Subversion Repositories HelenOS-historic

Rev

Rev 1248 | Rev 1380 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1248 Rev 1264
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    scheduler.c
30
 * @file    scheduler.c
31
 * @brief   Scheduler and load balancing.
31
 * @brief   Scheduler and load balancing.
32
 *
32
 *
33
 * This file contains the scheduler and kcpulb kernel thread wich
33
 * This file contains the scheduler and kcpulb kernel thread which
34
 * performs load-balancing of per-CPU run queues.
34
 * performs load-balancing of per-CPU run queues.
35
 */
35
 */
36
 
36
 
37
#include <proc/scheduler.h>
37
#include <proc/scheduler.h>
38
#include <proc/thread.h>
38
#include <proc/thread.h>
39
#include <proc/task.h>
39
#include <proc/task.h>
40
#include <mm/frame.h>
40
#include <mm/frame.h>
41
#include <mm/page.h>
41
#include <mm/page.h>
42
#include <mm/as.h>
42
#include <mm/as.h>
43
#include <arch/asm.h>
43
#include <arch/asm.h>
44
#include <arch/faddr.h>
44
#include <arch/faddr.h>
45
#include <atomic.h>
45
#include <atomic.h>
46
#include <synch/spinlock.h>
46
#include <synch/spinlock.h>
47
#include <config.h>
47
#include <config.h>
48
#include <context.h>
48
#include <context.h>
49
#include <func.h>
49
#include <func.h>
50
#include <arch.h>
50
#include <arch.h>
51
#include <adt/list.h>
51
#include <adt/list.h>
52
#include <panic.h>
52
#include <panic.h>
53
#include <typedefs.h>
53
#include <typedefs.h>
54
#include <cpu.h>
54
#include <cpu.h>
55
#include <print.h>
55
#include <print.h>
56
#include <debug.h>
56
#include <debug.h>
57
 
57
 
58
static void before_task_runs(void);
58
static void before_task_runs(void);
59
static void before_thread_runs(void);
59
static void before_thread_runs(void);
60
static void after_thread_ran(void);
60
static void after_thread_ran(void);
61
static void scheduler_separated_stack(void);
61
static void scheduler_separated_stack(void);
62
 
62
 
63
atomic_t nrdy;  /**< Number of ready threads in the system. */
63
atomic_t nrdy;  /**< Number of ready threads in the system. */
64
 
64
 
65
/** Carry out actions before new task runs. */
65
/** Carry out actions before new task runs. */
66
void before_task_runs(void)
66
void before_task_runs(void)
67
{
67
{
68
    before_task_runs_arch();
68
    before_task_runs_arch();
69
}
69
}
70
 
70
 
71
/** Take actions before new thread runs.
71
/** Take actions before new thread runs.
72
 *
72
 *
73
 * Perform actions that need to be
73
 * Perform actions that need to be
74
 * taken before the newly selected
74
 * taken before the newly selected
75
 * tread is passed control.
75
 * tread is passed control.
76
 *
76
 *
77
 * THREAD->lock is locked on entry
77
 * THREAD->lock is locked on entry
78
 *
78
 *
79
 */
79
 */
80
void before_thread_runs(void)
80
void before_thread_runs(void)
81
{
81
{
82
    before_thread_runs_arch();
82
    before_thread_runs_arch();
83
#ifdef CONFIG_FPU_LAZY
83
#ifdef CONFIG_FPU_LAZY
84
    if(THREAD==CPU->fpu_owner)
84
    if(THREAD==CPU->fpu_owner)
85
        fpu_enable();
85
        fpu_enable();
86
    else
86
    else
87
        fpu_disable();
87
        fpu_disable();
88
#else
88
#else
89
    fpu_enable();
89
    fpu_enable();
90
    if (THREAD->fpu_context_exists)
90
    if (THREAD->fpu_context_exists)
91
        fpu_context_restore(THREAD->saved_fpu_context);
91
        fpu_context_restore(THREAD->saved_fpu_context);
92
    else {
92
    else {
93
        fpu_init();
93
        fpu_init();
94
        THREAD->fpu_context_exists=1;
94
        THREAD->fpu_context_exists=1;
95
    }
95
    }
96
#endif
96
#endif
97
}
97
}
98
 
98
 
99
/** Take actions after THREAD had run.
99
/** Take actions after THREAD had run.
100
 *
100
 *
101
 * Perform actions that need to be
101
 * Perform actions that need to be
102
 * taken after the running thread
102
 * taken after the running thread
103
 * had been preempted by the scheduler.
103
 * had been preempted by the scheduler.
104
 *
104
 *
105
 * THREAD->lock is locked on entry
105
 * THREAD->lock is locked on entry
106
 *
106
 *
107
 */
107
 */
108
void after_thread_ran(void)
108
void after_thread_ran(void)
109
{
109
{
110
    after_thread_ran_arch();
110
    after_thread_ran_arch();
111
}
111
}
112
 
