Subversion Repositories HelenOS-historic

Rev

Rev 773 | Rev 776 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 773 Rev 775
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
-
 
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
-
 
80
 * be extended. Currently, if the cache does not have magazine, it asks
-
 
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
-
 
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
-
 
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
-
 
84
 * buffer. The other possibility is to use the per-cache
-
 
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
-
 
86
 * magazine cache.
79
 *
87
 *
80
 */
88
 */
81
 
89
 
82
 
90
 
83
#include <synch/spinlock.h>
91
#include <synch/spinlock.h>
84
#include <mm/slab.h>
92
#include <mm/slab.h>
85
#include <list.h>
93
#include <list.h>
86
#include <memstr.h>
94
#include <memstr.h>
87
#include <align.h>
95
#include <align.h>
88
#include <mm/heap.h>
96
#include <mm/heap.h>
89
#include <mm/frame.h>
97
#include <mm/frame.h>
90
#include <config.h>
98
#include <config.h>
91
#include <print.h>
99
#include <print.h>
92
#include <arch.h>
100
#include <arch.h>
93
#include <panic.h>
101
#include <panic.h>
94
#include <debug.h>
102
#include <debug.h>
95
#include <bitops.h>
103
#include <bitops.h>
96
 
104
 
97
SPINLOCK_INITIALIZE(slab_cache_lock);
105
SPINLOCK_INITIALIZE(slab_cache_lock);
98
static LIST_INITIALIZE(slab_cache_list);
106
static LIST_INITIALIZE(slab_cache_list);
99
 
107
 
100
/** Magazine cache */
108
/** Magazine cache */
101
static slab_cache_t mag_cache;
109
static slab_cache_t mag_cache;
102
/** Cache for cache descriptors */
110
/** Cache for cache descriptors */
103
static slab_cache_t slab_cache_cache;
111
static slab_cache_t slab_cache_cache;
104
 
112
 
105
/** Cache for external slab descriptors
113
/** Cache for external slab descriptors
106
 * This time we want per-cpu cache, so do not make it static
114
 * This time we want per-cpu cache, so do not make it static
107
 * - using SLAB for internal SLAB structures will not deadlock,
115
 * - using SLAB for internal SLAB structures will not deadlock,
108
 *   as all slab structures are 'small' - control structures of
116
 *   as all slab structures are 'small' - control structures of
109
 *   their caches do not require further allocation
117
 *   their caches do not require further allocation
110
 */
118
 */
111
static slab_cache_t *slab_extern_cache;
119
static slab_cache_t *slab_extern_cache;
112
/** Caches for malloc */
120
/** Caches for malloc */
113
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
121
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
114
char *malloc_names[] =  {
122
char *malloc_names[] =  {
115
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
123
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
116
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
124
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
117
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
125
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
118
    "malloc-64K","malloc-128K"
126
    "malloc-64K","malloc-128K"
119
};
127
};
120
 
128
 
121
/** Slab descriptor */
129
/** Slab descriptor */
122
typedef struct {
130
typedef struct {
123
    slab_cache_t *cache; /**< Pointer to parent cache */
131
    slab_cache_t *cache; /**< Pointer to parent cache */
124
    link_t link;       /* List of full/partial slabs */
132
    link_t link;       /* List of full/partial slabs */
125
    void *start;       /**< Start address of first available item */
133
    void *start;       /**< Start address of first available item */
126
    count_t available; /**< Count of available items in this slab */
134
    count_t available; /**< Count of available items in this slab */
127
    index_t nextavail; /**< The index of next available item */
135
    index_t nextavail; /**< The index of next available item */
128
}slab_t;
136
}slab_t;
129
 
137
 
130
/**************************************/
138
/**************************************/
131
/* SLAB allocation functions          */
139
/* SLAB allocation functions          */
132
 
140
 
133
/**
141
/**
134
 * Allocate frames for slab space and initialize
142
 * Allocate frames for slab space and initialize
135
 *
143
 *
136
 */
144
 */
137
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
145
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
138
{
146
{
139
    void *data;
147
    void *data;
140
    slab_t *slab;
148
    slab_t *slab;
141
    size_t fsize;
149
    size_t fsize;
142
    int i;
150
    int i;
143
    zone_t *zone = NULL;
151
    zone_t *zone = NULL;
144
    int status;
152
    int status;
145
    frame_t *frame;
153
    frame_t *frame;
146
 
154
 
147
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
155
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
148
    if (status != FRAME_OK) {
156
    if (status != FRAME_OK) {
149
        return NULL;
157
        return NULL;
150
    }
158
    }
151
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
159
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
152
        slab = slab_alloc(slab_extern_cache, flags);
160
        slab = slab_alloc(slab_extern_cache, flags);
153
        if (!slab) {
161
        if (!slab) {
154
            frame_free((__address)data);
162
            frame_free((__address)data);
155
            return NULL;
163
            return NULL;
156
        }
164
        }
157
    } else {
165
    } else {
158
        fsize = (PAGE_SIZE << cache->order);
166
        fsize = (PAGE_SIZE << cache->order);
159
        slab = data + fsize - sizeof(*slab);
167
        slab = data + fsize - sizeof(*slab);
160
    }
168
    }
161
       
169
       
162
    /* Fill in slab structures */
170
    /* Fill in slab structures */
163
    /* TODO: some better way of accessing the frame */
171
    /* TODO: some better way of accessing the frame */
164
    for (i=0; i < (1 << cache->order); i++) {
172
    for (i=0; i < (1 << cache->order); i++) {
165
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
173
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
166
        frame->parent = slab;
174
        frame->parent = slab;
167
    }
175
    }
168
 
