Subversion Repositories HelenOS-historic

Rev

Rev 1380 | Rev 1576 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1380 Rev 1571
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    scheduler.c
30
 * @file    scheduler.c
31
 * @brief   Scheduler and load balancing.
31
 * @brief   Scheduler and load balancing.
32
 *
32
 *
33
 * This file contains the scheduler and kcpulb kernel thread which
33
 * This file contains the scheduler and kcpulb kernel thread which
34
 * performs load-balancing of per-CPU run queues.
34
 * performs load-balancing of per-CPU run queues.
35
 */
35
 */
36
 
36
 
37
#include <proc/scheduler.h>
37
#include <proc/scheduler.h>
38
#include <proc/thread.h>
38
#include <proc/thread.h>
39
#include <proc/task.h>
39
#include <proc/task.h>
40
#include <mm/frame.h>
40
#include <mm/frame.h>
41
#include <mm/page.h>
41
#include <mm/page.h>
42
#include <mm/as.h>
42
#include <mm/as.h>
-
 
43
#include <time/delay.h>
43
#include <arch/asm.h>
44
#include <arch/asm.h>
44
#include <arch/faddr.h>
45
#include <arch/faddr.h>
45
#include <atomic.h>
46
#include <atomic.h>
46
#include <synch/spinlock.h>
47
#include <synch/spinlock.h>
47
#include <config.h>
48
#include <config.h>
48
#include <context.h>
49
#include <context.h>
49
#include <func.h>
50
#include <func.h>
50
#include <arch.h>
51
#include <arch.h>
51
#include <adt/list.h>
52
#include <adt/list.h>
52
#include <panic.h>
53
#include <panic.h>
53
#include <typedefs.h>
54
#include <typedefs.h>
54
#include <cpu.h>
55
#include <cpu.h>
55
#include <print.h>
56
#include <print.h>
56
#include <debug.h>
57
#include <debug.h>
57
 
58
 
58
static void before_task_runs(void);
59
static void before_task_runs(void);
59
static void before_thread_runs(void);
60
static void before_thread_runs(void);
60
static void after_thread_ran(void);
61
static void after_thread_ran(void);
61
static void scheduler_separated_stack(void);
62
static void scheduler_separated_stack(void);
62
 
63
 
63
atomic_t nrdy;  /**< Number of ready threads in the system. */
64
atomic_t nrdy;  /**< Number of ready threads in the system. */
64
 
65
 
65
/** Carry out actions before new task runs. */
66
/** Carry out actions before new task runs. */
66
void before_task_runs(void)
67
void before_task_runs(void)
67
{
68
{
68
    before_task_runs_arch();
69
    before_task_runs_arch();
69
}
70
}
70
 
71
 
71
/** Take actions before new thread runs.
72
/** Take actions before new thread runs.
72
 *
73
 *
73
 * Perform actions that need to be
74
 * Perform actions that need to be
74
 * taken before the newly selected
75
 * taken before the newly selected
75
 * tread is passed control.
76
 * tread is passed control.
76
 *
77
 *
77
 * THREAD->lock is locked on entry
78
 * THREAD->lock is locked on entry
78
 *
79
 *
79
 */
80
 */
80
void before_thread_runs(void)
81
void before_thread_runs(void)
81
{
82
{
82
    before_thread_runs_arch();
83
    before_thread_runs_arch();
83
#ifdef CONFIG_FPU_LAZY
84
#ifdef CONFIG_FPU_LAZY
84
    if(THREAD==CPU->fpu_owner)
85
    if(THREAD==CPU->fpu_owner)
85
        fpu_enable();
86
        fpu_enable();
86
    else
87
    else
87
        fpu_disable();
88
        fpu_disable();
88
#else
89
#else
89
    fpu_enable();
90
    fpu_enable();
90
    if (THREAD->fpu_context_exists)
91
    if (THREAD->fpu_context_exists)
91
        fpu_context_restore(THREAD->saved_fpu_context);
92
        fpu_context_restore(THREAD->saved_fpu_context);
92
    else {
93
    else {
93
        fpu_init();
94
        fpu_init();
94
        THREAD->fpu_context_exists=1;
95
        THREAD->fpu_context_exists=1;
95
    }
96
    }
96
#endif
97
#endif
97
}
98
}
98
 
99
 
99
/** Take actions after THREAD had run.
100
/** Take actions after THREAD had run.
100
 *
101
 *
101
 * Perform actions that need to be
102
 * Perform actions that need to be
102
 * taken after the running thread
103
 * taken after the running thread
103
 * had been preempted by the scheduler.
104
 * had been preempted by the scheduler.
104
 *
105
 *
105
 * THREAD->lock is locked on entry
106
 * THREAD->lock is locked on entry
106
 *
107
 *
107
 */
108
 */
108
void after_thread_ran(void)
109
void after_thread_ran(void)
109
{
110
{
110
    after_thread_ran_arch();
111
    after_thread_ran_arch();
111
}
112
}
112
 
