Subversion Repositories HelenOS-historic

Rev

Rev 778 | Rev 781 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 778 Rev 780
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <list.h>
96
#include <list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
99
#include <mm/heap.h>
100
#include <mm/frame.h>
100
#include <mm/frame.h>
101
#include <config.h>
101
#include <config.h>
102
#include <print.h>
102
#include <print.h>
103
#include <arch.h>
103
#include <arch.h>
104
#include <panic.h>
104
#include <panic.h>
105
#include <debug.h>
105
#include <debug.h>
106
#include <bitops.h>
106
#include <bitops.h>
107
 
107
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
108
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
109
static LIST_INITIALIZE(slab_cache_list);
110
 
110
 
111
/** Magazine cache */
111
/** Magazine cache */
112
static slab_cache_t mag_cache;
112
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
113
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
114
static slab_cache_t slab_cache_cache;
115
 
115
 
116
/** Cache for external slab descriptors
116
/** Cache for external slab descriptors
117
 * This time we want per-cpu cache, so do not make it static
117
 * This time we want per-cpu cache, so do not make it static
118
 * - using SLAB for internal SLAB structures will not deadlock,
118
 * - using SLAB for internal SLAB structures will not deadlock,
119
 *   as all slab structures are 'small' - control structures of
119
 *   as all slab structures are 'small' - control structures of
120
 *   their caches do not require further allocation
120
 *   their caches do not require further allocation
121
 */
121
 */
122
static slab_cache_t *slab_extern_cache;
122
static slab_cache_t *slab_extern_cache;
123
/** Caches for malloc */
123
/** Caches for malloc */
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
char *malloc_names[] =  {
125
char *malloc_names[] =  {
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-64K","malloc-128K"
129
    "malloc-64K","malloc-128K"
130
};
130
};
131
 
131
 
132
/** Slab descriptor */
132
/** Slab descriptor */
133
typedef struct {
133
typedef struct {
134
    slab_cache_t *cache; /**< Pointer to parent cache */
134
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    link_t link;       /* List of full/partial slabs */
135
    link_t link;       /* List of full/partial slabs */
136
    void *start;       /**< Start address of first available item */
136
    void *start;       /**< Start address of first available item */
137
    count_t available; /**< Count of available items in this slab */
137
    count_t available; /**< Count of available items in this slab */
138
    index_t nextavail; /**< The index of next available item */
138
    index_t nextavail; /**< The index of next available item */
139
}slab_t;
139
}slab_t;
140
 
140
 
141
/**************************************/
141
/**************************************/
142
/* SLAB allocation functions          */
142
/* SLAB allocation functions          */
143
 
143
 
144
/**
144
/**
145
 * Allocate frames for slab space and initialize
145
 * Allocate frames for slab space and initialize
146
 *
146
 *
147
 */
147
 */
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
{
149
{
150
    void *data;
150
    void *data;
151
    slab_t *slab;
151
    slab_t *slab;
152
    size_t fsize;
152
    size_t fsize;
153
    int i;
153
    int i;
154
    zone_t *zone = NULL;
154
    zone_t *zone = NULL;
155
    int status;
155
    int status;
156
    frame_t *frame;
156
    frame_t *frame;
157
 
157
 
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
159
    if (status != FRAME_OK) {
159
    if (status != FRAME_OK) {
160
        return NULL;
160
        return NULL;
161
    }
161
    }
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
        slab = slab_alloc(slab_extern_cache, flags);
163
        slab = slab_alloc(slab_extern_cache, flags);
164
        if (!slab) {
164
        if (!slab) {
165
            frame_free((__address)data);
165
            frame_free((__address)data);
166
            return NULL;
166
            return NULL;
167
        }
167
        }
168
    } else {
168
    } else {
169
        fsize = (PAGE_SIZE << cache->order);
169
        fsize = (PAGE_SIZE << cache->order);
170
        slab = data + fsize - sizeof(*slab);
170
        slab = data + fsize - sizeof(*slab);
171
    }
171
    }
172
       
172
       
173
    /* Fill in slab structures */
173
    /* Fill in slab structures */
174
    /* TODO: some better way of accessing the frame */
174
    /* TODO: some better way of accessing the frame */
175
    for (i=0; i < (1 << cache->order); i++) {
175
    for (i=0; i < (1 << cache->order); i++) {
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame->parent = slab;
177
        frame->parent = slab;
178
    }
178
    }
179
 
179
 
180
    slab->start = data;
180
    slab->start = data;
181
    slab->available = cache->objects;
181
    slab->available = cache->objects;
182
    slab->nextavail = 0;
182
    slab->nextavail = 0;
183
    slab->cache = cache;
183
    slab->cache = cache;
184
 
184
 
185
    for (i=0; i<cache->objects;i++)
185
    for (i=0; i<cache->objects;i++)
186
        *((int *) (slab->start + i*cache->size)) = i+1;
186
        *((int *) (slab->start + i*cache->size)) = i+1;
187
 
187
 
188
    atomic_inc(&cache->allocated_slabs);
188
    atomic_inc(&cache->allocated_slabs);
189
    return slab;
189
    return slab;
190
}
190
}
191
 
191
 
192
/**
192
/**
193
 * Deallocate space associated with SLAB
193
 * Deallocate space associated with SLAB
194
 *
194
 *
195
 * @return number of freed frames
195
 * @return number of freed frames
196
 */
196
 */
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
{
198
{
199
    frame_free((__address)slab->start);
199
    frame_free((__address)slab->start);
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
        slab_free(slab_extern_cache, slab);
201
        slab_free(slab_extern_cache, slab);
202
 