176
 
169
    slab->start = data;
177
    slab->start = data;
170
    slab->available = cache->objects;
178
    slab->available = cache->objects;
171
    slab->nextavail = 0;
179
    slab->nextavail = 0;
172
    slab->cache = cache;
180
    slab->cache = cache;
173
 
181
 
174
    for (i=0; i<cache->objects;i++)
182
    for (i=0; i<cache->objects;i++)
175
        *((int *) (slab->start + i*cache->size)) = i+1;
183
        *((int *) (slab->start + i*cache->size)) = i+1;
176
 
184
 
177
    atomic_inc(&cache->allocated_slabs);
185
    atomic_inc(&cache->allocated_slabs);
178
    return slab;
186
    return slab;
179
}
187
}
180
 
188
 
181
/**
189
/**
182
 * Deallocate space associated with SLAB
190
 * Deallocate space associated with SLAB
183
 *
191
 *
184
 * @return number of freed frames
192
 * @return number of freed frames
185
 */
193
 */
186
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
194
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
187
{
195
{
188
    frame_free((__address)slab->start);
196
    frame_free((__address)slab->start);
189
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
197
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
190
        slab_free(slab_extern_cache, slab);
198
        slab_free(slab_extern_cache, slab);
191
 
199
 
192
    atomic_dec(&cache->allocated_slabs);
200
    atomic_dec(&cache->allocated_slabs);
193
   
201
   
194
    return 1 << cache->order;
202
    return 1 << cache->order;
195
}
203
}
196
 
204
 
197
/** Map object to slab structure */
205
/** Map object to slab structure */
198
static slab_t * obj2slab(void *obj)
206
static slab_t * obj2slab(void *obj)
199
{
207
{
200
    frame_t *frame;
208
    frame_t *frame;
201
 
209
 
202
    frame = frame_addr2frame((__address)obj);
210
    frame = frame_addr2frame((__address)obj);
203
    return (slab_t *)frame->parent;
211
    return (slab_t *)frame->parent;
204
}
212
}
205
 
213
 
206
/**************************************/
214
/**************************************/
207
/* SLAB functions */
215
/* SLAB functions */
208
 
216
 
209
 
217
 
210
/**
218
/**
211
 * Return object to slab and call a destructor
219
 * Return object to slab and call a destructor
212
 *
220
 *
213
 * Assume the cache->lock is held;
221
 * Assume the cache->lock is held;
214
 *
222
 *
215
 * @param slab If the caller knows directly slab of the object, otherwise NULL
223
 * @param slab If the caller knows directly slab of the object, otherwise NULL
216
 *
224
 *
217
 * @return Number of freed pages
225
 * @return Number of freed pages
218
 */
226
 */
219
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
227
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
220
                slab_t *slab)
228
                slab_t *slab)
221
{
229
{
222
    count_t frames = 0;
230
    count_t frames = 0;
223
 
231
 
224
    if (!slab)
232
    if (!slab)
225
        slab = obj2slab(obj);
233
        slab = obj2slab(obj);
226
 
234
 
227
    ASSERT(slab->cache == cache);
235
    ASSERT(slab->cache == cache);
228
 
236
 
229
    *((int *)obj) = slab->nextavail;
237
    *((int *)obj) = slab->nextavail;
230
    slab->nextavail = (obj - slab->start)/cache->size;
238
    slab->nextavail = (obj - slab->start)/cache->size;
231
    slab->available++;
239
    slab->available++;
232
 
240
 
233
    /* Move it to correct list */
241
    /* Move it to correct list */
234
    if (slab->available == 1) {
242
    if (slab->available == 1) {
235
        /* It was in full, move to partial */
243
        /* It was in full, move to partial */
236
        list_remove(&slab->link);
244
        list_remove(&slab->link);
237
        list_prepend(&slab->link, &cache->partial_slabs);
245
        list_prepend(&slab->link, &cache->partial_slabs);
238
    }
246
    }
239
    if (slab->available == cache->objects) {
247
    if (slab->available == cache->objects) {
240
        /* Free associated memory */
248
        /* Free associated memory */
241
        list_remove(&slab->link);
249
        list_remove(&slab->link);
242
        /* Avoid deadlock */
250
        /* Avoid deadlock */
243
        spinlock_unlock(&cache->lock);
251
        spinlock_unlock(&cache->lock);
244
        frames = slab_space_free(cache, slab);
252
        frames = slab_space_free(cache, slab);
245
        spinlock_lock(&cache->lock);
253
        spinlock_lock(&cache->lock);
246
    }
254
    }
247
 
255
 
248
    return frames;
256
    return frames;
249
}
257
}
250
 
258
 
251
/**
259
/**
252
 * Take new object from slab or create new if needed
260
 * Take new object from slab or create new if needed
253
 *
261
 *
254
 * Assume cache->lock is held.
262
 * Assume cache->lock is held.
255
 *
263
 *
256
 * @return Object address or null
264
 * @return Object address or null
257
 */
265
 */
258
static void * slab_obj_create(slab_cache_t *cache, int flags)
266
static void * slab_obj_create(slab_cache_t *cache, int flags)
259
{
267
{
260
    slab_t *slab;
268
    slab_t *slab;
261
    void *obj;
269
    void *obj;
262
 
