Subversion Repositories HelenOS-historic

Rev

Rev 782 | Rev 785 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 782 Rev 783
1
/*
1
/*
2
 * Copyright (C) 2006 Ondrej Palkovsky
2
 * Copyright (C) 2006 Ondrej Palkovsky
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/*
29
/*
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
30
 * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
31
 * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
32
 *
32
 *
33
 * with the following exceptions:
33
 * with the following exceptions:
34
 *   - empty SLABS are deallocated immediately
34
 *   - empty SLABS are deallocated immediately
35
 *     (in Linux they are kept in linked list, in Solaris ???)
35
 *     (in Linux they are kept in linked list, in Solaris ???)
36
 *   - empty magazines are deallocated when not needed
36
 *   - empty magazines are deallocated when not needed
37
 *     (in Solaris they are held in linked list in slab cache)
37
 *     (in Solaris they are held in linked list in slab cache)
38
 *
38
 *
39
 *   Following features are not currently supported but would be easy to do:
39
 *   Following features are not currently supported but would be easy to do:
40
 *   - cache coloring
40
 *   - cache coloring
41
 *   - dynamic magazine growing (different magazine sizes are already
41
 *   - dynamic magazine growing (different magazine sizes are already
42
 *     supported, but we would need to adjust allocating strategy)
42
 *     supported, but we would need to adjust allocating strategy)
43
 *
43
 *
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
44
 * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
45
 * good SMP scaling.
45
 * good SMP scaling.
46
 *
46
 *
47
 * When a new object is being allocated, it is first checked, if it is
47
 * When a new object is being allocated, it is first checked, if it is
48
 * available in CPU-bound magazine. If it is not found there, it is
48
 * available in CPU-bound magazine. If it is not found there, it is
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
49
 * allocated from CPU-shared SLAB - if partial full is found, it is used,
50
 * otherwise a new one is allocated.
50
 * otherwise a new one is allocated.
51
 *
51
 *
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
52
 * When an object is being deallocated, it is put to CPU-bound magazine.
53
 * If there is no such magazine, new one is allocated (if it fails,
53
 * If there is no such magazine, new one is allocated (if it fails,
54
 * the object is deallocated into SLAB). If the magazine is full, it is
54
 * the object is deallocated into SLAB). If the magazine is full, it is
55
 * put into cpu-shared list of magazines and new one is allocated.
55
 * put into cpu-shared list of magazines and new one is allocated.
56
 *
56
 *
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
57
 * The CPU-bound magazine is actually a pair of magazine to avoid
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
58
 * thrashing when somebody is allocating/deallocating 1 item at the magazine
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
59
 * size boundary. LIFO order is enforced, which should avoid fragmentation
60
 * as much as possible.
60
 * as much as possible.
61
 *  
61
 *  
62
 * Every cache contains list of full slabs and list of partialy full slabs.
62
 * Every cache contains list of full slabs and list of partialy full slabs.
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
63
 * Empty SLABS are immediately freed (thrashing will be avoided because
64
 * of magazines).
64
 * of magazines).
65
 *
65
 *
66
 * The SLAB information structure is kept inside the data area, if possible.
66
 * The SLAB information structure is kept inside the data area, if possible.
67
 * The cache can be marked that it should not use magazines. This is used
67
 * The cache can be marked that it should not use magazines. This is used
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
68
 * only for SLAB related caches to avoid deadlocks and infinite recursion
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
69
 * (the SLAB allocator uses itself for allocating all it's control structures).
70
 *
70
 *
71
 * The SLAB allocator allocates lot of space and does not free it. When
71
 * The SLAB allocator allocates lot of space and does not free it. When
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
72
 * frame allocator fails to allocate the frame, it calls slab_reclaim().
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
73
 * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
74
 * releases slabs from cpu-shared magazine-list, until at least 1 slab
75
 * is deallocated in each cache (this algorithm should probably change).
75
 * is deallocated in each cache (this algorithm should probably change).
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
76
 * The brutal reclaim removes all cached objects, even from CPU-bound
77
 * magazines.
77
 * magazines.
78
 *
78
 *
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
79
 * TODO: For better CPU-scaling the magazine allocation strategy should
80
 * be extended. Currently, if the cache does not have magazine, it asks
80
 * be extended. Currently, if the cache does not have magazine, it asks
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
81
 * for non-cpu cached magazine cache to provide one. It might be feasible
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
82
 * to add cpu-cached magazine cache (which would allocate it's magazines
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
83
 * from non-cpu-cached mag. cache). This would provide a nice per-cpu
84
 * buffer. The other possibility is to use the per-cache
84
 * buffer. The other possibility is to use the per-cache
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
85
 * 'empty-magazine-list', which decreases competing for 1 per-system
86
 * magazine cache.
86
 * magazine cache.
87
 *
87
 *
88
 * - it might be good to add granularity of locks even to slab level,
88
 * - it might be good to add granularity of locks even to slab level,
89
 *   we could then try_spinlock over all partial slabs and thus improve
89
 *   we could then try_spinlock over all partial slabs and thus improve
90
 *   scalability even on slab level
90
 *   scalability even on slab level
91
 */
91
 */
92
 
92
 
93
 
93
 
94
#include <synch/spinlock.h>
94
#include <synch/spinlock.h>
95
#include <mm/slab.h>
95
#include <mm/slab.h>
96
#include <list.h>
96
#include <list.h>
97
#include <memstr.h>
97
#include <memstr.h>
98
#include <align.h>
98
#include <align.h>
99
#include <mm/heap.h>
99
#include <mm/heap.h>
100
#include <mm/frame.h>
100
#include <mm/frame.h>
101
#include <config.h>
101
#include <config.h>
102
#include <print.h>
102
#include <print.h>
103
#include <arch.h>
103
#include <arch.h>
104
#include <panic.h>
104
#include <panic.h>
105
#include <debug.h>
105
#include <debug.h>
106
#include <bitops.h>
106
#include <bitops.h>
107
 
107
 
108
SPINLOCK_INITIALIZE(slab_cache_lock);
108
SPINLOCK_INITIALIZE(slab_cache_lock);
109
static LIST_INITIALIZE(slab_cache_list);
109
static LIST_INITIALIZE(slab_cache_list);
110
 
