Subversion Repositories HelenOS-historic

Rev

Rev 791 | Rev 822 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 791 Rev 814
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after OpenSolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after OpenSolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <adt/list.h>
96
#include <adt/list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
-
 
100
#include <mm/frame.h>
99
#include <mm/frame.h>
101
#include <config.h>
100
#include <config.h>
102
#include <print.h>
101
#include <print.h>
103
#include <arch.h>
102
#include <arch.h>
104
#include <panic.h>
103
#include <panic.h>
105
#include <debug.h>
104
#include <debug.h>
106
#include <bitops.h>
105
#include <bitops.h>
107
 
106
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
107
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
108
static LIST_INITIALIZE(slab_cache_list);
110
 
109
 
111
/** Magazine cache */
110
/** Magazine cache */
112
static slab_cache_t mag_cache;
111
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
112
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
113
static slab_cache_t slab_cache_cache;
115
/** Cache for external slab descriptors
114
/** Cache for external slab descriptors
116
 * This time we want per-cpu cache, so do not make it static
115
 * This time we want per-cpu cache, so do not make it static
117
 * - using SLAB for internal SLAB structures will not deadlock,
116
 * - using SLAB for internal SLAB structures will not deadlock,
118
 *   as all slab structures are 'small' - control structures of
117
 *   as all slab structures are 'small' - control structures of
119
 *   their caches do not require further allocation
118
 *   their caches do not require further allocation
120
 */
119
 */
121
static slab_cache_t *slab_extern_cache;
120
static slab_cache_t *slab_extern_cache;
122
/** Caches for malloc */
121
/** Caches for malloc */
123
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
122
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
124
char *malloc_names[] =  {
123
char *malloc_names[] =  {
125
    "malloc-16","malloc-32","malloc-64","malloc-128",
124
    "malloc-16","malloc-32","malloc-64","malloc-128",
126
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
125
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
127
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
126
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
128
    "malloc-64K","malloc-128K"
127
    "malloc-64K","malloc-128K"
129
};
128
};
130
 
129
 
131
/** Slab descriptor */
130
/** Slab descriptor */
132
typedef struct {
131
typedef struct {
133
    slab_cache_t *cache; /**< Pointer to parent cache */
132
    slab_cache_t *cache; /**< Pointer to parent cache */
134
    link_t link;       /* List of full/partial slabs */
133
    link_t link;       /* List of full/partial slabs */
135
    void *start;       /**< Start address of first available item */
134
    void *start;       /**< Start address of first available item */
136
    count_t available; /**< Count of available items in this slab */
135
    count_t available; /**< Count of available items in this slab */
137
    index_t nextavail; /**< The index of next available item */
136
    index_t nextavail; /**< The index of next available item */
138
}slab_t;
137
}slab_t;
139
 
138
 
140
#ifdef CONFIG_DEBUG
139
#ifdef CONFIG_DEBUG
141
static int _slab_initialized = 0;
140
static int _slab_initialized = 0;
142
#endif
141
#endif
143
 
142
 
144
/**************************************/
143
/**************************************/
145
/* SLAB allocation functions          */
144
/* SLAB allocation functions          */
146
 
145
 
147
/**
146
/**
148
 * Allocate frames for slab space and initialize
147
 * Allocate frames for slab space and initialize
149
 *
148
 *
150
 */
149
 */
151
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
150
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
152
{
151
{
153
    void *data;
152
    void *data;
154
    slab_t *slab;
153
    slab_t *slab;
155
    size_t fsize;
154
    size_t fsize;
156
    int i;
155
    int i;
157
    zone_t *zone = NULL;
-
 
158
    int status;
156
    int status;
159
    frame_t *frame;
157
    pfn_t pfn;
-
 
158
    int zone=0;
160
 
159
   
161
    data = (void *)frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
160
    pfn = frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
-
 
161
    data = (void *) PA2KA(PFN2ADDR(pfn));
162
    if (status != FRAME_OK) {
162
    if (status != FRAME_OK) {
163
        return NULL;
163
        return NULL;
164
    }
164
    }
165
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
165
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
166
        slab = slab_alloc(slab_extern_cache, flags);
166
        slab = slab_alloc(slab_extern_cache, flags);
167
        if (!slab) {
167
        if (!slab) {
168
            frame_free((__address)data);
168
            frame_free(ADDR2PFN(KA2PA(data)));
169
            return NULL;
169
            return NULL;
170
        }
170
        }
171
    } else {
171
    } else {
172
        fsize = (PAGE_SIZE << cache->order);
172
        fsize = (PAGE_SIZE << cache->order);
173
        slab = data + fsize - sizeof(*slab);
173
        slab = data + fsize - sizeof(*slab);
174
    }
174
    }
175
       
175
       
176
    /* Fill in slab structures */
176
    /* Fill in slab structures */
177
    /* TODO: some better way of accessing the frame */
-
 
178
    for (i=0; i < (1 << cache->order); i++) {
177
    for (i=0; i < (1 << cache->order); i++)
179
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
-
 
180
        frame->parent = slab;
178
        frame_set_parent(pfn+i, slab, zone);
181
    }
-
 
182
 
179
 
183
    slab->start = data;
180
    slab->start = data;
184
    slab->available = cache->objects;
181
    slab->available = cache->objects;
185
    slab->nextavail = 0;
182
    slab->nextavail = 0;
186
    slab->cache = cache;
183
    slab->cache = cache;
187
 
184
 
188
    for (i=0; i<cache->objects;i++)
185
    for (i=0; i<cache->objects;i++)
189
        *((int *) (slab->start + i*cache->size)) = i+1;
186
        *((int *) (slab->start + i*cache->size)) = i+1;
190
 
187
 
191
    atomic_inc(&cache->allocated_slabs);
188
    atomic_inc(&cache->allocated_slabs);
192
    return slab;
189
    return slab;
193
}
190
}
194
 
