Subversion Repositories HelenOS-historic

Rev

Rev 788 | Rev 791 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 788 Rev 789
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after OpenSolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after OpenSolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <adt/list.h>
96
#include <adt/list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
99
#include <mm/heap.h>
100
#include <mm/frame.h>
100
#include <mm/frame.h>
101
#include <config.h>
101
#include <config.h>
102
#include <print.h>
102
#include <print.h>
103
#include <arch.h>
103
#include <arch.h>
104
#include <panic.h>
104
#include <panic.h>
105
#include <debug.h>
105
#include <debug.h>
106
#include <bitops.h>
106
#include <bitops.h>
107
 
107
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
108
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
109
static LIST_INITIALIZE(slab_cache_list);
110
 
110
 
111
/** Magazine cache */
111
/** Magazine cache */
112
static slab_cache_t mag_cache;
112
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
113
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
114
static slab_cache_t slab_cache_cache;
115
 
-
 
-
 
115
/** Cache for magcache structure from cache_t */
-
 
116
static slab_cache_t *cpu_cache = NULL;
116
/** Cache for external slab descriptors
117
/** Cache for external slab descriptors
117
 * This time we want per-cpu cache, so do not make it static
118
 * This time we want per-cpu cache, so do not make it static
118
 * - using SLAB for internal SLAB structures will not deadlock,
119
 * - using SLAB for internal SLAB structures will not deadlock,
119
 *   as all slab structures are 'small' - control structures of
120
 *   as all slab structures are 'small' - control structures of
120
 *   their caches do not require further allocation
121
 *   their caches do not require further allocation
121
 */
122
 */
122
static slab_cache_t *slab_extern_cache;
123
static slab_cache_t *slab_extern_cache;
123
/** Caches for malloc */
124
/** Caches for malloc */
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
char *malloc_names[] =  {
126
char *malloc_names[] =  {
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-64K","malloc-128K"
130
    "malloc-64K","malloc-128K"
130
};
131
};
131
 
132
 
132
/** Slab descriptor */
133
/** Slab descriptor */
133
typedef struct {
134
typedef struct {
134
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    link_t link;       /* List of full/partial slabs */
136
    link_t link;       /* List of full/partial slabs */
136
    void *start;       /**< Start address of first available item */
137
    void *start;       /**< Start address of first available item */
137
    count_t available; /**< Count of available items in this slab */
138
    count_t available; /**< Count of available items in this slab */
138
    index_t nextavail; /**< The index of next available item */
139
    index_t nextavail; /**< The index of next available item */
139
}slab_t;
140
}slab_t;
140
 
141
 
141
/**************************************/
142
/**************************************/
142
/* SLAB allocation functions          */
143
/* SLAB allocation functions          */
143
 
144
 
144
/**
145
/**
145
 * Allocate frames for slab space and initialize
146
 * Allocate frames for slab space and initialize
146
 *
147
 *
147
 */
148
 */
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
{
150
{
150
    void *data;
151
    void *data;
151
    slab_t *slab;
152
    slab_t *slab;
152
    size_t fsize;
153
    size_t fsize;
153
    int i;
154
    int i;
154
    zone_t *zone = NULL;
155
    zone_t *zone = NULL;
155
    int status;
156
    int status;
156
    frame_t *frame;
157
    frame_t *frame;
157
 
158
 
158
    data = (void *)frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
159
    data = (void *)frame_alloc_rc_zone(cache->order, FRAME_KA | flags, &status, &zone);
159
    if (status != FRAME_OK) {
160
    if (status != FRAME_OK) {
160
        return NULL;
161
        return NULL;
161
    }
162
    }
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
        slab = slab_alloc(slab_extern_cache, flags);
164
        slab = slab_alloc(slab_extern_cache, flags);
164
        if (!slab) {
165
        if (!slab) {
165
            frame_free((__address)data);
166
            frame_free((__address)data);
166
            return NULL;
167
            return NULL;
167
        }
168
        }
168
    } else {
169
    } else {
169
        fsize = (PAGE_SIZE << cache->order);
170
        fsize = (PAGE_SIZE << cache->order);
170
        slab = data + fsize - sizeof(*slab);
171
        slab = data + fsize - sizeof(*slab);
171
    }
172
    }
172
       
173
       
173
    /* Fill in slab structures */
174
    /* Fill in slab structures */
174
    /* TODO: some better way of accessing the frame */
175
    /* TODO: some better way of accessing the frame */
175
    for (i=0; i < (1 << cache->order); i++) {
176
    for (i=0; i < (1 << cache->order); i++) {
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame->parent = slab;
178
        frame->parent = slab;
178
    }
179
    }
179
 
180
 
180
    slab->start = data;
181
    slab->start = data;
181
    slab->available = cache->objects;
182
    slab->available = cache->objects;
182
    slab->nextavail = 0;
183
    slab->nextavail = 0;
183
    slab->cache = cache;
184
    slab->cache = cache;
184
 
185
 
185
    for (i=0; i<cache->objects;i++)
186
    for (i=0; i<cache->objects;i++)
186
        *((int *) (slab->start + i*cache->size)) = i+1;
187
        *((int *) (slab->start + i*cache->size)) = i+1;
187
 
188
 
188
    atomic_inc(&cache->allocated_slabs);
189
    atomic_inc(&cache->allocated_slabs);
189
    return slab;
190
    return slab;
190
}
191
}
191
 
192
 
192
/**
193
/**
193
 * Deallocate space associated with SLAB
194
 * Deallocate space associated with SLAB
194
 *
195
 *
195
 * @return number of freed frames
196
 * @return number of freed frames
196
 */
197
 */
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
{
199
{
199
    frame_free((__address)slab->start);
200
    frame_free((__address)slab->start);
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
        slab_free(slab_extern_cache, slab);
202
        slab_free(slab_extern_cache, slab);
202
 
203
 
203
    atomic_dec(&cache->allocated_slabs);
204
    atomic_dec(&cache->allocated_slabs);
204
   