110
 
111
/** Magazine cache */
111
/** Magazine cache */
112
static slab_cache_t mag_cache;
112
static slab_cache_t mag_cache;
113
/** Cache for cache descriptors */
113
/** Cache for cache descriptors */
114
static slab_cache_t slab_cache_cache;
114
static slab_cache_t slab_cache_cache;
115
 
115
 
116
/** Cache for external slab descriptors
116
/** Cache for external slab descriptors
117
 * This time we want per-cpu cache, so do not make it static
117
 * This time we want per-cpu cache, so do not make it static
118
 * - using SLAB for internal SLAB structures will not deadlock,
118
 * - using SLAB for internal SLAB structures will not deadlock,
119
 *   as all slab structures are 'small' - control structures of
119
 *   as all slab structures are 'small' - control structures of
120
 *   their caches do not require further allocation
120
 *   their caches do not require further allocation
121
 */
121
 */
122
static slab_cache_t *slab_extern_cache;
122
static slab_cache_t *slab_extern_cache;
123
/** Caches for malloc */
123
/** Caches for malloc */
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
124
static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
125
char *malloc_names[] =  {
125
char *malloc_names[] =  {
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
126
    "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
127
    "malloc-256","malloc-512","malloc-1K","malloc-2K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
128
    "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
129
    "malloc-64K","malloc-128K"
129
    "malloc-64K","malloc-128K"
130
};
130
};
131
 
131
 
132
/** Slab descriptor */
132
/** Slab descriptor */
133
typedef struct {
133
typedef struct {
134
    slab_cache_t *cache; /**< Pointer to parent cache */
134
    slab_cache_t *cache; /**< Pointer to parent cache */
135
    link_t link;       /* List of full/partial slabs */
135
    link_t link;       /* List of full/partial slabs */
136
    void *start;       /**< Start address of first available item */
136
    void *start;       /**< Start address of first available item */
137
    count_t available; /**< Count of available items in this slab */
137
    count_t available; /**< Count of available items in this slab */
138
    index_t nextavail; /**< The index of next available item */
138
    index_t nextavail; /**< The index of next available item */
139
}slab_t;
139
}slab_t;
140
 
140
 
141
/**************************************/
141
/**************************************/
142
/* SLAB allocation functions          */
142
/* SLAB allocation functions          */
143
 
143
 
144
/**
144
/**
145
 * Allocate frames for slab space and initialize
145
 * Allocate frames for slab space and initialize
146
 *
146
 *
147
 */
147
 */
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
148
static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
149
{
149
{
150
    void *data;
150
    void *data;
151
    slab_t *slab;
151
    slab_t *slab;
152
    size_t fsize;
152
    size_t fsize;
153
    int i;
153
    int i;
154
    zone_t *zone = NULL;
154
    zone_t *zone = NULL;
155
    int status;
155
    int status;
156
    frame_t *frame;
156
    frame_t *frame;
157
 
157
 
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
158
    data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
159
    if (status != FRAME_OK) {
159
    if (status != FRAME_OK) {
160
        return NULL;
160
        return NULL;
161
    }
161
    }
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
162
    if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
163
        slab = slab_alloc(slab_extern_cache, flags);
163
        slab = slab_alloc(slab_extern_cache, flags);
164
        if (!slab) {
164
        if (!slab) {
165
            frame_free((__address)data);
165
            frame_free((__address)data);
166
            return NULL;
166
            return NULL;
167
        }
167
        }
168
    } else {
168
    } else {
169
        fsize = (PAGE_SIZE << cache->order);
169
        fsize = (PAGE_SIZE << cache->order);
170
        slab = data + fsize - sizeof(*slab);
170
        slab = data + fsize - sizeof(*slab);
171
    }
171
    }
172
       
172
       
173
    /* Fill in slab structures */
173
    /* Fill in slab structures */
174
    /* TODO: some better way of accessing the frame */
174
    /* TODO: some better way of accessing the frame */
175
    for (i=0; i < (1 << cache->order); i++) {
175
    for (i=0; i < (1 << cache->order); i++) {
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
176
        frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
177
        frame->parent = slab;
177
        frame->parent = slab;
178
    }
178
    }
179
 
179
 
180
    slab->start = data;
180
    slab->start = data;
181
    slab->available = cache->objects;
181
    slab->available = cache->objects;
182
    slab->nextavail = 0;
182
    slab->nextavail = 0;
183
    slab->cache = cache;
183
    slab->cache = cache;
184
 
184
 
185
    for (i=0; i<cache->objects;i++)
185
    for (i=0; i<cache->objects;i++)
186
        *((int *) (slab->start + i*cache->size)) = i+1;
186
        *((int *) (slab->start + i*cache->size)) = i+1;
187
 
187
 
188
    atomic_inc(&cache->allocated_slabs);
188
    atomic_inc(&cache->allocated_slabs);
189
    return slab;
189
    return slab;
190
}
190
}
191
 
191
 
192
/**
192
/**
193
 * Deallocate space associated with SLAB
193
 * Deallocate space associated with SLAB
194
 *
194
 *
195
 * @return number of freed frames
195
 * @return number of freed frames
196
 */
196
 */
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
197
static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
198
{
198
{
199
    frame_free((__address)slab->start);
199
    frame_free((__address)slab->start);
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
200
    if (! (cache->flags & SLAB_CACHE_SLINSIDE))
201
        slab_free(slab_extern_cache, slab);
201
        slab_free(slab_extern_cache, slab);
202
 
202
 
203
    atomic_dec(&cache->allocated_slabs);
203
    atomic_dec(&cache->allocated_slabs);
204
   
204
   
205
    return 1 << cache->order;
205
    return 1 << cache->order;
206
}
206
}
207
 
207
 
208
/** Map object to slab structure */
208
/** Map object to slab structure */
209
static slab_t * obj2slab(void *obj)
209
static slab_t * obj2slab(void *obj)
210
{
210
{
211
    frame_t *frame;
211
    frame_t *frame;
212
 