191
 
195
/**
192
/**
196
 * Deallocate space associated with SLAB
193
 * Deallocate space associated with SLAB
197
 *
194
 *
198
 * @return number of freed frames
195
 * @return number of freed frames
199
 */
196
 */
200
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
201
{
198
{
202
    frame_free((__address)slab->start);
199
    frame_free(ADDR2PFN(KA2PA(slab->start)));
203
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
204
        slab_free(slab_extern_cache, slab);
201
        slab_free(slab_extern_cache, slab);
205
 
202
 
206
    atomic_dec(&cache->allocated_slabs);
203
    atomic_dec(&cache->allocated_slabs);
207
   
204
   
208
    return 1 << cache->order;
205
    return 1 << cache->order;
209
}
206
}
210
 
207
 
211
/** Map object to slab structure */
208
/** Map object to slab structure */
212
static slab_t * obj2slab(void *obj)
209
static slab_t * obj2slab(void *obj)
213
{
210
{
214
    frame_t *frame;
-
 
215
 
-
 
216
    frame = frame_addr2frame((__address)obj);
-
 
217
    return (slab_t *)frame->parent;
211
    return (slab_t *)frame_get_parent(ADDR2PFN(KA2PA(obj)), 0);
218
}
212
}
219
 
213
 
220
/**************************************/
214
/**************************************/
221
/* SLAB functions */
215
/* SLAB functions */
222
 
216
 
223
 
217
 
224
/**
218
/**
225
 * Return object to slab and call a destructor
219
 * Return object to slab and call a destructor
226
 *
220
 *
227
 * @param slab If the caller knows directly slab of the object, otherwise NULL
221
 * @param slab If the caller knows directly slab of the object, otherwise NULL
228
 *
222
 *
229
 * @return Number of freed pages
223
 * @return Number of freed pages
230
 */
224
 */
231
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
225
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
232
                slab_t *slab)
226
                slab_t *slab)
233
{
227
{
234
    int freed = 0;
228
    int freed = 0;
235
 
229
 
236
    if (!slab)
230
    if (!slab)
237
        slab = obj2slab(obj);
231
        slab = obj2slab(obj);
238
 
232
 
239
    ASSERT(slab->cache == cache);
233
    ASSERT(slab->cache == cache);
240
 
234
 
241
    if (cache->destructor)
235
    if (cache->destructor)
242
        freed = cache->destructor(obj);
236
        freed = cache->destructor(obj);
243
   
237
   
244
    spinlock_lock(&cache->slablock);
238
    spinlock_lock(&cache->slablock);
245
    ASSERT(slab->available < cache->objects);
239
    ASSERT(slab->available < cache->objects);
246
 
240
 
247
    *((int *)obj) = slab->nextavail;
241
    *((int *)obj) = slab->nextavail;
248
    slab->nextavail = (obj - slab->start)/cache->size;
242
    slab->nextavail = (obj - slab->start)/cache->size;
249
    slab->available++;
243
    slab->available++;
250
 
244
 
251
    /* Move it to correct list */
245
    /* Move it to correct list */
252
    if (slab->available == cache->objects) {
246
    if (slab->available == cache->objects) {
253
        /* Free associated memory */
247
        /* Free associated memory */
254
        list_remove(&slab->link);
248
        list_remove(&slab->link);
255
        spinlock_unlock(&cache->slablock);
249
        spinlock_unlock(&cache->slablock);
256
 
250
 
257
        return freed + slab_space_free(cache, slab);
251
        return freed + slab_space_free(cache, slab);
258
 
252
 
259
    } else if (slab->available == 1) {
253
    } else if (slab->available == 1) {
260
        /* It was in full, move to partial */
254
        /* It was in full, move to partial */
261
        list_remove(&slab->link);
255
        list_remove(&slab->link);
262
        list_prepend(&slab->link, &cache->partial_slabs);
256
        list_prepend(&slab->link, &cache->partial_slabs);
263
    }
257
    }
264
    spinlock_unlock(&cache->slablock);
258
    spinlock_unlock(&cache->slablock);
265
    return freed;
259
    return freed;
266
}
260
}
267
 
261
 
268
/**
262
/**
269
 * Take new object from slab or create new if needed
263
 * Take new object from slab or create new if needed
270
 *
264
 *
271
 * @return Object address or null
265
 * @return Object address or null
272
 */
266
 */
273
static void * slab_obj_create(slab_cache_t *cache, int flags)
267
static void * slab_obj_create(slab_cache_t *cache, int flags)
274
{
268
{
275
    slab_t *slab;
269
    slab_t *slab;
276
    void *obj;
270
    void *obj;
277
 
271
 
278
    spinlock_lock(&cache->slablock);
272
    spinlock_lock(&cache->slablock);
279
 
273
 
280
    if (list_empty(&cache->partial_slabs)) {
274
    if (list_empty(&cache->partial_slabs)) {
281
        /* Allow recursion and reclaiming
275
        /* Allow recursion and reclaiming
282
         * - this should work, as the SLAB control structures
276
         * - this should work, as the SLAB control structures
283
         *   are small and do not need to allocte with anything
277
         *   are small and do not need to allocte with anything
284
         *   other ten frame_alloc when they are allocating,
278
         *   other ten frame_alloc when they are allocating,
285
         *   that's why we should get recursion at most 1-level deep
279
         *   that's why we should get recursion at most 1-level deep
286
         */
280
         */
287
        spinlock_unlock(&cache->slablock);
281
        spinlock_unlock(&cache->slablock);
288
        slab = slab_space_alloc(cache, flags);
282
        slab = slab_space_alloc(cache, flags);
289
        if (!slab)
283
        if (!slab)
290
            return NULL;
284
            return NULL;
291
        spinlock_lock(&cache->slablock);
285
        spinlock_lock(&cache->slablock);
292
    } else {
286
    } else {
293
        slab = list_get_instance(cache->partial_slabs.next,
287
        slab = list_get_instance(cache->partial_slabs.next,
294
                     slab_t,
288
                     slab_t,
295
                     link);
289
                     link);
296
        list_remove(&slab->link);
290
        list_remove(&slab->link);
297
    }
291
    }
298
    obj = slab->start + slab->nextavail * cache->size;
292
    obj = slab->start + slab->nextavail * cache->size;
299
    slab->nextavail = *((int *)obj);
293
    slab->nextavail = *((int *)obj);
300
    slab->available--;
294
    slab->available--;
301
 
