Subversion Repositories HelenOS-historic

Rev

Rev 780 | Rev 782 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 780 Rev 781
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <list.h>
96
#include <list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
99
#include <mm/heap.h>
100
#include <mm/frame.h>
100
#include <mm/frame.h>
101
#include <config.h>
101
#include <config.h>
102
#include <print.h>
102
#include <print.h>
103
#include <arch.h>
103
#include <arch.h>
104
#include <panic.h>
104
#include <panic.h>
105
#include <debug.h>
105
#include <debug.h>
106
#include <bitops.h>
106
#include <bitops.h>
107
 
107
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
108
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
109
static LIST_INITIALIZE(slab_cache_list);
110
 
110
 
111
/** Magazine cache */
111
/** Magazine cache */
112
static slab_cache_t mag_cache;
112
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
113
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
114
static slab_cache_t slab_cache_cache;
115
 
115
 
116
/** Cache for external slab descriptors
116
/** Cache for external slab descriptors
117
 * This time we want per-cpu cache, so do not make it static
117
 * This time we want per-cpu cache, so do not make it static
118
 * - using SLAB for internal SLAB structures will not deadlock,
118
 * - using SLAB for internal SLAB structures will not deadlock,
119
 *   as all slab structures are 'small' - control structures of
119
 *   as all slab structures are 'small' - control structures of
120
 *   their caches do not require further allocation
120
 *   their caches do not require further allocation
121
 */
121
 */
122
static slab_cache_t *slab_extern_cache;
122
static slab_cache_t *slab_extern_cache;
123
/** Caches for malloc */
123
/** Caches for malloc */
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
char *malloc_names[] =  {
125
char *malloc_names[] =  {
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-64K","malloc-128K"
129
    "malloc-64K","malloc-128K"
130
};
130
};
131
 
131
 
132
/** Slab descriptor */
132
/** Slab descriptor */
133
typedef struct {
133
typedef struct {
134
    slab_cache_t *cache; /**< Pointer to parent cache */
134
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    link_t link;       /* List of full/partial slabs */
135
    link_t link;       /* List of full/partial slabs */
136
    void *start;       /**< Start address of first available item */
136
    void *start;       /**< Start address of first available item */
137
    count_t available; /**< Count of available items in this slab */
137
    count_t available; /**< Count of available items in this slab */
138
    index_t nextavail; /**< The index of next available item */
138
    index_t nextavail; /**< The index of next available item */
139
}slab_t;
139
}slab_t;
140
 
140
 
141
/**************************************/
141
/**************************************/
142
/* SLAB allocation functions          */
142
/* SLAB allocation functions          */
143
 
143
 
144
/**
144
/**
145
 * Allocate frames for slab space and initialize
145
 * Allocate frames for slab space and initialize
146
 *
146
 *
147
 */
147
 */
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
{
149
{
150
    void *data;
150
    void *data;
151
    slab_t *slab;
151
    slab_t *slab;
152
    size_t fsize;
152
    size_t fsize;
153
    int i;
153
    int i;
154
    zone_t *zone = NULL;
154
    zone_t *zone = NULL;
155
    int status;
155
    int status;
156
    frame_t *frame;
156
    frame_t *frame;
157
 
157
 
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
159
    if (status != FRAME_OK) {
159
    if (status != FRAME_OK) {
160
        return NULL;
160
        return NULL;
161
    }
161
    }
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
        slab = slab_alloc(slab_extern_cache, flags);
163
        slab = slab_alloc(slab_extern_cache, flags);
164
        if (!slab) {
164
        if (!slab) {
165
            frame_free((__address)data);
165
            frame_free((__address)data);
166
            return NULL;
166
            return NULL;
167
        }
167
        }
168
    } else {
168
    } else {
169
        fsize = (PAGE_SIZE << cache->order);
169
        fsize = (PAGE_SIZE << cache->order);
170
        slab = data + fsize - sizeof(*slab);
170
        slab = data + fsize - sizeof(*slab);
171
    }
171
    }
172
       
172
       
173
    /* Fill in slab structures */
173
    /* Fill in slab structures */
174
    /* TODO: some better way of accessing the frame */
174
    /* TODO: some better way of accessing the frame */
175
    for (i=0; i < (1 << cache->order); i++) {
175
    for (i=0; i < (1 << cache->order); i++) {
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame->parent = slab;
177
        frame->parent = slab;
178
    }
178
    }
179
 
179
 
180
    slab->start = data;
180
    slab->start = data;
181
    slab->available = cache->objects;
181
    slab->available = cache->objects;
182
    slab->nextavail = 0;
182
    slab->nextavail = 0;
183
    slab->cache = cache;
183
    slab->cache = cache;
184
 
184
 
185
    for (i=0; i<cache->objects;i++)
185
    for (i=0; i<cache->objects;i++)
186
        *((int *) (slab->start + i*cache->size)) = i+1;
186
        *((int *) (slab->start + i*cache->size)) = i+1;
187
 
187
 
188
    atomic_inc(&cache->allocated_slabs);
188
    atomic_inc(&cache->allocated_slabs);
189
    return slab;
189
    return slab;
190
}
190
}
191
 
191
 
192
/**
192
/**
193
 * Deallocate space associated with SLAB
193
 * Deallocate space associated with SLAB
194
 *
194
 *
195
 * @return number of freed frames
195
 * @return number of freed frames
196
 */
196
 */
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
{
198
{
199
    frame_free((__address)slab->start);
199
    frame_free((__address)slab->start);
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
        slab_free(slab_extern_cache, slab);
201
        slab_free(slab_extern_cache, slab);
202
 