112
 
113
#ifdef CONFIG_FPU_LAZY
113
#ifdef CONFIG_FPU_LAZY
114
void scheduler_fpu_lazy_request(void)
114
void scheduler_fpu_lazy_request(void)
115
{
115
{
116
restart:
116
restart:
117
    fpu_enable();
117
    fpu_enable();
118
    spinlock_lock(&CPU->lock);
118
    spinlock_lock(&CPU->lock);
119
 
119
 
120
    /* Save old context */
120
    /* Save old context */
121
    if (CPU->fpu_owner != NULL) {  
121
    if (CPU->fpu_owner != NULL) {  
122
        spinlock_lock(&CPU->fpu_owner->lock);
122
        spinlock_lock(&CPU->fpu_owner->lock);
123
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
123
        fpu_context_save(CPU->fpu_owner->saved_fpu_context);
124
        /* don't prevent migration */
124
        /* don't prevent migration */
125
        CPU->fpu_owner->fpu_context_engaged=0;
125
        CPU->fpu_owner->fpu_context_engaged=0;
126
        spinlock_unlock(&CPU->fpu_owner->lock);
126
        spinlock_unlock(&CPU->fpu_owner->lock);
127
        CPU->fpu_owner = NULL;
127
        CPU->fpu_owner = NULL;
128
    }
128
    }
129
 
129
 
130
    spinlock_lock(&THREAD->lock);
130
    spinlock_lock(&THREAD->lock);
131
    if (THREAD->fpu_context_exists) {
131
    if (THREAD->fpu_context_exists) {
132
        fpu_context_restore(THREAD->saved_fpu_context);
132
        fpu_context_restore(THREAD->saved_fpu_context);
133
    } else {
133
    } else {
134
        /* Allocate FPU context */
134
        /* Allocate FPU context */
135
        if (!THREAD->saved_fpu_context) {
135
        if (!THREAD->saved_fpu_context) {
136
            /* Might sleep */
136
            /* Might sleep */
137
            spinlock_unlock(&THREAD->lock);
137
            spinlock_unlock(&THREAD->lock);
138
            spinlock_unlock(&CPU->lock);
138
            spinlock_unlock(&CPU->lock);
139
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
139
            THREAD->saved_fpu_context = slab_alloc(fpu_context_slab,
140
                                   0);
140
                                   0);
141
            /* We may have switched CPUs during slab_alloc */
141
            /* We may have switched CPUs during slab_alloc */
142
            goto restart;
142
            goto restart;
143
        }
143
        }
144
        fpu_init();
144
        fpu_init();
145
        THREAD->fpu_context_exists=1;
145
        THREAD->fpu_context_exists=1;
146
    }
146
    }
147
    CPU->fpu_owner=THREAD;
147
    CPU->fpu_owner=THREAD;
148
    THREAD->fpu_context_engaged = 1;
148
    THREAD->fpu_context_engaged = 1;
149
    spinlock_unlock(&THREAD->lock);
149
    spinlock_unlock(&THREAD->lock);
150
 
150
 
151
    spinlock_unlock(&CPU->lock);
151
    spinlock_unlock(&CPU->lock);
152
}
152
}
153
#endif
153
#endif
154
 
154
 
155
/** Initialize scheduler
155
/** Initialize scheduler
156
 *
156
 *
157
 * Initialize kernel scheduler.
157
 * Initialize kernel scheduler.
158
 *
158
 *
159
 */
159
 */
160
void scheduler_init(void)
160
void scheduler_init(void)
161
{
161
{
162
}
162
}
163
 
163
 
164
/** Get thread to be scheduled
164
/** Get thread to be scheduled
165
 *
165
 *
166
 * Get the optimal thread to be scheduled
166
 * Get the optimal thread to be scheduled
167
 * according to thread accounting and scheduler
167
 * according to thread accounting and scheduler
168
 * policy.
168
 * policy.
169
 *
169
 *
170
 * @return Thread to be scheduled.
170
 * @return Thread to be scheduled.
171
 *
171
 *
172
 */
172
 */
173
static thread_t *find_best_thread(void)
173
static thread_t *find_best_thread(void)
174
{
174
{
175
    thread_t *t;
175
    thread_t *t;
176
    runq_t *r;
176
    runq_t *r;
177
    int i;
177
    int i;
178
 
178
 
179
    ASSERT(CPU != NULL);
179
    ASSERT(CPU != NULL);
180
 
180
 
181
loop:
181
loop:
182
    interrupts_enable();
182
    interrupts_enable();
183
   
183
   
184
    if (atomic_get(&CPU->nrdy) == 0) {
184
    if (atomic_get(&CPU->nrdy) == 0) {
185
        /*
185
        /*
186
         * For there was nothing to run, the CPU goes to sleep
186
         * For there was nothing to run, the CPU goes to sleep
187
         * until a hardware interrupt or an IPI comes.
187
         * until a hardware interrupt or an IPI comes.
188
         * This improves energy saving and hyperthreading.
188
         * This improves energy saving and hyperthreading.
189
         */
189
         */
190
 