212
 
213
    frame = frame_addr2frame((__address)obj);
213
    frame = frame_addr2frame((__address)obj);
214
    return (slab_t *)frame->parent;
214
    return (slab_t *)frame->parent;
215
}
215
}
216
 
216
 
217
/**************************************/
217
/**************************************/
218
/* SLAB functions */
218
/* SLAB functions */
219
 
219
 
220
 
220
 
221
/**
221
/**
222
 * Return object to slab and call a destructor
222
 * Return object to slab and call a destructor
223
 *
223
 *
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
224
 * @param slab If the caller knows directly slab of the object, otherwise NULL
225
 *
225
 *
226
 * @return Number of freed pages
226
 * @return Number of freed pages
227
 */
227
 */
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
228
static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
229
                slab_t *slab)
229
                slab_t *slab)
230
{
230
{
231
    if (!slab)
231
    if (!slab)
232
        slab = obj2slab(obj);
232
        slab = obj2slab(obj);
233
 
233
 
234
    ASSERT(slab->cache == cache);
234
    ASSERT(slab->cache == cache);
235
    ASSERT(slab->available < cache->objects);
235
    ASSERT(slab->available < cache->objects);
236
 
236
 
237
    spinlock_lock(&cache->slablock);
237
    spinlock_lock(&cache->slablock);
238
 
238
 
239
    *((int *)obj) = slab->nextavail;
239
    *((int *)obj) = slab->nextavail;
240
    slab->nextavail = (obj - slab->start)/cache->size;
240
    slab->nextavail = (obj - slab->start)/cache->size;
241
    slab->available++;
241
    slab->available++;
242
 
242
 
243
    /* Move it to correct list */
243
    /* Move it to correct list */
244
    if (slab->available == cache->objects) {
244
    if (slab->available == cache->objects) {
245
        /* Free associated memory */
245
        /* Free associated memory */
246
        list_remove(&slab->link);
246
        list_remove(&slab->link);
247
        spinlock_unlock(&cache->slablock);
247
        spinlock_unlock(&cache->slablock);
248
 
248
 
249
        return slab_space_free(cache, slab);
249
        return slab_space_free(cache, slab);
250
 
250
 
251
    } else if (slab->available == 1) {
251
    } else if (slab->available == 1) {
252
        /* It was in full, move to partial */
252
        /* It was in full, move to partial */
253
        list_remove(&slab->link);
253
        list_remove(&slab->link);
254
        list_prepend(&slab->link, &cache->partial_slabs);
254
        list_prepend(&slab->link, &cache->partial_slabs);
255
        spinlock_unlock(&cache->slablock);
-
 
256
    }
255
    }
-
 
256
    spinlock_unlock(&cache->slablock);
257
    return 0;
257
    return 0;
258
}
258
}
259
 
259
 
260
/**
260
/**
261
 * Take new object from slab or create new if needed
261
 * Take new object from slab or create new if needed
262
 *
262
 *
263
 * @return Object address or null
263
 * @return Object address or null
264
 */
264
 */
265
static void * slab_obj_create(slab_cache_t *cache, int flags)
265
static void * slab_obj_create(slab_cache_t *cache, int flags)
266
{
266
{
267
    slab_t *slab;
267
    slab_t *slab;
268
    void *obj;
268
    void *obj;
269
 
269
 
270
    spinlock_lock(&cache->slablock);
270
    spinlock_lock(&cache->slablock);
271
 
271
 
272
    if (list_empty(&cache->partial_slabs)) {
272
    if (list_empty(&cache->partial_slabs)) {
273
        /* Allow recursion and reclaiming
273
        /* Allow recursion and reclaiming
274
         * - this should work, as the SLAB control structures
274
         * - this should work, as the SLAB control structures
275
         *   are small and do not need to allocte with anything
275
         *   are small and do not need to allocte with anything
276
         *   other ten frame_alloc when they are allocating,
276
         *   other ten frame_alloc when they are allocating,
277
         *   that's why we should get recursion at most 1-level deep
277
         *   that's why we should get recursion at most 1-level deep
278
         */
278
         */
279
        spinlock_unlock(&cache->slablock);
279
        spinlock_unlock(&cache->slablock);
280
        slab = slab_space_alloc(cache, flags);
280
        slab = slab_space_alloc(cache, flags);
281
        if (!slab)
281
        if (!slab)
282
            return NULL;
282
            return NULL;
283
        spinlock_lock(&cache->slablock);
283
        spinlock_lock(&cache->slablock);
284
    } else {
284
    } else {
285
        slab = list_get_instance(cache->partial_slabs.next,
285
        slab = list_get_instance(cache->partial_slabs.next,
286
                     slab_t,
286
                     slab_t,
287
                     link);
287
                     link);
288
        list_remove(&slab->link);
288
        list_remove(&slab->link);
289
    }
289
    }
290
    obj = slab->start + slab->nextavail * cache->size;
290
    obj = slab->start + slab->nextavail * cache->size;
291
    slab->nextavail = *((int *)obj);
291
    slab->nextavail = *((int *)obj);
292
    slab->available--;
292
    slab->available--;
293
    if (! slab->available)
293
    if (! slab->available)
294
        list_prepend(&slab->link, &cache->full_slabs);
294
        list_prepend(&slab->link, &cache->full_slabs);
295
    else
295
    else
296
        list_prepend(&slab->link, &cache->partial_slabs);
296
        list_prepend(&slab->link, &cache->partial_slabs);
297
 
297
 
298
    spinlock_unlock(&cache->slablock);
298
    spinlock_unlock(&cache->slablock);
299
    return obj;
299
    return obj;
300
}
300
}
301
 
301
 
302
/**************************************/
302
/**************************************/
303
/* CPU-Cache slab functions */
303
/* CPU-Cache slab functions */
304
 
304
 
305
/**
305
/**
306
 * Finds a full magazine in cache, takes it from list
306
 * Finds a full magazine in cache, takes it from list
307
 * and returns it
307
 * and returns it
308
 *
308
 *
309
 * @param first If true, return first, else last mag
309
 * @param first If true, return first, else last mag
310
 */
310
 */
311
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
311
static slab_magazine_t * get_mag_from_cache(slab_cache_t *cache,
312
                        int first)
312
                        int first)
313
{
313
{
314
    slab_magazine_t *mag = NULL;
314
    slab_magazine_t *mag = NULL;
315
    link_t *cur;
315
    link_t *cur;
316
 