202
 
203
    atomic_dec(&cache->allocated_slabs);
203
    atomic_dec(&cache->allocated_slabs);
204
   
204
   
205
    return 1 << cache->order;
205
    return 1 << cache->order;
206
}
206
}
207
 
207
 
208
/** Map object to slab structure */
208
/** Map object to slab structure */
209
static slab_t * obj2slab(void *obj)
209
static slab_t * obj2slab(void *obj)
210
{
210
{
211
    frame_t *frame;
211
    frame_t *frame;
212
 
212
 
213
    frame = frame_addr2frame((__address)obj);
213
    frame = frame_addr2frame((__address)obj);
214
    return (slab_t *)frame->parent;
214
    return (slab_t *)frame->parent;
215
}
215
}
216
 
216
 
217
/**************************************/
217
/**************************************/
218
/* SLAB functions */
218
/* SLAB functions */
219
 
219
 
220
 
220
 
221
/**
221
/**
222
 * Return object to slab and call a destructor
222
 * Return object to slab and call a destructor
223
 *
223
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
225
 *
226
 * @return Number of freed pages
226
 * @return Number of freed pages
227
 */
227
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
229
                slab_t *slab)
230
{
230
{
231
    count_t frames = 0;
231
    count_t frames = 0;
232
 
232
 
233
    if (!slab)
233
    if (!slab)
234
        slab = obj2slab(obj);
234
        slab = obj2slab(obj);
235
 
235
 
236
    ASSERT(slab->cache == cache);
236
    ASSERT(slab->cache == cache);
-
 
237
    ASSERT(slab->available < cache->objects);
237
 
238
 
238
    spinlock_lock(&cache->slablock);
239
    spinlock_lock(&cache->slablock);
239
 
240
 
240
    *((int *)obj) = slab->nextavail;
241
    *((int *)obj) = slab->nextavail;
241
    slab->nextavail = (obj - slab->start)/cache->size;
242
    slab->nextavail = (obj - slab->start)/cache->size;
242
    slab->available++;
243
    slab->available++;
243
 
244
 
244
    /* Move it to correct list */
245
    /* Move it to correct list */
245
    if (slab->available == 1) {
-
 
246
        /* It was in full, move to partial */
-
 
247
        list_remove(&slab->link);
-
 
248
        list_prepend(&slab->link, &cache->partial_slabs);
-
 
249
    }
-
 
250
    if (slab->available == cache->objects) {
246
    if (slab->available == cache->objects) {
251
        /* Free associated memory */
247
        /* Free associated memory */
252
        list_remove(&slab->link);
248
        list_remove(&slab->link);
253
        /* This should not produce deadlock, as
249
        /* This should not produce deadlock, as
254
         * magazine is always allocated with NO reclaim,
250
         * magazine is always allocated with NO reclaim,
255
         * keep all locks */
251
         * keep all locks */
256
        frames = slab_space_free(cache, slab);
252
        frames = slab_space_free(cache, slab);
-
 
253
    } else if (slab->available == 1) {
-
 
254
        /* It was in full, move to partial */
-
 
255
        list_remove(&slab->link);
-
 
256
        list_prepend(&slab->link, &cache->partial_slabs);
257
    }
257
    }
258
 
258
 
259
    spinlock_unlock(&cache->slablock);
259
    spinlock_unlock(&cache->slablock);
260
 
260
 
261
    return frames;
261
    return frames;
262
}
262
}
263
 
263
 
264
/**
264
/**
265
 * Take new object from slab or create new if needed
265
 * Take new object from slab or create new if needed
266
 *
266
 *
267
 * @return Object address or null
267
 * @return Object address or null
268
 */
268
 */
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
270
{
270
{
271
    slab_t *slab;
271
    slab_t *slab;
272
    void *obj;
272
    void *obj;
273
 
273
 
274
    spinlock_lock(&cache->slablock);
274
    spinlock_lock(&cache->slablock);
275
 
275
 
276
    if (list_empty(&cache->partial_slabs)) {
276
    if (list_empty(&cache->partial_slabs)) {
277
        /* Allow recursion and reclaiming
277
        /* Allow recursion and reclaiming
278
         * - this should work, as the SLAB control structures
278
         * - this should work, as the SLAB control structures
279
         *   are small and do not need to allocte with anything
279
         *   are small and do not need to allocte with anything
280
         *   other ten frame_alloc when they are allocating,
280
         *   other ten frame_alloc when they are allocating,
281
         *   that's why we should get recursion at most 1-level deep
281
         *   that's why we should get recursion at most 1-level deep
282
         */
282
         */
283
        spinlock_unlock(&cache->slablock);
283
        spinlock_unlock(&cache->slablock);
284
        slab = slab_space_alloc(cache, flags);
284
        slab = slab_space_alloc(cache, flags);
285
        spinlock_lock(&cache->slablock);
-
 
286
        if (!slab)
285
        if (!slab)
287
            goto err;
286
            return NULL;
-
 