113
 
113
#ifdef CONFIG_FPU_LAZY
114
#ifdef CONFIG_FPU_LAZY
114
void scheduler_fpu_lazy_request(void)
115
void scheduler_fpu_lazy_request(void)
115
{
116
{
116
restart:
117
restart:
117
    fpu_enable();
118
    fpu_enable();
118
    spinlock_lock(&CPU->lock);
119
    spinlock_lock(&CPU->lock);
119
 
120
 
120
    /* Save old context */
121
    /* Save old context */
121
    if (CPU->fpu_owner != NULL) {  
122
    if (CPU->fpu_owner != NULL) {  
122
        spinlock_lock(&CPU->fpu_owner->lock);
123
        spinlock_lock(&CPU->fpu_owner->lock);
123
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
124
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
124
        /* don't prevent migration */
125
        /* don't prevent migration */
125
        CPU->fpu_owner->fpu_context_engaged=0;
126
        CPU->fpu_owner->fpu_context_engaged=0;
126
        spinlock_unlock(&CPU->fpu_owner->lock);
127
        spinlock_unlock(&CPU->fpu_owner->lock);
127
        CPU->fpu_owner = NULL;
128
        CPU->fpu_owner = NULL;
128
    }
129
    }
129
 
130
 
130
    spinlock_lock(&THREAD->lock);
131
    spinlock_lock(&THREAD->lock);
131
    if (THREAD->fpu_context_exists) {
132
    if (THREAD->fpu_context_exists) {
132
        fpu_context_restore(THREAD->saved_fpu_context);
133
        fpu_context_restore(THREAD->saved_fpu_context);
133
    } else {
134
    } else {
134
        /* Allocate FPU context */
135
        /* Allocate FPU context */
135
        if (!THREAD->saved_fpu_context) {
136
        if (!THREAD->saved_fpu_context) {
136
            /* Might sleep */
137
            /* Might sleep */
137
            spinlock_unlock(&THREAD->lock);
138
            spinlock_unlock(&THREAD->lock);
138
            spinlock_unlock(&CPU->lock);
139
            spinlock_unlock(&CPU->lock);
139
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
140
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
140
                                   0);
141
                                   0);
141
            /* We may have switched CPUs during slab_alloc */
142
            /* We may have switched CPUs during slab_alloc */
142
            goto restart;
143
            goto restart;
143
        }
144
        }
144
        fpu_init();
145
        fpu_init();
145
        THREAD->fpu_context_exists=1;
146
        THREAD->fpu_context_exists=1;
146
    }
147
    }
147
    CPU->fpu_owner=THREAD;
148
    CPU->fpu_owner=THREAD;
148
    THREAD->fpu_context_engaged = 1;
149
    THREAD->fpu_context_engaged = 1;
149
    spinlock_unlock(&THREAD->lock);
150
    spinlock_unlock(&THREAD->lock);
150
 
151
 
151
    spinlock_unlock(&CPU->lock);
152
    spinlock_unlock(&CPU->lock);
152
}
153
}
153
#endif
154
#endif
154
 
155
 
155
/** Initialize scheduler
156
/** Initialize scheduler
156
 *
157
 *
157
 * Initialize kernel scheduler.
158
 * Initialize kernel scheduler.
158
 *
159
 *
159
 */
160
 */
160
void scheduler_init(void)
161
void scheduler_init(void)
161
{
162
{
162
}
163
}
163
 
164
 
164
/** Get thread to be scheduled
165
/** Get thread to be scheduled
165
 *
166
 *
166
 * Get the optimal thread to be scheduled
167
 * Get the optimal thread to be scheduled
167
 * according to thread accounting and scheduler
168
 * according to thread accounting and scheduler
168
 * policy.
169
 * policy.
169
 *
170
 *
170
 * @return Thread to be scheduled.
171
 * @return Thread to be scheduled.
171
 *
172
 *
172
 */
173
 */
173
static thread_t *find_best_thread(void)
174
static thread_t *find_best_thread(void)
174
{
175
{
175
    thread_t *t;
176
    thread_t *t;
176
    runq_t *r;
177
    runq_t *r;
177
    int i;
178
    int i;
178
 
179
 
179
    ASSERT(CPU != NULL);
180
    ASSERT(CPU != NULL);
180
 
181
 
181
loop:
182
loop:
182
    interrupts_enable();
183
    interrupts_enable();
183
   
184
   
184
    if (atomic_get(&CPU->nrdy) == 0) {
185
    if (atomic_get(&CPU->nrdy) == 0) {
185
        /*
186
        /*
186
         * For there was nothing to run, the CPU goes to sleep
187
         * For there was nothing to run, the CPU goes to sleep
187
         * until a hardware interrupt or an IPI comes.
188
         * until a hardware interrupt or an IPI comes.
188
         * This improves energy saving and hyperthreading.
189
         * This improves energy saving and hyperthreading.
189
         */
190
         */
190
 