270
 
263
    if (list_empty(&cache->partial_slabs)) {
271
    if (list_empty(&cache->partial_slabs)) {
264
        /* Allow recursion and reclaiming
272
        /* Allow recursion and reclaiming
265
         * - this should work, as the SLAB control structures
273
         * - this should work, as the SLAB control structures
266
         *   are small and do not need to allocte with anything
274
         *   are small and do not need to allocte with anything
267
         *   other ten frame_alloc when they are allocating,
275
         *   other ten frame_alloc when they are allocating,
268
         *   that's why we should get recursion at most 1-level deep
276
         *   that's why we should get recursion at most 1-level deep
269
         */
277
         */
270
        spinlock_unlock(&cache->lock);
278
        spinlock_unlock(&cache->lock);
271
        slab = slab_space_alloc(cache, flags);
279
        slab = slab_space_alloc(cache, flags);
272
        spinlock_lock(&cache->lock);
280
        spinlock_lock(&cache->lock);
273
        if (!slab) {
281
        if (!slab) {
274
            return NULL;
282
            return NULL;
275
        }
283
        }
276
    } else {
284
    } else {
277
        slab = list_get_instance(cache->partial_slabs.next,
285
        slab = list_get_instance(cache->partial_slabs.next,
278
                     slab_t,
286
                     slab_t,
279
                     link);
287
                     link);
280
        list_remove(&slab->link);
288
        list_remove(&slab->link);
281
    }
289
    }
282
    obj = slab->start + slab->nextavail * cache->size;
290
    obj = slab->start + slab->nextavail * cache->size;
283
    slab->nextavail = *((int *)obj);
291
    slab->nextavail = *((int *)obj);
284
    slab->available--;
292
    slab->available--;
285
    if (! slab->available)
293
    if (! slab->available)
286
        list_prepend(&slab->link, &cache->full_slabs);
294
        list_prepend(&slab->link, &cache->full_slabs);
287
    else
295
    else
288
        list_prepend(&slab->link, &cache->partial_slabs);
296
        list_prepend(&slab->link, &cache->partial_slabs);
289
    return obj;
297
    return obj;
290
}
298
}
291
 
299
 
292
/**************************************/
300
/**************************************/
293
/* CPU-Cache slab functions */
301
/* CPU-Cache slab functions */
294
 
302
 
295
/**
303
/**
296
 * Free all objects in magazine and free memory associated with magazine
304
 * Free all objects in magazine and free memory associated with magazine
297
 *
305
 *
298
 * Assume mag_cache[cpu].lock is locked
306
 * Assume cache->lock is held
299
 *
307
 *
300
 * @return Number of freed pages
308
 * @return Number of freed pages
301
 */
309
 */
302
static count_t magazine_destroy(slab_cache_t *cache,
310
static count_t magazine_destroy(slab_cache_t *cache,
303
                slab_magazine_t *mag)
311
                slab_magazine_t *mag)
304
{
312
{
305
    int i;
313
    int i;
306
    count_t frames = 0;
314
    count_t frames = 0;
307
 
315
 
308
    for (i=0;i < mag->busy; i++) {
316
    for (i=0;i < mag->busy; i++) {
309
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
317
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
310
        atomic_dec(&cache->cached_objs);
318
        atomic_dec(&cache->cached_objs);
311
    }
319
    }
312
   
320
   
313
    slab_free(&mag_cache, mag);
321
    slab_free(&mag_cache, mag);
314
 
322
 
315
    return frames;
323
    return frames;
316
}
324
}
317
 
325
 
318
/**
326
/**
319
 * Find full magazine, set it as current and return it
327
 * Find full magazine, set it as current and return it
320
 *
328
 *
321
 * Assume cpu_magazine lock is held
329
 * Assume cpu_magazine lock is held
322
 */
330
 */
323
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
331
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
324
{
332
{
325
    slab_magazine_t *cmag, *lastmag, *newmag;
333
    slab_magazine_t *cmag, *lastmag, *newmag;
326
 
334
 
327
    cmag = cache->mag_cache[CPU->id].current;
335
    cmag = cache->mag_cache[CPU->id].current;
328
    lastmag = cache->mag_cache[CPU->id].last;
336
    lastmag = cache->mag_cache[CPU->id].last;
329
    if (cmag) { /* First try local CPU magazines */
337
    if (cmag) { /* First try local CPU magazines */
330
        if (cmag->busy)
338
        if (cmag->busy)
331
            return cmag;
339
            return cmag;
332
 
340
 
333
        if (lastmag && lastmag->busy) {
341
        if (lastmag && lastmag->busy) {
334
            cache->mag_cache[CPU->id].current = lastmag;
342
            cache->mag_cache[CPU->id].current = lastmag;
335
            cache->mag_cache[CPU->id].last = cmag;
343
            cache->mag_cache[CPU->id].last = cmag;
336
            return lastmag;
344
            return lastmag;
337
        }
345
        }
338
    }
346
    }
339
    /* Local magazines are empty, import one from magazine list */
347
    /* Local magazines are empty, import one from magazine list */
340
    spinlock_lock(&cache->lock);
348
    spinlock_lock(&cache->lock);
341
    if (list_empty(&cache->magazines)) {
349
    if (list_empty(&cache->magazines)) {
342
        spinlock_unlock(&cache->lock);
350
        spinlock_unlock(&cache->lock);
343
        return NULL;
351
        return NULL;
344
    }
352
    }
345
    newmag = list_get_instance(cache->magazines.next,
353
    newmag = list_get_instance(cache->magazines.next,
346
                   slab_magazine_t,
354
                   slab_magazine_t,
347
                   link);
355
                   link);
348
    list_remove(&newmag->link);
356
    list_remove(&newmag->link);
349
    spinlock_unlock(&cache->lock);
357
    spinlock_unlock(&cache->lock);
350
 