205
   
205
    return 1 << cache->order;
206
    return 1 << cache->order;
206
}
207
}
207
 
208
 
208
/** Map object to slab structure */
209
/** Map object to slab structure */
209
static slab_t * obj2slab(void *obj)
210
static slab_t * obj2slab(void *obj)
210
{
211
{
211
    frame_t *frame;
212
    frame_t *frame;
212
 
213
 
213
    frame = frame_addr2frame((__address)obj);
214
    frame = frame_addr2frame((__address)obj);
214
    return (slab_t *)frame->parent;
215
    return (slab_t *)frame->parent;
215
}
216
}
216
 
217
 
217
/**************************************/
218
/**************************************/
218
/* SLAB functions */
219
/* SLAB functions */
219
 
220
 
220
 
221
 
221
/**
222
/**
222
 * Return object to slab and call a destructor
223
 * Return object to slab and call a destructor
223
 *
224
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
226
 *
226
 * @return Number of freed pages
227
 * @return Number of freed pages
227
 */
228
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
230
                slab_t *slab)
230
{
231
{
231
    int freed = 0;
232
    int freed = 0;
232
 
233
 
233
    if (!slab)
234
    if (!slab)
234
        slab = obj2slab(obj);
235
        slab = obj2slab(obj);
235
 
236
 
236
    ASSERT(slab->cache == cache);
237
    ASSERT(slab->cache == cache);
237
    ASSERT(slab->available < cache->objects);
-
 
238
 
238
 
239
    if (cache->destructor)
239
    if (cache->destructor)
240
        freed = cache->destructor(obj);
240
        freed = cache->destructor(obj);
241
   
241
   
242
    spinlock_lock(&cache->slablock);
242
    spinlock_lock(&cache->slablock);
-
 
243
    ASSERT(slab->available < cache->objects);
243
 
244
 
244
    *((int *)obj) = slab->nextavail;
245
    *((int *)obj) = slab->nextavail;
245
    slab->nextavail = (obj - slab->start)/cache->size;
246
    slab->nextavail = (obj - slab->start)/cache->size;
246
    slab->available++;
247
    slab->available++;
247
 
248
 
248
    /* Move it to correct list */
249
    /* Move it to correct list */
249
    if (slab->available == cache->objects) {
250
    if (slab->available == cache->objects) {
250
        /* Free associated memory */
251
        /* Free associated memory */
251
        list_remove(&slab->link);
252
        list_remove(&slab->link);
252
        spinlock_unlock(&cache->slablock);
253
        spinlock_unlock(&cache->slablock);
253
 
254
 
254
        return freed + slab_space_free(cache, slab);
255
        return freed + slab_space_free(cache, slab);
255
 
256
 
256
    } else if (slab->available == 1) {
257
    } else if (slab->available == 1) {
257
        /* It was in full, move to partial */
258
        /* It was in full, move to partial */
258
        list_remove(&slab->link);
259
        list_remove(&slab->link);
259
        list_prepend(&slab->link, &cache->partial_slabs);
260
        list_prepend(&slab->link, &cache->partial_slabs);
260
    }
261
    }
261
    spinlock_unlock(&cache->slablock);
262
    spinlock_unlock(&cache->slablock);
262
    return freed;
263
    return freed;
263
}
264
}
264
 
265
 
265
/**
266
/**
266
 * Take new object from slab or create new if needed
267
 * Take new object from slab or create new if needed
267
 *
268
 *
268
 * @return Object address or null
269
 * @return Object address or null
269
 */
270
 */
270
static void * slab_obj_create(slab_cache_t *cache, int flags)
271
static void * slab_obj_create(slab_cache_t *cache, int flags)
271
{
272
{
272
    slab_t *slab;
273
    slab_t *slab;
273
    void *obj;
274
    void *obj;
274
 
275
 
275
    spinlock_lock(&cache->slablock);
276
    spinlock_lock(&cache->slablock);
276
 
277
 
277
    if (list_empty(&cache->partial_slabs)) {
278
    if (list_empty(&cache->partial_slabs)) {
278
        /* Allow recursion and reclaiming
279
        /* Allow recursion and reclaiming
279
         * - this should work, as the SLAB control structures
280
         * - this should work, as the SLAB control structures
280
         *   are small and do not need to allocte with anything
281
         *   are small and do not need to allocte with anything
281
         *   other ten frame_alloc when they are allocating,
282
         *   other ten frame_alloc when they are allocating,
282
         *   that's why we should get recursion at most 1-level deep
283
         *   that's why we should get recursion at most 1-level deep
283
         */
284
         */
284
        spinlock_unlock(&cache->slablock);
285
        spinlock_unlock(&cache->slablock);
285
        slab = slab_space_alloc(cache, flags);
286
        slab = slab_space_alloc(cache, flags);
286
        if (!slab)
287
        if (!slab)
287
            return NULL;
288
            return NULL;
288
        spinlock_lock(&cache->slablock);
289
        spinlock_lock(&cache->slablock);
289
    } else {
290
    } else {
290
        slab = list_get_instance(cache->partial_slabs.next,
291
        slab = list_get_instance(cache->partial_slabs.next,
291
                     slab_t,
292
                     slab_t,
292
                     link);
293
                     link);
293
        list_remove(&slab->link);
294
        list_remove(&slab->link);
294
    }
295
    }
295
    obj = slab->start + slab->nextavail * cache->size;
296
    obj = slab->start + slab->nextavail * cache->size;
296
    slab->nextavail = *((int *)obj);
297
    slab->nextavail = *((int *)obj);
297
    slab->available--;
298
    slab->available--;
298
 
299
 
299
    if (! slab->available)
300
    if (! slab->available)
300
        list_prepend(&slab->link, &cache->full_slabs);
301
        list_prepend(&slab->link, &cache->full_slabs);
301
    else
302
    else
302
        list_prepend(&slab->link, &cache->partial_slabs);
303
        list_prepend(&slab->link, &cache->partial_slabs);
303
 