191
 
191
        /*
192
        /*
192
         * An interrupt might occur right now and wake up a thread.
193
         * An interrupt might occur right now and wake up a thread.
193
         * In such case, the CPU will continue to go to sleep
194
         * In such case, the CPU will continue to go to sleep
194
         * even though there is a runnable thread.
195
         * even though there is a runnable thread.
195
         */
196
         */
196
 
197
 
197
         cpu_sleep();
198
         cpu_sleep();
198
         goto loop;
199
         goto loop;
199
    }
200
    }
200
 
201
 
201
    interrupts_disable();
202
    interrupts_disable();
202
   
203
   
203
    for (i = 0; i<RQ_COUNT; i++) {
204
    for (i = 0; i<RQ_COUNT; i++) {
204
        r = &CPU->rq[i];
205
        r = &CPU->rq[i];
205
        spinlock_lock(&r->lock);
206
        spinlock_lock(&r->lock);
206
        if (r->n == 0) {
207
        if (r->n == 0) {
207
            /*
208
            /*
208
             * If this queue is empty, try a lower-priority queue.
209
             * If this queue is empty, try a lower-priority queue.
209
             */
210
             */
210
            spinlock_unlock(&r->lock);
211
            spinlock_unlock(&r->lock);
211
            continue;
212
            continue;
212
        }
213
        }
213
 
214
 
214
        atomic_dec(&CPU->nrdy);
215
        atomic_dec(&CPU->nrdy);
215
        atomic_dec(&nrdy);
216
        atomic_dec(&nrdy);
216
        r->n--;
217
        r->n--;
217
 
218
 
218
        /*
219
        /*
219
         * Take the first thread from the queue.
220
         * Take the first thread from the queue.
220
         */
221
         */
221
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
222
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
222
        list_remove(&t->rq_link);
223
        list_remove(&t->rq_link);
223
 
224
 
224
        spinlock_unlock(&r->lock);
225
        spinlock_unlock(&r->lock);
225
 
226
 
226
        spinlock_lock(&t->lock);
227
        spinlock_lock(&t->lock);
227
        t->cpu = CPU;
228
        t->cpu = CPU;
228
 
229
 
229
        t->ticks = us2ticks((i+1)*10000);
230
        t->ticks = us2ticks((i+1)*10000);
230
        t->priority = i;    /* correct rq index */
231
        t->priority = i;    /* correct rq index */
231
 
232
 
232
        /*
233
        /*
233
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
234
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
234
         */
235
         */
235
        t->flags &= ~X_STOLEN;
236
        t->flags &= ~X_STOLEN;
236
        spinlock_unlock(&t->lock);
237
        spinlock_unlock(&t->lock);
237
 
238
 
238
        return t;
239
        return t;
239
    }
240
    }
240
    goto loop;
241
    goto loop;
241
 
242
 
242
}
243
}
243
 
244
 
244
/** Prevent rq starvation
245
/** Prevent rq starvation
245
 *
246
 *
246
 * Prevent low priority threads from starving in rq's.
247
 * Prevent low priority threads from starving in rq's.
247
 *
248
 *
248
 * When the function decides to relink rq's, it reconnects
249
 * When the function decides to relink rq's, it reconnects
249
 * respective pointers so that in result threads with 'pri'
250
 * respective pointers so that in result threads with 'pri'
250
 * greater or equal @start are moved to a higher-priority queue.
251
 * greater or equal @start are moved to a higher-priority queue.
251
 *
252
 *
252
 * @param start Threshold priority.
253
 * @param start Threshold priority.
253
 *
254
 *
254
 */
255
 */
255
static void relink_rq(int start)
256
static void relink_rq(int start)
256
{
257
{
257
    link_t head;
258
    link_t head;
258
    runq_t *r;
259
    runq_t *r;
259
    int i, n;
260
    int i, n;
260
 
261
 
261
    list_initialize(&head);
262
    list_initialize(&head);
262
    spinlock_lock(&CPU->lock);
263
    spinlock_lock(&CPU->lock);
263
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
264
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
264
        for (i = start; i<RQ_COUNT-1; i++) {
265
        for (i = start; i<RQ_COUNT-1; i++) {
265
            /* remember and empty rq[i + 1] */
266
            /* remember and empty rq[i + 1] */
266
            r = &CPU->rq[i + 1];
267
            r = &CPU->rq[i + 1];
267
            spinlock_lock(&r->lock);
268
            spinlock_lock(&r->lock);
268
            list_concat(&head, &r->rq_head);
269
            list_concat(&head, &r->rq_head);
269
            n = r->n;
270
            n = r->n;
270
            r->n = 0;
271
            r->n = 0;
271
            spinlock_unlock(&r->lock);
272
            spinlock_unlock(&r->lock);
272
       