202
 
203
    atomic_dec(&cache->allocated_slabs);
203
    atomic_dec(&cache->allocated_slabs);
204
   
204
   
205
    return 1 << cache->order;
205
    return 1 << cache->order;
206
}
206
}
207
 
207
 
208
/** Map object to slab structure */
208
/** Map object to slab structure */
209
static slab_t * obj2slab(void *obj)
209
static slab_t * obj2slab(void *obj)
210
{
210
{
211
    frame_t *frame;
211
    frame_t *frame;
212
 
212
 
213
    frame = frame_addr2frame((__address)obj);
213
    frame = frame_addr2frame((__address)obj);
214
    return (slab_t *)frame->parent;
214
    return (slab_t *)frame->parent;
215
}
215
}
216
 
216
 
217
/**************************************/
217
/**************************************/
218
/* SLAB functions */
218
/* SLAB functions */
219
 
219
 
220
 
220
 
221
/**
221
/**
222
 * Return object to slab and call a destructor
222
 * Return object to slab and call a destructor
223
 *
223
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
225
 *
226
 * @return Number of freed pages
226
 * @return Number of freed pages
227
 */
227
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
229
                slab_t *slab)
230
{
230
{
231
    count_t frames = 0;
231
    count_t frames = 0;
232
 
232
 
233
    if (!slab)
233
    if (!slab)
234
        slab = obj2slab(obj);
234
        slab = obj2slab(obj);
235
 
235
 
236
    ASSERT(slab->cache == cache);
236
    ASSERT(slab->cache == cache);
237
    ASSERT(slab->available < cache->objects);
237
    ASSERT(slab->available < cache->objects);
238
 
238
 
239
    spinlock_lock(&cache->slablock);
239
    spinlock_lock(&cache->slablock);
240
 
240
 
241
    *((int *)obj) = slab->nextavail;
241
    *((int *)obj) = slab->nextavail;
242
    slab->nextavail = (obj - slab->start)/cache->size;
242
    slab->nextavail = (obj - slab->start)/cache->size;
243
    slab->available++;
243
    slab->available++;
244
 
244
 
245
    /* Move it to correct list */
245
    /* Move it to correct list */
246
    if (slab->available == cache->objects) {
246
    if (slab->available == cache->objects) {
247
        /* Free associated memory */
247
        /* Free associated memory */
248
        list_remove(&slab->link);
248
        list_remove(&slab->link);
249
        /* This should not produce deadlock, as
249
        /* This should not produce deadlock, as
250
         * magazine is always allocated with NO reclaim,
250
         * magazine is always allocated with NO reclaim,
251
         * keep all locks */
251
         * keep all locks */
252
        frames = slab_space_free(cache, slab);
252
        frames = slab_space_free(cache, slab);
253
    } else if (slab->available == 1) {
253
    } else if (slab->available == 1) {
254
        /* It was in full, move to partial */
254
        /* It was in full, move to partial */
255
        list_remove(&slab->link);
255
        list_remove(&slab->link);
256
        list_prepend(&slab->link, &cache->partial_slabs);
256
        list_prepend(&slab->link, &cache->partial_slabs);
257
    }
257
    }
258
 
258
 
259
    spinlock_unlock(&cache->slablock);
259
    spinlock_unlock(&cache->slablock);
260
 
260
 
261
    return frames;
261
    return frames;
262
}
262
}
263
 
263
 
264
/**
264
/**
265
 * Take new object from slab or create new if needed
265
 * Take new object from slab or create new if needed
266
 *
266
 *
267
 * @return Object address or null
267
 * @return Object address or null
268
 */
268
 */
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
270
{
270
{
271
    slab_t *slab;
271
    slab_t *slab;
272
    void *obj;
272
    void *obj;
273
 
273
 
274
    spinlock_lock(&cache->slablock);
274
    spinlock_lock(&cache->slablock);
275
 
275
 
276
    if (list_empty(&cache->partial_slabs)) {
276
    if (list_empty(&cache->partial_slabs)) {
277
        /* Allow recursion and reclaiming
277
        /* Allow recursion and reclaiming
278
         * - this should work, as the SLAB control structures
278
         * - this should work, as the SLAB control structures
279
         *   are small and do not need to allocte with anything
279
         *   are small and do not need to allocte with anything
280
         *   other ten frame_alloc when they are allocating,
280
         *   other ten frame_alloc when they are allocating,
281
         *   that's why we should get recursion at most 1-level deep
281
         *   that's why we should get recursion at most 1-level deep
282
         */
282
         */
283
        spinlock_unlock(&cache->slablock);
283
        spinlock_unlock(&cache->slablock);
284
        slab = slab_space_alloc(cache, flags);
284
        slab = slab_space_alloc(cache, flags);
285
        if (!slab)
285
        if (!slab)
286
            return NULL;
286
            return NULL;
287
        spinlock_lock(&cache->slablock);
287
        spinlock_lock(&cache->slablock);
288
    } else {
288
    } else {
289
        slab = list_get_instance(cache->partial_slabs.next,
289
        slab = list_get_instance(cache->partial_slabs.next,
290
                     slab_t,
290
                     slab_t,
291
                     link);
291
                     link);
292
        list_remove(&slab->link);
292
        list_remove(&slab->link);
293
    }
293
    }
294
    obj = slab->start + slab->nextavail * cache->size;
294
    obj = slab->start + slab->nextavail * cache->size;
295
    slab->nextavail = *((int *)obj);
295
    slab->nextavail = *((int *)obj);
296
    slab->available--;
296
    slab->available--;
297
    if (! slab->available)
297
    if (! slab->available)
298
        list_prepend(&slab->link, &cache->full_slabs);
298
        list_prepend(&slab->link, &cache->full_slabs);
299
    else
299
    else
300
        list_prepend(&slab->link, &cache->partial_slabs);
300
        list_prepend(&slab->link, &cache->partial_slabs);
301
 