190
 
191
        /*
191
        /*
192
         * An interrupt might occur right now and wake up a thread.
192
         * An interrupt might occur right now and wake up a thread.
193
         * In such case, the CPU will continue to go to sleep
193
         * In such case, the CPU will continue to go to sleep
194
         * even though there is a runnable thread.
194
         * even though there is a runnable thread.
195
         */
195
         */
196
 
196
 
197
         cpu_sleep();
197
         cpu_sleep();
198
         goto loop;
198
         goto loop;
199
    }
199
    }
200
 
200
 
201
    interrupts_disable();
201
    interrupts_disable();
202
   
202
   
203
    for (i = 0; i<RQ_COUNT; i++) {
203
    for (i = 0; i<RQ_COUNT; i++) {
204
        r = &CPU->rq[i];
204
        r = &CPU->rq[i];
205
        spinlock_lock(&r->lock);
205
        spinlock_lock(&r->lock);
206
        if (r->n == 0) {
206
        if (r->n == 0) {
207
            /*
207
            /*
208
             * If this queue is empty, try a lower-priority queue.
208
             * If this queue is empty, try a lower-priority queue.
209
             */
209
             */
210
            spinlock_unlock(&r->lock);
210
            spinlock_unlock(&r->lock);
211
            continue;
211
            continue;
212
        }
212
        }
213
 
213
 
214
        atomic_dec(&CPU->nrdy);
214
        atomic_dec(&CPU->nrdy);
215
        atomic_dec(&nrdy);
215
        atomic_dec(&nrdy);
216
        r->n--;
216
        r->n--;
217
 
217
 
218
        /*
218
        /*
219
         * Take the first thread from the queue.
219
         * Take the first thread from the queue.
220
         */
220
         */
221
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
221
        t = list_get_instance(r->rq_head.next, thread_t, rq_link);
222
        list_remove(&t->rq_link);
222
        list_remove(&t->rq_link);
223
 
223
 
224
        spinlock_unlock(&r->lock);
224
        spinlock_unlock(&r->lock);
225
 
225
 
226
        spinlock_lock(&t->lock);
226
        spinlock_lock(&t->lock);
227
        t->cpu = CPU;
227
        t->cpu = CPU;
228
 
228
 
229
        t->ticks = us2ticks((i+1)*10000);
229
        t->ticks = us2ticks((i+1)*10000);
230
        t->priority = i;    /* correct rq index */
230
        t->priority = i;    /* correct rq index */
231
 
231
 
232
        /*
232
        /*
233
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
233
         * Clear the X_STOLEN flag so that t can be migrated when load balancing needs emerge.
234
         */
234
         */
235
        t->flags &= ~X_STOLEN;
235
        t->flags &= ~X_STOLEN;
236
        spinlock_unlock(&t->lock);
236
        spinlock_unlock(&t->lock);
237
 
237
 
238
        return t;
238
        return t;
239
    }
239
    }
240
    goto loop;
240
    goto loop;
241
 
241
 
242
}
242
}
243
 
243
 
244
/** Prevent rq starvation
244
/** Prevent rq starvation
245
 *
245
 *
246
 * Prevent low priority threads from starving in rq's.
246
 * Prevent low priority threads from starving in rq's.
247
 *
247
 *
248
 * When the function decides to relink rq's, it reconnects
248
 * When the function decides to relink rq's, it reconnects
249
 * respective pointers so that in result threads with 'pri'
249
 * respective pointers so that in result threads with 'pri'
250
 * greater or equal @start are moved to a higher-priority queue.
250
 * greater or equal @start are moved to a higher-priority queue.
251
 *
251
 *
252
 * @param start Threshold priority.
252
 * @param start Threshold priority.
253
 *
253
 *
254
 */
254
 */
255
static void relink_rq(int start)
255
static void relink_rq(int start)
256
{
256
{
257
    link_t head;
257
    link_t head;
258
    runq_t *r;
258
    runq_t *r;
259
    int i, n;
259
    int i, n;
260
 
260
 
261
    list_initialize(&head);
261
    list_initialize(&head);
262
    spinlock_lock(&CPU->lock);
262
    spinlock_lock(&CPU->lock);
263
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
263
    if (CPU->needs_relink > NEEDS_RELINK_MAX) {
264
        for (i = start; i<RQ_COUNT-1; i++) {
264
        for (i = start; i<RQ_COUNT-1; i++) {
265
            /* remember and empty rq[i + 1] */
265
            /* remember and empty rq[i + 1] */
266
            r = &CPU->rq[i + 1];
266
            r = &CPU->rq[i + 1];
267
            spinlock_lock(&r->lock);
267
            spinlock_lock(&r->lock);
268
            list_concat(&head, &r->rq_head);
268
            list_concat(&head, &r->rq_head);
269
            n = r->n;
269
            n = r->n;
270
            r->n = 0;
270
            r->n = 0;
271
            spinlock_unlock(&r->lock);
271
            spinlock_unlock(&r->lock);
272
       