295
 
302
    if (! slab->available)
296
    if (! slab->available)
303
        list_prepend(&slab->link, &cache->full_slabs);
297
        list_prepend(&slab->link, &cache->full_slabs);
304
    else
298
    else
305
        list_prepend(&slab->link, &cache->partial_slabs);
299
        list_prepend(&slab->link, &cache->partial_slabs);
306
 
300
 
307
    spinlock_unlock(&cache->slablock);
301
    spinlock_unlock(&cache->slablock);
308
 
302
 
309
    if (cache->constructor && cache->constructor(obj, flags)) {
303
    if (cache->constructor && cache->constructor(obj, flags)) {
310
        /* Bad, bad, construction failed */
304
        /* Bad, bad, construction failed */
311
        slab_obj_destroy(cache, obj, slab);
305
        slab_obj_destroy(cache, obj, slab);
312
        return NULL;
306
        return NULL;
313
    }
307
    }
314
    return obj;
308
    return obj;
315
}
309
}
316
 
310
 
317
/**************************************/
311
/**************************************/
318
/* CPU-Cache slab functions */
312
/* CPU-Cache slab functions */
319
 
313
 
320
/**
314
/**
321
 * Finds a full magazine in cache, takes it from list
315
 * Finds a full magazine in cache, takes it from list
322
 * and returns it
316
 * and returns it
323
 *
317
 *
324
 * @param first If true, return first, else last mag
318
 * @param first If true, return first, else last mag
325
 */
319
 */
326
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
320
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
327
                        int first)
321
                        int first)
328
{
322
{
329
    slab_magazine_t *mag = NULL;
323
    slab_magazine_t *mag = NULL;
330
    link_t *cur;
324
    link_t *cur;
331
 
325
 
332
    spinlock_lock(&cache->maglock);
326
    spinlock_lock(&cache->maglock);
333
    if (!list_empty(&cache->magazines)) {
327
    if (!list_empty(&cache->magazines)) {
334
        if (first)
328
        if (first)
335
            cur = cache->magazines.next;
329
            cur = cache->magazines.next;
336
        else
330
        else
337
            cur = cache->magazines.prev;
331
            cur = cache->magazines.prev;
338
        mag = list_get_instance(cur, slab_magazine_t, link);
332
        mag = list_get_instance(cur, slab_magazine_t, link);
339
        list_remove(&mag->link);
333
        list_remove(&mag->link);
340
        atomic_dec(&cache->magazine_counter);
334
        atomic_dec(&cache->magazine_counter);
341
    }
335
    }
342
    spinlock_unlock(&cache->maglock);
336
    spinlock_unlock(&cache->maglock);
343
    return mag;
337
    return mag;
344
}
338
}
345
 
339
 
346
/** Prepend magazine to magazine list in cache */
340
/** Prepend magazine to magazine list in cache */
347
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
341
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
348
{
342
{
349
    spinlock_lock(&cache->maglock);
343
    spinlock_lock(&cache->maglock);
350
 
344
 
351
    list_prepend(&mag->link, &cache->magazines);
345
    list_prepend(&mag->link, &cache->magazines);
352
    atomic_inc(&cache->magazine_counter);
346
    atomic_inc(&cache->magazine_counter);
353
   
347
   
354
    spinlock_unlock(&cache->maglock);
348
    spinlock_unlock(&cache->maglock);
355
}
349
}
356
 
350
 
357
/**
351
/**
358
 * Free all objects in magazine and free memory associated with magazine
352
 * Free all objects in magazine and free memory associated with magazine
359
 *
353
 *
360
 * @return Number of freed pages
354
 * @return Number of freed pages
361
 */
355
 */
362
static count_t magazine_destroy(slab_cache_t *cache,
356
static count_t magazine_destroy(slab_cache_t *cache,
363
                slab_magazine_t *mag)
357
                slab_magazine_t *mag)
364
{
358
{
365
    int i;
359
    int i;
366
    count_t frames = 0;
360
    count_t frames = 0;
367
 
361
 
368
    for (i=0;i < mag->busy; i++) {
362
    for (i=0;i < mag->busy; i++) {
369
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
363
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
370
        atomic_dec(&cache->cached_objs);
364
        atomic_dec(&cache->cached_objs);
371
    }
365
    }
372
   
366
   
373
    slab_free(&mag_cache, mag);
367
    slab_free(&mag_cache, mag);
374
 
368
 
375
    return frames;
369
    return frames;
376
}
370
}
377
 
371
 
378
/**
372
/**
379
 * Find full magazine, set it as current and return it
373
 * Find full magazine, set it as current and return it
380
 *
374
 *
381
 * Assume cpu_magazine lock is held
375
 * Assume cpu_magazine lock is held
382
 */
376
 */
383
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
377
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
384
{
378
{
385
    slab_magazine_t *cmag, *lastmag, *newmag;
379
    slab_magazine_t *cmag, *lastmag, *newmag;
386
 
380
 
387
    cmag = cache->mag_cache[CPU->id].current;
381
    cmag = cache->mag_cache[CPU->id].current;
388
    lastmag = cache->mag_cache[CPU->id].last;
382
    lastmag = cache->mag_cache[CPU->id].last;
389
    if (cmag) { /* First try local CPU magazines */
383
    if (cmag) { /* First try local CPU magazines */
390
        if (cmag->busy)
384
        if (cmag->busy)
391
            return cmag;
385
            return cmag;
392
 
386
 
393
        if (lastmag && lastmag->busy) {
387
        if (lastmag && lastmag->busy) {
394
            cache->mag_cache[CPU->id].current = lastmag;
388
            cache->mag_cache[CPU->id].current = lastmag;
395
            cache->mag_cache[CPU->id].last = cmag;
389
            cache->mag_cache[CPU->id].last = cmag;
396
            return lastmag;
390
            return lastmag;
397
        }
391
        }
398
    }
392
    }
399
    /* Local magazines are empty, import one from magazine list */
393
    /* Local magazines are empty, import one from magazine list */
400
    newmag = get_mag_from_cache(cache, 1);
394
    newmag = get_mag_from_cache(cache, 1);
401
    if (!newmag)
395
    if (!newmag)
402
        return NULL;
396
        return NULL;
403
 
