Subversion Repositories HelenOS-historic

Rev

Rev 776 | Rev 780 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 776 Rev 778
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <list.h>
96
#include <list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
99
#include <mm/heap.h>
100
#include <mm/frame.h>
100
#include <mm/frame.h>
101
#include <config.h>
101
#include <config.h>
102
#include <print.h>
102
#include <print.h>
103
#include <arch.h>
103
#include <arch.h>
104
#include <panic.h>
104
#include <panic.h>
105
#include <debug.h>
105
#include <debug.h>
106
#include <bitops.h>
106
#include <bitops.h>
107
 
107
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
108
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
109
static LIST_INITIALIZE(slab_cache_list);
110
 
110
 
111
/** Magazine cache */
111
/** Magazine cache */
112
static slab_cache_t mag_cache;
112
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
113
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
114
static slab_cache_t slab_cache_cache;
115
 
115
 
116
/** Cache for external slab descriptors
116
/** Cache for external slab descriptors
117
 * This time we want per-cpu cache, so do not make it static
117
 * This time we want per-cpu cache, so do not make it static
118
 * - using SLAB for internal SLAB structures will not deadlock,
118
 * - using SLAB for internal SLAB structures will not deadlock,
119
 *   as all slab structures are 'small' - control structures of
119
 *   as all slab structures are 'small' - control structures of
120
 *   their caches do not require further allocation
120
 *   their caches do not require further allocation
121
 */
121
 */
122
static slab_cache_t *slab_extern_cache;
122
static slab_cache_t *slab_extern_cache;
123
/** Caches for malloc */
123
/** Caches for malloc */
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
char *malloc_names[] =  {
125
char *malloc_names[] =  {
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-64K","malloc-128K"
129
    "malloc-64K","malloc-128K"
130
};
130
};
131
 
131
 
132
/** Slab descriptor */
132
/** Slab descriptor */
133
typedef struct {
133
typedef struct {
134
    slab_cache_t *cache; /**< Pointer to parent cache */
134
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    link_t link;       /* List of full/partial slabs */
135
    link_t link;       /* List of full/partial slabs */
136
    void *start;       /**< Start address of first available item */
136
    void *start;       /**< Start address of first available item */
137
    count_t available; /**< Count of available items in this slab */
137
    count_t available; /**< Count of available items in this slab */
138
    index_t nextavail; /**< The index of next available item */
138
    index_t nextavail; /**< The index of next available item */
139
}slab_t;
139
}slab_t;
140
 
140
 
141
/**************************************/
141
/**************************************/
142
/* SLAB allocation functions          */
142
/* SLAB allocation functions          */
143
 
143
 
144
/**
144
/**
145
 * Allocate frames for slab space and initialize
145
 * Allocate frames for slab space and initialize
146
 *
146
 *
147
 */
147
 */
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
{
149
{
150
    void *data;
150
    void *data;
151
    slab_t *slab;
151
    slab_t *slab;
152
    size_t fsize;
152
    size_t fsize;
153
    int i;
153
    int i;
154
    zone_t *zone = NULL;
154
    zone_t *zone = NULL;
155
    int status;
155
    int status;
156
    frame_t *frame;
156
    frame_t *frame;
157
 
157
 
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
159
    if (status != FRAME_OK) {
159
    if (status != FRAME_OK) {
160
        return NULL;
160
        return NULL;
161
    }
161
    }
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
        slab = slab_alloc(slab_extern_cache, flags);
163
        slab = slab_alloc(slab_extern_cache, flags);
164
        if (!slab) {
164
        if (!slab) {
165
            frame_free((__address)data);
165
            frame_free((__address)data);
166
            return NULL;
166
            return NULL;
167
        }
167
        }
168
    } else {
168
    } else {
169
        fsize = (PAGE_SIZE << cache->order);
169
        fsize = (PAGE_SIZE << cache->order);
170
        slab = data + fsize - sizeof(*slab);
170
        slab = data + fsize - sizeof(*slab);
171
    }
171
    }
172
       
172
       
173
    /* Fill in slab structures */
173
    /* Fill in slab structures */
174
    /* TODO: some better way of accessing the frame */
174
    /* TODO: some better way of accessing the frame */
175
    for (i=0; i < (1 << cache->order); i++) {
175
    for (i=0; i < (1 << cache->order); i++) {
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame->parent = slab;
177
        frame->parent = slab;
178
    }
178
    }
179
 
179
 
180
    slab->start = data;
180
    slab->start = data;
181
    slab->available = cache->objects;
181
    slab->available = cache->objects;
182
    slab->nextavail = 0;
182
    slab->nextavail = 0;
183
    slab->cache = cache;
183
    slab->cache = cache;
184
 
184
 
185
    for (i=0; i<cache->objects;i++)
185
    for (i=0; i<cache->objects;i++)
186
        *((int *) (slab->start + i*cache->size)) = i+1;
186
        *((int *) (slab->start + i*cache->size)) = i+1;
187
 
187
 
188
    atomic_inc(&cache->allocated_slabs);
188
    atomic_inc(&cache->allocated_slabs);
189
    return slab;
189
    return slab;
190
}
190
}
191
 
191
 
192
/**
192
/**
193
 * Deallocate space associated with SLAB
193
 * Deallocate space associated with SLAB
194
 *
194
 *
195
 * @return number of freed frames
195
 * @return number of freed frames
196
 */
196
 */
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
{
198
{
199
    frame_free((__address)slab->start);
199
    frame_free((__address)slab->start);
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
        slab_free(slab_extern_cache, slab);
201
        slab_free(slab_extern_cache, slab);
202
 