272
       
273
            /* append rq[i + 1] to rq[i] */
273
            /* append rq[i + 1] to rq[i] */
274
            r = &CPU->rq[i];
274
            r = &CPU->rq[i];
275
            spinlock_lock(&r->lock);
275
            spinlock_lock(&r->lock);
276
            list_concat(&r->rq_head, &head);
276
            list_concat(&r->rq_head, &head);
277
            r->n += n;
277
            r->n += n;
278
            spinlock_unlock(&r->lock);
278
            spinlock_unlock(&r->lock);
279
        }
279
        }
280
        CPU->needs_relink = 0;
280
        CPU->needs_relink = 0;
281
    }
281
    }
282
    spinlock_unlock(&CPU->lock);
282
    spinlock_unlock(&CPU->lock);
283
 
283
 
284
}
284
}
285
 
285
 
286
/** The scheduler
286
/** The scheduler
287
 *
287
 *
288
 * The thread scheduling procedure.
288
 * The thread scheduling procedure.
289
 * Passes control directly to
289
 * Passes control directly to
290
 * scheduler_separated_stack().
290
 * scheduler_separated_stack().
291
 *
291
 *
292
 */
292
 */
293
void scheduler(void)
293
void scheduler(void)
294
{
294
{
295
    volatile ipl_t ipl;
295
    volatile ipl_t ipl;
296
 
296
 
297
    ASSERT(CPU != NULL);
297
    ASSERT(CPU != NULL);
298
 
298
 
299
    ipl = interrupts_disable();
299
    ipl = interrupts_disable();
300
 
300
 
301
    if (atomic_get(&haltstate))
301
    if (atomic_get(&haltstate))
302
        halt();
302
        halt();
303
   
303
   
304
    if (THREAD) {
304
    if (THREAD) {
305
        spinlock_lock(&THREAD->lock);
305
        spinlock_lock(&THREAD->lock);
306
#ifndef CONFIG_FPU_LAZY
306
#ifndef CONFIG_FPU_LAZY
307
        fpu_context_save(THREAD->saved_fpu_context);
307
        fpu_context_save(THREAD->saved_fpu_context);
308
#endif
308
#endif
309
        if (!context_save(&THREAD->saved_context)) {
309
        if (!context_save(&THREAD->saved_context)) {
310
            /*
310
            /*
311
             * This is the place where threads leave scheduler();
311
             * This is the place where threads leave scheduler();
312
             */
312
             */
313
            spinlock_unlock(&THREAD->lock);
313
            spinlock_unlock(&THREAD->lock);
314
            interrupts_restore(THREAD->saved_context.ipl);
314
            interrupts_restore(THREAD->saved_context.ipl);
315
           
315
           
316
            return;
316
            return;
317
        }
317
        }
318
 
318
 
319
        /*
319
        /*
320
         * Interrupt priority level of preempted thread is recorded here
320
         * Interrupt priority level of preempted thread is recorded here
321
         * to facilitate scheduler() invocations from interrupts_disable()'d
321
         * to facilitate scheduler() invocations from interrupts_disable()'d
322
         * code (e.g. waitq_sleep_timeout()).
322
         * code (e.g. waitq_sleep_timeout()).
323
         */
323
         */
324
        THREAD->saved_context.ipl = ipl;
324
        THREAD->saved_context.ipl = ipl;
325
    }
325
    }
326
 
326
 
327
    /*
327
    /*
328
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
328
     * Through the 'THE' structure, we keep track of THREAD, TASK, CPU, VM
329
     * and preemption counter. At this point THE could be coming either
329
     * and preemption counter. At this point THE could be coming either
330
     * from THREAD's or CPU's stack.
330
     * from THREAD's or CPU's stack.
331
     */
331
     */
332
    the_copy(THE, (the_t *) CPU->stack);
332
    the_copy(THE, (the_t *) CPU->stack);
333
 
333
 
334
    /*
334
    /*
335
     * We may not keep the old stack.
335
     * We may not keep the old stack.
336
     * Reason: If we kept the old stack and got blocked, for instance, in
336
     * Reason: If we kept the old stack and got blocked, for instance, in
337
     * find_best_thread(), the old thread could get rescheduled by another
337
     * find_best_thread(), the old thread could get rescheduled by another
338
     * CPU and overwrite the part of its own stack that was also used by
338
     * CPU and overwrite the part of its own stack that was also used by
339
     * the scheduler on this CPU.
339
     * the scheduler on this CPU.
340
     *
340
     *
341
     * Moreover, we have to bypass the compiler-generated POP sequence
341
     * Moreover, we have to bypass the compiler-generated POP sequence
342
     * which is fooled by SP being set to the very top of the stack.
342
     * which is fooled by SP being set to the very top of the stack.
343
     * Therefore the scheduler() function continues in
343
     * Therefore the scheduler() function continues in
344
     * scheduler_separated_stack().
344
     * scheduler_separated_stack().
345
     */
345
     */
346
    context_save(&CPU->saved_context);
346
    context_save(&CPU->saved_context);
347
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
347
    context_set(&CPU->saved_context, FADDR(scheduler_separated_stack), (__address) CPU->stack, CPU_STACK_SIZE);
348
    context_restore(&CPU->saved_context);
348
    context_restore(&CPU->saved_context);
349
    /* not reached */
349
    /* not reached */
350
}
350
}
351
 