273
       
273
            /* append rq[i + 1] to rq[i] */
274
            /* append rq[i + 1] to rq[i] */
274
            r = &CPU->rq[i];
275
            r = &CPU->rq[i];
275
            spinlock_lock(&r->lock);
276
            spinlock_lock(&r->lock);
276
            list_concat(&r->rq_head, &head);
277
            list_concat(&r->rq_head, &head);
277
            r->n += n;
278
            r->n += n;
278
            spinlock_unlock(&r->lock);
279
            spinlock_unlock(&r->lock);
279
        }
280
        }
280
        CPU->needs_relink = 0;
281
        CPU->needs_relink = 0;
281
    }
282
    }
282
    spinlock_unlock(&CPU->lock);
283
    spinlock_unlock(&CPU->lock);
283
 
284
 
284
}
285
}
285
 
286
 
286
/** The scheduler
287
/** The scheduler
287
 *
288
 *
288
 * The thread scheduling procedure.
289
 * The thread scheduling procedure.
289
 * Passes control directly to
290
 * Passes control directly to
290
 * scheduler_separated_stack().
291
 * scheduler_separated_stack().
291
 *
292
 *
292
 */
293
 */
293
void scheduler(void)
294
void scheduler(void)
294
{
295
{
295
    volatile ipl_t ipl;
296
    volatile ipl_t ipl;
296
 
297
 
297
    ASSERT(CPU != NULL);
298
    ASSERT(CPU != NULL);
298
 
299
 
299
    ipl = interrupts_disable();
300
    ipl = interrupts_disable();
300
 
301
 
301
    if (atomic_get(&haltstate))
302
    if (atomic_get(&haltstate))
302
        halt();
303
        halt();
303
   
304
   
304
    if (THREAD) {
305
    if (THREAD) {
305
        spinlock_lock(&THREAD->lock);
306
        spinlock_lock(&THREAD->lock);
306
#ifndef CONFIG_FPU_LAZY
307
#ifndef CONFIG_FPU_LAZY
307
        fpu_context_save(THREAD->saved_fpu_context);
308
        fpu_context_save(THREAD->saved_fpu_context);
308
#endif
309
#endif
309
        if (!context_save(&THREAD->saved_context)) {
310
        if (!context_save(&THREAD->saved_context)) {
310
            /*
311
            /*
311
             * This is the place where threads leave scheduler();
312
             * This is the place where threads leave scheduler();
312
             */
313
             */
313
            spinlock_unlock(&THREAD->lock);
314
            spinlock_unlock(&THREAD->lock);
314
            interrupts_restore(THREAD->saved_context.ipl);
315
            interrupts_restore(THREAD->saved_context.ipl);
315
           
316
           
316
            return;
317
            return;
317
        }
318
        }
318
 
319
 
319
        /*
320
        /*
320
         * Interrupt priority level of preempted thread is recorded here
321
         * Interrupt priority level of preempted thread is recorded here
321
         * to facilitate scheduler() invocations from interrupts_disable()'d
322
         * to facilitate scheduler() invocations from interrupts_disable()'d
322
         * code (e.g. waitq_sleep_timeout()).
323
         * code (e.g. waitq_sleep_timeout()).
323
         */
324
         */
324
        THREAD->saved_context.ipl = ipl;
325
        THREAD->saved_context.ipl = ipl;
325
    }
326
    }
326
 
327
 
327
    /*
328
    /*
328
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
329
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
329
     * and preemption counter. At this point THE could be coming either
330
     * and preemption counter. At this point THE could be coming either
330
     * from THREAD's or CPU's stack.
331
     * from THREAD's or CPU's stack.
331
     */
332
     */
332
    the_copy(THE, (the_t *) CPU->stack);
333
    the_copy(THE, (the_t *) CPU->stack);
333
 
334
 
334
    /*
335
    /*
335
     * We may not keep the old stack.
336
     * We may not keep the old stack.
336
     * Reason: If we kept the old stack and got blocked, for instance, in
337
     * Reason: If we kept the old stack and got blocked, for instance, in
337
     * find_best_thread(), the old thread could get rescheduled by another
338
     * find_best_thread(), the old thread could get rescheduled by another
338
     * CPU and overwrite the part of its own stack that was also used by
339
     * CPU and overwrite the part of its own stack that was also used by
339
     * the scheduler on this CPU.
340
     * the scheduler on this CPU.
340
     *
341
     *
341
     * Moreover, we have to bypass the compiler-generated POP sequence
342
     * Moreover, we have to bypass the compiler-generated POP sequence
342
     * which is fooled by SP being set to the very top of the stack.
343
     * which is fooled by SP being set to the very top of the stack.
343
     * Therefore the scheduler() function continues in
344
     * Therefore the scheduler() function continues in
344
     * scheduler_separated_stack().
345
     * scheduler_separated_stack().
345
     */
346
     */
346
    context_save(&CPU->saved_context);
347
    context_save(&CPU->saved_context);
347
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
348
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
348
    context_restore(&CPU->saved_context);
349
    context_restore(&CPU->saved_context);
349
    /* not reached */
350
    /* not reached */
350
}
351
}
351
 