316
 
317
    spinlock_lock(&cache->maglock);
317
    spinlock_lock(&cache->maglock);
318
    if (!list_empty(&cache->magazines)) {
318
    if (!list_empty(&cache->magazines)) {
319
        if (first)
319
        if (first)
320
            cur = cache->magazines.next;
320
            cur = cache->magazines.next;
321
        else
321
        else
322
            cur = cache->magazines.prev;
322
            cur = cache->magazines.prev;
323
        mag = list_get_instance(cur, slab_magazine_t, link);
323
        mag = list_get_instance(cur, slab_magazine_t, link);
324
        list_remove(&mag->link);
324
        list_remove(&mag->link);
325
        atomic_dec(&cache->magazine_counter);
325
        atomic_dec(&cache->magazine_counter);
326
    }
326
    }
327
    spinlock_unlock(&cache->maglock);
327
    spinlock_unlock(&cache->maglock);
328
    return mag;
328
    return mag;
329
}
329
}
330
 
330
 
331
/** Prepend magazine to magazine list in cache */
331
/** Prepend magazine to magazine list in cache */
332
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
332
static void put_mag_to_cache(slab_cache_t *cache, slab_magazine_t *mag)
333
{
333
{
334
    spinlock_lock(&cache->maglock);
334
    spinlock_lock(&cache->maglock);
335
 
335
 
336
    list_prepend(&mag->link, &cache->magazines);
336
    list_prepend(&mag->link, &cache->magazines);
337
    atomic_inc(&cache->magazine_counter);
337
    atomic_inc(&cache->magazine_counter);
338
   
338
   
339
    spinlock_unlock(&cache->maglock);
339
    spinlock_unlock(&cache->maglock);
340
}
340
}
341
 
341
 
342
/**
342
/**
343
 * Free all objects in magazine and free memory associated with magazine
343
 * Free all objects in magazine and free memory associated with magazine
344
 *
344
 *
345
 * @return Number of freed pages
345
 * @return Number of freed pages
346
 */
346
 */
347
static count_t magazine_destroy(slab_cache_t *cache,
347
static count_t magazine_destroy(slab_cache_t *cache,
348
                slab_magazine_t *mag)
348
                slab_magazine_t *mag)
349
{
349
{
350
    int i;
350
    int i;
351
    count_t frames = 0;
351
    count_t frames = 0;
352
 
352
 
353
    for (i=0;i < mag->busy; i++) {
353
    for (i=0;i < mag->busy; i++) {
354
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
354
        frames += slab_obj_destroy(cache, mag->objs[i], NULL);
355
        atomic_dec(&cache->cached_objs);
355
        atomic_dec(&cache->cached_objs);
356
    }
356
    }
357
   
357
   
358
    slab_free(&mag_cache, mag);
358
    slab_free(&mag_cache, mag);
359
 
359
 
360
    return frames;
360
    return frames;
361
}
361
}
362
 
362
 
363
/**
363
/**
364
 * Find full magazine, set it as current and return it
364
 * Find full magazine, set it as current and return it
365
 *
365
 *
366
 * Assume cpu_magazine lock is held
366
 * Assume cpu_magazine lock is held
367
 */
367
 */
368
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
368
static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
369
{
369
{
370
    slab_magazine_t *cmag, *lastmag, *newmag;
370
    slab_magazine_t *cmag, *lastmag, *newmag;
371
 
371
 
372
    cmag = cache->mag_cache[CPU->id].current;
372
    cmag = cache->mag_cache[CPU->id].current;
373
    lastmag = cache->mag_cache[CPU->id].last;
373
    lastmag = cache->mag_cache[CPU->id].last;
374
    if (cmag) { /* First try local CPU magazines */
374
    if (cmag) { /* First try local CPU magazines */
375
        if (cmag->busy)
375
        if (cmag->busy)
376
            return cmag;
376
            return cmag;
377
 
377
 
378
        if (lastmag && lastmag->busy) {
378
        if (lastmag && lastmag->busy) {
379
            cache->mag_cache[CPU->id].current = lastmag;
379
            cache->mag_cache[CPU->id].current = lastmag;
380
            cache->mag_cache[CPU->id].last = cmag;
380
            cache->mag_cache[CPU->id].last = cmag;
381
            return lastmag;
381
            return lastmag;
382
        }
382
        }
383
    }
383
    }
384
    /* Local magazines are empty, import one from magazine list */
384
    /* Local magazines are empty, import one from magazine list */
385
    newmag = get_mag_from_cache(cache, 1);
385
    newmag = get_mag_from_cache(cache, 1);
386
    if (!newmag)
386
    if (!newmag)
387
        return NULL;
387
        return NULL;
388
 
388
 
389
    if (lastmag)
389
    if (lastmag)
390
        magazine_destroy(cache, lastmag);
390
        magazine_destroy(cache, lastmag);
391
 
391
 
392
    cache->mag_cache[CPU->id].last = cmag;
392
    cache->mag_cache[CPU->id].last = cmag;
393
    cache->mag_cache[CPU->id].current = newmag;
393
    cache->mag_cache[CPU->id].current = newmag;
394
    return newmag;
394
    return newmag;
395
}
395
}
396
 
396
 
397
/**
397
/**
398
 * Try to find object in CPU-cache magazines
398
 * Try to find object in CPU-cache magazines
399
 *
399
 *
400
 * @return Pointer to object or NULL if not available
400
 * @return Pointer to object or NULL if not available
401
 */
401
 */
402
static void * magazine_obj_get(slab_cache_t *cache)
402
static void * magazine_obj_get(slab_cache_t *cache)
403
{
403
{
404
    slab_magazine_t *mag;
404
    slab_magazine_t *mag;
405
    void *obj;
405
    void *obj;
406
 
406
 
407
    if (!CPU)
407
    if (!CPU)
408
        return NULL;
408
        return NULL;
409
 
409
 
410
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
410
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
411
 