351
 
352
/** Scheduler stack switch wrapper
352
/** Scheduler stack switch wrapper
353
 *
353
 *
354
 * Second part of the scheduler() function
354
 * Second part of the scheduler() function
355
 * using new stack. Handling the actual context
355
 * using new stack. Handling the actual context
356
 * switch to a new thread.
356
 * switch to a new thread.
357
 *
357
 *
358
 * Assume THREAD->lock is held.
358
 * Assume THREAD->lock is held.
359
 */
359
 */
360
void scheduler_separated_stack(void)
360
void scheduler_separated_stack(void)
361
{
361
{
362
    int priority;
362
    int priority;
363
   
363
   
364
    ASSERT(CPU != NULL);
364
    ASSERT(CPU != NULL);
365
   
365
   
366
    if (THREAD) {
366
    if (THREAD) {
367
        /* must be run after the switch to scheduler stack */
367
        /* must be run after the switch to scheduler stack */
368
        after_thread_ran();
368
        after_thread_ran();
369
 
369
 
370
        switch (THREAD->state) {
370
        switch (THREAD->state) {
371
            case Running:
371
            case Running:
372
            spinlock_unlock(&THREAD->lock);
372
            spinlock_unlock(&THREAD->lock);
373
            thread_ready(THREAD);
373
            thread_ready(THREAD);
374
            break;
374
            break;
375
 
375
 
376
            case Exiting:
376
            case Exiting:
377
            thread_destroy(THREAD);
377
            thread_destroy(THREAD);
378
            break;
378
            break;
379
           
379
           
380
            case Sleeping:
380
            case Sleeping:
381
            /*
381
            /*
382
             * Prefer the thread after it's woken up.
382
             * Prefer the thread after it's woken up.
383
             */
383
             */
384
            THREAD->priority = -1;
384
            THREAD->priority = -1;
385
 
385
 
386
            /*
386
            /*
387
             * We need to release wq->lock which we locked in waitq_sleep().
387
             * We need to release wq->lock which we locked in waitq_sleep().
388
             * Address of wq->lock is kept in THREAD->sleep_queue.
388
             * Address of wq->lock is kept in THREAD->sleep_queue.
389
             */
389
             */
390
            spinlock_unlock(&THREAD->sleep_queue->lock);
390
            spinlock_unlock(&THREAD->sleep_queue->lock);
391
 
391
 
392
            /*
392
            /*
393
             * Check for possible requests for out-of-context invocation.
393
             * Check for possible requests for out-of-context invocation.
394
             */
394
             */
395
            if (THREAD->call_me) {
395
            if (THREAD->call_me) {
396
                THREAD->call_me(THREAD->call_me_with);
396
                THREAD->call_me(THREAD->call_me_with);
397
                THREAD->call_me = NULL;
397
                THREAD->call_me = NULL;
398
                THREAD->call_me_with = NULL;
398
                THREAD->call_me_with = NULL;
399
            }
399
            }
400
 
400
 
401
            spinlock_unlock(&THREAD->lock);
401
            spinlock_unlock(&THREAD->lock);
402
 
402
 
403
            break;
403
            break;
404
 
404
 
405
            default:
405
            default:
406
            /*
406
            /*
407
             * Entering state is unexpected.
407
             * Entering state is unexpected.
408
             */
408
             */
409
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
409
            panic("tid%d: unexpected state %s\n", THREAD->tid, thread_states[THREAD->state]);
410
            break;
410
            break;
411
        }
411
        }
412
 
412
 
413
        THREAD = NULL;
413
        THREAD = NULL;
414
    }
414
    }
415
 
415
 
416
    THREAD = find_best_thread();
416
    THREAD = find_best_thread();
417
   
417
   
418
    spinlock_lock(&THREAD->lock);
418
    spinlock_lock(&THREAD->lock);
419
    priority = THREAD->priority;
419
    priority = THREAD->priority;
420
    spinlock_unlock(&THREAD->lock);
420
    spinlock_unlock(&THREAD->lock);
421
 
421
 
422
    relink_rq(priority);       
422
    relink_rq(priority);       
423
 
423
 
424
    spinlock_lock(&THREAD->lock);  
424
    spinlock_lock(&THREAD->lock);  
425
 
425
 
426
    /*
426
    /*
427
     * If both the old and the new task are the same, lots of work is avoided.
427
     * If both the old and the new task are the same, lots of work is avoided.
428
     */
428
     */
429
    if (TASK != THREAD->task) {
429
    if (TASK != THREAD->task) {
430
        as_t *as1 = NULL;
430
        as_t *as1 = NULL;
431
        as_t *as2;
431
        as_t *as2;
432
 