304
 
304
    spinlock_unlock(&cache->slablock);
305
    spinlock_unlock(&cache->slablock);
305
 
306
 
306
    if (cache->constructor && cache->constructor(obj, flags)) {
307
    if (cache->constructor && cache->constructor(obj, flags)) {
307
        /* Bad, bad, construction failed */
308
        /* Bad, bad, construction failed */
308
        slab_obj_destroy(cache, obj, slab);
309
        slab_obj_destroy(cache, obj, slab);
309
        return NULL;
310
        return NULL;
310
    }
311
    }
311
    return obj;
312
    return obj;
312
}
313
}
313
 
314
 
314
/**************************************/
315
/**************************************/
315
/* CPU-Cache slab functions */
316
/* CPU-Cache slab functions */
316
 
317
 
317
/**
318
/**
318
 * Finds a full magazine in cache, takes it from list
319
 * Finds a full magazine in cache, takes it from list
319
 * and returns it
320
 * and returns it
320
 *
321
 *
321
 * @param first If true, return first, else last mag
322
 * @param first If true, return first, else last mag
322
 */
323
 */
323
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
324
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
324
                        int first)
325
                        int first)
325
{
326
{
326
    slab_magazine_t *mag = NULL;
327
    slab_magazine_t *mag = NULL;
327
    link_t *cur;
328
    link_t *cur;
328
 
329
 
329
    spinlock_lock(&cache->maglock);
330
    spinlock_lock(&cache->maglock);
330
    if (!list_empty(&cache->magazines)) {
331
    if (!list_empty(&cache->magazines)) {
331
        if (first)
332
        if (first)
332
            cur = cache->magazines.next;
333
            cur = cache->magazines.next;
333
        else
334
        else
334
            cur = cache->magazines.prev;
335
            cur = cache->magazines.prev;
335
        mag = list_get_instance(cur, slab_magazine_t, link);
336
        mag = list_get_instance(cur, slab_magazine_t, link);
336
        list_remove(&mag->link);
337
        list_remove(&mag->link);
337
        atomic_dec(&cache->magazine_counter);
338
        atomic_dec(&cache->magazine_counter);
338
    }
339
    }
339
    spinlock_unlock(&cache->maglock);
340
    spinlock_unlock(&cache->maglock);
340
    return mag;
341
    return mag;
341
}
342
}
342
 
343
 
343
/** Prepend magazine to magazine list in cache */
344
/** Prepend magazine to magazine list in cache */
344
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
345
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
345
{
346
{
346
    spinlock_lock(&cache->maglock);
347
    spinlock_lock(&cache->maglock);
347
 
348
 
348
    list_prepend(&mag->link, &cache->magazines);
349
    list_prepend(&mag->link, &cache->magazines);
349
    atomic_inc(&cache->magazine_counter);
350
    atomic_inc(&cache->magazine_counter);
350
   
351
   
351
    spinlock_unlock(&cache->maglock);
352
    spinlock_unlock(&cache->maglock);
352
}
353
}
353
 
354
 
354
/**
355
/**
355
 * Free all objects in magazine and free memory associated with magazine
356
 * Free all objects in magazine and free memory associated with magazine
356
 *
357
 *
357
 * @return Number of freed pages
358
 * @return Number of freed pages
358
 */
359
 */
359
static count_t magazine_destroy(slab_cache_t *cache,
360
static count_t magazine_destroy(slab_cache_t *cache,
360
                slab_magazine_t *mag)
361
                slab_magazine_t *mag)
361
{
362
{
362
    int i;
363
    int i;
363
    count_t frames = 0;
364
    count_t frames = 0;
364
 
365
 
365
    for (i=0;i < mag->busy; i++) {
366
    for (i=0;i < mag->busy; i++) {
366
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
367
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
367
        atomic_dec(&cache->cached_objs);
368
        atomic_dec(&cache->cached_objs);
368
    }
369
    }
369
   
370
   
370
    slab_free(&mag_cache, mag);
371
    slab_free(&mag_cache, mag);
371
 
372
 
372
    return frames;
373
    return frames;
373
}
374
}
374
 
375
 
375
/**
376
/**
376
 * Find full magazine, set it as current and return it
377
 * Find full magazine, set it as current and return it
377
 *
378
 *
378
 * Assume cpu_magazine lock is held
379
 * Assume cpu_magazine lock is held
379
 */
380
 */
380
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
381
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
381
{
382
{
382
    slab_magazine_t *cmag, *lastmag, *newmag;
383
    slab_magazine_t *cmag, *lastmag, *newmag;
383
 
384
 
384
    cmag = cache->mag_cache[CPU->id].current;
385
    cmag = cache->mag_cache[CPU->id].current;
385
    lastmag = cache->mag_cache[CPU->id].last;
386
    lastmag = cache->mag_cache[CPU->id].last;
386
    if (cmag) { /* First try local CPU magazines */
387
    if (cmag) { /* First try local CPU magazines */
387
        if (cmag->busy)
388
        if (cmag->busy)
388
            return cmag;
389
            return cmag;
389
 
390
 
390
        if (lastmag && lastmag->busy) {
391
        if (lastmag && lastmag->busy) {
391
            cache->mag_cache[CPU->id].current = lastmag;
392
            cache->mag_cache[CPU->id].current = lastmag;
392
            cache->mag_cache[CPU->id].last = cmag;
393
            cache->mag_cache[CPU->id].last = cmag;
393
            return lastmag;
394
            return lastmag;
394
        }
395
        }
395
    }
396
    }
396
    /* Local magazines are empty, import one from magazine list */
397
    /* Local magazines are empty, import one from magazine list */
397
    newmag = get_mag_from_cache(cache, 1);
398
    newmag = get_mag_from_cache(cache, 1);
398
    if (!newmag)
399
    if (!newmag)
399
        return NULL;
400
        return NULL;
400
 
401
 
401
    if (lastmag)
402
    if (lastmag)
402
        magazine_destroy(cache, lastmag);
403
        magazine_destroy(cache, lastmag);
403
 