397
 
404
    if (lastmag)
398
    if (lastmag)
405
        magazine_destroy(cache, lastmag);
399
        magazine_destroy(cache, lastmag);
406
 
400
 
407
    cache->mag_cache[CPU->id].last = cmag;
401
    cache->mag_cache[CPU->id].last = cmag;
408
    cache->mag_cache[CPU->id].current = newmag;
402
    cache->mag_cache[CPU->id].current = newmag;
409
    return newmag;
403
    return newmag;
410
}
404
}
411
 
405
 
412
/**
406
/**
413
 * Try to find object in CPU-cache magazines
407
 * Try to find object in CPU-cache magazines
414
 *
408
 *
415
 * @return Pointer to object or NULL if not available
409
 * @return Pointer to object or NULL if not available
416
 */
410
 */
417
static void * magazine_obj_get(slab_cache_t *cache)
411
static void * magazine_obj_get(slab_cache_t *cache)
418
{
412
{
419
    slab_magazine_t *mag;
413
    slab_magazine_t *mag;
420
    void *obj;
414
    void *obj;
421
 
415
 
422
    if (!CPU)
416
    if (!CPU)
423
        return NULL;
417
        return NULL;
424
 
418
 
425
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
419
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
426
 
420
 
427
    mag = get_full_current_mag(cache);
421
    mag = get_full_current_mag(cache);
428
    if (!mag) {
422
    if (!mag) {
429
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
423
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
430
        return NULL;
424
        return NULL;
431
    }
425
    }
432
    obj = mag->objs[--mag->busy];
426
    obj = mag->objs[--mag->busy];
433
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
427
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
434
    atomic_dec(&cache->cached_objs);
428
    atomic_dec(&cache->cached_objs);
435
   
429
   
436
    return obj;
430
    return obj;
437
}
431
}
438
 
432
 
439
/**
433
/**
440
 * Assure that the current magazine is empty, return pointer to it, or NULL if
434
 * Assure that the current magazine is empty, return pointer to it, or NULL if
441
 * no empty magazine is available and cannot be allocated
435
 * no empty magazine is available and cannot be allocated
442
 *
436
 *
443
 * Assume mag_cache[CPU->id].lock is held
437
 * Assume mag_cache[CPU->id].lock is held
444
 *
438
 *
445
 * We have 2 magazines bound to processor.
439
 * We have 2 magazines bound to processor.
446
 * First try the current.
440
 * First try the current.
447
 *  If full, try the last.
441
 *  If full, try the last.
448
 *   If full, put to magazines list.
442
 *   If full, put to magazines list.
449
 *   allocate new, exchange last & current
443
 *   allocate new, exchange last & current
450
 *
444
 *
451
 */
445
 */
452
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
446
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
453
{
447
{
454
    slab_magazine_t *cmag,*lastmag,*newmag;
448
    slab_magazine_t *cmag,*lastmag,*newmag;
455
 
449
 
456
    cmag = cache->mag_cache[CPU->id].current;
450
    cmag = cache->mag_cache[CPU->id].current;
457
    lastmag = cache->mag_cache[CPU->id].last;
451
    lastmag = cache->mag_cache[CPU->id].last;
458
 
452
 
459
    if (cmag) {
453
    if (cmag) {
460
        if (cmag->busy < cmag->size)
454
        if (cmag->busy < cmag->size)
461
            return cmag;
455
            return cmag;
462
        if (lastmag && lastmag->busy < lastmag->size) {
456
        if (lastmag && lastmag->busy < lastmag->size) {
463
            cache->mag_cache[CPU->id].last = cmag;
457
            cache->mag_cache[CPU->id].last = cmag;
464
            cache->mag_cache[CPU->id].current = lastmag;
458
            cache->mag_cache[CPU->id].current = lastmag;
465
            return lastmag;
459
            return lastmag;
466
        }
460
        }
467
    }
461
    }
468
    /* current | last are full | nonexistent, allocate new */
462
    /* current | last are full | nonexistent, allocate new */
469
    /* We do not want to sleep just because of caching */
463
    /* We do not want to sleep just because of caching */
470
    /* Especially we do not want reclaiming to start, as
464
    /* Especially we do not want reclaiming to start, as
471
     * this would deadlock */
465
     * this would deadlock */
472
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
466
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
473
    if (!newmag)
467
    if (!newmag)
474
        return NULL;
468
        return NULL;
475
    newmag->size = SLAB_MAG_SIZE;
469
    newmag->size = SLAB_MAG_SIZE;
476
    newmag->busy = 0;
470
    newmag->busy = 0;
477
 
471
 
478
    /* Flush last to magazine list */
472
    /* Flush last to magazine list */
479
    if (lastmag)
473
    if (lastmag)
480
        put_mag_to_cache(cache, lastmag);
474
        put_mag_to_cache(cache, lastmag);
481
 
475
 
482
    /* Move current as last, save new as current */
476
    /* Move current as last, save new as current */
483
    cache->mag_cache[CPU->id].last = cmag; 
477
    cache->mag_cache[CPU->id].last = cmag; 
484
    cache->mag_cache[CPU->id].current = newmag;
478
    cache->mag_cache[CPU->id].current = newmag;
485
 
479
 
486
    return newmag;
480
    return newmag;
487
}
481
}
488
 
482
 
489
/**
483
/**
490
 * Put object into CPU-cache magazine
484
 * Put object into CPU-cache magazine
491
 *
485
 *
492
 * @return 0 - success, -1 - could not get memory
486
 * @return 0 - success, -1 - could not get memory
493
 */
487
 */
494
static int magazine_obj_put(slab_cache_t *cache, void *obj)
488
static int magazine_obj_put(slab_cache_t *cache, void *obj)
495
{
489
{
496
    slab_magazine_t *mag;
490
    slab_magazine_t *mag;
497
 