202
 
203
    atomic_dec(&cache->allocated_slabs);
203
    atomic_dec(&cache->allocated_slabs);
204
   
204
   
205
    return 1 << cache->order;
205
    return 1 << cache->order;
206
}
206
}
207
 
207
 
208
/** Map object to slab structure */
208
/** Map object to slab structure */
209
static slab_t * obj2slab(void *obj)
209
static slab_t * obj2slab(void *obj)
210
{
210
{
211
    frame_t *frame;
211
    frame_t *frame;
212
 
212
 
213
    frame = frame_addr2frame((__address)obj);
213
    frame = frame_addr2frame((__address)obj);
214
    return (slab_t *)frame->parent;
214
    return (slab_t *)frame->parent;
215
}
215
}
216
 
216
 
217
/**************************************/
217
/**************************************/
218
/* SLAB functions */
218
/* SLAB functions */
219
 
219
 
220
 
220
 
221
/**
221
/**
222
 * Return object to slab and call a destructor
222
 * Return object to slab and call a destructor
223
 *
223
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
225
 *
226
 * @return Number of freed pages
226
 * @return Number of freed pages
227
 */
227
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
229
                slab_t *slab)
230
{
230
{
231
    count_t frames = 0;
231
    count_t frames = 0;
232
 
232
 
233
    if (!slab)
233
    if (!slab)
234
        slab = obj2slab(obj);
234
        slab = obj2slab(obj);
235
 
235
 
236
    ASSERT(slab->cache == cache);
236
    ASSERT(slab->cache == cache);
237
 
237
 
238
    spinlock_lock(&cache->slablock);
238
    spinlock_lock(&cache->slablock);
239
 
239
 
240
    *((int *)obj) = slab->nextavail;
240
    *((int *)obj) = slab->nextavail;
241
    slab->nextavail = (obj - slab->start)/cache->size;
241
    slab->nextavail = (obj - slab->start)/cache->size;
242
    slab->available++;
242
    slab->available++;
243
 
243
 
244
    /* Move it to correct list */
244
    /* Move it to correct list */
245
    if (slab->available == 1) {
245
    if (slab->available == 1) {
246
        /* It was in full, move to partial */
246
        /* It was in full, move to partial */
247
        list_remove(&slab->link);
247
        list_remove(&slab->link);
248
        list_prepend(&slab->link, &cache->partial_slabs);
248
        list_prepend(&slab->link, &cache->partial_slabs);
249
    }
249
    }
250
    if (slab->available == cache->objects) {
250
    if (slab->available == cache->objects) {
251
        /* Free associated memory */
251
        /* Free associated memory */
252
        list_remove(&slab->link);
252
        list_remove(&slab->link);
253
        /* This should not produce deadlock, as
253
        /* This should not produce deadlock, as
254
         * magazine is always allocated with NO reclaim,
254
         * magazine is always allocated with NO reclaim,
255
         * keep all locks */
255
         * keep all locks */
256
        frames = slab_space_free(cache, slab);
256
        frames = slab_space_free(cache, slab);
257
    }
257
    }
258
 
258
 
259
    spinlock_unlock(&cache->slablock);
259
    spinlock_unlock(&cache->slablock);
260
 
260
 
261
    return frames;
261
    return frames;
262
}
262
}
263
 
263
 
264
/**
264
/**
265
 * Take new object from slab or create new if needed
265
 * Take new object from slab or create new if needed
266
 *
266
 *
267
 * @return Object address or null
267
 * @return Object address or null
268
 */
268
 */
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
269
static void * slab_obj_create(slab_cache_t *cache, int flags)
270
{
270
{
271
    slab_t *slab;
271
    slab_t *slab;
272
    void *obj;
272
    void *obj;
273
 
273
 
274
    spinlock_lock(&cache->slablock);
274
    spinlock_lock(&cache->slablock);
275
 
275
 
276
    if (list_empty(&cache->partial_slabs)) {
276
    if (list_empty(&cache->partial_slabs)) {
277
        /* Allow recursion and reclaiming
277
        /* Allow recursion and reclaiming
278
         * - this should work, as the SLAB control structures
278
         * - this should work, as the SLAB control structures
279
         *   are small and do not need to allocte with anything
279
         *   are small and do not need to allocte with anything
280
         *   other ten frame_alloc when they are allocating,
280
         *   other ten frame_alloc when they are allocating,
281
         *   that's why we should get recursion at most 1-level deep
281
         *   that's why we should get recursion at most 1-level deep
282
         */
282
         */
283
        spinlock_unlock(&cache->slablock);
283
        spinlock_unlock(&cache->slablock);
284
        slab = slab_space_alloc(cache, flags);
284
        slab = slab_space_alloc(cache, flags);
285
        spinlock_lock(&cache->slablock);
285
        spinlock_lock(&cache->slablock);
286
        if (!slab)
286
        if (!slab)
287
            goto err;
287
            goto err;
288
    } else {
288
    } else {
289
        slab = list_get_instance(cache->partial_slabs.next,
289
        slab = list_get_instance(cache->partial_slabs.next,
290
                     slab_t,
290
                     slab_t,
291
                     link);
291
                     link);
292
        list_remove(&slab->link);
292
        list_remove(&slab->link);
293
    }
293
    }
294
    obj = slab->start + slab->nextavail * cache->size;
294
    obj = slab->start + slab->nextavail * cache->size;
295
    slab->nextavail = *((int *)obj);
295
    slab->nextavail = *((int *)obj);
296
    slab->available--;
296
    slab->available--;
297
    if (! slab->available)
297
    if (! slab->available)
298
        list_prepend(&slab->link, &cache->full_slabs);
298
        list_prepend(&slab->link, &cache->full_slabs);
299
    else
299
    else
300
        list_prepend(&slab->link, &cache->partial_slabs);
300
        list_prepend(&slab->link, &cache->partial_slabs);
301
 