301
 
302
    spinlock_unlock(&cache->slablock);
302
    spinlock_unlock(&cache->slablock);
303
    return obj;
303
    return obj;
304
}
304
}
305
 
305
 
306
/**************************************/
306
/**************************************/
307
/* CPU-Cache slab functions */
307
/* CPU-Cache slab functions */
308
 
308
 
309
/**
309
/**
-
 
310
 * Finds a full magazine in cache, takes it from list
-
 
311
 * and returns it
-
 
312
 *
-
 
313
 * @param first If true, return first, else last mag
-
 
314
 */
-
 
315
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
-
 
316
                        int first)
-
 
317
{
-
 
318
    slab_magazine_t *mag = NULL;
-
 
319
    link_t *cur;
-
 
320
 
-
 
321
    spinlock_lock(&cache->maglock);
-
 
322
    if (!list_empty(&cache->magazines)) {
-
 
323
        if (first)
-
 
324
            cur = cache->magazines.next;
-
 
325
        else
-
 
326
            cur = cache->magazines.prev;
-
 
327
        mag = list_get_instance(cur, slab_magazine_t, link);
-
 
328
        list_remove(&mag->link);
-
 
329
        atomic_dec(&cache->magazine_counter);
-
 
330
    }
-
 
331
    spinlock_unlock(&cache->maglock);
-
 
332
    return mag;
-
 
333
}
-
 
334
 
-
 
335
/** Prepend magazine to magazine list in cache */
-
 
336
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
-
 
337
{
-
 
338
    spinlock_lock(&cache->maglock);
-
 
339
 
-
 
340
    list_prepend(&mag->link, &cache->magazines);
-
 
341
    atomic_inc(&cache->magazine_counter);
-
 
342
   
-
 
343
    spinlock_unlock(&cache->maglock);
-
 
344
}
-
 
345
 
-
 
346
/**
310
 * Free all objects in magazine and free memory associated with magazine
347
 * Free all objects in magazine and free memory associated with magazine
311
 *
348
 *
312
 * @return Number of freed pages
349
 * @return Number of freed pages
313
 */
350
 */
314
static count_t magazine_destroy(slab_cache_t *cache,
351
static count_t magazine_destroy(slab_cache_t *cache,
315
                slab_magazine_t *mag)
352
                slab_magazine_t *mag)
316
{
353
{
317
    int i;
354
    int i;
318
    count_t frames = 0;
355
    count_t frames = 0;
319
 
356
 
320
    for (i=0;i < mag->busy; i++) {
357
    for (i=0;i < mag->busy; i++) {
321
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
358
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
322
        atomic_dec(&cache->cached_objs);
359
        atomic_dec(&cache->cached_objs);
323
    }
360
    }
324
   
361
   
325
    slab_free(&mag_cache, mag);
362
    slab_free(&mag_cache, mag);
326
 
363
 
327
    return frames;
364
    return frames;
328
}
365
}
329
 
366
 
330
/**
367
/**
331
 * Find full magazine, set it as current and return it
368
 * Find full magazine, set it as current and return it
332
 *
369
 *
333
 * Assume cpu_magazine lock is held
370
 * Assume cpu_magazine lock is held
334
 */
371
 */
335
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
372
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
336
{
373
{
337
    slab_magazine_t *cmag, *lastmag, *newmag;
374
    slab_magazine_t *cmag, *lastmag, *newmag;
338
 
375
 
339
    cmag = cache->mag_cache[CPU->id].current;
376
    cmag = cache->mag_cache[CPU->id].current;
340
    lastmag = cache->mag_cache[CPU->id].last;
377
    lastmag = cache->mag_cache[CPU->id].last;
341
    if (cmag) { /* First try local CPU magazines */
378
    if (cmag) { /* First try local CPU magazines */
342
        if (cmag->busy)
379
        if (cmag->busy)
343
            return cmag;
380
            return cmag;
344
 
381
 
345
        if (lastmag && lastmag->busy) {
382
        if (lastmag && lastmag->busy) {
346
            cache->mag_cache[CPU->id].current = lastmag;
383
            cache->mag_cache[CPU->id].current = lastmag;
347
            cache->mag_cache[CPU->id].last = cmag;
384
            cache->mag_cache[CPU->id].last = cmag;
348
            return lastmag;
385
            return lastmag;
349
        }
386
        }
350
    }
387
    }
351
    /* Local magazines are empty, import one from magazine list */
388
    /* Local magazines are empty, import one from magazine list */
352
    spinlock_lock(&cache->maglock);
389
    newmag = get_mag_from_cache(cache, 1);
353
    if (list_empty(&cache->magazines)) {
390
    if (!newmag)
354
        spinlock_unlock(&cache->maglock);
-
 
355
        return NULL;
391
        return NULL;
356
    }
-
 
357
    newmag = list_get_instance(cache->magazines.next,
-
 
358
                   slab_magazine_t,
-
 
359
                   link);
-
 
360
    list_remove(&newmag->link);
-
 
361
    spinlock_unlock(&cache->maglock);
-
 
362
 
392
 
363
    if (lastmag)
393
    if (lastmag)
364
        slab_free(&mag_cache, lastmag);
394
        magazine_destroy(cache, lastmag);
-
 
395
 
365
    cache->mag_cache[CPU->id].last = cmag;
396
    cache->mag_cache[CPU->id].last = cmag;
366
    cache->mag_cache[CPU->id].current = newmag;
397
    cache->mag_cache[CPU->id].current = newmag;
367
    return newmag;
398
    return newmag;
368
}
399
}
369
 