404
 
404
    cache->mag_cache[CPU->id].last = cmag;
405
    cache->mag_cache[CPU->id].last = cmag;
405
    cache->mag_cache[CPU->id].current = newmag;
406
    cache->mag_cache[CPU->id].current = newmag;
406
    return newmag;
407
    return newmag;
407
}
408
}
408
 
409
 
409
/**
410
/**
410
 * Try to find object in CPU-cache magazines
411
 * Try to find object in CPU-cache magazines
411
 *
412
 *
412
 * @return Pointer to object or NULL if not available
413
 * @return Pointer to object or NULL if not available
413
 */
414
 */
414
static void * magazine_obj_get(slab_cache_t *cache)
415
static void * magazine_obj_get(slab_cache_t *cache)
415
{
416
{
416
    slab_magazine_t *mag;
417
    slab_magazine_t *mag;
417
    void *obj;
418
    void *obj;
418
 
419
 
419
    if (!CPU)
420
    if (!CPU)
420
        return NULL;
421
        return NULL;
421
 
422
 
422
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
423
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
423
 
424
 
424
    mag = get_full_current_mag(cache);
425
    mag = get_full_current_mag(cache);
425
    if (!mag) {
426
    if (!mag) {
426
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
427
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
427
        return NULL;
428
        return NULL;
428
    }
429
    }
429
    obj = mag->objs[--mag->busy];
430
    obj = mag->objs[--mag->busy];
430
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
431
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
431
    atomic_dec(&cache->cached_objs);
432
    atomic_dec(&cache->cached_objs);
432
   
433
   
433
    return obj;
434
    return obj;
434
}
435
}
435
 
436
 
436
/**
437
/**
437
 * Assure that the current magazine is empty, return pointer to it, or NULL if
438
 * Assure that the current magazine is empty, return pointer to it, or NULL if
438
 * no empty magazine is available and cannot be allocated
439
 * no empty magazine is available and cannot be allocated
439
 *
440
 *
440
 * Assume mag_cache[CPU->id].lock is held
441
 * Assume mag_cache[CPU->id].lock is held
441
 *
442
 *
442
 * We have 2 magazines bound to processor.
443
 * We have 2 magazines bound to processor.
443
 * First try the current.
444
 * First try the current.
444
 *  If full, try the last.
445
 *  If full, try the last.
445
 *   If full, put to magazines list.
446
 *   If full, put to magazines list.
446
 *   allocate new, exchange last & current
447
 *   allocate new, exchange last & current
447
 *
448
 *
448
 */
449
 */
449
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
450
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
450
{
451
{
451
    slab_magazine_t *cmag,*lastmag,*newmag;
452
    slab_magazine_t *cmag,*lastmag,*newmag;
452
 
453
 
453
    cmag = cache->mag_cache[CPU->id].current;
454
    cmag = cache->mag_cache[CPU->id].current;
454
    lastmag = cache->mag_cache[CPU->id].last;
455
    lastmag = cache->mag_cache[CPU->id].last;
455
 
456
 
456
    if (cmag) {
457
    if (cmag) {
457
        if (cmag->busy < cmag->size)
458
        if (cmag->busy < cmag->size)
458
            return cmag;
459
            return cmag;
459
        if (lastmag && lastmag->busy < lastmag->size) {
460
        if (lastmag && lastmag->busy < lastmag->size) {
460
            cache->mag_cache[CPU->id].last = cmag;
461
            cache->mag_cache[CPU->id].last = cmag;
461
            cache->mag_cache[CPU->id].current = lastmag;
462
            cache->mag_cache[CPU->id].current = lastmag;
462
            return lastmag;
463
            return lastmag;
463
        }
464
        }
464
    }
465
    }
465
    /* current | last are full | nonexistent, allocate new */
466
    /* current | last are full | nonexistent, allocate new */
466
    /* We do not want to sleep just because of caching */
467
    /* We do not want to sleep just because of caching */
467
    /* Especially we do not want reclaiming to start, as
468
    /* Especially we do not want reclaiming to start, as
468
     * this would deadlock */
469
     * this would deadlock */
469
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
470
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
470
    if (!newmag)
471
    if (!newmag)
471
        return NULL;
472
        return NULL;
472
    newmag->size = SLAB_MAG_SIZE;
473
    newmag->size = SLAB_MAG_SIZE;
473
    newmag->busy = 0;
474
    newmag->busy = 0;
474
 
475
 
475
    /* Flush last to magazine list */
476
    /* Flush last to magazine list */
476
    if (lastmag)
477
    if (lastmag)
477
        put_mag_to_cache(cache, lastmag);
478
        put_mag_to_cache(cache, lastmag);
478
 
479
 
479
    /* Move current as last, save new as current */
480
    /* Move current as last, save new as current */
480
    cache->mag_cache[CPU->id].last = cmag; 
481
    cache->mag_cache[CPU->id].last = cmag; 
481
    cache->mag_cache[CPU->id].current = newmag;
482
    cache->mag_cache[CPU->id].current = newmag;
482
 
483
 
483
    return newmag;
484
    return newmag;
484
}
485
}
485
 
486
 
486
/**
487
/**
487
 * Put object into CPU-cache magazine
488
 * Put object into CPU-cache magazine
488
 *
489
 *
489
 * @return 0 - success, -1 - could not get memory
490
 * @return 0 - success, -1 - could not get memory
490
 */
491
 */
491
static int magazine_obj_put(slab_cache_t *cache, void *obj)
492
static int magazine_obj_put(slab_cache_t *cache, void *obj)
492
{
493
{
493
    slab_magazine_t *mag;
494
    slab_magazine_t *mag;
494
 
495
 
495
    if (!CPU)
496
    if (!CPU)
496
        return -1;
497
        return -1;
497
 
498
 
498
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
499
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
499
 
500
 
500
    mag = make_empty_current_mag(cache);
501
    mag = make_empty_current_mag(cache);
501
    if (!mag) {
502
    if (!mag) {
502
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
503
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
503
        return -1;
504
        return -1;
504
    }
505
    }
505
   