301
 
302
    spinlock_unlock(&cache->slablock);
302
    spinlock_unlock(&cache->slablock);
303
    return obj;
303
    return obj;
304
err:
304
err:
305
    spinlock_unlock(&cache->slablock);
305
    spinlock_unlock(&cache->slablock);
306
    return NULL;
306
    return NULL;
307
}
307
}
308
 
308
 
309
/**************************************/
309
/**************************************/
310
/* CPU-Cache slab functions */
310
/* CPU-Cache slab functions */
311
 
311
 
312
/**
312
/**
313
 * Free all objects in magazine and free memory associated with magazine
313
 * Free all objects in magazine and free memory associated with magazine
314
 *
314
 *
315
 * @return Number of freed pages
315
 * @return Number of freed pages
316
 */
316
 */
317
static count_t magazine_destroy(slab_cache_t *cache,
317
static count_t magazine_destroy(slab_cache_t *cache,
318
                slab_magazine_t *mag)
318
                slab_magazine_t *mag)
319
{
319
{
320
    int i;
320
    int i;
321
    count_t frames = 0;
321
    count_t frames = 0;
322
 
322
 
323
    for (i=0;i < mag->busy; i++) {
323
    for (i=0;i < mag->busy; i++) {
324
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
324
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
325
        atomic_dec(&cache->cached_objs);
325
        atomic_dec(&cache->cached_objs);
326
    }
326
    }
327
   
327
   
328
    slab_free(&mag_cache, mag);
328
    slab_free(&mag_cache, mag);
329
 
329
 
330
    return frames;
330
    return frames;
331
}
331
}
332
 
332
 
333
/**
333
/**
334
 * Find full magazine, set it as current and return it
334
 * Find full magazine, set it as current and return it
335
 *
335
 *
336
 * Assume cpu_magazine lock is held
336
 * Assume cpu_magazine lock is held
337
 */
337
 */
338
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
338
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
339
{
339
{
340
    slab_magazine_t *cmag, *lastmag, *newmag;
340
    slab_magazine_t *cmag, *lastmag, *newmag;
341
 
341
 
342
    cmag = cache->mag_cache[CPU->id].current;
342
    cmag = cache->mag_cache[CPU->id].current;
343
    lastmag = cache->mag_cache[CPU->id].last;
343
    lastmag = cache->mag_cache[CPU->id].last;
344
    if (cmag) { /* First try local CPU magazines */
344
    if (cmag) { /* First try local CPU magazines */
345
        if (cmag->busy)
345
        if (cmag->busy)
346
            return cmag;
346
            return cmag;
347
 
347
 
348
        if (lastmag && lastmag->busy) {
348
        if (lastmag && lastmag->busy) {
349
            cache->mag_cache[CPU->id].current = lastmag;
349
            cache->mag_cache[CPU->id].current = lastmag;
350
            cache->mag_cache[CPU->id].last = cmag;
350
            cache->mag_cache[CPU->id].last = cmag;
351
            return lastmag;
351
            return lastmag;
352
        }
352
        }
353
    }
353
    }
354
    /* Local magazines are empty, import one from magazine list */
354
    /* Local magazines are empty, import one from magazine list */
355
    spinlock_lock(&cache->maglock);
355
    spinlock_lock(&cache->maglock);
356
    if (list_empty(&cache->magazines)) {
356
    if (list_empty(&cache->magazines)) {
357
        spinlock_unlock(&cache->maglock);
357
        spinlock_unlock(&cache->maglock);
358
        return NULL;
358
        return NULL;
359
    }
359
    }
360
    newmag = list_get_instance(cache->magazines.next,
360
    newmag = list_get_instance(cache->magazines.next,
361
                   slab_magazine_t,
361
                   slab_magazine_t,
362
                   link);
362
                   link);
363
    list_remove(&newmag->link);
363
    list_remove(&newmag->link);
364
    spinlock_unlock(&cache->maglock);
364
    spinlock_unlock(&cache->maglock);
365
 
365
 
366
    if (lastmag)
366
    if (lastmag)
367
        slab_free(&mag_cache, lastmag);
367
        slab_free(&mag_cache, lastmag);
368
    cache->mag_cache[CPU->id].last = cmag;
368
    cache->mag_cache[CPU->id].last = cmag;
369
    cache->mag_cache[CPU->id].current = newmag;
369
    cache->mag_cache[CPU->id].current = newmag;
370
    return newmag;
370
    return newmag;
371
}
371
}
372
 
372
 
373
/**
373
/**
374
 * Try to find object in CPU-cache magazines
374
 * Try to find object in CPU-cache magazines
375
 *
375
 *
376
 * @return Pointer to object or NULL if not available
376
 * @return Pointer to object or NULL if not available
377
 */
377
 */
378
static void * magazine_obj_get(slab_cache_t *cache)
378
static void * magazine_obj_get(slab_cache_t *cache)
379
{
379
{
380
    slab_magazine_t *mag;
380
    slab_magazine_t *mag;
381
    void *obj;
381
    void *obj;
382
 