287
        spinlock_lock(&cache->slablock);
288
    } else {
288
    } else {
289
        slab = list_get_instance(cache->partial_slabs.next,
289
        slab = list_get_instance(cache->partial_slabs.next,
290
                     slab_t,
290
                     slab_t,
291
                     link);
291
                     link);
292
        list_remove(&slab->link);
292
        list_remove(&slab->link);
293
    }
293
    }
294
    obj = slab->start + slab->nextavail * cache->size;
294
    obj = slab->start + slab->nextavail * cache->size;
295
    slab->nextavail = *((int *)obj);
295
    slab->nextavail = *((int *)obj);
296
    slab->available--;
296
    slab->available--;
297
    if (! slab->available)
297
    if (! slab->available)
298
        list_prepend(&slab->link, &cache->full_slabs);
298
        list_prepend(&slab->link, &cache->full_slabs);
299
    else
299
    else
300
        list_prepend(&slab->link, &cache->partial_slabs);
300
        list_prepend(&slab->link, &cache->partial_slabs);
301
 
301
 
302
    spinlock_unlock(&cache->slablock);
302
    spinlock_unlock(&cache->slablock);
303
    return obj;
303
    return obj;
304
err:
-
 
305
    spinlock_unlock(&cache->slablock);
-
 
306
    return NULL;
-
 
307
}
304
}
308
 
305
 
309
/**************************************/
306
/**************************************/
310
/* CPU-Cache slab functions */
307
/* CPU-Cache slab functions */
311
 
308
 
312
/**
309
/**
313
 * Free all objects in magazine and free memory associated with magazine
310
 * Free all objects in magazine and free memory associated with magazine
314
 *
311
 *
315
 * @return Number of freed pages
312
 * @return Number of freed pages
316
 */
313
 */
317
static count_t magazine_destroy(slab_cache_t *cache,
314
static count_t magazine_destroy(slab_cache_t *cache,
318
                slab_magazine_t *mag)
315
                slab_magazine_t *mag)
319
{
316
{
320
    int i;
317
    int i;
321
    count_t frames = 0;
318
    count_t frames = 0;
322
 
319
 
323
    for (i=0;i < mag->busy; i++) {
320
    for (i=0;i < mag->busy; i++) {
324
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
321
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
325
        atomic_dec(&cache->cached_objs);
322
        atomic_dec(&cache->cached_objs);
326
    }
323
    }
327
   
324
   
328
    slab_free(&mag_cache, mag);
325
    slab_free(&mag_cache, mag);
329
 
326
 
330
    return frames;
327
    return frames;
331
}
328
}
332
 
329
 
333
/**
330
/**
334
 * Find full magazine, set it as current and return it
331
 * Find full magazine, set it as current and return it
335
 *
332
 *
336
 * Assume cpu_magazine lock is held
333
 * Assume cpu_magazine lock is held
337
 */
334
 */
338
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
335
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
339
{
336
{
340
    slab_magazine_t *cmag, *lastmag, *newmag;
337
    slab_magazine_t *cmag, *lastmag, *newmag;
341
 
338
 
342
    cmag = cache->mag_cache[CPU->id].current;
339
    cmag = cache->mag_cache[CPU->id].current;
343
    lastmag = cache->mag_cache[CPU->id].last;
340
    lastmag = cache->mag_cache[CPU->id].last;
344
    if (cmag) { /* First try local CPU magazines */
341
    if (cmag) { /* First try local CPU magazines */
345
        if (cmag->busy)
342
        if (cmag->busy)
346
            return cmag;
343
            return cmag;
347
 
344
 
348
        if (lastmag && lastmag->busy) {
345
        if (lastmag && lastmag->busy) {
349
            cache->mag_cache[CPU->id].current = lastmag;
346
            cache->mag_cache[CPU->id].current = lastmag;
350
            cache->mag_cache[CPU->id].last = cmag;
347
            cache->mag_cache[CPU->id].last = cmag;
351
            return lastmag;
348
            return lastmag;
352
        }
349
        }
353
    }
350
    }
354
    /* Local magazines are empty, import one from magazine list */
351
    /* Local magazines are empty, import one from magazine list */
355
    spinlock_lock(&cache->maglock);
352
    spinlock_lock(&cache->maglock);
356
    if (list_empty(&cache->magazines)) {
353
    if (list_empty(&cache->magazines)) {
357
        spinlock_unlock(&cache->maglock);
354
        spinlock_unlock(&cache->maglock);
358
        return NULL;
355
        return NULL;
359
    }
356
    }
360
    newmag = list_get_instance(cache->magazines.next,
357
    newmag = list_get_instance(cache->magazines.next,
361
                   slab_magazine_t,
358
                   slab_magazine_t,
362
                   link);
359
                   link);
363
    list_remove(&newmag->link);
360
    list_remove(&newmag->link);
364
    spinlock_unlock(&cache->maglock);
361
    spinlock_unlock(&cache->maglock);
365
 
362
 
366
    if (lastmag)
363
    if (lastmag)
367
        slab_free(&mag_cache, lastmag);
364
        slab_free(&mag_cache, lastmag);
368
    cache->mag_cache[CPU->id].last = cmag;
365
    cache->mag_cache[CPU->id].last = cmag;
369
    cache->mag_cache[CPU->id].current = newmag;
366
    cache->mag_cache[CPU->id].current = newmag;
370
    return newmag;
367
    return newmag;
371
}
368
}
372
 
369
 
373
/**
370
/**
374
 * Try to find object in CPU-cache magazines
371
 * Try to find object in CPU-cache magazines
375
 *
372
 *
376
 * @return Pointer to object or NULL if not available
373
 * @return Pointer to object or NULL if not available
377
 */
374
 */
378
static void * magazine_obj_get(slab_cache_t *cache)
375
static void * magazine_obj_get(slab_cache_t *cache)
379
{
376
{
380
    slab_magazine_t *mag;
377
    slab_magazine_t *mag;
381
    void *obj;
378
    void *obj;
382
 
