            vm_install(m2);
402
        }
401
        }
403
        TASK = THREAD->task;   
402
        TASK = THREAD->task;   
404
    }
403
    }
405
 
404
 
406
    THREAD->state = Running;
405
    THREAD->state = Running;
407
 
406
 
408
    #ifdef SCHEDULER_VERBOSE
407
    #ifdef SCHEDULER_VERBOSE
409
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
408
    printf("cpu%d: tid %d (pri=%d,ticks=%d,nrdy=%d)\n", CPU->id, THREAD->tid, THREAD->pri, THREAD->ticks, CPU->nrdy);
410
    #endif  
409
    #endif  
411
 
410
 
412
    the_copy(THE, (the_t *) THREAD->kstack);
411
    the_copy(THE, (the_t *) THREAD->kstack);
413
   
412
   
414
    context_restore(&THREAD->saved_context);
413
    context_restore(&THREAD->saved_context);
415
    /* not reached */
414
    /* not reached */
416
}
415
}
417
 
416
 
418
 
417
 
419
#ifdef __SMP__
418
#ifdef __SMP__
420
/** Load balancing thread
419
/** Load balancing thread
421
 *
420
 *
422
 * SMP load balancing thread, supervising thread supplies
421
 * SMP load balancing thread, supervising thread supplies
423
 * for the CPU it's wired to.
422
 * for the CPU it's wired to.
424
 *
423
 *
425
 * @param arg Generic thread argument (unused).
424
 * @param arg Generic thread argument (unused).
426
 *
425
 *
427
 */
426
 */
428
void kcpulb(void *arg)
427
void kcpulb(void *arg)
429
{
428
{
430
    thread_t *t;
429
    thread_t *t;
431
    int count, i, j, k = 0;
430
    int count, i, j, k = 0;
432
    pri_t pri;
431
    pri_t pri;
433
 
432
 
434
loop:
433
loop:
435
    /*
434
    /*
436
     * Sleep until there's some work to do.
435
     * Sleep until there's some work to do.
437
     */
436
     */
438
    waitq_sleep(&CPU->kcpulb_wq);
437
    waitq_sleep(&CPU->kcpulb_wq);
439
 
438
 
440
not_satisfied:
439
not_satisfied:
441
    /*
440
    /*
442
     * Calculate the number of threads that will be migrated/stolen from
441
     * Calculate the number of threads that will be migrated/stolen from
443
     * other CPU's. Note that situation can have changed between two
442
     * other CPU's. Note that situation can have changed between two
444
     * passes. Each time get the most up to date counts.
443
     * passes. Each time get the most up to date counts.
445
     */
444
     */
446
    pri = cpu_priority_high();
445
    pri = cpu_priority_high();
447
    spinlock_lock(&CPU->lock);
446
    spinlock_lock(&CPU->lock);
448
    count = nrdy / config.cpu_active;
447
    count = nrdy / config.cpu_active;
449
    count -= CPU->nrdy;
448
    count -= CPU->nrdy;
450
    spinlock_unlock(&CPU->lock);
449
    spinlock_unlock(&CPU->lock);
451
    cpu_priority_restore(pri);
450
    cpu_priority_restore(pri);
452
 
451
 
453
    if (count <= 0)
452
    if (count <= 0)
454
        goto satisfied;
453
        goto satisfied;
455
 
454
 
456
    /*
455
    /*
457
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
456
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
458
     */
457
     */
459
    for (j=RQ_COUNT-1; j >= 0; j--) {
458
    for (j=RQ_COUNT-1; j >= 0; j--) {
460
        for (i=0; i < config.cpu_active; i++) {
459
        for (i=0; i < config.cpu_active; i++) {
461
            link_t *l;
460
            link_t *l;
462
            runq_t *r;
461
            runq_t *r;
463
            cpu_t *cpu;
462
            cpu_t *cpu;
464
 
463
 
465
            cpu = &cpus[(i + k) % config.cpu_active];
464
            cpu = &cpus[(i + k) % config.cpu_active];
466
 
465
 
467
            /*
466
            /*
468
             * Not interested in ourselves.
467
             * Not interested in ourselves.
469
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
468
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
470
             */
469
             */
471
            if (CPU == cpu)
470
            if (CPU == cpu)
472
                continue;              
471
                continue;              
473
 
472
 
474
restart:        pri = cpu_priority_high();
473
restart:        pri = cpu_priority_high();
475
            r = &cpu->rq[j];
474
            r = &cpu->rq[j];
476
            spinlock_lock(&r->lock);
475
            spinlock_lock(&r->lock);
477
            if (r->n == 0) {
476
            if (r->n == 0) {
478
                spinlock_unlock(&r->lock);
477
                spinlock_unlock(&r->lock);
479
                cpu_priority_restore(pri);
478
                cpu_priority_restore(pri);
480
                continue;
479
                continue;
481
            }
480
            }
482
       