352
 
352
/** Scheduler stack switch wrapper
353
/** Scheduler stack switch wrapper
353
 *
354
 *
354
 * Second part of the scheduler() function
355
 * Second part of the scheduler() function
355
 * using new stack. Handling the actual context
356
 * using new stack. Handling the actual context
356
 * switch to a new thread.
357
 * switch to a new thread.
357
 *
358
 *
358
 * Assume THREAD->lock is held.
359
 * Assume THREAD->lock is held.
359
 */
360
 */
360
void scheduler_separated_stack(void)
361
void scheduler_separated_stack(void)
361
{
362
{
362
    int priority;
363
    int priority;
363
   
364
   
364
    ASSERT(CPU != NULL);
365
    ASSERT(CPU != NULL);
365
   
366
   
366
    if (THREAD) {
367
    if (THREAD) {
367
        /* must be run after the switch to scheduler stack */
368
        /* must be run after the switch to scheduler stack */
368
        after_thread_ran();
369
        after_thread_ran();
369
 
370
 
370
        switch (THREAD->state) {
371
        switch (THREAD->state) {
371
            case Running:
372
            case Running:
372
            spinlock_unlock(&THREAD->lock);
373
            spinlock_unlock(&THREAD->lock);
373
            thread_ready(THREAD);
374
            thread_ready(THREAD);
374
            break;
375
            break;
375
 
376
 
376
            case Exiting:
377
            case Exiting:
-
 
378
repeat:
-
 
379
                if (THREAD->detached) {
377
            thread_destroy(THREAD);
380
                thread_destroy(THREAD);
-
 
381
            } else {
-
 
382
                /*
-
 
383
                 * The thread structure is kept allocated until somebody
-
 
384
                 * calls thread_detach() on it.
-
 
385
                 */
-
 
386
                if (!spinlock_trylock(&THREAD->join_wq.lock)) {
-
 
387
                    /*
-
 
388
                     * Avoid deadlock.
-
 
389
                     */
-
 
390
                    spinlock_unlock(&THREAD->lock);
-
 
391
                    delay(10);
-
 
392
                    spinlock_lock(&THREAD->lock);
-
 
393
                    goto repeat;
-
 
394
                }
-
 
395
                _waitq_wakeup_unsafe(&THREAD->join_wq, false);
-
 
396
                spinlock_unlock(&THREAD->join_wq.lock);
-
 
397
               
-
 
398
                THREAD->state = Undead;
-
 
399
                spinlock_unlock(&THREAD->lock);
-
 
400
            }
378
            break;
401
            break;
379
           
402
           
380
            case Sleeping:
403
            case Sleeping:
381
            /*
404
            /*
382
             * Prefer the thread after it's woken up.
405
             * Prefer the thread after it's woken up.
383
             */
406
             */
384
            THREAD->priority = -1;
407
            THREAD->priority = -1;
385
 
408
 
386
            /*
409
            /*
387
             * We need to release wq->lock which we locked in waitq_sleep().
410
             * We need to release wq->lock which we locked in waitq_sleep().
388
             * Address of wq->lock is kept in THREAD->sleep_queue.
411
             * Address of wq->lock is kept in THREAD->sleep_queue.
389
             */
412
             */
390
            spinlock_unlock(&THREAD->sleep_queue->lock);
413
            spinlock_unlock(&THREAD->sleep_queue->lock);
391
 
414
 
392
            /*
415
            /*
393
             * Check for possible requests for out-of-context invocation.
416
             * Check for possible requests for out-of-context invocation.
394
             */
417
             */
395
            if (THREAD->call_me) {
418
            if (THREAD->call_me) {
396
                THREAD->call_me(THREAD->call_me_with);
419
                THREAD->call_me(THREAD->call_me_with);
397
                THREAD->call_me = NULL;
420
                THREAD->call_me = NULL;
398
                THREAD->call_me_with = NULL;
421
                THREAD->call_me_with = NULL;
399
            }
422
            }
400
 
423
 
401
            spinlock_unlock(&THREAD->lock);
424
            spinlock_unlock(&THREAD->lock);
402
 
425
 
403
            break;
426
            break;
404
 
427
 
405
            default:
428
            default:
406
            /*
429
            /*
407
             * Entering state is unexpected.
430
             * Entering state is unexpected.
408
             */
431
             */
409
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
432
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
410
            break;
433
            break;
411
        }
434
        }
412
 
435
 
413
        THREAD = NULL;
436
        THREAD = NULL;
414
    }
437
    }
415
 
438
 
416
    THREAD = find_best_thread();
439
    THREAD = find_best_thread();
417
   
440
   
418
    spinlock_lock(&THREAD->lock);
441
    spinlock_lock(&THREAD->lock);
419
    priority = THREAD->priority;
442
    priority = THREAD->priority;
420
    spinlock_unlock(&THREAD->lock);
443
    spinlock_unlock(&THREAD->lock);
421
 