400
 
370
/**
401
/**
371
 * Try to find object in CPU-cache magazines
402
 * Try to find object in CPU-cache magazines
372
 *
403
 *
373
 * @return Pointer to object or NULL if not available
404
 * @return Pointer to object or NULL if not available
374
 */
405
 */
375
static void * magazine_obj_get(slab_cache_t *cache)
406
static void * magazine_obj_get(slab_cache_t *cache)
376
{
407
{
377
    slab_magazine_t *mag;
408
    slab_magazine_t *mag;
378
    void *obj;
409
    void *obj;
379
 
410
 
380
    if (!CPU)
411
    if (!CPU)
381
        return NULL;
412
        return NULL;
382
 
413
 
383
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
414
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
384
 
415
 
385
    mag = get_full_current_mag(cache);
416
    mag = get_full_current_mag(cache);
386
    if (!mag) {
417
    if (!mag) {
387
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
418
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
388
        return NULL;
419
        return NULL;
389
    }
420
    }
390
    obj = mag->objs[--mag->busy];
421
    obj = mag->objs[--mag->busy];
391
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
422
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
392
    atomic_dec(&cache->cached_objs);
423
    atomic_dec(&cache->cached_objs);
393
   
424
   
394
    return obj;
425
    return obj;
395
}
426
}
396
 
427
 
397
/**
428
/**
398
 * Assure that the current magazine is empty, return pointer to it, or NULL if
429
 * Assure that the current magazine is empty, return pointer to it, or NULL if
399
 * no empty magazine is available and cannot be allocated
430
 * no empty magazine is available and cannot be allocated
400
 *
431
 *
401
 * Assume mag_cache[CPU->id].lock is held
432
 * Assume mag_cache[CPU->id].lock is held
402
 *
433
 *
403
 * We have 2 magazines bound to processor.
434
 * We have 2 magazines bound to processor.
404
 * First try the current.
435
 * First try the current.
405
 *  If full, try the last.
436
 *  If full, try the last.
406
 *   If full, put to magazines list.
437
 *   If full, put to magazines list.
407
 *   allocate new, exchange last & current
438
 *   allocate new, exchange last & current
408
 *
439
 *
409
 */
440
 */
410
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
441
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
411
{
442
{
412
    slab_magazine_t *cmag,*lastmag,*newmag;
443
    slab_magazine_t *cmag,*lastmag,*newmag;
413
 
444
 
414
    cmag = cache->mag_cache[CPU->id].current;
445
    cmag = cache->mag_cache[CPU->id].current;
415
    lastmag = cache->mag_cache[CPU->id].last;
446
    lastmag = cache->mag_cache[CPU->id].last;
416
 
447
 
417
    if (cmag) {
448
    if (cmag) {
418
        if (cmag->busy < cmag->size)
449
        if (cmag->busy < cmag->size)
419
            return cmag;
450
            return cmag;
420
        if (lastmag && lastmag->busy < lastmag->size) {
451
        if (lastmag && lastmag->busy < lastmag->size) {
421
            cache->mag_cache[CPU->id].last = cmag;
452
            cache->mag_cache[CPU->id].last = cmag;
422
            cache->mag_cache[CPU->id].current = lastmag;
453
            cache->mag_cache[CPU->id].current = lastmag;
423
            return lastmag;
454
            return lastmag;
424
        }
455
        }
425
    }
456
    }
426
    /* current | last are full | nonexistent, allocate new */
457
    /* current | last are full | nonexistent, allocate new */
427
    /* We do not want to sleep just because of caching */
458
    /* We do not want to sleep just because of caching */
428
    /* Especially we do not want reclaiming to start, as
459
    /* Especially we do not want reclaiming to start, as
429
     * this would deadlock */
460
     * this would deadlock */
430
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
461
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
431
    if (!newmag)
462
    if (!newmag)
432
        return NULL;
463
        return NULL;
433
    newmag->size = SLAB_MAG_SIZE;
464
    newmag->size = SLAB_MAG_SIZE;
434
    newmag->busy = 0;
465
    newmag->busy = 0;
435
 
466
 
436
    /* Flush last to magazine list */
467
    /* Flush last to magazine list */
437
    if (lastmag) {
468
    if (lastmag)
438
        spinlock_lock(&cache->maglock);
469
        put_mag_to_cache(cache, lastmag);
439
        list_prepend(&lastmag->link, &cache->magazines);
-
 
440
        spinlock_unlock(&cache->maglock);
-
 
441
    }
470
 
442
    /* Move current as last, save new as current */
471
    /* Move current as last, save new as current */
443
    cache->mag_cache[CPU->id].last = cmag; 
472
    cache->mag_cache[CPU->id].last = cmag; 
444
    cache->mag_cache[CPU->id].current = newmag;
473
    cache->mag_cache[CPU->id].current = newmag;
445
 
474
 
446
    return newmag;
475
    return newmag;
447
}
476
}
448
 
477
 
449
/**
478
/**
450
 * Put object into CPU-cache magazine
479
 * Put object into CPU-cache magazine
451
 *
480
 *
452
 * @return 0 - success, -1 - could not get memory
481
 * @return 0 - success, -1 - could not get memory
453
 */
482
 */
454
static int magazine_obj_put(slab_cache_t *cache, void *obj)
483
static int magazine_obj_put(slab_cache_t *cache, void *obj)
455
{
484
{
456
    slab_magazine_t *mag;
485
    slab_magazine_t *mag;
457
 