506
   
506
    mag->objs[mag->busy++] = obj;
507
    mag->objs[mag->busy++] = obj;
507
 
508
 
508
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
509
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
509
    atomic_inc(&cache->cached_objs);
510
    atomic_inc(&cache->cached_objs);
510
    return 0;
511
    return 0;
511
}
512
}
512
 
513
 
513
 
514
 
514
/**************************************/
515
/**************************************/
515
/* SLAB CACHE functions */
516
/* SLAB CACHE functions */
516
 
517
 
517
/** Return number of objects that fit in certain cache size */
518
/** Return number of objects that fit in certain cache size */
518
static int comp_objects(slab_cache_t *cache)
519
static int comp_objects(slab_cache_t *cache)
519
{
520
{
520
    if (cache->flags & SLAB_CACHE_SLINSIDE)
521
    if (cache->flags & SLAB_CACHE_SLINSIDE)
521
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
522
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
522
    else
523
    else
523
        return (PAGE_SIZE << cache->order) / cache->size;
524
        return (PAGE_SIZE << cache->order) / cache->size;
524
}
525
}
525
 
526
 
526
/** Return wasted space in slab */
527
/** Return wasted space in slab */
527
static int badness(slab_cache_t *cache)
528
static int badness(slab_cache_t *cache)
528
{
529
{
529
    int objects;
530
    int objects;
530
    int ssize;
531
    int ssize;
531
 
532
 
532
    objects = comp_objects(cache);
533
    objects = comp_objects(cache);
533
    ssize = PAGE_SIZE << cache->order;
534
    ssize = PAGE_SIZE << cache->order;
534
    if (cache->flags & SLAB_CACHE_SLINSIDE)
535
    if (cache->flags & SLAB_CACHE_SLINSIDE)
535
        ssize -= sizeof(slab_t);
536
        ssize -= sizeof(slab_t);
536
    return ssize - objects*cache->size;
537
    return ssize - objects*cache->size;
537
}
538
}
538
 
539
 
-
 
540
/**
-
 
541
 * Initialize mag_cache structure in slab cache
-
 
542
 */
-
 
543
static void make_magcache(slab_cache_t *cache)
-
 
544
{
-
 
545
    int i;
-
 
546
 
-
 
547
    ASSERT(cpu_cache);
-
 
548
    cache->mag_cache = slab_alloc(cpu_cache, 0);
-
 
549
    for (i=0; i < config.cpu_count; i++) {
-
 
550
        memsetb((__address)&cache->mag_cache[i],
-
 
551
            sizeof(cache->mag_cache[i]), 0);
-
 
552
        spinlock_initialize(&cache->mag_cache[i].lock,
-
 
553
                    "slab_maglock_cpu");
-
 
554
    }
-
 
555
}
-
 
556
 
539
/** Initialize allocated memory as a slab cache */
557
/** Initialize allocated memory as a slab cache */
540
static void
558
static void
541
_slab_cache_create(slab_cache_t *cache,
559
_slab_cache_create(slab_cache_t *cache,
542
           char *name,
560
           char *name,
543
           size_t size,
561
           size_t size,
544
           size_t align,
562
           size_t align,
545
           int (*constructor)(void *obj, int kmflag),
563
           int (*constructor)(void *obj, int kmflag),
546
           int (*destructor)(void *obj),
564
           int (*destructor)(void *obj),
547
           int flags)
565
           int flags)
548
{
566
{
549
    int i;
-
 
550
    int pages;
567
    int pages;
551
    ipl_t ipl;
568
    ipl_t ipl;
552
 
569
 
553
    memsetb((__address)cache, sizeof(*cache), 0);
570
    memsetb((__address)cache, sizeof(*cache), 0);
554
    cache->name = name;
571
    cache->name = name;
555
 
572
 
556
    if (align < sizeof(__native))
573
    if (align < sizeof(__native))
557
        align = sizeof(__native);
574
        align = sizeof(__native);
558
    size = ALIGN_UP(size, align);
575
    size = ALIGN_UP(size, align);
559
       
576
       
560
    cache->size = size;
577
    cache->size = size;
561
 
578
 
562
    cache->constructor = constructor;
579
    cache->constructor = constructor;
563
    cache->destructor = destructor;
580
    cache->destructor = destructor;
564
    cache->flags = flags;
581
    cache->flags = flags;
565
 
582
 
566
    list_initialize(&cache->full_slabs);
583
    list_initialize(&cache->full_slabs);
567
    list_initialize(&cache->partial_slabs);
584
    list_initialize(&cache->partial_slabs);
568
    list_initialize(&cache->magazines);
585
    list_initialize(&cache->magazines);
569
    spinlock_initialize(&cache->slablock, "slab_lock");
586
    spinlock_initialize(&cache->slablock, "slab_lock");
570
    spinlock_initialize(&cache->maglock, "slab_maglock");
587
    spinlock_initialize(&cache->maglock, "slab_maglock");
571
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
588
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE))
572
        for (i=0; i < config.cpu_count; i++) {
-
 
573
            memsetb((__address)&cache->mag_cache[i],
-
 
574
                sizeof(cache->mag_cache[i]), 0);
589
        make_magcache(cache);
575
            spinlock_initialize(&cache->mag_cache[i].lock,
-
 
576
                        "slab_maglock_cpu");
-
 
577
        }
-
 
578
    }
-
 
579
 
590
 
580
    /* Compute slab sizes, object counts in slabs etc. */
591
    /* Compute slab sizes, object counts in slabs etc. */
581
    if (cache->size < SLAB_INSIDE_SIZE)
592
    if (cache->size < SLAB_INSIDE_SIZE)
582
        cache->flags |= SLAB_CACHE_SLINSIDE;
593
        cache->flags |= SLAB_CACHE_SLINSIDE;
583
 
594
 
584
    /* Minimum slab order */
595
    /* Minimum slab order */
585
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
596
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
586
    cache->order = fnzb(pages);
597
    cache->order = fnzb(pages);
587
 