444
 
422
    relink_rq(priority);       
445
    relink_rq(priority);       
423
 
446
 
424
    /*
447
    /*
425
     * If both the old and the new task are the same, lots of work is avoided.
448
     * If both the old and the new task are the same, lots of work is avoided.
426
     */
449
     */
427
    if (TASK != THREAD->task) {
450
    if (TASK != THREAD->task) {
428
        as_t *as1 = NULL;
451
        as_t *as1 = NULL;
429
        as_t *as2;
452
        as_t *as2;
430
 
453
 
431
        if (TASK) {
454
        if (TASK) {
432
            spinlock_lock(&TASK->lock);
455
            spinlock_lock(&TASK->lock);
433
            as1 = TASK->as;
456
            as1 = TASK->as;
434
            spinlock_unlock(&TASK->lock);
457
            spinlock_unlock(&TASK->lock);
435
        }
458
        }
436
 
459
 
437
        spinlock_lock(&THREAD->task->lock);
460
        spinlock_lock(&THREAD->task->lock);
438
        as2 = THREAD->task->as;
461
        as2 = THREAD->task->as;
439
        spinlock_unlock(&THREAD->task->lock);
462
        spinlock_unlock(&THREAD->task->lock);
440
       
463
       
441
        /*
464
        /*
442
         * Note that it is possible for two tasks to share one address space.
465
         * Note that it is possible for two tasks to share one address space.
443
         */
466
         */
444
        if (as1 != as2) {
467
        if (as1 != as2) {
445
            /*
468
            /*
446
             * Both tasks and address spaces are different.
469
             * Both tasks and address spaces are different.
447
             * Replace the old one with the new one.
470
             * Replace the old one with the new one.
448
             */
471
             */
449
            as_switch(as1, as2);
472
            as_switch(as1, as2);
450
        }
473
        }
451
        TASK = THREAD->task;
474
        TASK = THREAD->task;
452
        before_task_runs();
475
        before_task_runs();
453
    }
476
    }
454
 
477
 
455
    spinlock_lock(&THREAD->lock);  
478
    spinlock_lock(&THREAD->lock);  
456
    THREAD->state = Running;
479
    THREAD->state = Running;
457
 
480
 
458
#ifdef SCHEDULER_VERBOSE
481
#ifdef SCHEDULER_VERBOSE
459
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
482
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
460
#endif  
483
#endif  
461
 
484
 
462
    /*
485
    /*
463
     * Some architectures provide late kernel PA2KA(identity)
486
     * Some architectures provide late kernel PA2KA(identity)
464
     * mapping in a page fault handler. However, the page fault
487
     * mapping in a page fault handler. However, the page fault
465
     * handler uses the kernel stack of the running thread and
488
     * handler uses the kernel stack of the running thread and
466
     * therefore cannot be used to map it. The kernel stack, if
489
     * therefore cannot be used to map it. The kernel stack, if
467
     * necessary, is to be mapped in before_thread_runs(). This
490
     * necessary, is to be mapped in before_thread_runs(). This
468
     * function must be executed before the switch to the new stack.
491
     * function must be executed before the switch to the new stack.
469
     */
492
     */
470
    before_thread_runs();
493
    before_thread_runs();
471
 
494
 
472
    /*
495
    /*
473
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
496
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
474
     */
497
     */
475
    the_copy(THE, (the_t *) THREAD->kstack);
498
    the_copy(THE, (the_t *) THREAD->kstack);
476
   
499
   
477
    context_restore(&THREAD->saved_context);
500
    context_restore(&THREAD->saved_context);
478
    /* not reached */
501
    /* not reached */
479
}
502
}
480
 
503
 
481
#ifdef CONFIG_SMP
504
#ifdef CONFIG_SMP
482
/** Load balancing thread
505
/** Load balancing thread
483
 *
506
 *
484
 * SMP load balancing thread, supervising thread supplies
507
 * SMP load balancing thread, supervising thread supplies
485
 * for the CPU it's wired to.
508
 * for the CPU it's wired to.
486
 *
509
 *
487
 * @param arg Generic thread argument (unused).
510
 * @param arg Generic thread argument (unused).
488
 *
511
 *
489
 */
512
 */
490
void kcpulb(void *arg)
513
void kcpulb(void *arg)
491
{
514
{
492
    thread_t *t;
515
    thread_t *t;
493
    int count, average, i, j, k = 0;
516
    int count, average, i, j, k = 0;
494
    ipl_t ipl;
517
    ipl_t ipl;
495
 
518
 
496
loop:
519
loop:
497
    /*
520
    /*
498
     * Work in 1s intervals.
521
     * Work in 1s intervals.
499
     */
522
     */
500
    thread_sleep(1);
523
    thread_sleep(1);
501
 