379
 
383
    if (!CPU)
380
    if (!CPU)
384
        return NULL;
381
        return NULL;
385
 
382
 
386
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
383
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
387
 
384
 
388
    mag = get_full_current_mag(cache);
385
    mag = get_full_current_mag(cache);
389
    if (!mag) {
386
    if (!mag) {
390
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
387
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
391
        return NULL;
388
        return NULL;
392
    }
389
    }
393
    obj = mag->objs[--mag->busy];
390
    obj = mag->objs[--mag->busy];
394
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
391
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
395
    atomic_dec(&cache->cached_objs);
392
    atomic_dec(&cache->cached_objs);
396
   
393
   
397
    return obj;
394
    return obj;
398
}
395
}
399
 
396
 
400
/**
397
/**
401
 * Assure that the current magazine is empty, return pointer to it, or NULL if
398
 * Assure that the current magazine is empty, return pointer to it, or NULL if
402
 * no empty magazine is available and cannot be allocated
399
 * no empty magazine is available and cannot be allocated
403
 *
400
 *
404
 * Assume mag_cache[CPU->id].lock is held
401
 * Assume mag_cache[CPU->id].lock is held
405
 *
402
 *
406
 * We have 2 magazines bound to processor.
403
 * We have 2 magazines bound to processor.
407
 * First try the current.
404
 * First try the current.
408
 *  If full, try the last.
405
 *  If full, try the last.
409
 *   If full, put to magazines list.
406
 *   If full, put to magazines list.
410
 *   allocate new, exchange last & current
407
 *   allocate new, exchange last & current
411
 *
408
 *
412
 */
409
 */
413
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
410
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
414
{
411
{
415
    slab_magazine_t *cmag,*lastmag,*newmag;
412
    slab_magazine_t *cmag,*lastmag,*newmag;
416
 
413
 
417
    cmag = cache->mag_cache[CPU->id].current;
414
    cmag = cache->mag_cache[CPU->id].current;
418
    lastmag = cache->mag_cache[CPU->id].last;
415
    lastmag = cache->mag_cache[CPU->id].last;
419
 
416
 
420
    if (cmag) {
417
    if (cmag) {
421
        if (cmag->busy < cmag->size)
418
        if (cmag->busy < cmag->size)
422
            return cmag;
419
            return cmag;
423
        if (lastmag && lastmag->busy < lastmag->size) {
420
        if (lastmag && lastmag->busy < lastmag->size) {
424
            cache->mag_cache[CPU->id].last = cmag;
421
            cache->mag_cache[CPU->id].last = cmag;
425
            cache->mag_cache[CPU->id].current = lastmag;
422
            cache->mag_cache[CPU->id].current = lastmag;
426
            return lastmag;
423
            return lastmag;
427
        }
424
        }
428
    }
425
    }
429
    /* current | last are full | nonexistent, allocate new */
426
    /* current | last are full | nonexistent, allocate new */
430
    /* We do not want to sleep just because of caching */
427
    /* We do not want to sleep just because of caching */
431
    /* Especially we do not want reclaiming to start, as
428
    /* Especially we do not want reclaiming to start, as
432
     * this would deadlock */
429
     * this would deadlock */
433
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
430
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
434
    if (!newmag)
431
    if (!newmag)
435
        return NULL;
432
        return NULL;
436
    newmag->size = SLAB_MAG_SIZE;
433
    newmag->size = SLAB_MAG_SIZE;
437
    newmag->busy = 0;
434
    newmag->busy = 0;
438
 
435
 
439
    /* Flush last to magazine list */
436
    /* Flush last to magazine list */
440
    if (lastmag) {
437
    if (lastmag) {
441
        spinlock_lock(&cache->maglock);
438
        spinlock_lock(&cache->maglock);
442
        list_prepend(&lastmag->link, &cache->magazines);
439
        list_prepend(&lastmag->link, &cache->magazines);
443
        spinlock_unlock(&cache->maglock);
440
        spinlock_unlock(&cache->maglock);
444
    }
441
    }
445
    /* Move current as last, save new as current */
442
    /* Move current as last, save new as current */
446
    cache->mag_cache[CPU->id].last = cmag; 
443
    cache->mag_cache[CPU->id].last = cmag; 
447
    cache->mag_cache[CPU->id].current = newmag;
444
    cache->mag_cache[CPU->id].current = newmag;
448
 
445
 
449
    return newmag;
446
    return newmag;
450
}
447
}
451
 
448
 
452
/**
449
/**
453
 * Put object into CPU-cache magazine
450
 * Put object into CPU-cache magazine
454
 *
451
 *
455
 * @return 0 - success, -1 - could not get memory
452
 * @return 0 - success, -1 - could not get memory
456
 */
453
 */
457
static int magazine_obj_put(slab_cache_t *cache, void *obj)
454
static int magazine_obj_put(slab_cache_t *cache, void *obj)
458
{
455
{
459
    slab_magazine_t *mag;
456
    slab_magazine_t *mag;
460
 
457
 
461
    if (!CPU)
458
    if (!CPU)
462
        return -1;
459
        return -1;
463
 
460
 
464
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
461
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
465
 
462
 
466
    mag = make_empty_current_mag(cache);
463
    mag = make_empty_current_mag(cache);
467
    if (!mag) {
464
    if (!mag) {
468
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
465
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
469
        return -1;
466
        return -1;
470
    }
467
    }
471
   