491
 
498
    if (!CPU)
492
    if (!CPU)
499
        return -1;
493
        return -1;
500
 
494
 
501
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
495
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
502
 
496
 
503
    mag = make_empty_current_mag(cache);
497
    mag = make_empty_current_mag(cache);
504
    if (!mag) {
498
    if (!mag) {
505
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
499
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
506
        return -1;
500
        return -1;
507
    }
501
    }
508
   
502
   
509
    mag->objs[mag->busy++] = obj;
503
    mag->objs[mag->busy++] = obj;
510
 
504
 
511
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
505
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
512
    atomic_inc(&cache->cached_objs);
506
    atomic_inc(&cache->cached_objs);
513
    return 0;
507
    return 0;
514
}
508
}
515
 
509
 
516
 
510
 
517
/**************************************/
511
/**************************************/
518
/* SLAB CACHE functions */
512
/* SLAB CACHE functions */
519
 
513
 
520
/** Return number of objects that fit in certain cache size */
514
/** Return number of objects that fit in certain cache size */
521
static int comp_objects(slab_cache_t *cache)
515
static int comp_objects(slab_cache_t *cache)
522
{
516
{
523
    if (cache->flags & SLAB_CACHE_SLINSIDE)
517
    if (cache->flags & SLAB_CACHE_SLINSIDE)
524
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
518
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
525
    else
519
    else
526
        return (PAGE_SIZE << cache->order) / cache->size;
520
        return (PAGE_SIZE << cache->order) / cache->size;
527
}
521
}
528
 
522
 
529
/** Return wasted space in slab */
523
/** Return wasted space in slab */
530
static int badness(slab_cache_t *cache)
524
static int badness(slab_cache_t *cache)
531
{
525
{
532
    int objects;
526
    int objects;
533
    int ssize;
527
    int ssize;
534
 
528
 
535
    objects = comp_objects(cache);
529
    objects = comp_objects(cache);
536
    ssize = PAGE_SIZE << cache->order;
530
    ssize = PAGE_SIZE << cache->order;
537
    if (cache->flags & SLAB_CACHE_SLINSIDE)
531
    if (cache->flags & SLAB_CACHE_SLINSIDE)
538
        ssize -= sizeof(slab_t);
532
        ssize -= sizeof(slab_t);
539
    return ssize - objects*cache->size;
533
    return ssize - objects*cache->size;
540
}
534
}
541
 
535
 
542
/**
536
/**
543
 * Initialize mag_cache structure in slab cache
537
 * Initialize mag_cache structure in slab cache
544
 */
538
 */
545
static void make_magcache(slab_cache_t *cache)
539
static void make_magcache(slab_cache_t *cache)
546
{
540
{
547
    int i;
541
    int i;
548
   
542
   
549
    ASSERT(_slab_initialized >= 2);
543
    ASSERT(_slab_initialized >= 2);
550
 
544
 
551
    cache->mag_cache = kalloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
545
    cache->mag_cache = kalloc(sizeof(slab_mag_cache_t)*config.cpu_count,0);
552
    for (i=0; i < config.cpu_count; i++) {
546
    for (i=0; i < config.cpu_count; i++) {
553
        memsetb((__address)&cache->mag_cache[i],
547
        memsetb((__address)&cache->mag_cache[i],
554
            sizeof(cache->mag_cache[i]), 0);
548
            sizeof(cache->mag_cache[i]), 0);
555
        spinlock_initialize(&cache->mag_cache[i].lock,
549
        spinlock_initialize(&cache->mag_cache[i].lock,
556
                    "slab_maglock_cpu");
550
                    "slab_maglock_cpu");
557
    }
551
    }
558
}
552
}
559
 
553
 
560
/** Initialize allocated memory as a slab cache */
554
/** Initialize allocated memory as a slab cache */
561
static void
555
static void
562
_slab_cache_create(slab_cache_t *cache,
556
_slab_cache_create(slab_cache_t *cache,
563
           char *name,
557
           char *name,
564
           size_t size,
558
           size_t size,
565
           size_t align,
559
           size_t align,
566
           int (*constructor)(void *obj, int kmflag),
560
           int (*constructor)(void *obj, int kmflag),
567
           int (*destructor)(void *obj),
561
           int (*destructor)(void *obj),
568
           int flags)
562
           int flags)
569
{
563
{
570
    int pages;
564
    int pages;
571
    ipl_t ipl;
565
    ipl_t ipl;
572
 
566
 
573
    memsetb((__address)cache, sizeof(*cache), 0);
567
    memsetb((__address)cache, sizeof(*cache), 0);
574
    cache->name = name;
568
    cache->name = name;
575
 
569
 
576
    if (align < sizeof(__native))
570
    if (align < sizeof(__native))
577
        align = sizeof(__native);
571
        align = sizeof(__native);
578
    size = ALIGN_UP(size, align);
572
    size = ALIGN_UP(size, align);
579
       
573
       
580
    cache->size = size;
574
    cache->size = size;
581
 
575
 
582
    cache->constructor = constructor;
576
    cache->constructor = constructor;
583
    cache->destructor = destructor;
577
    cache->destructor = destructor;
584
    cache->flags = flags;
578
    cache->flags = flags;
585
 
579
 
586
    list_initialize(&cache->full_slabs);
580
    list_initialize(&cache->full_slabs);
587
    list_initialize(&cache->partial_slabs);
581
    list_initialize(&cache->partial_slabs);
588
    list_initialize(&cache->magazines);
582
    list_initialize(&cache->magazines);
589
    spinlock_initialize(&cache->slablock, "slab_lock");
583
    spinlock_initialize(&cache->slablock, "slab_lock");
590
    spinlock_initialize(&cache->maglock, "slab_maglock");
584
    spinlock_initialize(&cache->maglock, "slab_maglock");
591
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
585
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
592
        make_magcache(cache);
586
        make_magcache(cache);
593
 