486
 
458
    if (!CPU)
487
    if (!CPU)
459
        return -1;
488
        return -1;
460
 
489
 
461
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
490
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
462
 
491
 
463
    mag = make_empty_current_mag(cache);
492
    mag = make_empty_current_mag(cache);
464
    if (!mag) {
493
    if (!mag) {
465
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
494
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
466
        return -1;
495
        return -1;
467
    }
496
    }
468
   
497
   
469
    mag->objs[mag->busy++] = obj;
498
    mag->objs[mag->busy++] = obj;
470
 
499
 
471
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
500
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
472
    atomic_inc(&cache->cached_objs);
501
    atomic_inc(&cache->cached_objs);
473
    return 0;
502
    return 0;
474
}
503
}
475
 
504
 
476
 
505
 
477
/**************************************/
506
/**************************************/
478
/* SLAB CACHE functions */
507
/* SLAB CACHE functions */
479
 
508
 
480
/** Return number of objects that fit in certain cache size */
509
/** Return number of objects that fit in certain cache size */
481
static int comp_objects(slab_cache_t *cache)
510
static int comp_objects(slab_cache_t *cache)
482
{
511
{
483
    if (cache->flags & SLAB_CACHE_SLINSIDE)
512
    if (cache->flags & SLAB_CACHE_SLINSIDE)
484
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
513
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
485
    else
514
    else
486
        return (PAGE_SIZE << cache->order) / cache->size;
515
        return (PAGE_SIZE << cache->order) / cache->size;
487
}
516
}
488
 
517
 
489
/** Return wasted space in slab */
518
/** Return wasted space in slab */
490
static int badness(slab_cache_t *cache)
519
static int badness(slab_cache_t *cache)
491
{
520
{
492
    int objects;
521
    int objects;
493
    int ssize;
522
    int ssize;
494
 
523
 
495
    objects = comp_objects(cache);
524
    objects = comp_objects(cache);
496
    ssize = PAGE_SIZE << cache->order;
525
    ssize = PAGE_SIZE << cache->order;
497
    if (cache->flags & SLAB_CACHE_SLINSIDE)
526
    if (cache->flags & SLAB_CACHE_SLINSIDE)
498
        ssize -= sizeof(slab_t);
527
        ssize -= sizeof(slab_t);
499
    return ssize - objects*cache->size;
528
    return ssize - objects*cache->size;
500
}
529
}
501
 
530
 
502
/** Initialize allocated memory as a slab cache */
531
/** Initialize allocated memory as a slab cache */
503
static void
532
static void
504
_slab_cache_create(slab_cache_t *cache,
533
_slab_cache_create(slab_cache_t *cache,
505
           char *name,
534
           char *name,
506
           size_t size,
535
           size_t size,
507
           size_t align,
536
           size_t align,
508
           int (*constructor)(void *obj, int kmflag),
537
           int (*constructor)(void *obj, int kmflag),
509
           void (*destructor)(void *obj),
538
           void (*destructor)(void *obj),
510
           int flags)
539
           int flags)
511
{
540
{
512
    int i;
541
    int i;
513
    int pages;
542
    int pages;
514
 
543
 
515
    memsetb((__address)cache, sizeof(*cache), 0);
544
    memsetb((__address)cache, sizeof(*cache), 0);
516
    cache->name = name;
545
    cache->name = name;
517
 
546
 
518
    if (align < sizeof(__native))
547
    if (align < sizeof(__native))
519
        align = sizeof(__native);
548
        align = sizeof(__native);
520
    size = ALIGN_UP(size, align);
549
    size = ALIGN_UP(size, align);
521
       
550
       
522
    cache->size = size;
551
    cache->size = size;
523
 
552
 
524
    cache->constructor = constructor;
553
    cache->constructor = constructor;
525
    cache->destructor = destructor;
554
    cache->destructor = destructor;
526
    cache->flags = flags;
555
    cache->flags = flags;
527
 
556
 
528
    list_initialize(&cache->full_slabs);
557
    list_initialize(&cache->full_slabs);
529
    list_initialize(&cache->partial_slabs);
558
    list_initialize(&cache->partial_slabs);
530
    list_initialize(&cache->magazines);
559
    list_initialize(&cache->magazines);
531
    spinlock_initialize(&cache->slablock, "slab_lock");
560
    spinlock_initialize(&cache->slablock, "slab_lock");
532
    spinlock_initialize(&cache->maglock, "slab_maglock");
561
    spinlock_initialize(&cache->maglock, "slab_maglock");
533
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
562
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
534
        for (i=0; i < config.cpu_count; i++) {
563
        for (i=0; i < config.cpu_count; i++) {
535
            memsetb((__address)&cache->mag_cache[i],
564
            memsetb((__address)&cache->mag_cache[i],
536
                sizeof(cache->mag_cache[i]), 0);
565
                sizeof(cache->mag_cache[i]), 0);
537
            spinlock_initialize(&cache->mag_cache[i].lock,
566
            spinlock_initialize(&cache->mag_cache[i].lock,
538
                        "slab_maglock_cpu");
567
                        "slab_maglock_cpu");
539
        }
568
        }
540
    }
569
    }
541
 
570
 
542
    /* Compute slab sizes, object counts in slabs etc. */
571
    /* Compute slab sizes, object counts in slabs etc. */
543
    if (cache->size < SLAB_INSIDE_SIZE)
572
    if (cache->size < SLAB_INSIDE_SIZE)
544
        cache->flags |= SLAB_CACHE_SLINSIDE;
573
        cache->flags |= SLAB_CACHE_SLINSIDE;
545
 