382
 
383
    if (!CPU)
383
    if (!CPU)
384
        return NULL;
384
        return NULL;
385
 
385
 
386
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
386
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
387
 
387
 
388
    mag = get_full_current_mag(cache);
388
    mag = get_full_current_mag(cache);
389
    if (!mag) {
389
    if (!mag) {
390
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
390
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
391
        return NULL;
391
        return NULL;
392
    }
392
    }
393
    obj = mag->objs[--mag->busy];
393
    obj = mag->objs[--mag->busy];
394
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
394
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
395
    atomic_dec(&cache->cached_objs);
395
    atomic_dec(&cache->cached_objs);
396
   
396
   
397
    return obj;
397
    return obj;
398
}
398
}
399
 
399
 
400
/**
400
/**
401
 * Assure that the current magazine is empty, return pointer to it, or NULL if
401
 * Assure that the current magazine is empty, return pointer to it, or NULL if
402
 * no empty magazine is available and cannot be allocated
402
 * no empty magazine is available and cannot be allocated
403
 *
403
 *
404
 * Assume mag_cache[CPU->id].lock is held
404
 * Assume mag_cache[CPU->id].lock is held
405
 *
405
 *
406
 * We have 2 magazines bound to processor.
406
 * We have 2 magazines bound to processor.
407
 * First try the current.
407
 * First try the current.
408
 *  If full, try the last.
408
 *  If full, try the last.
409
 *   If full, put to magazines list.
409
 *   If full, put to magazines list.
410
 *   allocate new, exchange last & current
410
 *   allocate new, exchange last & current
411
 *
411
 *
412
 */
412
 */
413
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
413
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
414
{
414
{
415
    slab_magazine_t *cmag,*lastmag,*newmag;
415
    slab_magazine_t *cmag,*lastmag,*newmag;
416
 
416
 
417
    cmag = cache->mag_cache[CPU->id].current;
417
    cmag = cache->mag_cache[CPU->id].current;
418
    lastmag = cache->mag_cache[CPU->id].last;
418
    lastmag = cache->mag_cache[CPU->id].last;
419
 
419
 
420
    if (cmag) {
420
    if (cmag) {
421
        if (cmag->busy < cmag->size)
421
        if (cmag->busy < cmag->size)
422
            return cmag;
422
            return cmag;
423
        if (lastmag && lastmag->busy < lastmag->size) {
423
        if (lastmag && lastmag->busy < lastmag->size) {
424
            cache->mag_cache[CPU->id].last = cmag;
424
            cache->mag_cache[CPU->id].last = cmag;
425
            cache->mag_cache[CPU->id].current = lastmag;
425
            cache->mag_cache[CPU->id].current = lastmag;
426
            return lastmag;
426
            return lastmag;
427
        }
427
        }
428
    }
428
    }
429
    /* current | last are full | nonexistent, allocate new */
429
    /* current | last are full | nonexistent, allocate new */
430
    /* We do not want to sleep just because of caching */
430
    /* We do not want to sleep just because of caching */
431
    /* Especially we do not want reclaiming to start, as
431
    /* Especially we do not want reclaiming to start, as
432
     * this would deadlock */
432
     * this would deadlock */
433
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
433
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
434
    if (!newmag)
434
    if (!newmag)
435
        return NULL;
435
        return NULL;
436
    newmag->size = SLAB_MAG_SIZE;
436
    newmag->size = SLAB_MAG_SIZE;
437
    newmag->busy = 0;
437
    newmag->busy = 0;
438
 
438
 
439
    /* Flush last to magazine list */
439
    /* Flush last to magazine list */
440
    if (lastmag) {
440
    if (lastmag) {
441
        spinlock_lock(&cache->maglock);
441
        spinlock_lock(&cache->maglock);
442
        list_prepend(&lastmag->link, &cache->magazines);
442
        list_prepend(&lastmag->link, &cache->magazines);
443
        spinlock_unlock(&cache->maglock);
443
        spinlock_unlock(&cache->maglock);
444
    }
444
    }
445
    /* Move current as last, save new as current */
445
    /* Move current as last, save new as current */
446
    cache->mag_cache[CPU->id].last = cmag; 
446
    cache->mag_cache[CPU->id].last = cmag; 
447
    cache->mag_cache[CPU->id].current = newmag;
447
    cache->mag_cache[CPU->id].current = newmag;
448
 
448
 
449
    return newmag;
449
    return newmag;
450
}
450
}
451
 
451
 
452
/**
452
/**
453
 * Put object into CPU-cache magazine
453
 * Put object into CPU-cache magazine
454
 *
454
 *
455
 * @return 0 - success, -1 - could not get memory
455
 * @return 0 - success, -1 - could not get memory
456
 */
456
 */
457
static int magazine_obj_put(slab_cache_t *cache, void *obj)
457
static int magazine_obj_put(slab_cache_t *cache, void *obj)
458
{
458
{
459
    slab_magazine_t *mag;
459
    slab_magazine_t *mag;
460
 
460
 
461
    if (!CPU)
461
    if (!CPU)
462
        return -1;
462
        return -1;
463
 
463
 
464
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
464
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
465
 
465
 
466
    mag = make_empty_current_mag(cache);
466
    mag = make_empty_current_mag(cache);
467
    if (!mag) {
467
    if (!mag) {
468
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
468
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
469
        return -1;
469
        return -1;
470
    }
470
    }
471
   