587
 
594
    /* Compute slab sizes, object counts in slabs etc. */
588
    /* Compute slab sizes, object counts in slabs etc. */
595
    if (cache->size < SLAB_INSIDE_SIZE)
589
    if (cache->size < SLAB_INSIDE_SIZE)
596
        cache->flags |= SLAB_CACHE_SLINSIDE;
590
        cache->flags |= SLAB_CACHE_SLINSIDE;
597
 
591
 
598
    /* Minimum slab order */
592
    /* Minimum slab order */
599
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
593
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
600
    cache->order = fnzb(pages);
594
    cache->order = fnzb(pages);
601
 
595
 
602
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
596
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
603
        cache->order += 1;
597
        cache->order += 1;
604
    }
598
    }
605
    cache->objects = comp_objects(cache);
599
    cache->objects = comp_objects(cache);
606
    /* If info fits in, put it inside */
600
    /* If info fits in, put it inside */
607
    if (badness(cache) > sizeof(slab_t))
601
    if (badness(cache) > sizeof(slab_t))
608
        cache->flags |= SLAB_CACHE_SLINSIDE;
602
        cache->flags |= SLAB_CACHE_SLINSIDE;
609
 
603
 
610
    /* Add cache to cache list */
604
    /* Add cache to cache list */
611
    ipl = interrupts_disable();
605
    ipl = interrupts_disable();
612
    spinlock_lock(&slab_cache_lock);
606
    spinlock_lock(&slab_cache_lock);
613
 
607
 
614
    list_append(&cache->link, &slab_cache_list);
608
    list_append(&cache->link, &slab_cache_list);
615
 
609
 
616
    spinlock_unlock(&slab_cache_lock);
610
    spinlock_unlock(&slab_cache_lock);
617
    interrupts_restore(ipl);
611
    interrupts_restore(ipl);
618
}
612
}
619
 
613
 
620
/** Create slab cache  */
614
/** Create slab cache  */
621
slab_cache_t * slab_cache_create(char *name,
615
slab_cache_t * slab_cache_create(char *name,
622
                 size_t size,
616
                 size_t size,
623
                 size_t align,
617
                 size_t align,
624
                 int (*constructor)(void *obj, int kmflag),
618
                 int (*constructor)(void *obj, int kmflag),
625
                 int (*destructor)(void *obj),
619
                 int (*destructor)(void *obj),
626
                 int flags)
620
                 int flags)
627
{
621
{
628
    slab_cache_t *cache;
622
    slab_cache_t *cache;
629
 
623
 
630
    cache = slab_alloc(&slab_cache_cache, 0);
624
    cache = slab_alloc(&slab_cache_cache, 0);
631
    _slab_cache_create(cache, name, size, align, constructor, destructor,
625
    _slab_cache_create(cache, name, size, align, constructor, destructor,
632
               flags);
626
               flags);
633
    return cache;
627
    return cache;
634
}
628
}
635
 
629
 
636
/**
630
/**
637
 * Reclaim space occupied by objects that are already free
631
 * Reclaim space occupied by objects that are already free
638
 *
632
 *
639
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
633
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
640
 * @return Number of freed pages
634
 * @return Number of freed pages
641
 */
635
 */
642
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
636
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
643
{
637
{
644
    int i;
638
    int i;
645
    slab_magazine_t *mag;
639
    slab_magazine_t *mag;
646
    count_t frames = 0;
640
    count_t frames = 0;
647
    int magcount;
641
    int magcount;
648
   
642
   
649
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
643
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
650
        return 0; /* Nothing to do */
644
        return 0; /* Nothing to do */
651
 
645
 
652
    /* We count up to original magazine count to avoid
646
    /* We count up to original magazine count to avoid
653
     * endless loop
647
     * endless loop
654
     */
648
     */
655
    magcount = atomic_get(&cache->magazine_counter);
649
    magcount = atomic_get(&cache->magazine_counter);
656
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
650
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
657
        frames += magazine_destroy(cache,mag);
651
        frames += magazine_destroy(cache,mag);
658
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
652
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
659
            break;
653
            break;
660
    }
654
    }
661
   
655
   
662
    if (flags & SLAB_RECLAIM_ALL) {
656
    if (flags & SLAB_RECLAIM_ALL) {
663
        /* Free cpu-bound magazines */
657
        /* Free cpu-bound magazines */
664
        /* Destroy CPU magazines */
658
        /* Destroy CPU magazines */
665
        for (i=0; i<config.cpu_count; i++) {
659
        for (i=0; i<config.cpu_count; i++) {
666
            spinlock_lock(&cache->mag_cache[i].lock);
660
            spinlock_lock(&cache->mag_cache[i].lock);
667
 
661
 
668
            mag = cache->mag_cache[i].current;
662
            mag = cache->mag_cache[i].current;
669
            if (mag)
663
            if (mag)
670
                frames += magazine_destroy(cache, mag);
664
                frames += magazine_destroy(cache, mag);
671
            cache->mag_cache[i].current = NULL;
665
            cache->mag_cache[i].current = NULL;
672
           
666
           
673
            mag = cache->mag_cache[i].last;
667
            mag = cache->mag_cache[i].last;
674
            if (mag)
668
            if (mag)
675
                frames += magazine_destroy(cache, mag);
669
                frames += magazine_destroy(cache, mag);
676
            cache->mag_cache[i].last = NULL;
670
            cache->mag_cache[i].last = NULL;
677
 
671
 
678
            spinlock_unlock(&cache->mag_cache[i].lock);
672
            spinlock_unlock(&cache->mag_cache[i].lock);
679
        }
673
        }
680
    }
674
    }
681
 
675
 
682
    return frames;
676
    return frames;
683
}
677
}
684
 
678
 
685
/** Check that there are no slabs and remove cache from system  */
679
/** Check that there are no slabs and remove cache from system  */
686
void slab_cache_destroy(slab_cache_t *cache)
680
void slab_cache_destroy(slab_cache_t *cache)
687
{
681
{
688
    ipl_t ipl;
682
    ipl_t ipl;
689
 
683
 
690
    /* First remove cache from link, so that we don't need
684
    /* First remove cache from link, so that we don't need
691
     * to disable interrupts later
685
     * to disable interrupts later
692
     */
686
     */
693
 