574
 
546
    /* Minimum slab order */
575
    /* Minimum slab order */
547
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
576
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
548
    cache->order = fnzb(pages);
577
    cache->order = fnzb(pages);
549
 
578
 
550
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
579
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
551
        cache->order += 1;
580
        cache->order += 1;
552
    }
581
    }
553
    cache->objects = comp_objects(cache);
582
    cache->objects = comp_objects(cache);
554
    /* If info fits in, put it inside */
583
    /* If info fits in, put it inside */
555
    if (badness(cache) > sizeof(slab_t))
584
    if (badness(cache) > sizeof(slab_t))
556
        cache->flags |= SLAB_CACHE_SLINSIDE;
585
        cache->flags |= SLAB_CACHE_SLINSIDE;
557
 
586
 
558
    spinlock_lock(&slab_cache_lock);
587
    spinlock_lock(&slab_cache_lock);
559
 
588
 
560
    list_append(&cache->link, &slab_cache_list);
589
    list_append(&cache->link, &slab_cache_list);
561
 
590
 
562
    spinlock_unlock(&slab_cache_lock);
591
    spinlock_unlock(&slab_cache_lock);
563
}
592
}
564
 
593
 
565
/** Create slab cache  */
594
/** Create slab cache  */
566
slab_cache_t * slab_cache_create(char *name,
595
slab_cache_t * slab_cache_create(char *name,
567
                 size_t size,
596
                 size_t size,
568
                 size_t align,
597
                 size_t align,
569
                 int (*constructor)(void *obj, int kmflag),
598
                 int (*constructor)(void *obj, int kmflag),
570
                 void (*destructor)(void *obj),
599
                 void (*destructor)(void *obj),
571
                 int flags)
600
                 int flags)
572
{
601
{
573
    slab_cache_t *cache;
602
    slab_cache_t *cache;
574
 
603
 
575
    cache = slab_alloc(&slab_cache_cache, 0);
604
    cache = slab_alloc(&slab_cache_cache, 0);
576
    _slab_cache_create(cache, name, size, align, constructor, destructor,
605
    _slab_cache_create(cache, name, size, align, constructor, destructor,
577
               flags);
606
               flags);
578
    return cache;
607
    return cache;
579
}
608
}
580
 
609
 
581
/**
610
/**
582
 * Reclaim space occupied by objects that are already free
611
 * Reclaim space occupied by objects that are already free
583
 *
612
 *
584
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
613
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
585
 * @return Number of freed pages
614
 * @return Number of freed pages
586
 */
615
 */
587
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
616
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
588
{
617
{
589
    int i;
618
    int i;
590
    slab_magazine_t *mag;
619
    slab_magazine_t *mag;
591
    link_t *cur;
-
 
592
    count_t frames = 0;
620
    count_t frames = 0;
-
 
621
    int magcount;
593
   
622
   
594
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
623
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
595
        return 0; /* Nothing to do */
624
        return 0; /* Nothing to do */
596
   
625
 
597
    /* First lock all cpu caches, then the complete cache lock */
626
    /* We count up to original magazine count to avoid
598
    if (flags & SLAB_RECLAIM_ALL) {
627
     * endless loop
-
 
628
     */
599
        for (i=0; i < config.cpu_count; i++)
629
    magcount = atomic_get(&cache->magazine_counter);
-
 
630
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
600
            spinlock_lock(&cache->mag_cache[i].lock);
631
        frames += magazine_destroy(cache,mag);
-
 
632
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
-
 
633
            break;
601
    }
634
    }
602
    spinlock_lock(&cache->maglock);
-
 
603
   
635
   
604
    if (flags & SLAB_RECLAIM_ALL) {
636
    if (flags & SLAB_RECLAIM_ALL) {
605
        /* Aggressive memfree */
637
        /* Free cpu-bound magazines */
606
        /* Destroy CPU magazines */
638
        /* Destroy CPU magazines */
607
        for (i=0; i<config.cpu_count; i++) {
639
        for (i=0; i<config.cpu_count; i++) {
-
 
640
            spinlock_lock(&cache->mag_cache[i].lock);
-
 
641
 
608
            mag = cache->mag_cache[i].current;
642
            mag = cache->mag_cache[i].current;
609
            if (mag)
643
            if (mag)
610
                frames += magazine_destroy(cache, mag);
644
                frames += magazine_destroy(cache, mag);
611
            cache->mag_cache[i].current = NULL;
645
            cache->mag_cache[i].current = NULL;
612
           
646
           
613
            mag = cache->mag_cache[i].last;
647
            mag = cache->mag_cache[i].last;
614
            if (mag)
648
            if (mag)
615
                frames += magazine_destroy(cache, mag);
649
                frames += magazine_destroy(cache, mag);
616
            cache->mag_cache[i].last = NULL;
650
            cache->mag_cache[i].last = NULL;
617
        }
-
 
618
    }
651
 
619
    /* We can release the cache locks now */
-
 
620
    if (flags & SLAB_RECLAIM_ALL) {
-
 
621
        for (i=0; i < config.cpu_count; i++)
-
 
622
            spinlock_unlock(&cache->mag_cache[i].lock);
652
            spinlock_unlock(&cache->mag_cache[i].lock);
-
 