432
 
433
        if (TASK) {
433
        if (TASK) {
434
            spinlock_lock(&TASK->lock);
434
            spinlock_lock(&TASK->lock);
435
            as1 = TASK->as;
435
            as1 = TASK->as;
436
            spinlock_unlock(&TASK->lock);
436
            spinlock_unlock(&TASK->lock);
437
        }
437
        }
438
 
438
 
439
        spinlock_lock(&THREAD->task->lock);
439
        spinlock_lock(&THREAD->task->lock);
440
        as2 = THREAD->task->as;
440
        as2 = THREAD->task->as;
441
        spinlock_unlock(&THREAD->task->lock);
441
        spinlock_unlock(&THREAD->task->lock);
442
       
442
       
443
        /*
443
        /*
444
         * Note that it is possible for two tasks to share one address space.
444
         * Note that it is possible for two tasks to share one address space.
445
         */
445
         */
446
        if (as1 != as2) {
446
        if (as1 != as2) {
447
            /*
447
            /*
448
             * Both tasks and address spaces are different.
448
             * Both tasks and address spaces are different.
449
             * Replace the old one with the new one.
449
             * Replace the old one with the new one.
450
             */
450
             */
451
            as_switch(as1, as2);
451
            as_switch(as1, as2);
452
        }
452
        }
453
        TASK = THREAD->task;
453
        TASK = THREAD->task;
454
        before_task_runs();
454
        before_task_runs();
455
    }
455
    }
456
 
456
 
457
    THREAD->state = Running;
457
    THREAD->state = Running;
458
 
458
 
459
#ifdef SCHEDULER_VERBOSE
459
#ifdef SCHEDULER_VERBOSE
460
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
460
    printf("cpu%d: tid %d (priority=%d,ticks=%lld,nrdy=%ld)\n", CPU->id, THREAD->tid, THREAD->priority, THREAD->ticks, atomic_get(&CPU->nrdy));
461
#endif  
461
#endif  
462
 
462
 
463
    /*
463
    /*
464
     * Some architectures provide late kernel PA2KA(identity)
464
     * Some architectures provide late kernel PA2KA(identity)
465
     * mapping in a page fault handler. However, the page fault
465
     * mapping in a page fault handler. However, the page fault
466
     * handler uses the kernel stack of the running thread and
466
     * handler uses the kernel stack of the running thread and
467
     * therefore cannot be used to map it. The kernel stack, if
467
     * therefore cannot be used to map it. The kernel stack, if
468
     * necessary, is to be mapped in before_thread_runs(). This
468
     * necessary, is to be mapped in before_thread_runs(). This
469
     * function must be executed before the switch to the new stack.
469
     * function must be executed before the switch to the new stack.
470
     */
470
     */
471
    before_thread_runs();
471
    before_thread_runs();
472
 
472
 
473
    /*
473
    /*
474
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
474
     * Copy the knowledge of CPU, TASK, THREAD and preemption counter to thread's stack.
475
     */
475
     */
476
    the_copy(THE, (the_t *) THREAD->kstack);
476
    the_copy(THE, (the_t *) THREAD->kstack);
477
   
477
   
478
    context_restore(&THREAD->saved_context);
478
    context_restore(&THREAD->saved_context);
479
    /* not reached */
479
    /* not reached */
480
}
480
}
481
 
481
 
482
#ifdef CONFIG_SMP
482
#ifdef CONFIG_SMP
483
/** Load balancing thread
483
/** Load balancing thread
484
 *
484
 *
485
 * SMP load balancing thread, supervising thread supplies
485
 * SMP load balancing thread, supervising thread supplies
486
 * for the CPU it's wired to.
486
 * for the CPU it's wired to.
487
 *
487
 *
488
 * @param arg Generic thread argument (unused).
488
 * @param arg Generic thread argument (unused).
489
 *
489
 *
490
 */
490
 */
491
void kcpulb(void *arg)
491
void kcpulb(void *arg)
492
{
492
{
493
    thread_t *t;
493
    thread_t *t;
494
    int count, average, i, j, k = 0;
494
    int count, average, i, j, k = 0;
495
    ipl_t ipl;
495
    ipl_t ipl;
496
 
496
 
497
loop:
497
loop:
498
    /*
498
    /*
499
     * Work in 1s intervals.
499
     * Work in 1s intervals.
500
     */
500
     */
501
    thread_sleep(1);
501
    thread_sleep(1);
502
 
502
 
503
not_satisfied:
503
not_satisfied:
504
    /*
504
    /*
505
     * Calculate the number of threads that will be migrated/stolen from
505
     * Calculate the number of threads that will be migrated/stolen from
506
     * other CPU's. Note that situation can have changed between two
506
     * other CPU's. Note that situation can have changed between two
507
     * passes. Each time get the most up to date counts.
507
     * passes. Each time get the most up to date counts.
508
     */
508
     */
509
    average = atomic_get(&nrdy) / config.cpu_active + 1;
509
    average = atomic_get(&nrdy) / config.cpu_active + 1;
510
    count = average - atomic_get(&CPU->nrdy);
510
    count = average - atomic_get(&CPU->nrdy);
511
 