524
 
502
not_satisfied:
525
not_satisfied:
503
    /*
526
    /*
504
     * Calculate the number of threads that will be migrated/stolen from
527
     * Calculate the number of threads that will be migrated/stolen from
505
     * other CPU's. Note that situation can have changed between two
528
     * other CPU's. Note that situation can have changed between two
506
     * passes. Each time get the most up to date counts.
529
     * passes. Each time get the most up to date counts.
507
     */
530
     */
508
    average = atomic_get(&nrdy) / config.cpu_active + 1;
531
    average = atomic_get(&nrdy) / config.cpu_active + 1;
509
    count = average - atomic_get(&CPU->nrdy);
532
    count = average - atomic_get(&CPU->nrdy);
510
 
533
 
511
    if (count <= 0)
534
    if (count <= 0)
512
        goto satisfied;
535
        goto satisfied;
513
 
536
 
514
    /*
537
    /*
515
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
538
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
516
     */
539
     */
517
    for (j=RQ_COUNT-1; j >= 0; j--) {
540
    for (j=RQ_COUNT-1; j >= 0; j--) {
518
        for (i=0; i < config.cpu_active; i++) {
541
        for (i=0; i < config.cpu_active; i++) {
519
            link_t *l;
542
            link_t *l;
520
            runq_t *r;
543
            runq_t *r;
521
            cpu_t *cpu;
544
            cpu_t *cpu;
522
 
545
 
523
            cpu = &cpus[(i + k) % config.cpu_active];
546
            cpu = &cpus[(i + k) % config.cpu_active];
524
 
547
 
525
            /*
548
            /*
526
             * Not interested in ourselves.
549
             * Not interested in ourselves.
527
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
550
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
528
             */
551
             */
529
            if (CPU == cpu)
552
            if (CPU == cpu)
530
                continue;
553
                continue;
531
            if (atomic_get(&cpu->nrdy) <= average)
554
            if (atomic_get(&cpu->nrdy) <= average)
532
                continue;
555
                continue;
533
 
556
 
534
            ipl = interrupts_disable();
557
            ipl = interrupts_disable();
535
            r = &cpu->rq[j];
558
            r = &cpu->rq[j];
536
            spinlock_lock(&r->lock);
559
            spinlock_lock(&r->lock);
537
            if (r->n == 0) {
560
            if (r->n == 0) {
538
                spinlock_unlock(&r->lock);
561
                spinlock_unlock(&r->lock);
539
                interrupts_restore(ipl);
562
                interrupts_restore(ipl);
540
                continue;
563
                continue;
541
            }
564
            }
542
       
565
       
543
            t = NULL;
566
            t = NULL;
544
            l = r->rq_head.prev;    /* search rq from the back */
567
            l = r->rq_head.prev;    /* search rq from the back */
545
            while (l != &r->rq_head) {
568
            while (l != &r->rq_head) {
546
                t = list_get_instance(l, thread_t, rq_link);
569
                t = list_get_instance(l, thread_t, rq_link);
547
                /*
570
                /*
548
                 * We don't want to steal CPU-wired threads neither threads already stolen.
571
                 * We don't want to steal CPU-wired threads neither threads already stolen.
549
                 * The latter prevents threads from migrating between CPU's without ever being run.
572
                 * The latter prevents threads from migrating between CPU's without ever being run.
550
                 * We don't want to steal threads whose FPU context is still in CPU.
573
                 * We don't want to steal threads whose FPU context is still in CPU.
551
                 */
574
                 */
552
                spinlock_lock(&t->lock);
575
                spinlock_lock(&t->lock);
553
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
576
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
554
                    /*
577
                    /*
555
                     * Remove t from r.
578
                     * Remove t from r.
556
                     */
579
                     */
557
                    spinlock_unlock(&t->lock);
580
                    spinlock_unlock(&t->lock);
558
                   
581
                   
559
                    atomic_dec(&cpu->nrdy);
582
                    atomic_dec(&cpu->nrdy);
560
                    atomic_dec(&nrdy);
583
                    atomic_dec(&nrdy);
561
 
584
 
562
                    r->n--;
585
                    r->n--;
563
                    list_remove(&t->rq_link);
586
                    list_remove(&t->rq_link);
564
 
587
 
565
                    break;
588
                    break;
566
                }
589
                }
567
                spinlock_unlock(&t->lock);
590
                spinlock_unlock(&t->lock);
568
                l = l->prev;
591
                l = l->prev;
569
                t = NULL;
592
                t = NULL;
570
            }
593
            }
571
            spinlock_unlock(&r->lock);
594
            spinlock_unlock(&r->lock);
572
 