481
       
483
            t = NULL;
482
            t = NULL;
484
            l = r->rq_head.prev;    /* search rq from the back */
483
            l = r->rq_head.prev;    /* search rq from the back */
485
            while (l != &r->rq_head) {
484
            while (l != &r->rq_head) {
486
                t = list_get_instance(l, thread_t, rq_link);
485
                t = list_get_instance(l, thread_t, rq_link);
487
                /*
486
                /*
488
                 * We don't want to steal CPU-wired threads neither threads already stolen.
487
                 * We don't want to steal CPU-wired threads neither threads already stolen.
489
                 * The latter prevents threads from migrating between CPU's without ever being run.
488
                 * The latter prevents threads from migrating between CPU's without ever being run.
490
                 * We don't want to steal threads whose FPU context is still in CPU.
489
                 * We don't want to steal threads whose FPU context is still in CPU.
491
                 */
490
                 */
492
                spinlock_lock(&t->lock);
491
                spinlock_lock(&t->lock);
493
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
492
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
494
               
493
               
495
                    /*
494
                    /*
496
                     * Remove t from r.
495
                     * Remove t from r.
497
                     */
496
                     */
498
 
497
 
499
                    spinlock_unlock(&t->lock);
498
                    spinlock_unlock(&t->lock);
500
                   
499
                   
501
                    /*
500
                    /*
502
                     * Here we have to avoid deadlock with relink_rq(),
501
                     * Here we have to avoid deadlock with relink_rq(),
503
                     * because it locks cpu and r in a different order than we do.
502
                     * because it locks cpu and r in a different order than we do.
504
                     */
503
                     */
505
                    if (!spinlock_trylock(&cpu->lock)) {
504
                    if (!spinlock_trylock(&cpu->lock)) {
506
                        /* Release all locks and try again. */
505
                        /* Release all locks and try again. */
507
                        spinlock_unlock(&r->lock);
506
                        spinlock_unlock(&r->lock);
508
                        cpu_priority_restore(pri);
507
                        cpu_priority_restore(pri);
509
                        goto restart;
508
                        goto restart;
510
                    }
509
                    }
511
                    cpu->nrdy--;
510
                    cpu->nrdy--;
512
                    spinlock_unlock(&cpu->lock);
511
                    spinlock_unlock(&cpu->lock);
513
 
512
 
514
                    atomic_dec(&nrdy);
513
                    atomic_dec(&nrdy);
515
 
514
 
516
                    r->n--;
515
                    r->n--;
517
                    list_remove(&t->rq_link);
516
                    list_remove(&t->rq_link);
518
 
517
 
519
                    break;
518
                    break;
520
                }
519
                }
521
                spinlock_unlock(&t->lock);
520
                spinlock_unlock(&t->lock);
522
                l = l->prev;
521
                l = l->prev;
523
                t = NULL;
522
                t = NULL;
524
            }
523
            }
525
            spinlock_unlock(&r->lock);
524
            spinlock_unlock(&r->lock);
526
 
525
 
527
            if (t) {
526
            if (t) {
528
                /*
527
                /*
529
                 * Ready t on local CPU
528
                 * Ready t on local CPU
530
                 */
529
                 */
531
                spinlock_lock(&t->lock);
530
                spinlock_lock(&t->lock);
532
                #ifdef KCPULB_VERBOSE
531
                #ifdef KCPULB_VERBOSE
533
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
532
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%d, avg=%d\n", CPU->id, t->tid, CPU->id, CPU->nrdy, nrdy / config.cpu_active);
534
                #endif
533
                #endif
535
                t->flags |= X_STOLEN;
534
                t->flags |= X_STOLEN;
536
                spinlock_unlock(&t->lock);
535
                spinlock_unlock(&t->lock);
537
   
536
   
538
                thread_ready(t);
537
                thread_ready(t);
539
 
538
 
540
                cpu_priority_restore(pri);
539
                cpu_priority_restore(pri);
541
   
540
   
542
                if (--count == 0)
541
                if (--count == 0)
543
                    goto satisfied;
542
                    goto satisfied;
544
                   
543
                   
545
                /*
544
                /*
546
                 * We are not satisfied yet, focus on another CPU next time.
545
                 * We are not satisfied yet, focus on another CPU next time.
547
                 */
546
                 */
548
                k++;
547
                k++;
549
               
548
               
550
                continue;
549
                continue;
551
            }
550
            }
552
            cpu_priority_restore(pri);
551
            cpu_priority_restore(pri);
553
        }
552
        }
554
    }
553
    }
555
 
554
 
556
    if (CPU->nrdy) {
555
    if (CPU->nrdy) {
557
        /*
556
        /*
558
         * Be a little bit light-weight and let migrated threads run.
557
         * Be a little bit light-weight and let migrated threads run.
559
         */
558
         */
560
        scheduler();
559
        scheduler();
561
    }
560
    }
562
    else {
561
    else {
563
        /*
562
        /*
564
         * We failed to migrate a single thread.
563
         * We failed to migrate a single thread.
565
         * Something more sophisticated should be done.
564
         * Something more sophisticated should be done.
566
         */
565
         */
567
        scheduler();
566
        scheduler();
568
    }
567
    }
569
       
568
       
570
    goto not_satisfied;
569
    goto not_satisfied;
571
 
570
 
572
satisfied:
571
satisfied:
573
    /*
572
    /*
574
     * Tell find_best_thread() to wake us up later again.
573
     * Tell find_best_thread() to wake us up later again.
575
     */
574
     */
576
    CPU->kcpulbstarted = 0;
575
    CPU->kcpulbstarted = 0;
577
    goto loop;
576
    goto loop;
578
}
577
}
579
 
578
 
580
#endif /* __SMP__ */
579
#endif /* __SMP__ */
581
 
580