598
 
588
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
599
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
589
        cache->order += 1;
600
        cache->order += 1;
590
    }
601
    }
591
    cache->objects = comp_objects(cache);
602
    cache->objects = comp_objects(cache);
592
    /* If info fits in, put it inside */
603
    /* If info fits in, put it inside */
593
    if (badness(cache) > sizeof(slab_t))
604
    if (badness(cache) > sizeof(slab_t))
594
        cache->flags |= SLAB_CACHE_SLINSIDE;
605
        cache->flags |= SLAB_CACHE_SLINSIDE;
595
 
606
 
596
    /* Add cache to cache list */
607
    /* Add cache to cache list */
597
    ipl = interrupts_disable();
608
    ipl = interrupts_disable();
598
    spinlock_lock(&slab_cache_lock);
609
    spinlock_lock(&slab_cache_lock);
599
 
610
 
600
    list_append(&cache->link, &slab_cache_list);
611
    list_append(&cache->link, &slab_cache_list);
601
 
612
 
602
    spinlock_unlock(&slab_cache_lock);
613
    spinlock_unlock(&slab_cache_lock);
603
    interrupts_restore(ipl);
614
    interrupts_restore(ipl);
604
}
615
}
605
 
616
 
606
/** Create slab cache  */
617
/** Create slab cache  */
607
slab_cache_t * slab_cache_create(char *name,
618
slab_cache_t * slab_cache_create(char *name,
608
                 size_t size,
619
                 size_t size,
609
                 size_t align,
620
                 size_t align,
610
                 int (*constructor)(void *obj, int kmflag),
621
                 int (*constructor)(void *obj, int kmflag),
611
                 int (*destructor)(void *obj),
622
                 int (*destructor)(void *obj),
612
                 int flags)
623
                 int flags)
613
{
624
{
614
    slab_cache_t *cache;
625
    slab_cache_t *cache;
615
 
626
 
616
    cache = slab_alloc(&slab_cache_cache, 0);
627
    cache = slab_alloc(&slab_cache_cache, 0);
617
    _slab_cache_create(cache, name, size, align, constructor, destructor,
628
    _slab_cache_create(cache, name, size, align, constructor, destructor,
618
               flags);
629
               flags);
619
    return cache;
630
    return cache;
620
}
631
}
621
 
632
 
622
/**
633
/**
623
 * Reclaim space occupied by objects that are already free
634
 * Reclaim space occupied by objects that are already free
624
 *
635
 *
625
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
636
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
626
 * @return Number of freed pages
637
 * @return Number of freed pages
627
 */
638
 */
628
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
639
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
629
{
640
{
630
    int i;
641
    int i;
631
    slab_magazine_t *mag;
642
    slab_magazine_t *mag;
632
    count_t frames = 0;
643
    count_t frames = 0;
633
    int magcount;
644
    int magcount;
634
   
645
   
635
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
646
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
636
        return 0; /* Nothing to do */
647
        return 0; /* Nothing to do */
637
 
648
 
638
    /* We count up to original magazine count to avoid
649
    /* We count up to original magazine count to avoid
639
     * endless loop
650
     * endless loop
640
     */
651
     */
641
    magcount = atomic_get(&cache->magazine_counter);
652
    magcount = atomic_get(&cache->magazine_counter);
642
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
653
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
643
        frames += magazine_destroy(cache,mag);
654
        frames += magazine_destroy(cache,mag);
644
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
655
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
645
            break;
656
            break;
646
    }
657
    }
647
   
658
   
648
    if (flags & SLAB_RECLAIM_ALL) {
659
    if (flags & SLAB_RECLAIM_ALL) {
649
        /* Free cpu-bound magazines */
660
        /* Free cpu-bound magazines */
650
        /* Destroy CPU magazines */
661
        /* Destroy CPU magazines */
651
        for (i=0; i<config.cpu_count; i++) {
662
        for (i=0; i<config.cpu_count; i++) {
652
            spinlock_lock(&cache->mag_cache[i].lock);
663
            spinlock_lock(&cache->mag_cache[i].lock);
653
 
664
 
654
            mag = cache->mag_cache[i].current;
665
            mag = cache->mag_cache[i].current;
655
            if (mag)
666
            if (mag)
656
                frames += magazine_destroy(cache, mag);
667
                frames += magazine_destroy(cache, mag);
657
            cache->mag_cache[i].current = NULL;
668
            cache->mag_cache[i].current = NULL;
658
           
669
           
659
            mag = cache->mag_cache[i].last;
670
            mag = cache->mag_cache[i].last;
660
            if (mag)
671
            if (mag)
661
                frames += magazine_destroy(cache, mag);
672
                frames += magazine_destroy(cache, mag);
662
            cache->mag_cache[i].last = NULL;
673
            cache->mag_cache[i].last = NULL;
663
 
674
 
664
            spinlock_unlock(&cache->mag_cache[i].lock);
675
            spinlock_unlock(&cache->mag_cache[i].lock);
665
        }
676
        }
666
    }
677
    }
667
 
678
 
668
    return frames;
679
    return frames;
669
}
680
}
670
 
681
 
671
/** Check that there are no slabs and remove cache from system  */
682
/** Check that there are no slabs and remove cache from system  */
672
void slab_cache_destroy(slab_cache_t *cache)
683
void slab_cache_destroy(slab_cache_t *cache)
673
{
684
{
674
    ipl_t ipl;
685
    ipl_t ipl;
675
 
686
 
676
    /* First remove cache from link, so that we don't need
687
    /* First remove cache from link, so that we don't need
677
     * to disable interrupts later
688
     * to disable interrupts later
678
     */
689
     */
679
 
690
 
680
    ipl = interrupts_disable();
691
    ipl = interrupts_disable();
681
    spinlock_lock(&slab_cache_lock);
692
    spinlock_lock(&slab_cache_lock);
682
 