468
   
472
    mag->objs[mag->busy++] = obj;
469
    mag->objs[mag->busy++] = obj;
473
 
470
 
474
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
471
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
475
    atomic_inc(&cache->cached_objs);
472
    atomic_inc(&cache->cached_objs);
476
    return 0;
473
    return 0;
477
}
474
}
478
 
475
 
479
 
476
 
480
/**************************************/
477
/**************************************/
481
/* SLAB CACHE functions */
478
/* SLAB CACHE functions */
482
 
479
 
483
/** Return number of objects that fit in certain cache size */
480
/** Return number of objects that fit in certain cache size */
484
static int comp_objects(slab_cache_t *cache)
481
static int comp_objects(slab_cache_t *cache)
485
{
482
{
486
    if (cache->flags & SLAB_CACHE_SLINSIDE)
483
    if (cache->flags & SLAB_CACHE_SLINSIDE)
487
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
484
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
488
    else
485
    else
489
        return (PAGE_SIZE << cache->order) / cache->size;
486
        return (PAGE_SIZE << cache->order) / cache->size;
490
}
487
}
491
 
488
 
492
/** Return wasted space in slab */
489
/** Return wasted space in slab */
493
static int badness(slab_cache_t *cache)
490
static int badness(slab_cache_t *cache)
494
{
491
{
495
    int objects;
492
    int objects;
496
    int ssize;
493
    int ssize;
497
 
494
 
498
    objects = comp_objects(cache);
495
    objects = comp_objects(cache);
499
    ssize = PAGE_SIZE << cache->order;
496
    ssize = PAGE_SIZE << cache->order;
500
    if (cache->flags & SLAB_CACHE_SLINSIDE)
497
    if (cache->flags & SLAB_CACHE_SLINSIDE)
501
        ssize -= sizeof(slab_t);
498
        ssize -= sizeof(slab_t);
502
    return ssize - objects*cache->size;
499
    return ssize - objects*cache->size;
503
}
500
}
504
 
501
 
505
/** Initialize allocated memory as a slab cache */
502
/** Initialize allocated memory as a slab cache */
506
static void
503
static void
507
_slab_cache_create(slab_cache_t *cache,
504
_slab_cache_create(slab_cache_t *cache,
508
           char *name,
505
           char *name,
509
           size_t size,
506
           size_t size,
510
           size_t align,
507
           size_t align,
511
           int (*constructor)(void *obj, int kmflag),
508
           int (*constructor)(void *obj, int kmflag),
512
           void (*destructor)(void *obj),
509
           void (*destructor)(void *obj),
513
           int flags)
510
           int flags)
514
{
511
{
515
    int i;
512
    int i;
516
    int pages;
513
    int pages;
517
 
514
 
518
    memsetb((__address)cache, sizeof(*cache), 0);
515
    memsetb((__address)cache, sizeof(*cache), 0);
519
    cache->name = name;
516
    cache->name = name;
520
 
517
 
521
    if (align < sizeof(__native))
518
    if (align < sizeof(__native))
522
        align = sizeof(__native);
519
        align = sizeof(__native);
523
    size = ALIGN_UP(size, align);
520
    size = ALIGN_UP(size, align);
524
       
521
       
525
    cache->size = size;
522
    cache->size = size;
526
 
523
 
527
    cache->constructor = constructor;
524
    cache->constructor = constructor;
528
    cache->destructor = destructor;
525
    cache->destructor = destructor;
529
    cache->flags = flags;
526
    cache->flags = flags;
530
 
527
 
531
    list_initialize(&cache->full_slabs);
528
    list_initialize(&cache->full_slabs);
532
    list_initialize(&cache->partial_slabs);
529
    list_initialize(&cache->partial_slabs);
533
    list_initialize(&cache->magazines);
530
    list_initialize(&cache->magazines);
534
    spinlock_initialize(&cache->slablock, "slab_lock");
531
    spinlock_initialize(&cache->slablock, "slab_lock");
535
    spinlock_initialize(&cache->maglock, "slab_maglock");
532
    spinlock_initialize(&cache->maglock, "slab_maglock");
536
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
533
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
537
        for (i=0; i < config.cpu_count; i++) {
534
        for (i=0; i < config.cpu_count; i++) {
538
            memsetb((__address)&cache->mag_cache[i],
535
            memsetb((__address)&cache->mag_cache[i],
539
                sizeof(cache->mag_cache[i]), 0);
536
                sizeof(cache->mag_cache[i]), 0);
540
            spinlock_initialize(&cache->mag_cache[i].lock,
537
            spinlock_initialize(&cache->mag_cache[i].lock,
541
                        "slab_maglock_cpu");
538
                        "slab_maglock_cpu");
542
        }
539
        }
543
    }
540
    }
544
 
541
 
545
    /* Compute slab sizes, object counts in slabs etc. */
542
    /* Compute slab sizes, object counts in slabs etc. */
546
    if (cache->size < SLAB_INSIDE_SIZE)
543
    if (cache->size < SLAB_INSIDE_SIZE)
547
        cache->flags |= SLAB_CACHE_SLINSIDE;
544
        cache->flags |= SLAB_CACHE_SLINSIDE;
548
 
545
 
549
    /* Minimum slab order */
546
    /* Minimum slab order */
550
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
547
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
551
    cache->order = fnzb(pages);
548
    cache->order = fnzb(pages);
552
 