411
 
412
    mag = get_full_current_mag(cache);
412
    mag = get_full_current_mag(cache);
413
    if (!mag) {
413
    if (!mag) {
414
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
414
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
415
        return NULL;
415
        return NULL;
416
    }
416
    }
417
    obj = mag->objs[--mag->busy];
417
    obj = mag->objs[--mag->busy];
418
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
418
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
419
    atomic_dec(&cache->cached_objs);
419
    atomic_dec(&cache->cached_objs);
420
   
420
   
421
    return obj;
421
    return obj;
422
}
422
}
423
 
423
 
424
/**
424
/**
425
 * Assure that the current magazine is empty, return pointer to it, or NULL if
425
 * Assure that the current magazine is empty, return pointer to it, or NULL if
426
 * no empty magazine is available and cannot be allocated
426
 * no empty magazine is available and cannot be allocated
427
 *
427
 *
428
 * Assume mag_cache[CPU->id].lock is held
428
 * Assume mag_cache[CPU->id].lock is held
429
 *
429
 *
430
 * We have 2 magazines bound to processor.
430
 * We have 2 magazines bound to processor.
431
 * First try the current.
431
 * First try the current.
432
 *  If full, try the last.
432
 *  If full, try the last.
433
 *   If full, put to magazines list.
433
 *   If full, put to magazines list.
434
 *   allocate new, exchange last & current
434
 *   allocate new, exchange last & current
435
 *
435
 *
436
 */
436
 */
437
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
437
static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
438
{
438
{
439
    slab_magazine_t *cmag,*lastmag,*newmag;
439
    slab_magazine_t *cmag,*lastmag,*newmag;
440
 
440
 
441
    cmag = cache->mag_cache[CPU->id].current;
441
    cmag = cache->mag_cache[CPU->id].current;
442
    lastmag = cache->mag_cache[CPU->id].last;
442
    lastmag = cache->mag_cache[CPU->id].last;
443
 
443
 
444
    if (cmag) {
444
    if (cmag) {
445
        if (cmag->busy < cmag->size)
445
        if (cmag->busy < cmag->size)
446
            return cmag;
446
            return cmag;
447
        if (lastmag && lastmag->busy < lastmag->size) {
447
        if (lastmag && lastmag->busy < lastmag->size) {
448
            cache->mag_cache[CPU->id].last = cmag;
448
            cache->mag_cache[CPU->id].last = cmag;
449
            cache->mag_cache[CPU->id].current = lastmag;
449
            cache->mag_cache[CPU->id].current = lastmag;
450
            return lastmag;
450
            return lastmag;
451
        }
451
        }
452
    }
452
    }
453
    /* current | last are full | nonexistent, allocate new */
453
    /* current | last are full | nonexistent, allocate new */
454
    /* We do not want to sleep just because of caching */
454
    /* We do not want to sleep just because of caching */
455
    /* Especially we do not want reclaiming to start, as
455
    /* Especially we do not want reclaiming to start, as
456
     * this would deadlock */
456
     * this would deadlock */
457
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
457
    newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
458
    if (!newmag)
458
    if (!newmag)
459
        return NULL;
459
        return NULL;
460
    newmag->size = SLAB_MAG_SIZE;
460
    newmag->size = SLAB_MAG_SIZE;
461
    newmag->busy = 0;
461
    newmag->busy = 0;
462
 
462
 
463
    /* Flush last to magazine list */
463
    /* Flush last to magazine list */
464
    if (lastmag)
464
    if (lastmag)
465
        put_mag_to_cache(cache, lastmag);
465
        put_mag_to_cache(cache, lastmag);
466
 
466
 
467
    /* Move current as last, save new as current */
467
    /* Move current as last, save new as current */
468
    cache->mag_cache[CPU->id].last = cmag; 
468
    cache->mag_cache[CPU->id].last = cmag; 
469
    cache->mag_cache[CPU->id].current = newmag;
469
    cache->mag_cache[CPU->id].current = newmag;
470
 
470
 
471
    return newmag;
471
    return newmag;
472
}
472
}
473
 
473
 
474
/**
474
/**
475
 * Put object into CPU-cache magazine
475
 * Put object into CPU-cache magazine
476
 *
476
 *
477
 * @return 0 - success, -1 - could not get memory
477
 * @return 0 - success, -1 - could not get memory
478
 */
478
 */
479
static int magazine_obj_put(slab_cache_t *cache, void *obj)
479
static int magazine_obj_put(slab_cache_t *cache, void *obj)
480
{
480
{
481
    slab_magazine_t *mag;
481
    slab_magazine_t *mag;
482
 
482
 
483
    if (!CPU)
483
    if (!CPU)
484
        return -1;
484
        return -1;
485
 
485
 
486
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
486
    spinlock_lock(&cache->mag_cache[CPU->id].lock);
487
 
487
 
488
    mag = make_empty_current_mag(cache);
488
    mag = make_empty_current_mag(cache);
489
    if (!mag) {
489
    if (!mag) {
490
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
490
        spinlock_unlock(&cache->mag_cache[CPU->id].lock);
491
        return -1;
491
        return -1;
492
    }
492
    }
493
   
493
   
494
    mag->objs[mag->busy++] = obj;
494
    mag->objs[mag->busy++] = obj;
495
 
495
 
496
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
496
    spinlock_unlock(&cache->mag_cache[CPU->id].lock);
497
    atomic_inc(&cache->cached_objs);
497
    atomic_inc(&cache->cached_objs);
498
    return 0;
498
    return 0;
499
}
499
}
500
 
500
 
501
 
501
 
502
/**************************************/
502
/**************************************/
503
/* SLAB CACHE functions */
503
/* SLAB CACHE functions */
504
 
504
 
505
/** Return number of objects that fit in certain cache size */
505
/** Return number of objects that fit in certain cache size */
506
static int comp_objects(slab_cache_t *cache)
506
static int comp_objects(slab_cache_t *cache)
507
{
507
{
508
    if (cache->flags & SLAB_CACHE_SLINSIDE)
508
    if (cache->flags & SLAB_CACHE_SLINSIDE)
509
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
509
        return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
510
    else
510
    else
511
        return (PAGE_SIZE << cache->order) / cache->size;
511
        return (PAGE_SIZE << cache->order) / cache->size;
512
}
512
}
513
 