471
   
472
    mag->objs[mag->busy++] = obj;
472
    mag->objs[mag->busy++] = obj;
473
 
473
 
474
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
474
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
475
    atomic_inc(&cache->cached_objs);
475
    atomic_inc(&cache->cached_objs);
476
    return 0;
476
    return 0;
477
}
477
}
478
 
478
 
479
 
479
 
480
/**************************************/
480
/**************************************/
481
/* SLAB CACHE functions */
481
/* SLAB CACHE functions */
482
 
482
 
483
/** Return number of objects that fit in certain cache size */
483
/** Return number of objects that fit in certain cache size */
484
static int comp_objects(slab_cache_t *cache)
484
static int comp_objects(slab_cache_t *cache)
485
{
485
{
486
    if (cache->flags & SLAB_CACHE_SLINSIDE)
486
    if (cache->flags & SLAB_CACHE_SLINSIDE)
487
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
487
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
488
    else
488
    else
489
        return (PAGE_SIZE << cache->order) / cache->size;
489
        return (PAGE_SIZE << cache->order) / cache->size;
490
}
490
}
491
 
491
 
492
/** Return wasted space in slab */
492
/** Return wasted space in slab */
493
static int badness(slab_cache_t *cache)
493
static int badness(slab_cache_t *cache)
494
{
494
{
495
    int objects;
495
    int objects;
496
    int ssize;
496
    int ssize;
497
 
497
 
498
    objects = comp_objects(cache);
498
    objects = comp_objects(cache);
499
    ssize = PAGE_SIZE << cache->order;
499
    ssize = PAGE_SIZE << cache->order;
500
    if (cache->flags & SLAB_CACHE_SLINSIDE)
500
    if (cache->flags & SLAB_CACHE_SLINSIDE)
501
        ssize -= sizeof(slab_t);
501
        ssize -= sizeof(slab_t);
502
    return ssize - objects*cache->size;
502
    return ssize - objects*cache->size;
503
}
503
}
504
 
504
 
505
/** Initialize allocated memory as a slab cache */
505
/** Initialize allocated memory as a slab cache */
506
static void
506
static void
507
_slab_cache_create(slab_cache_t *cache,
507
_slab_cache_create(slab_cache_t *cache,
508
           char *name,
508
           char *name,
509
           size_t size,
509
           size_t size,
510
           size_t align,
510
           size_t align,
511
           int (*constructor)(void *obj, int kmflag),
511
           int (*constructor)(void *obj, int kmflag),
512
           void (*destructor)(void *obj),
512
           void (*destructor)(void *obj),
513
           int flags)
513
           int flags)
514
{
514
{
515
    int i;
515
    int i;
516
    int pages;
516
    int pages;
517
 
517
 
518
    memsetb((__address)cache, sizeof(*cache), 0);
518
    memsetb((__address)cache, sizeof(*cache), 0);
519
    cache->name = name;
519
    cache->name = name;
520
 
520
 
521
    if (align < sizeof(__native))
521
    if (align < sizeof(__native))
522
        align = sizeof(__native);
522
        align = sizeof(__native);
523
    size = ALIGN_UP(size, align);
523
    size = ALIGN_UP(size, align);
524
       
524
       
525
    cache->size = size;
525
    cache->size = size;
526
 
526
 
527
    cache->constructor = constructor;
527
    cache->constructor = constructor;
528
    cache->destructor = destructor;
528
    cache->destructor = destructor;
529
    cache->flags = flags;
529
    cache->flags = flags;
530
 
530
 
531
    list_initialize(&cache->full_slabs);
531
    list_initialize(&cache->full_slabs);
532
    list_initialize(&cache->partial_slabs);
532
    list_initialize(&cache->partial_slabs);
533
    list_initialize(&cache->magazines);
533
    list_initialize(&cache->magazines);
534
    spinlock_initialize(&cache->slablock, "slab_lock");
534
    spinlock_initialize(&cache->slablock, "slab_lock");
535
    spinlock_initialize(&cache->maglock, "slab_maglock");
535
    spinlock_initialize(&cache->maglock, "slab_maglock");
536
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
536
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
537
        for (i=0; i < config.cpu_count; i++) {
537
        for (i=0; i < config.cpu_count; i++) {
538
            memsetb((__address)&cache->mag_cache[i],
538
            memsetb((__address)&cache->mag_cache[i],
539
                sizeof(cache->mag_cache[i]), 0);
539
                sizeof(cache->mag_cache[i]), 0);
540
            spinlock_initialize(&cache->mag_cache[i].lock,
540
            spinlock_initialize(&cache->mag_cache[i].lock,
541
                        "slab_maglock_cpu");
541
                        "slab_maglock_cpu");
542
        }
542
        }
543
    }
543
    }
544
 
544
 
545
    /* Compute slab sizes, object counts in slabs etc. */
545
    /* Compute slab sizes, object counts in slabs etc. */
546
    if (cache->size < SLAB_INSIDE_SIZE)
546
    if (cache->size < SLAB_INSIDE_SIZE)
547
        cache->flags |= SLAB_CACHE_SLINSIDE;
547
        cache->flags |= SLAB_CACHE_SLINSIDE;
548
 
548
 
549
    /* Minimum slab order */
549
    /* Minimum slab order */
550
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
550
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
551
    cache->order = fnzb(pages);
551
    cache->order = fnzb(pages);
552
 