687
 
694
    ipl = interrupts_disable();
688
    ipl = interrupts_disable();
695
    spinlock_lock(&slab_cache_lock);
689
    spinlock_lock(&slab_cache_lock);
696
 
690
 
697
    list_remove(&cache->link);
691
    list_remove(&cache->link);
698
 
692
 
699
    spinlock_unlock(&slab_cache_lock);
693
    spinlock_unlock(&slab_cache_lock);
700
    interrupts_restore(ipl);
694
    interrupts_restore(ipl);
701
 
695
 
702
    /* Do not lock anything, we assume the software is correct and
696
    /* Do not lock anything, we assume the software is correct and
703
     * does not touch the cache when it decides to destroy it */
697
     * does not touch the cache when it decides to destroy it */
704
   
698
   
705
    /* Destroy all magazines */
699
    /* Destroy all magazines */
706
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
700
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
707
 
701
 
708
    /* All slabs must be empty */
702
    /* All slabs must be empty */
709
    if (!list_empty(&cache->full_slabs) \
703
    if (!list_empty(&cache->full_slabs) \
710
        || !list_empty(&cache->partial_slabs))
704
        || !list_empty(&cache->partial_slabs))
711
        panic("Destroying cache that is not empty.");
705
        panic("Destroying cache that is not empty.");
712
 
706
 
713
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
707
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
714
        kfree(cache->mag_cache);
708
        kfree(cache->mag_cache);
715
    slab_free(&slab_cache_cache, cache);
709
    slab_free(&slab_cache_cache, cache);
716
}
710
}
717
 
711
 
718
/** Allocate new object from cache - if no flags given, always returns
712
/** Allocate new object from cache - if no flags given, always returns
719
    memory */
713
    memory */
720
void * slab_alloc(slab_cache_t *cache, int flags)
714
void * slab_alloc(slab_cache_t *cache, int flags)
721
{
715
{
722
    ipl_t ipl;
716
    ipl_t ipl;
723
    void *result = NULL;
717
    void *result = NULL;
724
   
718
   
725
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
719
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
726
    ipl = interrupts_disable();
720
    ipl = interrupts_disable();
727
 
721
 
728
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
722
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE)) {
729
        result = magazine_obj_get(cache);
723
        result = magazine_obj_get(cache);
-
 
724
    }
730
    if (!result)
725
    if (!result)
731
        result = slab_obj_create(cache, flags);
726
        result = slab_obj_create(cache, flags);
732
 
727
 
733
    interrupts_restore(ipl);
728
    interrupts_restore(ipl);
734
 
729
 
735
    if (result)
730
    if (result)
736
        atomic_inc(&cache->allocated_objs);
731
        atomic_inc(&cache->allocated_objs);
737
 
732
 
738
    return result;
733
    return result;
739
}
734
}
740
 
735
 
741
/** Return object to cache, use slab if known  */
736
/** Return object to cache, use slab if known  */
742
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
737
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
743
{
738
{
744
    ipl_t ipl;
739
    ipl_t ipl;
745
 
740
 
746
    ipl = interrupts_disable();
741
    ipl = interrupts_disable();
747
 
742
 
748
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
743
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
749
        || magazine_obj_put(cache, obj)) {
744
        || magazine_obj_put(cache, obj)) {
750
 
745
 
751
        slab_obj_destroy(cache, obj, slab);
746
        slab_obj_destroy(cache, obj, slab);
752
 
747
 
753
    }
748
    }
754
    interrupts_restore(ipl);
749
    interrupts_restore(ipl);
755
    atomic_dec(&cache->allocated_objs);
750
    atomic_dec(&cache->allocated_objs);
756
}
751
}
757
 
752
 
758
/** Return slab object to cache */
753
/** Return slab object to cache */
759
void slab_free(slab_cache_t *cache, void *obj)
754
void slab_free(slab_cache_t *cache, void *obj)
760
{
755
{
761
    _slab_free(cache,obj,NULL);
756
    _slab_free(cache,obj,NULL);
762
}
757
}
763
 
758
 
764
/* Go through all caches and reclaim what is possible */
759
/* Go through all caches and reclaim what is possible */
765
count_t slab_reclaim(int flags)
760
count_t slab_reclaim(int flags)
766
{
761
{
767
    slab_cache_t *cache;
762
    slab_cache_t *cache;
768
    link_t *cur;
763
    link_t *cur;
769
    count_t frames = 0;
764
    count_t frames = 0;
770
 
765
 
771
    spinlock_lock(&slab_cache_lock);
766
    spinlock_lock(&slab_cache_lock);
772
 
767
 
773
    /* TODO: Add assert, that interrupts are disabled, otherwise
768
    /* TODO: Add assert, that interrupts are disabled, otherwise
774
     * memory allocation from interrupts can deadlock.
769
     * memory allocation from interrupts can deadlock.
775
     */
770
     */
776
 
771
 
777
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
772
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
778
        cache = list_get_instance(cur, slab_cache_t, link);
773
        cache = list_get_instance(cur, slab_cache_t, link);
779
        frames += _slab_reclaim(cache, flags);
774
        frames += _slab_reclaim(cache, flags);
780
    }
775
    }
781
 
776
 
782
    spinlock_unlock(&slab_cache_lock);
777
    spinlock_unlock(&slab_cache_lock);
783
 
778
 
784
    return frames;
779
    return frames;
785
}
780
}
786
 
781
 
787
 
782
 
788
/* Print list of slabs */
783
/* Print list of slabs */
789
void slab_print_list(void)
784
void slab_print_list(void)
790
{
785
{
791
    slab_cache_t *cache;
786
    slab_cache_t *cache;
792
    link_t *cur;
787
    link_t *cur;
793
    ipl_t ipl;
788
    ipl_t ipl;
794
   