513
 
514
/** Return wasted space in slab */
514
/** Return wasted space in slab */
515
static int badness(slab_cache_t *cache)
515
static int badness(slab_cache_t *cache)
516
{
516
{
517
    int objects;
517
    int objects;
518
    int ssize;
518
    int ssize;
519
 
519
 
520
    objects = comp_objects(cache);
520
    objects = comp_objects(cache);
521
    ssize = PAGE_SIZE << cache->order;
521
    ssize = PAGE_SIZE << cache->order;
522
    if (cache->flags & SLAB_CACHE_SLINSIDE)
522
    if (cache->flags & SLAB_CACHE_SLINSIDE)
523
        ssize -= sizeof(slab_t);
523
        ssize -= sizeof(slab_t);
524
    return ssize - objects*cache->size;
524
    return ssize - objects*cache->size;
525
}
525
}
526
 
526
 
527
/** Initialize allocated memory as a slab cache */
527
/** Initialize allocated memory as a slab cache */
528
static void
528
static void
529
_slab_cache_create(slab_cache_t *cache,
529
_slab_cache_create(slab_cache_t *cache,
530
           char *name,
530
           char *name,
531
           size_t size,
531
           size_t size,
532
           size_t align,
532
           size_t align,
533
           int (*constructor)(void *obj, int kmflag),
533
           int (*constructor)(void *obj, int kmflag),
534
           void (*destructor)(void *obj),
534
           void (*destructor)(void *obj),
535
           int flags)
535
           int flags)
536
{
536
{
537
    int i;
537
    int i;
538
    int pages;
538
    int pages;
-
 
539
    ipl_t ipl;
539
 
540
 
540
    memsetb((__address)cache, sizeof(*cache), 0);
541
    memsetb((__address)cache, sizeof(*cache), 0);
541
    cache->name = name;
542
    cache->name = name;
542
 
543
 
543
    if (align < sizeof(__native))
544
    if (align < sizeof(__native))
544
        align = sizeof(__native);
545
        align = sizeof(__native);
545
    size = ALIGN_UP(size, align);
546
    size = ALIGN_UP(size, align);
546
       
547
       
547
    cache->size = size;
548
    cache->size = size;
548
 
549
 
549
    cache->constructor = constructor;
550
    cache->constructor = constructor;
550
    cache->destructor = destructor;
551
    cache->destructor = destructor;
551
    cache->flags = flags;
552
    cache->flags = flags;
552
 
553
 
553
    list_initialize(&cache->full_slabs);
554
    list_initialize(&cache->full_slabs);
554
    list_initialize(&cache->partial_slabs);
555
    list_initialize(&cache->partial_slabs);
555
    list_initialize(&cache->magazines);
556
    list_initialize(&cache->magazines);
556
    spinlock_initialize(&cache->slablock, "slab_lock");
557
    spinlock_initialize(&cache->slablock, "slab_lock");
557
    spinlock_initialize(&cache->maglock, "slab_maglock");
558
    spinlock_initialize(&cache->maglock, "slab_maglock");
558
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
559
    if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
559
        for (i=0; i < config.cpu_count; i++) {
560
        for (i=0; i < config.cpu_count; i++) {
560
            memsetb((__address)&cache->mag_cache[i],
561
            memsetb((__address)&cache->mag_cache[i],
561
                sizeof(cache->mag_cache[i]), 0);
562
                sizeof(cache->mag_cache[i]), 0);
562
            spinlock_initialize(&cache->mag_cache[i].lock,
563
            spinlock_initialize(&cache->mag_cache[i].lock,
563
                        "slab_maglock_cpu");
564
                        "slab_maglock_cpu");
564
        }
565
        }
565
    }
566
    }
566
 
567
 
567
    /* Compute slab sizes, object counts in slabs etc. */
568
    /* Compute slab sizes, object counts in slabs etc. */
568
    if (cache->size < SLAB_INSIDE_SIZE)
569
    if (cache->size < SLAB_INSIDE_SIZE)
569
        cache->flags |= SLAB_CACHE_SLINSIDE;
570
        cache->flags |= SLAB_CACHE_SLINSIDE;
570
 
571
 
571
    /* Minimum slab order */
572
    /* Minimum slab order */
572
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
573
    pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
573
    cache->order = fnzb(pages);
574
    cache->order = fnzb(pages);
574
 
575
 
575
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
576
    while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
576
        cache->order += 1;
577
        cache->order += 1;
577
    }
578
    }
578
    cache->objects = comp_objects(cache);
579
    cache->objects = comp_objects(cache);
579
    /* If info fits in, put it inside */
580
    /* If info fits in, put it inside */
580
    if (badness(cache) > sizeof(slab_t))
581
    if (badness(cache) > sizeof(slab_t))
581
        cache->flags |= SLAB_CACHE_SLINSIDE;
582
        cache->flags |= SLAB_CACHE_SLINSIDE;
582
 
583
 
-
 
584
    /* Add cache to cache list */
-
 
585
    ipl = interrupts_disable();
583
    spinlock_lock(&slab_cache_lock);
586
    spinlock_lock(&slab_cache_lock);
584
 
587
 
585
    list_append(&cache->link, &slab_cache_list);
588
    list_append(&cache->link, &slab_cache_list);
586
 
589
 
587
    spinlock_unlock(&slab_cache_lock);
590
    spinlock_unlock(&slab_cache_lock);
-
 
591
    interrupts_restore(ipl);
588
}
592
}
589
 
593
 
590
/** Create slab cache  */
594
/** Create slab cache  */
591
slab_cache_t * slab_cache_create(char *name,
595
slab_cache_t * slab_cache_create(char *name,
592
                 size_t size,
596
                 size_t size,
593
                 size_t align,
597
                 size_t align,
594
                 int (*constructor)(void *obj, int kmflag),
598
                 int (*constructor)(void *obj, int kmflag),
595
                 void (*destructor)(void *obj),
599
                 void (*destructor)(void *obj),
596
                 int flags)
600
                 int flags)
597
{
601
{
598
    slab_cache_t *cache;
602
    slab_cache_t *cache;
599
 