358
 
351
    if (lastmag)
359
    if (lastmag)
352
        slab_free(&mag_cache, lastmag);
360
        slab_free(&mag_cache, lastmag);
353
    cache->mag_cache[CPU->id].last = cmag;
361
    cache->mag_cache[CPU->id].last = cmag;
354
    cache->mag_cache[CPU->id].current = newmag;
362
    cache->mag_cache[CPU->id].current = newmag;
355
    return newmag;
363
    return newmag;
356
}
364
}
357
 
365
 
358
/**
366
/**
359
 * Try to find object in CPU-cache magazines
367
 * Try to find object in CPU-cache magazines
360
 *
368
 *
361
 * @return Pointer to object or NULL if not available
369
 * @return Pointer to object or NULL if not available
362
 */
370
 */
363
static void * magazine_obj_get(slab_cache_t *cache)
371
static void * magazine_obj_get(slab_cache_t *cache)
364
{
372
{
365
    slab_magazine_t *mag;
373
    slab_magazine_t *mag;
366
    void *obj;
374
    void *obj;
367
 
375
 
368
    if (!CPU)
376
    if (!CPU)
369
        return NULL;
377
        return NULL;
370
 
378
 
371
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
379
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
372
 
380
 
373
    mag = get_full_current_mag(cache);
381
    mag = get_full_current_mag(cache);
374
    if (!mag) {
382
    if (!mag) {
375
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
383
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
376
        return NULL;
384
        return NULL;
377
    }
385
    }
378
    obj = mag->objs[--mag->busy];
386
    obj = mag->objs[--mag->busy];
379
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
387
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
380
    atomic_dec(&cache->cached_objs);
388
    atomic_dec(&cache->cached_objs);
381
   
389
   
382
    return obj;
390
    return obj;
383
}
391
}
384
 
392
 
385
/**
393
/**
386
 * Assure that the current magazine is empty, return pointer to it, or NULL if
394
 * Assure that the current magazine is empty, return pointer to it, or NULL if
387
 * no empty magazine is available and cannot be allocated
395
 * no empty magazine is available and cannot be allocated
388
 *
396
 *
389
 * Assume mag_cache[CPU->id].lock is held
397
 * Assume mag_cache[CPU->id].lock is held
390
 *
398
 *
391
 * We have 2 magazines bound to processor.
399
 * We have 2 magazines bound to processor.
392
 * First try the current.
400
 * First try the current.
393
 *  If full, try the last.
401
 *  If full, try the last.
394
 *   If full, put to magazines list.
402
 *   If full, put to magazines list.
395
 *   allocate new, exchange last & current
403
 *   allocate new, exchange last & current
396
 *
404
 *
397
 */
405
 */
398
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
406
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
399
{
407
{
400
    slab_magazine_t *cmag,*lastmag,*newmag;
408
    slab_magazine_t *cmag,*lastmag,*newmag;
401
 
409
 
402
    cmag = cache->mag_cache[CPU->id].current;
410
    cmag = cache->mag_cache[CPU->id].current;
403
    lastmag = cache->mag_cache[CPU->id].last;
411
    lastmag = cache->mag_cache[CPU->id].last;
404
 
412
 
405
    if (cmag) {
413
    if (cmag) {
406
        if (cmag->busy < cmag->size)
414
        if (cmag->busy < cmag->size)
407
            return cmag;
415
            return cmag;
408
        if (lastmag && lastmag->busy < lastmag->size) {
416
        if (lastmag && lastmag->busy < lastmag->size) {
409
            cache->mag_cache[CPU->id].last = cmag;
417
            cache->mag_cache[CPU->id].last = cmag;
410
            cache->mag_cache[CPU->id].current = lastmag;
418
            cache->mag_cache[CPU->id].current = lastmag;
411
            return lastmag;
419
            return lastmag;
412
        }
420
        }
413
    }
421
    }
414
    /* current | last are full | nonexistent, allocate new */
422
    /* current | last are full | nonexistent, allocate new */
415
    /* We do not want to sleep just because of caching */
423
    /* We do not want to sleep just because of caching */
416
    /* Especially we do not want reclaiming to start, as
424
    /* Especially we do not want reclaiming to start, as
417
     * this would deadlock */
425
     * this would deadlock */
418
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
426
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
419
    if (!newmag)
427
    if (!newmag)
420
        return NULL;
428
        return NULL;
421
    newmag->size = SLAB_MAG_SIZE;
429
    newmag->size = SLAB_MAG_SIZE;
422
    newmag->busy = 0;
430
    newmag->busy = 0;
423
 
431
 
424
    /* Flush last to magazine list */
432
    /* Flush last to magazine list */
425
    if (lastmag) {
433
    if (lastmag) {
426
        spinlock_lock(&cache->lock);
434
        spinlock_lock(&cache->lock);
427
        list_prepend(&lastmag->link, &cache->magazines);
435
        list_prepend(&lastmag->link, &cache->magazines);
428
        spinlock_unlock(&cache->lock);
436
        spinlock_unlock(&cache->lock);
429
    }
437
    }
430
    /* Move current as last, save new as current */
438
    /* Move current as last, save new as current */
431
    cache->mag_cache[CPU->id].last = cmag; 
439
    cache->mag_cache[CPU->id].last = cmag; 
432
    cache->mag_cache[CPU->id].current = newmag;
440
    cache->mag_cache[CPU->id].current = newmag;
433
 