552
 
553
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
553
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
554
        cache->order += 1;
554
        cache->order += 1;
555
    }
555
    }
556
    cache->objects = comp_objects(cache);
556
    cache->objects = comp_objects(cache);
557
    /* If info fits in, put it inside */
557
    /* If info fits in, put it inside */
558
    if (badness(cache) > sizeof(slab_t))
558
    if (badness(cache) > sizeof(slab_t))
559
        cache->flags |= SLAB_CACHE_SLINSIDE;
559
        cache->flags |= SLAB_CACHE_SLINSIDE;
560
 
560
 
561
    spinlock_lock(&slab_cache_lock);
561
    spinlock_lock(&slab_cache_lock);
562
 
562
 
563
    list_append(&cache->link, &slab_cache_list);
563
    list_append(&cache->link, &slab_cache_list);
564
 
564
 
565
    spinlock_unlock(&slab_cache_lock);
565
    spinlock_unlock(&slab_cache_lock);
566
}
566
}
567
 
567
 
568
/** Create slab cache  */
568
/** Create slab cache  */
569
slab_cache_t * slab_cache_create(char *name,
569
slab_cache_t * slab_cache_create(char *name,
570
                 size_t size,
570
                 size_t size,
571
                 size_t align,
571
                 size_t align,
572
                 int (*constructor)(void *obj, int kmflag),
572
                 int (*constructor)(void *obj, int kmflag),
573
                 void (*destructor)(void *obj),
573
                 void (*destructor)(void *obj),
574
                 int flags)
574
                 int flags)
575
{
575
{
576
    slab_cache_t *cache;
576
    slab_cache_t *cache;
577
 
577
 
578
    cache = slab_alloc(&slab_cache_cache, 0);
578
    cache = slab_alloc(&slab_cache_cache, 0);
579
    _slab_cache_create(cache, name, size, align, constructor, destructor,
579
    _slab_cache_create(cache, name, size, align, constructor, destructor,
580
               flags);
580
               flags);
581
    return cache;
581
    return cache;
582
}
582
}
583
 
583
 
584
/**
584
/**
585
 * Reclaim space occupied by objects that are already free
585
 * Reclaim space occupied by objects that are already free
586
 *
586
 *
587
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
587
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
588
 * @return Number of freed pages
588
 * @return Number of freed pages
589
 */
589
 */
590
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
590
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
591
{
591
{
592
    int i;
592
    int i;
593
    slab_magazine_t *mag;
593
    slab_magazine_t *mag;
594
    link_t *cur;
594
    link_t *cur;
595
    count_t frames = 0;
595
    count_t frames = 0;
596
   
596
   
597
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
597
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
598
        return 0; /* Nothing to do */
598
        return 0; /* Nothing to do */
599
   
599
   
600
    /* First lock all cpu caches, then the complete cache lock */
600
    /* First lock all cpu caches, then the complete cache lock */
601
    if (flags & SLAB_RECLAIM_ALL) {
601
    if (flags & SLAB_RECLAIM_ALL) {
602
        for (i=0; i < config.cpu_count; i++)
602
        for (i=0; i < config.cpu_count; i++)
603
            spinlock_lock(&cache->mag_cache[i].lock);
603
            spinlock_lock(&cache->mag_cache[i].lock);
604
    }
604
    }
605
    spinlock_lock(&cache->maglock);
605
    spinlock_lock(&cache->maglock);
606
   
606
   
607
    if (flags & SLAB_RECLAIM_ALL) {
607
    if (flags & SLAB_RECLAIM_ALL) {
608
        /* Aggressive memfree */
608
        /* Aggressive memfree */
609
        /* Destroy CPU magazines */
609
        /* Destroy CPU magazines */
610
        for (i=0; i<config.cpu_count; i++) {
610
        for (i=0; i<config.cpu_count; i++) {
611
            mag = cache->mag_cache[i].current;
611
            mag = cache->mag_cache[i].current;
612
            if (mag)
612
            if (mag)
613
                frames += magazine_destroy(cache, mag);
613
                frames += magazine_destroy(cache, mag);
614
            cache->mag_cache[i].current = NULL;
614
            cache->mag_cache[i].current = NULL;
615
           
615
           
616
            mag = cache->mag_cache[i].last;
616
            mag = cache->mag_cache[i].last;
617
            if (mag)
617
            if (mag)
618
                frames += magazine_destroy(cache, mag);
618
                frames += magazine_destroy(cache, mag);
619
            cache->mag_cache[i].last = NULL;
619
            cache->mag_cache[i].last = NULL;
620
        }
620
        }
621
    }
621
    }
622
    /* We can release the cache locks now */
622
    /* We can release the cache locks now */
623
    if (flags & SLAB_RECLAIM_ALL) {
623
    if (flags & SLAB_RECLAIM_ALL) {
624
        for (i=0; i < config.cpu_count; i++)
624
        for (i=0; i < config.cpu_count; i++)
625
            spinlock_unlock(&cache->mag_cache[i].lock);
625
            spinlock_unlock(&cache->mag_cache[i].lock);
626
    }
626
    }
627
    /* Destroy full magazines */
627
    /* Destroy full magazines */
628
    cur=cache->magazines.prev;
628
    cur=cache->magazines.prev;
629
 
629
 
630
    while (cur != &cache->magazines) {
630
    while (cur != &cache->magazines) {
631
        mag = list_get_instance(cur, slab_magazine_t, link);
631
        mag = list_get_instance(cur, slab_magazine_t, link);
632
       