603
 
600
    cache = slab_alloc(&slab_cache_cache, 0);
604
    cache = slab_alloc(&slab_cache_cache, 0);
601
    _slab_cache_create(cache, name, size, align, constructor, destructor,
605
    _slab_cache_create(cache, name, size, align, constructor, destructor,
602
               flags);
606
               flags);
603
    return cache;
607
    return cache;
604
}
608
}
605
 
609
 
606
/**
610
/**
607
 * Reclaim space occupied by objects that are already free
611
 * Reclaim space occupied by objects that are already free
608
 *
612
 *
609
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
613
 * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
610
 * @return Number of freed pages
614
 * @return Number of freed pages
611
 */
615
 */
612
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
616
static count_t _slab_reclaim(slab_cache_t *cache, int flags)
613
{
617
{
614
    int i;
618
    int i;
615
    slab_magazine_t *mag;
619
    slab_magazine_t *mag;
616
    count_t frames = 0;
620
    count_t frames = 0;
617
    int magcount;
621
    int magcount;
618
   
622
   
619
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
623
    if (cache->flags & SLAB_CACHE_NOMAGAZINE)
620
        return 0; /* Nothing to do */
624
        return 0; /* Nothing to do */
621
 
625
 
622
    /* We count up to original magazine count to avoid
626
    /* We count up to original magazine count to avoid
623
     * endless loop
627
     * endless loop
624
     */
628
     */
625
    magcount = atomic_get(&cache->magazine_counter);
629
    magcount = atomic_get(&cache->magazine_counter);
626
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
630
    while (magcount-- && (mag=get_mag_from_cache(cache,0))) {
627
        frames += magazine_destroy(cache,mag);
631
        frames += magazine_destroy(cache,mag);
628
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
632
        if (!(flags & SLAB_RECLAIM_ALL) && frames)
629
            break;
633
            break;
630
    }
634
    }
631
   
635
   
632
    if (flags & SLAB_RECLAIM_ALL) {
636
    if (flags & SLAB_RECLAIM_ALL) {
633
        /* Free cpu-bound magazines */
637
        /* Free cpu-bound magazines */
634
        /* Destroy CPU magazines */
638
        /* Destroy CPU magazines */
635
        for (i=0; i<config.cpu_count; i++) {
639
        for (i=0; i<config.cpu_count; i++) {
636
            spinlock_lock(&cache->mag_cache[i].lock);
640
            spinlock_lock(&cache->mag_cache[i].lock);
637
 
641
 
638
            mag = cache->mag_cache[i].current;
642
            mag = cache->mag_cache[i].current;
639
            if (mag)
643
            if (mag)
640
                frames += magazine_destroy(cache, mag);
644
                frames += magazine_destroy(cache, mag);
641
            cache->mag_cache[i].current = NULL;
645
            cache->mag_cache[i].current = NULL;
642
           
646
           
643
            mag = cache->mag_cache[i].last;
647
            mag = cache->mag_cache[i].last;
644
            if (mag)
648
            if (mag)
645
                frames += magazine_destroy(cache, mag);
649
                frames += magazine_destroy(cache, mag);
646
            cache->mag_cache[i].last = NULL;
650
            cache->mag_cache[i].last = NULL;
647
 
651
 
648
            spinlock_unlock(&cache->mag_cache[i].lock);
652
            spinlock_unlock(&cache->mag_cache[i].lock);
649
        }
653
        }
650
    }
654
    }
651
 
655
 
652
    return frames;
656
    return frames;
653
}
657
}
654
 
658
 
655
/** Check that there are no slabs and remove cache from system  */
659
/** Check that there are no slabs and remove cache from system  */
656
void slab_cache_destroy(slab_cache_t *cache)
660
void slab_cache_destroy(slab_cache_t *cache)
657
{
661
{
658
    ipl_t ipl;
662
    ipl_t ipl;
659
 
663
 
660
    /* First remove cache from link, so that we don't need
664
    /* First remove cache from link, so that we don't need
661
     * to disable interrupts later
665
     * to disable interrupts later
662
     */
666
     */
663
 
667
 
664
    ipl = interrupts_disable();
668
    ipl = interrupts_disable();
665
    spinlock_lock(&slab_cache_lock);
669
    spinlock_lock(&slab_cache_lock);
666
 
670
 
667
    list_remove(&cache->link);
671
    list_remove(&cache->link);
668
 
672
 
669
    spinlock_unlock(&slab_cache_lock);
673
    spinlock_unlock(&slab_cache_lock);
670
    interrupts_restore(ipl);
674
    interrupts_restore(ipl);
671
 
675
 
672
    /* Do not lock anything, we assume the software is correct and
676
    /* Do not lock anything, we assume the software is correct and
673
     * does not touch the cache when it decides to destroy it */
677
     * does not touch the cache when it decides to destroy it */
674
   
678
   
675
    /* Destroy all magazines */
679
    /* Destroy all magazines */
676
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
680
    _slab_reclaim(cache, SLAB_RECLAIM_ALL);
677
 
681
 
678
    /* All slabs must be empty */
682
    /* All slabs must be empty */
679
    if (!list_empty(&cache->full_slabs) \
683
    if (!list_empty(&cache->full_slabs) \
680
        || !list_empty(&cache->partial_slabs))
684
        || !list_empty(&cache->partial_slabs))
681
        panic("Destroying cache that is not empty.");
685
        panic("Destroying cache that is not empty.");
682
 
686
 
683
    slab_free(&slab_cache_cache, cache);
687
    slab_free(&slab_cache_cache, cache);
684
}
688
}
685
 
689
 
686
/** Allocate new object from cache - if no flags given, always returns
690
/** Allocate new object from cache - if no flags given, always returns
687
    memory */
691
    memory */
688
void * slab_alloc(slab_cache_t *cache, int flags)
692
void * slab_alloc(slab_cache_t *cache, int flags)
689
{
693
{
690
    ipl_t ipl;
694
    ipl_t ipl;
691
    void *result = NULL;
695
    void *result = NULL;
692
   
696
   
693
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
697
    /* Disable interrupts to avoid deadlocks with interrupt handlers */
694
    ipl = interrupts_disable();
698
    ipl = interrupts_disable();
695
 