441
 
434
    return newmag;
442
    return newmag;
435
}
443
}
436
 
444
 
437
/**
445
/**
438
 * Put object into CPU-cache magazine
446
 * Put object into CPU-cache magazine
439
 *
447
 *
440
 * @return 0 - success, -1 - could not get memory
448
 * @return 0 - success, -1 - could not get memory
441
 */
449
 */
442
static int magazine_obj_put(slab_cache_t *cache, void *obj)
450
static int magazine_obj_put(slab_cache_t *cache, void *obj)
443
{
451
{
444
    slab_magazine_t *mag;
452
    slab_magazine_t *mag;
445
 
453
 
446
    if (!CPU)
454
    if (!CPU)
447
        return -1;
455
        return -1;
448
 
456
 
449
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
457
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
450
 
458
 
451
    mag = make_empty_current_mag(cache);
459
    mag = make_empty_current_mag(cache);
452
    if (!mag) {
460
    if (!mag) {
453
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
461
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
454
        return -1;
462
        return -1;
455
    }
463
    }
456
   
464
   
457
    mag->objs[mag->busy++] = obj;
465
    mag->objs[mag->busy++] = obj;
458
 
466
 
459
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
467
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
460
    atomic_inc(&cache->cached_objs);
468
    atomic_inc(&cache->cached_objs);
461
    return 0;
469
    return 0;
462
}
470
}
463
 
471
 
464
 
472
 
465
/**************************************/
473
/**************************************/
466
/* SLAB CACHE functions */
474
/* SLAB CACHE functions */
467
 
475
 
468
/** Return number of objects that fit in certain cache size */
476
/** Return number of objects that fit in certain cache size */
469
static int comp_objects(slab_cache_t *cache)
477
static int comp_objects(slab_cache_t *cache)
470
{
478
{
471
    if (cache->flags & SLAB_CACHE_SLINSIDE)
479
    if (cache->flags & SLAB_CACHE_SLINSIDE)
472
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
480
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
473
    else
481
    else
474
        return (PAGE_SIZE << cache->order) / cache->size;
482
        return (PAGE_SIZE << cache->order) / cache->size;
475
}
483
}
476
 
484
 
477
/** Return wasted space in slab */
485
/** Return wasted space in slab */
478
static int badness(slab_cache_t *cache)
486
static int badness(slab_cache_t *cache)
479
{
487
{
480
    int objects;
488
    int objects;
481
    int ssize;
489
    int ssize;
482
 
490
 
483
    objects = comp_objects(cache);
491
    objects = comp_objects(cache);
484
    ssize = PAGE_SIZE << cache->order;
492
    ssize = PAGE_SIZE << cache->order;
485
    if (cache->flags & SLAB_CACHE_SLINSIDE)
493
    if (cache->flags & SLAB_CACHE_SLINSIDE)
486
        ssize -= sizeof(slab_t);
494
        ssize -= sizeof(slab_t);
487
    return ssize - objects*cache->size;
495
    return ssize - objects*cache->size;
488
}
496
}
489
 
497
 
490
/** Initialize allocated memory as a slab cache */
498
/** Initialize allocated memory as a slab cache */
491
static void
499
static void
492
_slab_cache_create(slab_cache_t *cache,
500
_slab_cache_create(slab_cache_t *cache,
493
           char *name,
501
           char *name,
494
           size_t size,
502
           size_t size,
495
           size_t align,
503
           size_t align,
496
           int (*constructor)(void *obj, int kmflag),
504
           int (*constructor)(void *obj, int kmflag),
497
           void (*destructor)(void *obj),
505
           void (*destructor)(void *obj),
498
           int flags)
506
           int flags)
499
{
507
{
500
    int i;
508
    int i;
501
    int pages;
509
    int pages;
502
 
510
 
503
    memsetb((__address)cache, sizeof(*cache), 0);
511
    memsetb((__address)cache, sizeof(*cache), 0);
504
    cache->name = name;
512
    cache->name = name;
505
 
513
 
506
    if (align < sizeof(__native))
514
    if (align < sizeof(__native))
507
        align = sizeof(__native);
515
        align = sizeof(__native);
508
    size = ALIGN_UP(size, align);
516
    size = ALIGN_UP(size, align);
509
       
517
       
510
    cache->size = size;
518
    cache->size = size;
511
 
519
 
512
    cache->constructor = constructor;
520
    cache->constructor = constructor;
513
    cache->destructor = destructor;
521
    cache->destructor = destructor;
514
    cache->flags = flags;
522
    cache->flags = flags;
515
 
523
 
516
    list_initialize(&cache->full_slabs);
524
    list_initialize(&cache->full_slabs);
517
    list_initialize(&cache->partial_slabs);
525
    list_initialize(&cache->partial_slabs);
518
    list_initialize(&cache->magazines);
526
    list_initialize(&cache->magazines);
519
    spinlock_initialize(&cache->lock, "cachelock");
527
    spinlock_initialize(&cache->lock, "cachelock");
520
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
528
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
521
        for (i=0; i < config.cpu_count; i++) {
529
        for (i=0; i < config.cpu_count; i++) {
522
            memsetb((__address)&cache->mag_cache[i],
530
            memsetb((__address)&cache->mag_cache[i],
523
                sizeof(cache->mag_cache[i]), 0);
531
                sizeof(cache->mag_cache[i]), 0);
524
            spinlock_initialize(&cache->mag_cache[i].lock,
532
            spinlock_initialize(&cache->mag_cache[i].lock,
525
                        "cpucachelock");
533
                        "cpucachelock");
526
        }
534
        }
527
    }
535
    }
528
 