653
        }
623
    }
654
    }
624
    /* Destroy full magazines */
-
 
625
    cur=cache->magazines.prev;
-
 
626
 
655
 
627
    while (cur != &cache->magazines) {
-
 
628
        mag = list_get_instance(cur, slab_magazine_t, link);
-
 
629
       
-
 
630
        cur = cur->prev;
-
 
631
        list_remove(&mag->link);
-
 
632
        frames += magazine_destroy(cache,mag);
-
 
633
        /* If we do not do full reclaim, break
-
 
634
         * as soon as something is freed */
-
 
635
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
-
 
636
            break;
-
 
637
    }
-
 
638
   
-
 
639
    spinlock_unlock(&cache->maglock);
-
 
640
   
-
 
641
    return frames;
656
    return frames;
642
}
657
}
643
 
658
 
644
/** Check that there are no slabs and remove cache from system  */
659
/** Check that there are no slabs and remove cache from system  */
645
void slab_cache_destroy(slab_cache_t *cache)
660
void slab_cache_destroy(slab_cache_t *cache)
646
{
661
{
-
 
662
    ipl_t ipl;
-
 
663
 
-
 
664
    /* First remove cache from link, so that we don't need
-
 
665
     * to disable interrupts later
-
 
666
     */
-
 
667
 
-
 
668
    ipl = interrupts_disable();
-
 
669
    spinlock_lock(&slab_cache_lock);
-
 
670
 
-
 
671
    list_remove(&cache->link);
-
 
672
 
-
 
673
    spinlock_unlock(&slab_cache_lock);
-
 
674
    interrupts_restore(ipl);
-
 
675
 
647
    /* Do not lock anything, we assume the software is correct and
676
    /* Do not lock anything, we assume the software is correct and
648
     * does not touch the cache when it decides to destroy it */
677
     * does not touch the cache when it decides to destroy it */
649
   
678
   
650
    /* Destroy all magazines */
679
    /* Destroy all magazines */
651
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
680
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
652
 
681
 
653
    /* All slabs must be empty */
682
    /* All slabs must be empty */
654
    if (!list_empty(&cache->full_slabs) \
683
    if (!list_empty(&cache->full_slabs) \
655
        || !list_empty(&cache->partial_slabs))
684
        || !list_empty(&cache->partial_slabs))
656
        panic("Destroying cache that is not empty.");
685
        panic("Destroying cache that is not empty.");
657
 
686
 
658
    spinlock_lock(&slab_cache_lock);
-
 
659
    list_remove(&cache->link);
-
 
660
    spinlock_unlock(&slab_cache_lock);
-
 
661
 
-
 
662
    slab_free(&slab_cache_cache, cache);
687
    slab_free(&slab_cache_cache, cache);
663
}
688
}
664
 
689
 
665
/** Allocate new object from cache - if no flags given, always returns
690
/** Allocate new object from cache - if no flags given, always returns
666
    memory */
691
    memory */
667
void * slab_alloc(slab_cache_t *cache, int flags)
692
void * slab_alloc(slab_cache_t *cache, int flags)
668
{
693
{
669
    ipl_t ipl;
694
    ipl_t ipl;
670
    void *result = NULL;
695
    void *result = NULL;
671
   
696
   
672
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
697
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
673
    ipl = interrupts_disable();
698
    ipl = interrupts_disable();
674
 
699
 
675
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
700
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
676
        result = magazine_obj_get(cache);
701
        result = magazine_obj_get(cache);
677
 
-
 
678
    if (!result)
702
    if (!result)
679
        result = slab_obj_create(cache, flags);
703
        result = slab_obj_create(cache, flags);
680
 
704
 
681
    interrupts_restore(ipl);
705
    interrupts_restore(ipl);
682
 
706
 
683
    if (result)
707
    if (result)
684
        atomic_inc(&cache->allocated_objs);
708
        atomic_inc(&cache->allocated_objs);
685
 
709
 
686
    return result;
710
    return result;
687
}
711
}
688
 
712
 
689
/** Return object to cache, use slab if known  */
713
/** Return object to cache, use slab if known  */
690
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
714
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
691
{
715
{
692
    ipl_t ipl;
716
    ipl_t ipl;
693
 
717
 
694
    ipl = interrupts_disable();
718
    ipl = interrupts_disable();
695
 
719
 
696
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
720
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
697
        || magazine_obj_put(cache, obj)) {
721
        || magazine_obj_put(cache, obj)) {
698
 
722
 
699
        slab_obj_destroy(cache, obj, slab);
723
        slab_obj_destroy(cache, obj, slab);
700
 
724
 
701
    }
725
    }
702
    interrupts_restore(ipl);
726
    interrupts_restore(ipl);
703
    atomic_dec(&cache->allocated_objs);
727
    atomic_dec(&cache->allocated_objs);
704
}
728
}
705
 
729
 
706
/** Return slab object to cache */
730
/** Return slab object to cache */
707
void slab_free(slab_cache_t *cache, void *obj)
731
void slab_free(slab_cache_t *cache, void *obj)
708
{
732
{
709
    _slab_free(cache,obj,NULL);
733
    _slab_free(cache,obj,NULL);
710
}
734
}
711
 
735
 
712
/* Go through all caches and reclaim what is possible */
736
/* Go through all caches and reclaim what is possible */
713
count_t slab_reclaim(int flags)
737
count_t slab_reclaim(int flags)
714
{
738
{
715
    slab_cache_t *cache;
739
    slab_cache_t *cache;
716
    link_t *cur;
740
    link_t *cur;
717
    count_t frames = 0;
741
    count_t frames = 0;
718
 
742
 
719
    spinlock_lock(&slab_cache_lock);
743
    spinlock_lock(&slab_cache_lock);
720
 
744
 
721
    /* TODO: Add assert, that interrupts are disabled, otherwise
745
    /* TODO: Add assert, that interrupts are disabled, otherwise
722
     * memory allocation from interrupts can deadlock.
746
     * memory allocation from interrupts can deadlock.
-
 
747
     * - cache_destroy can call this with interrupts enabled :-/
723
     */
748
     */
724
 