549
 
553
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
550
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
554
        cache->order += 1;
551
        cache->order += 1;
555
    }
552
    }
556
    cache->objects = comp_objects(cache);
553
    cache->objects = comp_objects(cache);
557
    /* If info fits in, put it inside */
554
    /* If info fits in, put it inside */
558
    if (badness(cache) > sizeof(slab_t))
555
    if (badness(cache) > sizeof(slab_t))
559
        cache->flags |= SLAB_CACHE_SLINSIDE;
556
        cache->flags |= SLAB_CACHE_SLINSIDE;
560
 
557
 
561
    spinlock_lock(&slab_cache_lock);
558
    spinlock_lock(&slab_cache_lock);
562
 
559
 
563
    list_append(&cache->link, &slab_cache_list);
560
    list_append(&cache->link, &slab_cache_list);
564
 
561
 
565
    spinlock_unlock(&slab_cache_lock);
562
    spinlock_unlock(&slab_cache_lock);
566
}
563
}
567
 
564
 
568
/** Create slab cache  */
565
/** Create slab cache  */
569
slab_cache_t * slab_cache_create(char *name,
566
slab_cache_t * slab_cache_create(char *name,
570
                 size_t size,
567
                 size_t size,
571
                 size_t align,
568
                 size_t align,
572
                 int (*constructor)(void *obj, int kmflag),
569
                 int (*constructor)(void *obj, int kmflag),
573
                 void (*destructor)(void *obj),
570
                 void (*destructor)(void *obj),
574
                 int flags)
571
                 int flags)
575
{
572
{
576
    slab_cache_t *cache;
573
    slab_cache_t *cache;
577
 
574
 
578
    cache = slab_alloc(&slab_cache_cache, 0);
575
    cache = slab_alloc(&slab_cache_cache, 0);
579
    _slab_cache_create(cache, name, size, align, constructor, destructor,
576
    _slab_cache_create(cache, name, size, align, constructor, destructor,
580
               flags);
577
               flags);
581
    return cache;
578
    return cache;
582
}
579
}
583
 
580
 
584
/**
581
/**
585
 * Reclaim space occupied by objects that are already free
582
 * Reclaim space occupied by objects that are already free
586
 *
583
 *
587
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
584
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
588
 * @return Number of freed pages
585
 * @return Number of freed pages
589
 */
586
 */
590
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
587
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
591
{
588
{
592
    int i;
589
    int i;
593
    slab_magazine_t *mag;
590
    slab_magazine_t *mag;
594
    link_t *cur;
591
    link_t *cur;
595
    count_t frames = 0;
592
    count_t frames = 0;
596
   
593
   
597
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
594
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
598
        return 0; /* Nothing to do */
595
        return 0; /* Nothing to do */
599
   
596
   
600
    /* First lock all cpu caches, then the complete cache lock */
597
    /* First lock all cpu caches, then the complete cache lock */
601
    if (flags & SLAB_RECLAIM_ALL) {
598
    if (flags & SLAB_RECLAIM_ALL) {
602
        for (i=0; i < config.cpu_count; i++)
599
        for (i=0; i < config.cpu_count; i++)
603
            spinlock_lock(&cache->mag_cache[i].lock);
600
            spinlock_lock(&cache->mag_cache[i].lock);
604
    }
601
    }
605
    spinlock_lock(&cache->maglock);
602
    spinlock_lock(&cache->maglock);
606
   
603
   
607
    if (flags & SLAB_RECLAIM_ALL) {
604
    if (flags & SLAB_RECLAIM_ALL) {
608
        /* Aggressive memfree */
605
        /* Aggressive memfree */
609
        /* Destroy CPU magazines */
606
        /* Destroy CPU magazines */
610
        for (i=0; i<config.cpu_count; i++) {
607
        for (i=0; i<config.cpu_count; i++) {
611
            mag = cache->mag_cache[i].current;
608
            mag = cache->mag_cache[i].current;
612
            if (mag)
609
            if (mag)
613
                frames += magazine_destroy(cache, mag);
610
                frames += magazine_destroy(cache, mag);
614
            cache->mag_cache[i].current = NULL;
611
            cache->mag_cache[i].current = NULL;
615
           
612
           
616
            mag = cache->mag_cache[i].last;
613
            mag = cache->mag_cache[i].last;
617
            if (mag)
614
            if (mag)
618
                frames += magazine_destroy(cache, mag);
615
                frames += magazine_destroy(cache, mag);
619
            cache->mag_cache[i].last = NULL;
616
            cache->mag_cache[i].last = NULL;
620
        }
617
        }
621
    }
618
    }
622
    /* We can release the cache locks now */
619
    /* We can release the cache locks now */
623
    if (flags & SLAB_RECLAIM_ALL) {
620
    if (flags & SLAB_RECLAIM_ALL) {
624
        for (i=0; i < config.cpu_count; i++)
621
        for (i=0; i < config.cpu_count; i++)
625
            spinlock_unlock(&cache->mag_cache[i].lock);
622
            spinlock_unlock(&cache->mag_cache[i].lock);
626
    }
623
    }
627
    /* Destroy full magazines */
624
    /* Destroy full magazines */
628
    cur=cache->magazines.prev;
625
    cur=cache->magazines.prev;
629
 
626
 
630
    while (cur != &cache->magazines) {
627
    while (cur != &cache->magazines) {
631
        mag = list_get_instance(cur, slab_magazine_t, link);
628
        mag = list_get_instance(cur, slab_magazine_t, link);
632
       