536
 
529
    /* Compute slab sizes, object counts in slabs etc. */
537
    /* Compute slab sizes, object counts in slabs etc. */
530
    if (cache->size < SLAB_INSIDE_SIZE)
538
    if (cache->size < SLAB_INSIDE_SIZE)
531
        cache->flags |= SLAB_CACHE_SLINSIDE;
539
        cache->flags |= SLAB_CACHE_SLINSIDE;
532
 
540
 
533
    /* Minimum slab order */
541
    /* Minimum slab order */
534
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
542
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
535
    cache->order = fnzb(pages);
543
    cache->order = fnzb(pages);
536
 
544
 
537
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
545
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
538
        cache->order += 1;
546
        cache->order += 1;
539
    }
547
    }
540
    cache->objects = comp_objects(cache);
548
    cache->objects = comp_objects(cache);
541
    /* If info fits in, put it inside */
549
    /* If info fits in, put it inside */
542
    if (badness(cache) > sizeof(slab_t))
550
    if (badness(cache) > sizeof(slab_t))
543
        cache->flags |= SLAB_CACHE_SLINSIDE;
551
        cache->flags |= SLAB_CACHE_SLINSIDE;
544
 
552
 
545
    spinlock_lock(&slab_cache_lock);
553
    spinlock_lock(&slab_cache_lock);
546
 
554
 
547
    list_append(&cache->link, &slab_cache_list);
555
    list_append(&cache->link, &slab_cache_list);
548
 
556
 
549
    spinlock_unlock(&slab_cache_lock);
557
    spinlock_unlock(&slab_cache_lock);
550
}
558
}
551
 
559
 
552
/** Create slab cache  */
560
/** Create slab cache  */
553
slab_cache_t * slab_cache_create(char *name,
561
slab_cache_t * slab_cache_create(char *name,
554
                 size_t size,
562
                 size_t size,
555
                 size_t align,
563
                 size_t align,
556
                 int (*constructor)(void *obj, int kmflag),
564
                 int (*constructor)(void *obj, int kmflag),
557
                 void (*destructor)(void *obj),
565
                 void (*destructor)(void *obj),
558
                 int flags)
566
                 int flags)
559
{
567
{
560
    slab_cache_t *cache;
568
    slab_cache_t *cache;
561
 
569
 
562
    cache = slab_alloc(&slab_cache_cache, 0);
570
    cache = slab_alloc(&slab_cache_cache, 0);
563
    _slab_cache_create(cache, name, size, align, constructor, destructor,
571
    _slab_cache_create(cache, name, size, align, constructor, destructor,
564
               flags);
572
               flags);
565
    return cache;
573
    return cache;
566
}
574
}
567
 
575
 
568
/**
576
/**
569
 * Reclaim space occupied by objects that are already free
577
 * Reclaim space occupied by objects that are already free
570
 *
578
 *
571
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
579
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
572
 * @return Number of freed pages
580
 * @return Number of freed pages
573
 */
581
 */
574
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
582
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
575
{
583
{
576
    int i;
584
    int i;
577
    slab_magazine_t *mag;
585
    slab_magazine_t *mag;
578
    link_t *cur;
586
    link_t *cur;
579
    count_t frames = 0;
587
    count_t frames = 0;
580
   
588
   
581
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
589
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
582
        return 0; /* Nothing to do */
590
        return 0; /* Nothing to do */
583
   
591
   
584
    /* First lock all cpu caches, then the complete cache lock */
592
    /* First lock all cpu caches, then the complete cache lock */
585
    if (flags & SLAB_RECLAIM_ALL) {
593
    if (flags & SLAB_RECLAIM_ALL) {
586
        for (i=0; i < config.cpu_count; i++)
594
        for (i=0; i < config.cpu_count; i++)
587
            spinlock_lock(&cache->mag_cache[i].lock);
595
            spinlock_lock(&cache->mag_cache[i].lock);
588
    }
596
    }
589
    spinlock_lock(&cache->lock);
597
    spinlock_lock(&cache->lock);
590
   
598
   
591
    if (flags & SLAB_RECLAIM_ALL) {
599
    if (flags & SLAB_RECLAIM_ALL) {
592
        /* Aggressive memfree */
600
        /* Aggressive memfree */
593
        /* Destroy CPU magazines */
601
        /* Destroy CPU magazines */
594
        for (i=0; i<config.cpu_count; i++) {
602
        for (i=0; i<config.cpu_count; i++) {
595
            mag = cache->mag_cache[i].current;
603
            mag = cache->mag_cache[i].current;
596
            if (mag)
604
            if (mag)
597
                frames += magazine_destroy(cache, mag);
605
                frames += magazine_destroy(cache, mag);
598
            cache->mag_cache[i].current = NULL;
606
            cache->mag_cache[i].current = NULL;
599
           
607
           
600
            mag = cache->mag_cache[i].last;
608
            mag = cache->mag_cache[i].last;
601
            if (mag)
609
            if (mag)
602
                frames += magazine_destroy(cache, mag);
610
                frames += magazine_destroy(cache, mag);
603
            cache->mag_cache[i].last = NULL;
611
            cache->mag_cache[i].last = NULL;
604
        }
612
        }
605
    }
613
    }
606
    /* Destroy full magazines */
614
    /* Destroy full magazines */
607
    cur=cache->magazines.prev;
615
    cur=cache->magazines.prev;
608
 
616
 
609
    while (cur != &cache->magazines) {
617
    while (cur != &cache->magazines) {
610
        mag = list_get_instance(cur, slab_magazine_t, link);
618
        mag = list_get_instance(cur, slab_magazine_t, link);
611
       