511
 
512
    if (count <= 0)
512
    if (count <= 0)
513
        goto satisfied;
513
        goto satisfied;
514
 
514
 
515
    /*
515
    /*
516
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
516
     * Searching least priority queues on all CPU's first and most priority queues on all CPU's last.
517
     */
517
     */
518
    for (j=RQ_COUNT-1; j >= 0; j--) {
518
    for (j=RQ_COUNT-1; j >= 0; j--) {
519
        for (i=0; i < config.cpu_active; i++) {
519
        for (i=0; i < config.cpu_active; i++) {
520
            link_t *l;
520
            link_t *l;
521
            runq_t *r;
521
            runq_t *r;
522
            cpu_t *cpu;
522
            cpu_t *cpu;
523
 
523
 
524
            cpu = &cpus[(i + k) % config.cpu_active];
524
            cpu = &cpus[(i + k) % config.cpu_active];
525
 
525
 
526
            /*
526
            /*
527
             * Not interested in ourselves.
527
             * Not interested in ourselves.
528
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
528
             * Doesn't require interrupt disabling for kcpulb is X_WIRED.
529
             */
529
             */
530
            if (CPU == cpu)
530
            if (CPU == cpu)
531
                continue;
531
                continue;
532
            if (atomic_get(&cpu->nrdy) <= average)
532
            if (atomic_get(&cpu->nrdy) <= average)
533
                continue;
533
                continue;
534
 
534
 
535
            ipl = interrupts_disable();
535
            ipl = interrupts_disable();
536
            r = &cpu->rq[j];
536
            r = &cpu->rq[j];
537
            spinlock_lock(&r->lock);
537
            spinlock_lock(&r->lock);
538
            if (r->n == 0) {
538
            if (r->n == 0) {
539
                spinlock_unlock(&r->lock);
539
                spinlock_unlock(&r->lock);
540
                interrupts_restore(ipl);
540
                interrupts_restore(ipl);
541
                continue;
541
                continue;
542
            }
542
            }
543
       
543
       
544
            t = NULL;
544
            t = NULL;
545
            l = r->rq_head.prev;    /* search rq from the back */
545
            l = r->rq_head.prev;    /* search rq from the back */
546
            while (l != &r->rq_head) {
546
            while (l != &r->rq_head) {
547
                t = list_get_instance(l, thread_t, rq_link);
547
                t = list_get_instance(l, thread_t, rq_link);
548
                /*
548
                /*
549
                 * We don't want to steal CPU-wired threads neither threads already stolen.
549
                 * We don't want to steal CPU-wired threads neither threads already stolen.
550
                 * The latter prevents threads from migrating between CPU's without ever being run.
550
                 * The latter prevents threads from migrating between CPU's without ever being run.
551
                 * We don't want to steal threads whose FPU context is still in CPU.
551
                 * We don't want to steal threads whose FPU context is still in CPU.
552
                 */
552
                 */
553
                spinlock_lock(&t->lock);
553
                spinlock_lock(&t->lock);
554
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
554
                if ( (!(t->flags & (X_WIRED | X_STOLEN))) && (!(t->fpu_context_engaged)) ) {
555
                    /*
555
                    /*
556
                     * Remove t from r.
556
                     * Remove t from r.
557
                     */
557
                     */
558
                    spinlock_unlock(&t->lock);
558
                    spinlock_unlock(&t->lock);
559
                   
559
                   
560
                    atomic_dec(&cpu->nrdy);
560
                    atomic_dec(&cpu->nrdy);
561
                    atomic_dec(&nrdy);
561
                    atomic_dec(&nrdy);
562
 
562
 
563
                    r->n--;
563
                    r->n--;
564
                    list_remove(&t->rq_link);
564
                    list_remove(&t->rq_link);
565
 
565
 
566
                    break;
566
                    break;
567
                }
567
                }
568
                spinlock_unlock(&t->lock);
568
                spinlock_unlock(&t->lock);
569
                l = l->prev;
569
                l = l->prev;
570
                t = NULL;
570
                t = NULL;
571
            }
571
            }
572
            spinlock_unlock(&r->lock);
572
            spinlock_unlock(&r->lock);
573
 
573
 
574
            if (t) {
574
            if (t) {
575
                /*
575
                /*
576
                 * Ready t on local CPU
576
                 * Ready t on local CPU
577
                 */
577
                 */
578
                spinlock_lock(&t->lock);
578
                spinlock_lock(&t->lock);
579
#ifdef KCPULB_VERBOSE
579
#ifdef KCPULB_VERBOSE
580
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
580
                printf("kcpulb%d: TID %d -> cpu%d, nrdy=%ld, avg=%nd\n", CPU->id, t->tid, CPU->id, atomic_get(&CPU->nrdy), atomic_get(&nrdy) / config.cpu_active);
581
#endif
581
#endif
582
                t->flags |= X_STOLEN;
582
                t->flags |= X_STOLEN;
583
                t->state = Entering;
583
                t->state = Entering;
584
                spinlock_unlock(&t->lock);
584
                spinlock_unlock(&t->lock);
585
   