629
       
633
        cur = cur->prev;
630
        cur = cur->prev;
634
        list_remove(&mag->link);
631
        list_remove(&mag->link);
635
        frames += magazine_destroy(cache,mag);
632
        frames += magazine_destroy(cache,mag);
636
        /* If we do not do full reclaim, break
633
        /* If we do not do full reclaim, break
637
         * as soon as something is freed */
634
         * as soon as something is freed */
638
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
635
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
639
            break;
636
            break;
640
    }
637
    }
641
   
638
   
642
    spinlock_unlock(&cache->maglock);
639
    spinlock_unlock(&cache->maglock);
643
   
640
   
644
    return frames;
641
    return frames;
645
}
642
}
646
 
643
 
647
/** Check that there are no slabs and remove cache from system  */
644
/** Check that there are no slabs and remove cache from system  */
648
void slab_cache_destroy(slab_cache_t *cache)
645
void slab_cache_destroy(slab_cache_t *cache)
649
{
646
{
650
    /* Do not lock anything, we assume the software is correct and
647
    /* Do not lock anything, we assume the software is correct and
651
     * does not touch the cache when it decides to destroy it */
648
     * does not touch the cache when it decides to destroy it */
652
   
649
   
653
    /* Destroy all magazines */
650
    /* Destroy all magazines */
654
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
651
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
655
 
652
 
656
    /* All slabs must be empty */
653
    /* All slabs must be empty */
657
    if (!list_empty(&cache->full_slabs) \
654
    if (!list_empty(&cache->full_slabs) \
658
        || !list_empty(&cache->partial_slabs))
655
        || !list_empty(&cache->partial_slabs))
659
        panic("Destroying cache that is not empty.");
656
        panic("Destroying cache that is not empty.");
660
 
657
 
661
    spinlock_lock(&slab_cache_lock);
658
    spinlock_lock(&slab_cache_lock);
662
    list_remove(&cache->link);
659
    list_remove(&cache->link);
663
    spinlock_unlock(&slab_cache_lock);
660
    spinlock_unlock(&slab_cache_lock);
664
 
661
 
665
    slab_free(&slab_cache_cache, cache);
662
    slab_free(&slab_cache_cache, cache);
666
}
663
}
667
 
664
 
668
/** Allocate new object from cache - if no flags given, always returns
665
/** Allocate new object from cache - if no flags given, always returns
669
    memory */
666
    memory */
670
void * slab_alloc(slab_cache_t *cache, int flags)
667
void * slab_alloc(slab_cache_t *cache, int flags)
671
{
668
{
672
    ipl_t ipl;
669
    ipl_t ipl;
673
    void *result = NULL;
670
    void *result = NULL;
674
   
671
   
675
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
672
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
676
    ipl = interrupts_disable();
673
    ipl = interrupts_disable();
677
 
674
 
678
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
675
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
679
        result = magazine_obj_get(cache);
676
        result = magazine_obj_get(cache);
680
 
677
 
681
    if (!result)
678
    if (!result)
682
        result = slab_obj_create(cache, flags);
679
        result = slab_obj_create(cache, flags);
683
 
680
 
684
    interrupts_restore(ipl);
681
    interrupts_restore(ipl);
685
 
682
 
686
    if (result)
683
    if (result)
687
        atomic_inc(&cache->allocated_objs);
684
        atomic_inc(&cache->allocated_objs);
688
 
685
 
689
    return result;
686
    return result;
690
}
687
}
691
 
688
 
692
/** Return object to cache, use slab if known  */
689
/** Return object to cache, use slab if known  */
693
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
690
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
694
{
691
{
695
    ipl_t ipl;
692
    ipl_t ipl;
696
 
693
 
697
    ipl = interrupts_disable();
694
    ipl = interrupts_disable();
698
 
695
 
699
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
696
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
700
        || magazine_obj_put(cache, obj)) {
697
        || magazine_obj_put(cache, obj)) {
701
 
698
 
702
        slab_obj_destroy(cache, obj, slab);
699
        slab_obj_destroy(cache, obj, slab);
703
 
700
 
704
    }
701
    }
705
    interrupts_restore(ipl);
702
    interrupts_restore(ipl);
706
    atomic_dec(&cache->allocated_objs);
703
    atomic_dec(&cache->allocated_objs);
707
}
704
}
708
 
705
 
709
/** Return slab object to cache */
706
/** Return slab object to cache */
710
void slab_free(slab_cache_t *cache, void *obj)
707
void slab_free(slab_cache_t *cache, void *obj)
711
{
708
{
712
    _slab_free(cache,obj,NULL);
709
    _slab_free(cache,obj,NULL);
713
}
710
}
714
 
711
 
715
/* Go through all caches and reclaim what is possible */
712
/* Go through all caches and reclaim what is possible */
716
count_t slab_reclaim(int flags)
713
count_t slab_reclaim(int flags)
717
{
714
{
718
    slab_cache_t *cache;
715
    slab_cache_t *cache;
719
    link_t *cur;
716
    link_t *cur;
720
    count_t frames = 0;
717
    count_t frames = 0;
721
 
718
 
722
    spinlock_lock(&slab_cache_lock);
719
    spinlock_lock(&slab_cache_lock);
723
 
720
 
724
    /* TODO: Add assert, that interrupts are disabled, otherwise
721
    /* TODO: Add assert, that interrupts are disabled, otherwise
725
     * memory allocation from interrupts can deadlock.
722
     * memory allocation from interrupts can deadlock.
726
     */
723
     */
727
 