619
       
612
        cur = cur->prev;
620
        cur = cur->prev;
613
        list_remove(&mag->link);
621
        list_remove(&mag->link);
614
        frames += magazine_destroy(cache,mag);
622
        frames += magazine_destroy(cache,mag);
615
        /* If we do not do full reclaim, break
623
        /* If we do not do full reclaim, break
616
         * as soon as something is freed */
624
         * as soon as something is freed */
617
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
625
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
618
            break;
626
            break;
619
    }
627
    }
620
   
628
   
621
    spinlock_unlock(&cache->lock);
629
    spinlock_unlock(&cache->lock);
-
 
630
    /* We can release the cache locks now */
622
    if (flags & SLAB_RECLAIM_ALL) {
631
    if (flags & SLAB_RECLAIM_ALL) {
623
        for (i=0; i < config.cpu_count; i++)
632
        for (i=0; i < config.cpu_count; i++)
624
            spinlock_unlock(&cache->mag_cache[i].lock);
633
            spinlock_unlock(&cache->mag_cache[i].lock);
625
    }
634
    }
626
   
635
   
627
    return frames;
636
    return frames;
628
}
637
}
629
 
638
 
630
/** Check that there are no slabs and remove cache from system  */
639
/** Check that there are no slabs and remove cache from system  */
631
void slab_cache_destroy(slab_cache_t *cache)
640
void slab_cache_destroy(slab_cache_t *cache)
632
{
641
{
633
    /* Do not lock anything, we assume the software is correct and
642
    /* Do not lock anything, we assume the software is correct and
634
     * does not touch the cache when it decides to destroy it */
643
     * does not touch the cache when it decides to destroy it */
635
   
644
   
636
    /* Destroy all magazines */
645
    /* Destroy all magazines */
637
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
646
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
638
 
647
 
639
    /* All slabs must be empty */
648
    /* All slabs must be empty */
640
    if (!list_empty(&cache->full_slabs) \
649
    if (!list_empty(&cache->full_slabs) \
641
        || !list_empty(&cache->partial_slabs))
650
        || !list_empty(&cache->partial_slabs))
642
        panic("Destroying cache that is not empty.");
651
        panic("Destroying cache that is not empty.");
643
 
652
 
644
    spinlock_lock(&slab_cache_lock);
653
    spinlock_lock(&slab_cache_lock);
645
    list_remove(&cache->link);
654
    list_remove(&cache->link);
646
    spinlock_unlock(&slab_cache_lock);
655
    spinlock_unlock(&slab_cache_lock);
647
 
656
 
648
    slab_free(&slab_cache_cache, cache);
657
    slab_free(&slab_cache_cache, cache);
649
}
658
}
650
 
659
 
651
/** Allocate new object from cache - if no flags given, always returns
660
/** Allocate new object from cache - if no flags given, always returns
652
    memory */
661
    memory */
653
void * slab_alloc(slab_cache_t *cache, int flags)
662
void * slab_alloc(slab_cache_t *cache, int flags)
654
{
663
{
655
    ipl_t ipl;
664
    ipl_t ipl;
656
    void *result = NULL;
665
    void *result = NULL;
657
   
666
   
658
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
667
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
659
    ipl = interrupts_disable();
668
    ipl = interrupts_disable();
660
 
669
 
661
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
670
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
662
        result = magazine_obj_get(cache);
671
        result = magazine_obj_get(cache);
663
 
672
 
664
    if (!result) {
673
    if (!result) {
665
        spinlock_lock(&cache->lock);
674
        spinlock_lock(&cache->lock);
666
        result = slab_obj_create(cache, flags);
675
        result = slab_obj_create(cache, flags);
667
        spinlock_unlock(&cache->lock);
676
        spinlock_unlock(&cache->lock);
668
    }
677
    }
669
 
678
 
670
    interrupts_restore(ipl);
679
    interrupts_restore(ipl);
671
 
680
 
672
    if (result)
681
    if (result)
673
        atomic_inc(&cache->allocated_objs);
682
        atomic_inc(&cache->allocated_objs);
674
 
683
 
675
    return result;
684
    return result;
676
}
685
}
677
 
686
 
678
/** Return object to cache, use slab if known  */
687
/** Return object to cache, use slab if known  */
679
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
688
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
680
{
689
{
681
    ipl_t ipl;
690
    ipl_t ipl;
682
 
691
 
683
    ipl = interrupts_disable();
692
    ipl = interrupts_disable();
684
 
693
 
685
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
694
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
686
        || magazine_obj_put(cache, obj)) {
695
        || magazine_obj_put(cache, obj)) {
687
        spinlock_lock(&cache->lock);
696
        spinlock_lock(&cache->lock);
688
        slab_obj_destroy(cache, obj, slab);
697
        slab_obj_destroy(cache, obj, slab);
689
        spinlock_unlock(&cache->lock);
698
        spinlock_unlock(&cache->lock);
690
    }
699
    }
691
    interrupts_restore(ipl);
700
    interrupts_restore(ipl);
692
    atomic_dec(&cache->allocated_objs);
701
    atomic_dec(&cache->allocated_objs);
693
}
702
}
694
 
703
 
695
/** Return slab object to cache */
704
/** Return slab object to cache */
696
void slab_free(slab_cache_t *cache, void *obj)
705
void slab_free(slab_cache_t *cache, void *obj)
697
{
706
{
698
    _slab_free(cache,obj,NULL);
707
    _slab_free(cache,obj,NULL);
699
}
708
}
700
 