693
 
683
    list_remove(&cache->link);
694
    list_remove(&cache->link);
684
 
695
 
685
    spinlock_unlock(&slab_cache_lock);
696
    spinlock_unlock(&slab_cache_lock);
686
    interrupts_restore(ipl);
697
    interrupts_restore(ipl);
687
 
698
 
688
    /* Do not lock anything, we assume the software is correct and
699
    /* Do not lock anything, we assume the software is correct and
689
     * does not touch the cache when it decides to destroy it */
700
     * does not touch the cache when it decides to destroy it */
690
   
701
   
691
    /* Destroy all magazines */
702
    /* Destroy all magazines */
692
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
703
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
693
 
704
 
694
    /* All slabs must be empty */
705
    /* All slabs must be empty */
695
    if (!list_empty(&cache->full_slabs) \
706
    if (!list_empty(&cache->full_slabs) \
696
        || !list_empty(&cache->partial_slabs))
707
        || !list_empty(&cache->partial_slabs))
697
        panic("Destroying cache that is not empty.");
708
        panic("Destroying cache that is not empty.");
698
 
709
 
-
 
710
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
-
 
711
        slab_free(cpu_cache, cache->mag_cache);
699
    slab_free(&slab_cache_cache, cache);
712
    slab_free(&slab_cache_cache, cache);
700
}
713
}
701
 
714
 
702
/** Allocate new object from cache - if no flags given, always returns
715
/** Allocate new object from cache - if no flags given, always returns
703
    memory */
716
    memory */
704
void * slab_alloc(slab_cache_t *cache, int flags)
717
void * slab_alloc(slab_cache_t *cache, int flags)
705
{
718
{
706
    ipl_t ipl;
719
    ipl_t ipl;
707
    void *result = NULL;
720
    void *result = NULL;
708
   
721
   
709
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
722
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
710
    ipl = interrupts_disable();
723
    ipl = interrupts_disable();
711
 
724
 
712
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
725
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
713
        result = magazine_obj_get(cache);
726
        result = magazine_obj_get(cache);
714
    if (!result)
727
    if (!result)
715
        result = slab_obj_create(cache, flags);
728
        result = slab_obj_create(cache, flags);
716
 
729
 
717
    interrupts_restore(ipl);
730
    interrupts_restore(ipl);
718
 
731
 
719
    if (result)
732
    if (result)
720
        atomic_inc(&cache->allocated_objs);
733
        atomic_inc(&cache->allocated_objs);
721
 
734
 
722
    return result;
735
    return result;
723
}
736
}
724
 
737
 
725
/** Return object to cache, use slab if known  */
738
/** Return object to cache, use slab if known  */
726
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
739
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
727
{
740
{
728
    ipl_t ipl;
741
    ipl_t ipl;
729
 
742
 
730
    ipl = interrupts_disable();
743
    ipl = interrupts_disable();
731
 
744
 
732
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
745
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
733
        || magazine_obj_put(cache, obj)) {
746
        || magazine_obj_put(cache, obj)) {
734
 
747
 
735
        slab_obj_destroy(cache, obj, slab);
748
        slab_obj_destroy(cache, obj, slab);
736
 
749
 
737
    }
750
    }
738
    interrupts_restore(ipl);
751
    interrupts_restore(ipl);
739
    atomic_dec(&cache->allocated_objs);
752
    atomic_dec(&cache->allocated_objs);
740
}
753
}
741
 
754
 
742
/** Return slab object to cache */
755
/** Return slab object to cache */
743
void slab_free(slab_cache_t *cache, void *obj)
756
void slab_free(slab_cache_t *cache, void *obj)
744
{
757
{
745
    _slab_free(cache,obj,NULL);
758
    _slab_free(cache,obj,NULL);
746
}
759
}
747
 
760
 
748
/* Go through all caches and reclaim what is possible */
761
/* Go through all caches and reclaim what is possible */
749
count_t slab_reclaim(int flags)
762
count_t slab_reclaim(int flags)
750
{
763
{
751
    slab_cache_t *cache;
764
    slab_cache_t *cache;
752
    link_t *cur;
765
    link_t *cur;
753
    count_t frames = 0;
766
    count_t frames = 0;
754
 
767
 
755
    spinlock_lock(&slab_cache_lock);
768
    spinlock_lock(&slab_cache_lock);
756
 
769
 
757
    /* TODO: Add assert, that interrupts are disabled, otherwise
770
    /* TODO: Add assert, that interrupts are disabled, otherwise
758
     * memory allocation from interrupts can deadlock.
771
     * memory allocation from interrupts can deadlock.
759
     */
772
     */
760
 
773
 
761
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
774
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
762
        cache = list_get_instance(cur, slab_cache_t, link);
775
        cache = list_get_instance(cur, slab_cache_t, link);
763
        frames += _slab_reclaim(cache, flags);
776
        frames += _slab_reclaim(cache, flags);
764
    }
777
    }
765
 
778
 
766
    spinlock_unlock(&slab_cache_lock);
779
    spinlock_unlock(&slab_cache_lock);
767
 
780
 
768
    return frames;
781
    return frames;
769
}
782
}
770
 
783
 
771
 
784
 
772
/* Print list of slabs */
785
/* Print list of slabs */
773
void slab_print_list(void)
786
void slab_print_list(void)
774
{
787
{
775
    slab_cache_t *cache;
788
    slab_cache_t *cache;
776
    link_t *cur;
789
    link_t *cur;
777
    ipl_t ipl;
790
    ipl_t ipl;
778
   
791
   
779
    ipl = interrupts_disable();
792
    ipl = interrupts_disable();
780
    spinlock_lock(&slab_cache_lock);
793
    spinlock_lock(&slab_cache_lock);
781
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
794
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
782
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
795
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
783
        cache = list_get_instance(cur, slab_cache_t, link);
796
        cache = list_get_instance(cur, slab_cache_t, link);
784
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
797
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
785
               (1 << cache->order), cache->objects,
798
               (1 << cache->order), cache->objects,
786
               atomic_get(&cache->allocated_slabs),
799
               atomic_get(&cache->allocated_slabs),
787
               atomic_get(&cache->cached_objs),
800
               atomic_get(&cache->cached_objs),
788
               atomic_get(&cache->allocated_objs),
801
               atomic_get(&cache->allocated_objs),
789
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
802
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
790
    }
803
    }
791
    spinlock_unlock(&slab_cache_lock);
804
    spinlock_unlock(&slab_cache_lock);
792
    interrupts_restore(ipl);
805
    interrupts_restore(ipl);
793
}
806
}
794
 