724
 
728
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
725
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
729
        cache = list_get_instance(cur, slab_cache_t, link);
726
        cache = list_get_instance(cur, slab_cache_t, link);
730
        frames += _slab_reclaim(cache, flags);
727
        frames += _slab_reclaim(cache, flags);
731
    }
728
    }
732
 
729
 
733
    spinlock_unlock(&slab_cache_lock);
730
    spinlock_unlock(&slab_cache_lock);
734
 
731
 
735
    return frames;
732
    return frames;
736
}
733
}
737
 
734
 
738
 
735
 
739
/* Print list of slabs */
736
/* Print list of slabs */
740
void slab_print_list(void)
737
void slab_print_list(void)
741
{
738
{
742
    slab_cache_t *cache;
739
    slab_cache_t *cache;
743
    link_t *cur;
740
    link_t *cur;
744
 
741
 
745
    spinlock_lock(&slab_cache_lock);
742
    spinlock_lock(&slab_cache_lock);
746
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
743
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
747
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
744
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
748
        cache = list_get_instance(cur, slab_cache_t, link);
745
        cache = list_get_instance(cur, slab_cache_t, link);
749
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
746
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
750
               (1 << cache->order), cache->objects,
747
               (1 << cache->order), cache->objects,
751
               atomic_get(&cache->allocated_slabs),
748
               atomic_get(&cache->allocated_slabs),
752
               atomic_get(&cache->cached_objs),
749
               atomic_get(&cache->cached_objs),
753
               atomic_get(&cache->allocated_objs),
750
               atomic_get(&cache->allocated_objs),
754
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
751
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
755
    }
752
    }
756
    spinlock_unlock(&slab_cache_lock);
753
    spinlock_unlock(&slab_cache_lock);
757
}
754
}
758
 
755
 
759
#ifdef CONFIG_DEBUG
756
#ifdef CONFIG_DEBUG
760
static int _slab_initialized = 0;
757
static int _slab_initialized = 0;
761
#endif
758
#endif
762
 
759
 
763
void slab_cache_init(void)
760
void slab_cache_init(void)
764
{
761
{
765
    int i, size;
762
    int i, size;
766
 
763
 
767
    /* Initialize magazine cache */
764
    /* Initialize magazine cache */
768
    _slab_cache_create(&mag_cache,
765
    _slab_cache_create(&mag_cache,
769
               "slab_magazine",
766
               "slab_magazine",
770
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
767
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
771
               sizeof(__address),
768
               sizeof(__address),
772
               NULL, NULL,
769
               NULL, NULL,
773
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
770
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
774
    /* Initialize slab_cache cache */
771
    /* Initialize slab_cache cache */
775
    _slab_cache_create(&slab_cache_cache,
772
    _slab_cache_create(&slab_cache_cache,
776
               "slab_cache",
773
               "slab_cache",
777
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
774
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
778
               sizeof(__address),
775
               sizeof(__address),
779
               NULL, NULL,
776
               NULL, NULL,
780
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
777
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
781
    /* Initialize external slab cache */
778
    /* Initialize external slab cache */
782
    slab_extern_cache = slab_cache_create("slab_extern",
779
    slab_extern_cache = slab_cache_create("slab_extern",
783
                          sizeof(slab_t),
780
                          sizeof(slab_t),
784
                          0, NULL, NULL,
781
                          0, NULL, NULL,
785
                          SLAB_CACHE_SLINSIDE);
782
                          SLAB_CACHE_SLINSIDE);
786
 
783
 
787
    /* Initialize structures for malloc */
784
    /* Initialize structures for malloc */
788
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
785
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
789
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
786
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
790
         i++, size <<= 1) {
787
         i++, size <<= 1) {
791
        malloc_caches[i] = slab_cache_create(malloc_names[i],
788
        malloc_caches[i] = slab_cache_create(malloc_names[i],
792
                             size, 0,
789
                             size, 0,
793
                             NULL,NULL,0);
790
                             NULL,NULL,0);
794
    }
791
    }
795
#ifdef CONFIG_DEBUG       
792
#ifdef CONFIG_DEBUG       
796
    _slab_initialized = 1;
793
    _slab_initialized = 1;
797
#endif
794
#endif
798
}
795
}
799
 
796
 
800
/**************************************/
797
/**************************************/
801
/* kalloc/kfree functions             */
798
/* kalloc/kfree functions             */
802
void * kalloc(unsigned int size, int flags)
799
void * kalloc(unsigned int size, int flags)
803
{
800
{
804
    int idx;
801
    int idx;
805
 
802
 
806
    ASSERT(_slab_initialized);
803
    ASSERT(_slab_initialized);
807
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
804
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
808
   
805
   
809
    if (size < (1 << SLAB_MIN_MALLOC_W))
806
    if (size < (1 << SLAB_MIN_MALLOC_W))
810
        size = (1 << SLAB_MIN_MALLOC_W);
807
        size = (1 << SLAB_MIN_MALLOC_W);
811
 
808
 
812
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
809
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
813
 
810
 
814
    return slab_alloc(malloc_caches[idx], flags);
811
    return slab_alloc(malloc_caches[idx], flags);
815
}
812
}
816
 
813
 
817
 
814
 
818
void kfree(void *obj)
815
void kfree(void *obj)
819
{
816
{
820
    slab_t *slab = obj2slab(obj);
817
    slab_t *slab = obj2slab(obj);
821
   
818
   
822
    _slab_free(slab->cache, obj, slab);
819
    _slab_free(slab->cache, obj, slab);
823
}
820
}
824
 
821