789
   
795
    ipl = interrupts_disable();
790
    ipl = interrupts_disable();
796
    spinlock_lock(&slab_cache_lock);
791
    spinlock_lock(&slab_cache_lock);
797
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
792
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
798
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
793
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
799
        cache = list_get_instance(cur, slab_cache_t, link);
794
        cache = list_get_instance(cur, slab_cache_t, link);
800
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
795
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
801
               (1 << cache->order), cache->objects,
796
               (1 << cache->order), cache->objects,
802
               atomic_get(&cache->allocated_slabs),
797
               atomic_get(&cache->allocated_slabs),
803
               atomic_get(&cache->cached_objs),
798
               atomic_get(&cache->cached_objs),
804
               atomic_get(&cache->allocated_objs),
799
               atomic_get(&cache->allocated_objs),
805
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
800
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
806
    }
801
    }
807
    spinlock_unlock(&slab_cache_lock);
802
    spinlock_unlock(&slab_cache_lock);
808
    interrupts_restore(ipl);
803
    interrupts_restore(ipl);
809
}
804
}
810
 
805
 
811
void slab_cache_init(void)
806
void slab_cache_init(void)
812
{
807
{
813
    int i, size;
808
    int i, size;
814
 
809
 
815
    /* Initialize magazine cache */
810
    /* Initialize magazine cache */
816
    _slab_cache_create(&mag_cache,
811
    _slab_cache_create(&mag_cache,
817
               "slab_magazine",
812
               "slab_magazine",
818
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
813
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
819
               sizeof(__address),
814
               sizeof(__address),
820
               NULL, NULL,
815
               NULL, NULL,
821
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
816
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
822
    /* Initialize slab_cache cache */
817
    /* Initialize slab_cache cache */
823
    _slab_cache_create(&slab_cache_cache,
818
    _slab_cache_create(&slab_cache_cache,
824
               "slab_cache",
819
               "slab_cache",
825
               sizeof(slab_cache_cache),
820
               sizeof(slab_cache_cache),
826
               sizeof(__address),
821
               sizeof(__address),
827
               NULL, NULL,
822
               NULL, NULL,
828
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
823
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
829
    /* Initialize external slab cache */
824
    /* Initialize external slab cache */
830
    slab_extern_cache = slab_cache_create("slab_extern",
825
    slab_extern_cache = slab_cache_create("slab_extern",
831
                          sizeof(slab_t),
826
                          sizeof(slab_t),
832
                          0, NULL, NULL,
827
                          0, NULL, NULL,
833
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
828
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
834
 
829
 
835
    /* Initialize structures for malloc */
830
    /* Initialize structures for malloc */
836
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
831
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
837
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
832
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
838
         i++, size <<= 1) {
833
         i++, size <<= 1) {
839
        malloc_caches[i] = slab_cache_create(malloc_names[i],
834
        malloc_caches[i] = slab_cache_create(malloc_names[i],
840
                             size, 0,
835
                             size, 0,
841
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
836
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
842
    }
837
    }
843
#ifdef CONFIG_DEBUG       
838
#ifdef CONFIG_DEBUG       
844
    _slab_initialized = 1;
839
    _slab_initialized = 1;
845
#endif
840
#endif
846
}
841
}
847
 
842
 
848
/** Enable cpu_cache
843
/** Enable cpu_cache
849
 *
844
 *
850
 * Kernel calls this function, when it knows the real number of
845
 * Kernel calls this function, when it knows the real number of
851
 * processors.
846
 * processors.
852
 * Allocate slab for cpucache and enable it on all existing
847
 * Allocate slab for cpucache and enable it on all existing
853
 * slabs that are SLAB_CACHE_MAGDEFERRED
848
 * slabs that are SLAB_CACHE_MAGDEFERRED
854
 */
849
 */
855
void slab_enable_cpucache(void)
850
void slab_enable_cpucache(void)
856
{
851
{
857
    link_t *cur;
852
    link_t *cur;
858
    slab_cache_t *s;
853
    slab_cache_t *s;
859
 
854
 
860
#ifdef CONFIG_DEBUG
855
#ifdef CONFIG_DEBUG
861
    _slab_initialized = 2;
856
    _slab_initialized = 2;
862
#endif
857
#endif
863
 
858
 
864
    spinlock_lock(&slab_cache_lock);
859
    spinlock_lock(&slab_cache_lock);
865
   
860
   
866
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
861
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
867
        s = list_get_instance(cur, slab_cache_t, link);
862
        s = list_get_instance(cur, slab_cache_t, link);
868
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
863
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
869
            continue;
864
            continue;
870
        make_magcache(s);
865
        make_magcache(s);
871
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
866
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
872
    }
867
    }
873
 
868
 
874
    spinlock_unlock(&slab_cache_lock);
869
    spinlock_unlock(&slab_cache_lock);
875
}
870
}
876
 
871
 
877
/**************************************/
872
/**************************************/
878
/* kalloc/kfree functions             */
873
/* kalloc/kfree functions             */
879
void * kalloc(unsigned int size, int flags)
874
void * kalloc(unsigned int size, int flags)
880
{
875
{
881
    int idx;
876
    int idx;
882
 
877
 
883
    ASSERT(_slab_initialized);
878
    ASSERT(_slab_initialized);
884
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
879
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
885
   
880
   
886
    if (size < (1 << SLAB_MIN_MALLOC_W))
881
    if (size < (1 << SLAB_MIN_MALLOC_W))
887
        size = (1 << SLAB_MIN_MALLOC_W);
882
        size = (1 << SLAB_MIN_MALLOC_W);
888
 
883
 
889
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
884
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
890
 
885
 
891
    return slab_alloc(malloc_caches[idx], flags);
886
    return slab_alloc(malloc_caches[idx], flags);
892
}
887
}
893
 
888
 
894
 
889
 
895
void kfree(void *obj)
890
void kfree(void *obj)
896
{
891
{
897
    slab_t *slab;
892
    slab_t *slab;
898
 
893
 
899
    if (!obj) return;
894
    if (!obj) return;
900
 
895
 
901
    slab = obj2slab(obj);
896
    slab = obj2slab(obj);
902
    _slab_free(slab->cache, obj, slab);
897
    _slab_free(slab->cache, obj, slab);
903
}
898
}
904
 
899