709
 
701
/* Go through all caches and reclaim what is possible */
710
/* Go through all caches and reclaim what is possible */
702
count_t slab_reclaim(int flags)
711
count_t slab_reclaim(int flags)
703
{
712
{
704
    slab_cache_t *cache;
713
    slab_cache_t *cache;
705
    link_t *cur;
714
    link_t *cur;
706
    count_t frames = 0;
715
    count_t frames = 0;
707
 
716
 
708
    spinlock_lock(&slab_cache_lock);
717
    spinlock_lock(&slab_cache_lock);
709
 
718
 
710
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
719
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
711
        cache = list_get_instance(cur, slab_cache_t, link);
720
        cache = list_get_instance(cur, slab_cache_t, link);
712
        frames += _slab_reclaim(cache, flags);
721
        frames += _slab_reclaim(cache, flags);
713
    }
722
    }
714
 
723
 
715
    spinlock_unlock(&slab_cache_lock);
724
    spinlock_unlock(&slab_cache_lock);
716
 
725
 
717
    return frames;
726
    return frames;
718
}
727
}
719
 
728
 
720
 
729
 
721
/* Print list of slabs */
730
/* Print list of slabs */
722
void slab_print_list(void)
731
void slab_print_list(void)
723
{
732
{
724
    slab_cache_t *cache;
733
    slab_cache_t *cache;
725
    link_t *cur;
734
    link_t *cur;
726
 
735
 
727
    spinlock_lock(&slab_cache_lock);
736
    spinlock_lock(&slab_cache_lock);
728
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
737
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
729
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
738
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
730
        cache = list_get_instance(cur, slab_cache_t, link);
739
        cache = list_get_instance(cur, slab_cache_t, link);
731
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
740
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
732
               (1 << cache->order), cache->objects,
741
               (1 << cache->order), cache->objects,
733
               atomic_get(&cache->allocated_slabs),
742
               atomic_get(&cache->allocated_slabs),
734
               atomic_get(&cache->cached_objs),
743
               atomic_get(&cache->cached_objs),
735
               atomic_get(&cache->allocated_objs),
744
               atomic_get(&cache->allocated_objs),
736
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
745
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
737
    }
746
    }
738
    spinlock_unlock(&slab_cache_lock);
747
    spinlock_unlock(&slab_cache_lock);
739
}
748
}
740
 
749
 
741
void slab_cache_init(void)
750
void slab_cache_init(void)
742
{
751
{
743
    int i, size;
752
    int i, size;
744
 
753
 
745
    /* Initialize magazine cache */
754
    /* Initialize magazine cache */
746
    _slab_cache_create(&mag_cache,
755
    _slab_cache_create(&mag_cache,
747
               "slab_magazine",
756
               "slab_magazine",
748
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
757
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
749
               sizeof(__address),
758
               sizeof(__address),
750
               NULL, NULL,
759
               NULL, NULL,
751
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
760
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
752
    /* Initialize slab_cache cache */
761
    /* Initialize slab_cache cache */
753
    _slab_cache_create(&slab_cache_cache,
762
    _slab_cache_create(&slab_cache_cache,
754
               "slab_cache",
763
               "slab_cache",
755
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
764
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
756
               sizeof(__address),
765
               sizeof(__address),
757
               NULL, NULL,
766
               NULL, NULL,
758
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
767
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
759
    /* Initialize external slab cache */
768
    /* Initialize external slab cache */
760
    slab_extern_cache = slab_cache_create("slab_extern",
769
    slab_extern_cache = slab_cache_create("slab_extern",
761
                          sizeof(slab_t),
770
                          sizeof(slab_t),
762
                          0, NULL, NULL,
771
                          0, NULL, NULL,
763
                          SLAB_CACHE_SLINSIDE);
772
                          SLAB_CACHE_SLINSIDE);
764
 
773
 
765
    /* Initialize structures for malloc */
774
    /* Initialize structures for malloc */
766
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
775
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
767
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
776
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
768
         i++, size <<= 1) {
777
         i++, size <<= 1) {
769
        malloc_caches[i] = slab_cache_create(malloc_names[i],
778
        malloc_caches[i] = slab_cache_create(malloc_names[i],
770
                             size, 0,
779
                             size, 0,
771
                             NULL,NULL,0);
780
                             NULL,NULL,0);
772
    }
781
    }
773
}
782
}
774
 
783
 
775
/**************************************/
784
/**************************************/
776
/* kalloc/kfree functions             */
785
/* kalloc/kfree functions             */
777
void * kalloc(unsigned int size, int flags)
786
void * kalloc(unsigned int size, int flags)
778
{
787
{
779
    int idx;
788
    int idx;
780
 
789
   
781
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
790
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
782
   
791
   
783
    if (size < (1 << SLAB_MIN_MALLOC_W))
792
    if (size < (1 << SLAB_MIN_MALLOC_W))
784
        size = (1 << SLAB_MIN_MALLOC_W);
793
        size = (1 << SLAB_MIN_MALLOC_W);
785
 
794
 
786
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
795
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
787
 
796
 
788
    return slab_alloc(malloc_caches[idx], flags);
797
    return slab_alloc(malloc_caches[idx], flags);
789
}
798
}
790
 
799
 
791
 
800
 
792
void kfree(void *obj)
801
void kfree(void *obj)
793
{
802
{
794
    slab_t *slab = obj2slab(obj);
803
    slab_t *slab = obj2slab(obj);
795
   
804
   
796
    _slab_free(slab->cache, obj, slab);
805
    _slab_free(slab->cache, obj, slab);
797
}
806
}
798
 
807