585
   
586
                thread_ready(t);
586
                thread_ready(t);
587
 
587
 
588
                interrupts_restore(ipl);
588
                interrupts_restore(ipl);
589
   
589
   
590
                if (--count == 0)
590
                if (--count == 0)
591
                    goto satisfied;
591
                    goto satisfied;
592
                   
592
                   
593
                /*
593
                /*
594
                 * We are not satisfied yet, focus on another CPU next time.
594
                 * We are not satisfied yet, focus on another CPU next time.
595
                 */
595
                 */
596
                k++;
596
                k++;
597
               
597
               
598
                continue;
598
                continue;
599
            }
599
            }
600
            interrupts_restore(ipl);
600
            interrupts_restore(ipl);
601
        }
601
        }
602
    }
602
    }
603
 
603
 
604
    if (atomic_get(&CPU->nrdy)) {
604
    if (atomic_get(&CPU->nrdy)) {
605
        /*
605
        /*
606
         * Be a little bit light-weight and let migrated threads run.
606
         * Be a little bit light-weight and let migrated threads run.
607
         */
607
         */
608
        scheduler();
608
        scheduler();
609
    } else {
609
    } else {
610
        /*
610
        /*
611
         * We failed to migrate a single thread.
611
         * We failed to migrate a single thread.
612
         * Give up this turn.
612
         * Give up this turn.
613
         */
613
         */
614
        goto loop;
614
        goto loop;
615
    }
615
    }
616
       
616
       
617
    goto not_satisfied;
617
    goto not_satisfied;
618
 
618
 
619
satisfied:
619
satisfied:
620
    goto loop;
620
    goto loop;
621
}
621
}
622
 
622
 
623
#endif /* CONFIG_SMP */
623
#endif /* CONFIG_SMP */
624
 
624
 
625
 
625
 
626
/** Print information about threads & scheduler queues */
626
/** Print information about threads & scheduler queues */
627
void sched_print_list(void)
627
void sched_print_list(void)
628
{
628
{
629
    ipl_t ipl;
629
    ipl_t ipl;
630
    int cpu,i;
630
    int cpu,i;
631
    runq_t *r;
631
    runq_t *r;
632
    thread_t *t;
632
    thread_t *t;
633
    link_t *cur;
633
    link_t *cur;
634
 
634
 
635
    /* We are going to mess with scheduler structures,
635
    /* We are going to mess with scheduler structures,
636
     * let's not be interrupted */
636
     * let's not be interrupted */
637
    ipl = interrupts_disable();
637
    ipl = interrupts_disable();
638
    for (cpu=0;cpu < config.cpu_count; cpu++) {
638
    for (cpu=0;cpu < config.cpu_count; cpu++) {
639
 
639
 
640
        if (!cpus[cpu].active)
640
        if (!cpus[cpu].active)
641
            continue;
641
            continue;
642
 
642
 
643
        spinlock_lock(&cpus[cpu].lock);
643
        spinlock_lock(&cpus[cpu].lock);
644
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
644
        printf("cpu%d: address=%p, nrdy=%ld, needs_relink=%ld\n",
645
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
645
               cpus[cpu].id, &cpus[cpu], atomic_get(&cpus[cpu].nrdy), cpus[cpu].needs_relink);
646
       
646
       
647
        for (i=0; i<RQ_COUNT; i++) {
647
        for (i=0; i<RQ_COUNT; i++) {
648
            r = &cpus[cpu].rq[i];
648
            r = &cpus[cpu].rq[i];
649
            spinlock_lock(&r->lock);
649
            spinlock_lock(&r->lock);
650
            if (!r->n) {
650
            if (!r->n) {
651
                spinlock_unlock(&r->lock);
651
                spinlock_unlock(&r->lock);
652
                continue;
652
                continue;
653
            }
653
            }
654
            printf("\trq[%d]: ", i);
654
            printf("\trq[%d]: ", i);
655
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
655
            for (cur=r->rq_head.next; cur!=&r->rq_head; cur=cur->next) {
656
                t = list_get_instance(cur, thread_t, rq_link);
656
                t = list_get_instance(cur, thread_t, rq_link);
657
                printf("%d(%s) ", t->tid,
657
                printf("%d(%s) ", t->tid,
658
                       thread_states[t->state]);
658
                       thread_states[t->state]);
659
            }
659
            }
660
            printf("\n");
660
            printf("\n");
661
            spinlock_unlock(&r->lock);
661
            spinlock_unlock(&r->lock);
662
        }
662
        }
663
        spinlock_unlock(&cpus[cpu].lock);
663
        spinlock_unlock(&cpus[cpu].lock);
664
    }
664
    }
665
   
665
   
666
    interrupts_restore(ipl);
666
    interrupts_restore(ipl);
667
}
667
}
668
 
668