595
 
573
            if (t) {
596
            if (t) {
574
                /*
597
                /*
575
                 * Ready t on local CPU
598
                 * Ready t on local CPU
576
                 */
599
                 */
577
                spinlock_lock(&t->lock);
600
                spinlock_lock(&t->lock);
578
#ifdef KCPULB_VERBOSE
601
#ifdef KCPULB_VERBOSE
579
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
602
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
580
#endif
603
#endif
581
                t->flags |= X_STOLEN;
604
                t->flags |= X_STOLEN;
582
                t->state = Entering;
605
                t->state = Entering;
583
                spinlock_unlock(&t->lock);
606
                spinlock_unlock(&t->lock);
584
   
607
   
585
                thread_ready(t);
608
                thread_ready(t);
586
 
609
 
587
                interrupts_restore(ipl);
610
                interrupts_restore(ipl);
588
   
611
   
589
                if (--count == 0)
612
                if (--count == 0)
590
                    goto satisfied;
613
                    goto satisfied;
591
                   
614
                   
592
                /*
615
                /*
593
                 * We are not satisfied yet, focus on another CPU next time.
616
                 * We are not satisfied yet, focus on another CPU next time.
594
                 */
617
                 */
595
                k++;
618
                k++;
596
               
619
               
597
                continue;
620
                continue;
598
            }
621
            }
599
            interrupts_restore(ipl);
622
            interrupts_restore(ipl);
600
        }
623
        }
601
    }
624
    }
602
 
625
 
603
    if (atomic_get(&CPU->nrdy)) {
626
    if (atomic_get(&CPU->nrdy)) {
604
        /*
627
        /*
605
         * Be a little bit light-weight and let migrated threads run.
628
         * Be a little bit light-weight and let migrated threads run.
606
         */
629
         */
607
        scheduler();
630
        scheduler();
608
    } else {
631
    } else {
609
        /*
632
        /*
610
         * We failed to migrate a single thread.
633
         * We failed to migrate a single thread.
611
         * Give up this turn.
634
         * Give up this turn.
612
         */
635
         */
613
        goto loop;
636
        goto loop;
614
    }
637
    }
615
       
638
       
616
    goto not_satisfied;
639
    goto not_satisfied;
617
 
640
 
618
satisfied:
641
satisfied:
619
    goto loop;
642
    goto loop;
620
}
643
}
621
 
644
 
622
#endif /* CONFIG_SMP */
645
#endif /* CONFIG_SMP */
623
 
646
 
624
 
647
 
625
/** Print information about threads & scheduler queues */
648
/** Print information about threads & scheduler queues */
626
void sched_print_list(void)
649
void sched_print_list(void)
627
{
650
{
628
    ipl_t ipl;
651
    ipl_t ipl;
629
    int cpu,i;
652
    int cpu,i;
630
    runq_t *r;
653
    runq_t *r;
631
    thread_t *t;
654
    thread_t *t;
632
    link_t *cur;
655
    link_t *cur;
633
 
656
 
634
    /* We are going to mess with scheduler structures,
657
    /* We are going to mess with scheduler structures,
635
     * let's not be interrupted */
658
     * let's not be interrupted */
636
    ipl = interrupts_disable();
659
    ipl = interrupts_disable();
637
    for (cpu=0;cpu < config.cpu_count; cpu++) {
660
    for (cpu=0;cpu < config.cpu_count; cpu++) {
638
 
661
 
639
        if (!cpus[cpu].active)
662
        if (!cpus[cpu].active)
640
            continue;
663
            continue;
641
 
664
 
642
        spinlock_lock(&cpus[cpu].lock);
665
        spinlock_lock(&cpus[cpu].lock);
643
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
666
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
644
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
667
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
645
       
668
       
646
        for (i=0; i<RQ_COUNT; i++) {
669
        for (i=0; i<RQ_COUNT; i++) {
647
            r = &cpus[cpu].rq[i];
670
            r = &cpus[cpu].rq[i];
648
            spinlock_lock(&r->lock);
671
            spinlock_lock(&r->lock);
649
            if (!r->n) {
672
            if (!r->n) {
650
                spinlock_unlock(&r->lock);
673
                spinlock_unlock(&r->lock);
651
                continue;
674
                continue;
652
            }
675
            }
653
            printf("\trq[%d]: ", i);
676
            printf("\trq[%d]: ", i);
654
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
677
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
655
                t = list_get_instance(cur, thread_t, rq_link);
678
                t = list_get_instance(cur, thread_t, rq_link);
656
                printf("%d(%s) ", t->tid,
679
                printf("%d(%s) ", t->tid,
657
                       thread_states[t->state]);
680
                       thread_states[t->state]);
658
            }
681
            }
659
            printf("\n");
682
            printf("\n");
660
            spinlock_unlock(&r->lock);
683
            spinlock_unlock(&r->lock);
661
        }
684
        }
662
        spinlock_unlock(&cpus[cpu].lock);
685
        spinlock_unlock(&cpus[cpu].lock);
663
    }
686
    }
664
   
687
   
665
    interrupts_restore(ipl);
688
    interrupts_restore(ipl);
666
}
689
}
667
 
690