632
       
633
        cur = cur->prev;
633
        cur = cur->prev;
634
        list_remove(&mag->link);
634
        list_remove(&mag->link);
635
        frames += magazine_destroy(cache,mag);
635
        frames += magazine_destroy(cache,mag);
636
        /* If we do not do full reclaim, break
636
        /* If we do not do full reclaim, break
637
         * as soon as something is freed */
637
         * as soon as something is freed */
638
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
638
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
639
            break;
639
            break;
640
    }
640
    }
641
   
641
   
642
    spinlock_unlock(&cache->maglock);
642
    spinlock_unlock(&cache->maglock);
643
   
643
   
644
    return frames;
644
    return frames;
645
}
645
}
646
 
646
 
647
/** Check that there are no slabs and remove cache from system  */
647
/** Check that there are no slabs and remove cache from system  */
648
void slab_cache_destroy(slab_cache_t *cache)
648
void slab_cache_destroy(slab_cache_t *cache)
649
{
649
{
650
    /* Do not lock anything, we assume the software is correct and
650
    /* Do not lock anything, we assume the software is correct and
651
     * does not touch the cache when it decides to destroy it */
651
     * does not touch the cache when it decides to destroy it */
652
   
652
   
653
    /* Destroy all magazines */
653
    /* Destroy all magazines */
654
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
654
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
655
 
655
 
656
    /* All slabs must be empty */
656
    /* All slabs must be empty */
657
    if (!list_empty(&cache->full_slabs) \
657
    if (!list_empty(&cache->full_slabs) \
658
        || !list_empty(&cache->partial_slabs))
658
        || !list_empty(&cache->partial_slabs))
659
        panic("Destroying cache that is not empty.");
659
        panic("Destroying cache that is not empty.");
660
 
660
 
661
    spinlock_lock(&slab_cache_lock);
661
    spinlock_lock(&slab_cache_lock);
662
    list_remove(&cache->link);
662
    list_remove(&cache->link);
663
    spinlock_unlock(&slab_cache_lock);
663
    spinlock_unlock(&slab_cache_lock);
664
 
664
 
665
    slab_free(&slab_cache_cache, cache);
665
    slab_free(&slab_cache_cache, cache);
666
}
666
}
667
 
667
 
668
/** Allocate new object from cache - if no flags given, always returns
668
/** Allocate new object from cache - if no flags given, always returns
669
    memory */
669
    memory */
670
void * slab_alloc(slab_cache_t *cache, int flags)
670
void * slab_alloc(slab_cache_t *cache, int flags)
671
{
671
{
672
    ipl_t ipl;
672
    ipl_t ipl;
673
    void *result = NULL;
673
    void *result = NULL;
674
   
674
   
675
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
675
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
676
    ipl = interrupts_disable();
676
    ipl = interrupts_disable();
677
 
677
 
678
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
678
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
679
        result = magazine_obj_get(cache);
679
        result = magazine_obj_get(cache);
680
 
680
 
681
    if (!result)
681
    if (!result)
682
        result = slab_obj_create(cache, flags);
682
        result = slab_obj_create(cache, flags);
683
 
683
 
684
    interrupts_restore(ipl);
684
    interrupts_restore(ipl);
685
 
685
 
686
    if (result)
686
    if (result)
687
        atomic_inc(&cache->allocated_objs);
687
        atomic_inc(&cache->allocated_objs);
688
 
688
 
689
    return result;
689
    return result;
690
}
690
}
691
 
691
 
692
/** Return object to cache, use slab if known  */
692
/** Return object to cache, use slab if known  */
693
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
693
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
694
{
694
{
695
    ipl_t ipl;
695
    ipl_t ipl;
696
 
696
 
697
    ipl = interrupts_disable();
697
    ipl = interrupts_disable();
698
 
698
 
699
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
699
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
700
        || magazine_obj_put(cache, obj)) {
700
        || magazine_obj_put(cache, obj)) {
701
 
701
 
702
        slab_obj_destroy(cache, obj, slab);
702
        slab_obj_destroy(cache, obj, slab);
703
 
703
 
704
    }
704
    }
705
    interrupts_restore(ipl);
705
    interrupts_restore(ipl);
706
    atomic_dec(&cache->allocated_objs);
706
    atomic_dec(&cache->allocated_objs);
707
}
707
}
708
 
708
 
709
/** Return slab object to cache */
709
/** Return slab object to cache */
710
void slab_free(slab_cache_t *cache, void *obj)
710
void slab_free(slab_cache_t *cache, void *obj)
711
{
711
{
712
    _slab_free(cache,obj,NULL);
712
    _slab_free(cache,obj,NULL);
713
}
713
}
714
 
714
 
715
/* Go through all caches and reclaim what is possible */
715
/* Go through all caches and reclaim what is possible */
716
count_t slab_reclaim(int flags)
716
count_t slab_reclaim(int flags)
717
{
717
{
718
    slab_cache_t *cache;
718
    slab_cache_t *cache;
719
    link_t *cur;
719
    link_t *cur;
720
    count_t frames = 0;
720
    count_t frames = 0;
721
 
721
 
722
    spinlock_lock(&slab_cache_lock);
722
    spinlock_lock(&slab_cache_lock);
723
 
723
 
724
    /* TODO: Add assert, that interrupts are disabled, otherwise
724
    /* TODO: Add assert, that interrupts are disabled, otherwise
725
     * memory allocation from interrupts can deadlock.
725
     * memory allocation from interrupts can deadlock.
726
     */
726
     */
727
 