749
 
725
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
750
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
726
        cache = list_get_instance(cur, slab_cache_t, link);
751
        cache = list_get_instance(cur, slab_cache_t, link);
727
        frames += _slab_reclaim(cache, flags);
752
        frames += _slab_reclaim(cache, flags);
728
    }
753
    }
729
 
754
 
730
    spinlock_unlock(&slab_cache_lock);
755
    spinlock_unlock(&slab_cache_lock);
731
 
756
 
732
    return frames;
757
    return frames;
733
}
758
}
734
 
759
 
735
 
760
 
736
/* Print list of slabs */
761
/* Print list of slabs */
737
void slab_print_list(void)
762
void slab_print_list(void)
738
{
763
{
739
    slab_cache_t *cache;
764
    slab_cache_t *cache;
740
    link_t *cur;
765
    link_t *cur;
741
 
766
 
742
    spinlock_lock(&slab_cache_lock);
767
    spinlock_lock(&slab_cache_lock);
743
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
768
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
744
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
769
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
745
        cache = list_get_instance(cur, slab_cache_t, link);
770
        cache = list_get_instance(cur, slab_cache_t, link);
746
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
771
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
747
               (1 << cache->order), cache->objects,
772
               (1 << cache->order), cache->objects,
748
               atomic_get(&cache->allocated_slabs),
773
               atomic_get(&cache->allocated_slabs),
749
               atomic_get(&cache->cached_objs),
774
               atomic_get(&cache->cached_objs),
750
               atomic_get(&cache->allocated_objs),
775
               atomic_get(&cache->allocated_objs),
751
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
776
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
752
    }
777
    }
753
    spinlock_unlock(&slab_cache_lock);
778
    spinlock_unlock(&slab_cache_lock);
754
}
779
}
755
 
780
 
756
#ifdef CONFIG_DEBUG
781
#ifdef CONFIG_DEBUG
757
static int _slab_initialized = 0;
782
static int _slab_initialized = 0;
758
#endif
783
#endif
759
 
784
 
760
void slab_cache_init(void)
785
void slab_cache_init(void)
761
{
786
{
762
    int i, size;
787
    int i, size;
763
 
788
 
764
    /* Initialize magazine cache */
789
    /* Initialize magazine cache */
765
    _slab_cache_create(&mag_cache,
790
    _slab_cache_create(&mag_cache,
766
               "slab_magazine",
791
               "slab_magazine",
767
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
792
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
768
               sizeof(__address),
793
               sizeof(__address),
769
               NULL, NULL,
794
               NULL, NULL,
770
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
795
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
771
    /* Initialize slab_cache cache */
796
    /* Initialize slab_cache cache */
772
    _slab_cache_create(&slab_cache_cache,
797
    _slab_cache_create(&slab_cache_cache,
773
               "slab_cache",
798
               "slab_cache",
774
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
799
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
775
               sizeof(__address),
800
               sizeof(__address),
776
               NULL, NULL,
801
               NULL, NULL,
777
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
802
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
778
    /* Initialize external slab cache */
803
    /* Initialize external slab cache */
779
    slab_extern_cache = slab_cache_create("slab_extern",
804
    slab_extern_cache = slab_cache_create("slab_extern",
780
                          sizeof(slab_t),
805
                          sizeof(slab_t),
781
                          0, NULL, NULL,
806
                          0, NULL, NULL,
782
                          SLAB_CACHE_SLINSIDE);
807
                          SLAB_CACHE_SLINSIDE);
783
 
808
 
784
    /* Initialize structures for malloc */
809
    /* Initialize structures for malloc */
785
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
810
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
786
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
811
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
787
         i++, size <<= 1) {
812
         i++, size <<= 1) {
788
        malloc_caches[i] = slab_cache_create(malloc_names[i],
813
        malloc_caches[i] = slab_cache_create(malloc_names[i],
789
                             size, 0,
814
                             size, 0,
790
                             NULL,NULL,0);
815
                             NULL,NULL,0);
791
    }
816
    }
792
#ifdef CONFIG_DEBUG       
817
#ifdef CONFIG_DEBUG       
793
    _slab_initialized = 1;
818
    _slab_initialized = 1;
794
#endif
819
#endif
795
}
820
}
796
 
821
 
797
/**************************************/
822
/**************************************/
798
/* kalloc/kfree functions             */
823
/* kalloc/kfree functions             */
799
void * kalloc(unsigned int size, int flags)
824
void * kalloc(unsigned int size, int flags)
800
{
825
{
801
    int idx;
826
    int idx;
802
 
827
 
803
    ASSERT(_slab_initialized);
828
    ASSERT(_slab_initialized);
804
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
829
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
805
   
830
   
806
    if (size < (1 << SLAB_MIN_MALLOC_W))
831
    if (size < (1 << SLAB_MIN_MALLOC_W))
807
        size = (1 << SLAB_MIN_MALLOC_W);
832
        size = (1 << SLAB_MIN_MALLOC_W);
808
 
833
 
809
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
834
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
810
 
835
 
811
    return slab_alloc(malloc_caches[idx], flags);
836
    return slab_alloc(malloc_caches[idx], flags);
812
}
837
}
813
 
838
 
814
 
839
 
815
void kfree(void *obj)
840
void kfree(void *obj)
816
{
841
{
817
    slab_t *slab = obj2slab(obj);
842
    slab_t *slab;
818
   
843
 
-
 
844
    if (!obj) return;
-
 
845
 
-
 
846
    slab = obj2slab(obj);
819
    _slab_free(slab->cache, obj, slab);
847
    _slab_free(slab->cache, obj, slab);
820
}
848
}
821
 
849