807
 
795
#ifdef CONFIG_DEBUG
808
#ifdef CONFIG_DEBUG
796
static int _slab_initialized = 0;
809
static int _slab_initialized = 0;
797
#endif
810
#endif
798
 
811
 
799
void slab_cache_init(void)
812
void slab_cache_init(void)
800
{
813
{
801
    int i, size;
814
    int i, size;
802
 
815
 
803
    /* Initialize magazine cache */
816
    /* Initialize magazine cache */
804
    _slab_cache_create(&mag_cache,
817
    _slab_cache_create(&mag_cache,
805
               "slab_magazine",
818
               "slab_magazine",
806
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
819
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
807
               sizeof(__address),
820
               sizeof(__address),
808
               NULL, NULL,
821
               NULL, NULL,
809
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
822
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
810
    /* Initialize slab_cache cache */
823
    /* Initialize slab_cache cache */
811
    _slab_cache_create(&slab_cache_cache,
824
    _slab_cache_create(&slab_cache_cache,
812
               "slab_cache",
825
               "slab_cache",
813
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
826
               sizeof(slab_cache_cache),
814
               sizeof(__address),
827
               sizeof(__address),
815
               NULL, NULL,
828
               NULL, NULL,
816
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
829
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
817
    /* Initialize external slab cache */
830
    /* Initialize external slab cache */
818
    slab_extern_cache = slab_cache_create("slab_extern",
831
    slab_extern_cache = slab_cache_create("slab_extern",
819
                          sizeof(slab_t),
832
                          sizeof(slab_t),
820
                          0, NULL, NULL,
833
                          0, NULL, NULL,
821
                          SLAB_CACHE_SLINSIDE);
834
                          SLAB_CACHE_SLINSIDE | SLAB_CACHE_MAGDEFERRED);
822
 
835
 
823
    /* Initialize structures for malloc */
836
    /* Initialize structures for malloc */
824
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
837
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
825
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
838
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
826
         i++, size <<= 1) {
839
         i++, size <<= 1) {
827
        malloc_caches[i] = slab_cache_create(malloc_names[i],
840
        malloc_caches[i] = slab_cache_create(malloc_names[i],
828
                             size, 0,
841
                             size, 0,
829
                             NULL,NULL,0);
842
                             NULL,NULL, SLAB_CACHE_MAGDEFERRED);
830
    }
843
    }
831
#ifdef CONFIG_DEBUG       
844
#ifdef CONFIG_DEBUG       
832
    _slab_initialized = 1;
845
    _slab_initialized = 1;
833
#endif
846
#endif
834
}
847
}
-
 
848
 
-
 
849
/** Enable cpu_cache
-
 
850
 *
-
 
851
 * Kernel calls this function, when it knows the real number of
-
 
852
 * processors.
-
 
853
 * Allocate slab for cpucache and enable it on all existing
-
 
854
 * slabs that are SLAB_CACHE_MAGDEFERRED
-
 
855
 */
-
 
856
void slab_enable_cpucache(void)
-
 
857
{
-
 
858
    link_t *cur;
-
 
859
    slab_cache_t *s;
-
 
860
 
-
 
861
    cpu_cache = slab_cache_create("magcpucache",
-
 
862
                      sizeof(slab_mag_cache_t) * config.cpu_count,
-
 
863
                      0, NULL, NULL,
-
 
864
                      SLAB_CACHE_NOMAGAZINE);
-
 
865
    spinlock_lock(&slab_cache_lock);
-
 
866
   
-
 
867
    for (cur=slab_cache_list.next; cur != &slab_cache_list;cur=cur->next){
-
 
868
        s = list_get_instance(cur, slab_cache_t, link);
-
 
869
        if ((s->flags & SLAB_CACHE_MAGDEFERRED) != SLAB_CACHE_MAGDEFERRED)
-
 
870
            continue;
-
 
871
        make_magcache(s);
-
 
872
        s->flags &= ~SLAB_CACHE_MAGDEFERRED;
-
 
873
    }
-
 
874
 
-
 
875
    spinlock_unlock(&slab_cache_lock);
-
 
876
}
835
 
877
 
836
/**************************************/
878
/**************************************/
837
/* kalloc/kfree functions             */
879
/* kalloc/kfree functions             */
838
void * kalloc(unsigned int size, int flags)
880
void * kalloc(unsigned int size, int flags)
839
{
881
{
840
    int idx;
882
    int idx;
841
 
883
 
842
    ASSERT(_slab_initialized);
884
    ASSERT(_slab_initialized);
843
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
885
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
844
   
886
   
845
    if (size < (1 << SLAB_MIN_MALLOC_W))
887
    if (size < (1 << SLAB_MIN_MALLOC_W))
846
        size = (1 << SLAB_MIN_MALLOC_W);
888
        size = (1 << SLAB_MIN_MALLOC_W);
847
 
889
 
848
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
890
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
849
 
891
 
850
    return slab_alloc(malloc_caches[idx], flags);
892
    return slab_alloc(malloc_caches[idx], flags);
851
}
893
}
852
 
894
 
853
 
895
 
854
void kfree(void *obj)
896
void kfree(void *obj)
855
{
897
{
856
    slab_t *slab;
898
    slab_t *slab;
857
 
899
 
858
    if (!obj) return;
900
    if (!obj) return;
859
 
901
 
860
    slab = obj2slab(obj);
902
    slab = obj2slab(obj);
861
    _slab_free(slab->cache, obj, slab);
903
    _slab_free(slab->cache, obj, slab);
862
}
904
}
863
 
905