727
 
728
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
728
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
729
        cache = list_get_instance(cur, slab_cache_t, link);
729
        cache = list_get_instance(cur, slab_cache_t, link);
730
        frames += _slab_reclaim(cache, flags);
730
        frames += _slab_reclaim(cache, flags);
731
    }
731
    }
732
 
732
 
733
    spinlock_unlock(&slab_cache_lock);
733
    spinlock_unlock(&slab_cache_lock);
734
 
734
 
735
    return frames;
735
    return frames;
736
}
736
}
737
 
737
 
738
 
738
 
739
/* Print list of slabs */
739
/* Print list of slabs */
740
void slab_print_list(void)
740
void slab_print_list(void)
741
{
741
{
742
    slab_cache_t *cache;
742
    slab_cache_t *cache;
743
    link_t *cur;
743
    link_t *cur;
744
 
744
 
745
    spinlock_lock(&slab_cache_lock);
745
    spinlock_lock(&slab_cache_lock);
746
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
746
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
747
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
747
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
748
        cache = list_get_instance(cur, slab_cache_t, link);
748
        cache = list_get_instance(cur, slab_cache_t, link);
749
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
749
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
750
               (1 << cache->order), cache->objects,
750
               (1 << cache->order), cache->objects,
751
               atomic_get(&cache->allocated_slabs),
751
               atomic_get(&cache->allocated_slabs),
752
               atomic_get(&cache->cached_objs),
752
               atomic_get(&cache->cached_objs),
753
               atomic_get(&cache->allocated_objs),
753
               atomic_get(&cache->allocated_objs),
754
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
754
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
755
    }
755
    }
756
    spinlock_unlock(&slab_cache_lock);
756
    spinlock_unlock(&slab_cache_lock);
757
}
757
}
758
 
758
 
-
 
759
#ifdef CONFIG_DEBUG
-
 
760
static int _slab_initialized = 0;
-
 
761
#endif
-
 
762
 
759
void slab_cache_init(void)
763
void slab_cache_init(void)
760
{
764
{
761
    int i, size;
765
    int i, size;
762
 
766
 
763
    /* Initialize magazine cache */
767
    /* Initialize magazine cache */
764
    _slab_cache_create(&mag_cache,
768
    _slab_cache_create(&mag_cache,
765
               "slab_magazine",
769
               "slab_magazine",
766
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
770
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
767
               sizeof(__address),
771
               sizeof(__address),
768
               NULL, NULL,
772
               NULL, NULL,
769
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
773
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
770
    /* Initialize slab_cache cache */
774
    /* Initialize slab_cache cache */
771
    _slab_cache_create(&slab_cache_cache,
775
    _slab_cache_create(&slab_cache_cache,
772
               "slab_cache",
776
               "slab_cache",
773
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
777
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
774
               sizeof(__address),
778
               sizeof(__address),
775
               NULL, NULL,
779
               NULL, NULL,
776
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
780
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
777
    /* Initialize external slab cache */
781
    /* Initialize external slab cache */
778
    slab_extern_cache = slab_cache_create("slab_extern",
782
    slab_extern_cache = slab_cache_create("slab_extern",
779
                          sizeof(slab_t),
783
                          sizeof(slab_t),
780
                          0, NULL, NULL,
784
                          0, NULL, NULL,
781
                          SLAB_CACHE_SLINSIDE);
785
                          SLAB_CACHE_SLINSIDE);
782
 
786
 
783
    /* Initialize structures for malloc */
787
    /* Initialize structures for malloc */
784
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
788
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
785
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
789
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
786
         i++, size <<= 1) {
790
         i++, size <<= 1) {
787
        malloc_caches[i] = slab_cache_create(malloc_names[i],
791
        malloc_caches[i] = slab_cache_create(malloc_names[i],
788
                             size, 0,
792
                             size, 0,
789
                             NULL,NULL,0);
793
                             NULL,NULL,0);
790
    }
794
    }
-
 
795
#ifdef CONFIG_DEBUG       
-
 
796
    _slab_initialized = 1;
-
 
797
#endif
791
}
798
}
792
 
799
 
793
/**************************************/
800
/**************************************/
794
/* kalloc/kfree functions             */
801
/* kalloc/kfree functions             */
795
void * kalloc(unsigned int size, int flags)
802
void * kalloc(unsigned int size, int flags)
796
{
803
{
797
    int idx;
804
    int idx;
798
   
805
 
-
 
806
    ASSERT(_slab_initialized);
799
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
807
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
800
   
808
   
801
    if (size < (1 << SLAB_MIN_MALLOC_W))
809
    if (size < (1 << SLAB_MIN_MALLOC_W))
802
        size = (1 << SLAB_MIN_MALLOC_W);
810
        size = (1 << SLAB_MIN_MALLOC_W);
803
 
811
 
804
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
812
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
805
 
813
 
806
    return slab_alloc(malloc_caches[idx], flags);
814
    return slab_alloc(malloc_caches[idx], flags);
807
}
815
}
808
 
816
 
809
 
817
 
810
void kfree(void *obj)
818
void kfree(void *obj)
811
{
819
{
812
    slab_t *slab = obj2slab(obj);
820
    slab_t *slab = obj2slab(obj);
813
   
821
   
814
    _slab_free(slab->cache, obj, slab);
822
    _slab_free(slab->cache, obj, slab);
815
}
823
}
816
 
824