699
 
696
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
700
    if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
697
        result = magazine_obj_get(cache);
701
        result = magazine_obj_get(cache);
698
    if (!result)
702
    if (!result)
699
        result = slab_obj_create(cache, flags);
703
        result = slab_obj_create(cache, flags);
700
 
704
 
701
    interrupts_restore(ipl);
705
    interrupts_restore(ipl);
702
 
706
 
703
    if (result)
707
    if (result)
704
        atomic_inc(&cache->allocated_objs);
708
        atomic_inc(&cache->allocated_objs);
705
 
709
 
706
    return result;
710
    return result;
707
}
711
}
708
 
712
 
709
/** Return object to cache, use slab if known  */
713
/** Return object to cache, use slab if known  */
710
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
714
static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
711
{
715
{
712
    ipl_t ipl;
716
    ipl_t ipl;
713
 
717
 
714
    ipl = interrupts_disable();
718
    ipl = interrupts_disable();
715
 
719
 
716
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
720
    if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
717
        || magazine_obj_put(cache, obj)) {
721
        || magazine_obj_put(cache, obj)) {
718
 
722
 
719
        slab_obj_destroy(cache, obj, slab);
723
        slab_obj_destroy(cache, obj, slab);
720
 
724
 
721
    }
725
    }
722
    interrupts_restore(ipl);
726
    interrupts_restore(ipl);
723
    atomic_dec(&cache->allocated_objs);
727
    atomic_dec(&cache->allocated_objs);
724
}
728
}
725
 
729
 
726
/** Return slab object to cache */
730
/** Return slab object to cache */
727
void slab_free(slab_cache_t *cache, void *obj)
731
void slab_free(slab_cache_t *cache, void *obj)
728
{
732
{
729
    _slab_free(cache,obj,NULL);
733
    _slab_free(cache,obj,NULL);
730
}
734
}
731
 
735
 
732
/* Go through all caches and reclaim what is possible */
736
/* Go through all caches and reclaim what is possible */
733
count_t slab_reclaim(int flags)
737
count_t slab_reclaim(int flags)
734
{
738
{
735
    slab_cache_t *cache;
739
    slab_cache_t *cache;
736
    link_t *cur;
740
    link_t *cur;
737
    count_t frames = 0;
741
    count_t frames = 0;
738
 
742
 
739
    spinlock_lock(&slab_cache_lock);
743
    spinlock_lock(&slab_cache_lock);
740
 
744
 
741
    /* TODO: Add assert, that interrupts are disabled, otherwise
745
    /* TODO: Add assert, that interrupts are disabled, otherwise
742
     * memory allocation from interrupts can deadlock.
746
     * memory allocation from interrupts can deadlock.
743
     */
747
     */
744
 
748
 
745
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
749
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
746
        cache = list_get_instance(cur, slab_cache_t, link);
750
        cache = list_get_instance(cur, slab_cache_t, link);
747
        frames += _slab_reclaim(cache, flags);
751
        frames += _slab_reclaim(cache, flags);
748
    }
752
    }
749
 
753
 
750
    spinlock_unlock(&slab_cache_lock);
754
    spinlock_unlock(&slab_cache_lock);
751
 
755
 
752
    return frames;
756
    return frames;
753
}
757
}
754
 
758
 
755
 
759
 
756
/* Print list of slabs */
760
/* Print list of slabs */
757
void slab_print_list(void)
761
void slab_print_list(void)
758
{
762
{
759
    slab_cache_t *cache;
763
    slab_cache_t *cache;
760
    link_t *cur;
764
    link_t *cur;
-
 
765
    ipl_t ipl;
761
 
766
   
-
 
767
    ipl = interrupts_disable();
762
    spinlock_lock(&slab_cache_lock);
768
    spinlock_lock(&slab_cache_lock);
763
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
769
    printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
764
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
770
    for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
765
        cache = list_get_instance(cur, slab_cache_t, link);
771
        cache = list_get_instance(cur, slab_cache_t, link);
766
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
772
        printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
767
               (1 << cache->order), cache->objects,
773
               (1 << cache->order), cache->objects,
768
               atomic_get(&cache->allocated_slabs),
774
               atomic_get(&cache->allocated_slabs),
769
               atomic_get(&cache->cached_objs),
775
               atomic_get(&cache->cached_objs),
770
               atomic_get(&cache->allocated_objs),
776
               atomic_get(&cache->allocated_objs),
771
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
777
               cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
772
    }
778
    }
773
    spinlock_unlock(&slab_cache_lock);
779
    spinlock_unlock(&slab_cache_lock);
-
 
780
    interrupts_restore(ipl);
774
}
781
}
775
 
782
 
776
#ifdef CONFIG_DEBUG
783
#ifdef CONFIG_DEBUG
777
static int _slab_initialized = 0;
784
static int _slab_initialized = 0;
778
#endif
785
#endif
779
 
786
 
780
void slab_cache_init(void)
787
void slab_cache_init(void)
781
{
788
{
782
    int i, size;
789
    int i, size;
783
 
790
 
784
    /* Initialize magazine cache */
791
    /* Initialize magazine cache */
785
    _slab_cache_create(&mag_cache,
792
    _slab_cache_create(&mag_cache,
786
               "slab_magazine",
793
               "slab_magazine",
787
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
794
               sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
788
               sizeof(__address),
795
               sizeof(__address),
789
               NULL, NULL,
796
               NULL, NULL,
790
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
797
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
791
    /* Initialize slab_cache cache */
798
    /* Initialize slab_cache cache */
792
    _slab_cache_create(&slab_cache_cache,
799
    _slab_cache_create(&slab_cache_cache,
793
               "slab_cache",
800
               "slab_cache",
794
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
801
               sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
795
               sizeof(__address),
802
               sizeof(__address),
796
               NULL, NULL,
803
               NULL, NULL,
797
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
804
               SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
798
    /* Initialize external slab cache */
805
    /* Initialize external slab cache */
799
    slab_extern_cache = slab_cache_create("slab_extern",
806
    slab_extern_cache = slab_cache_create("slab_extern",
800
                          sizeof(slab_t),
807
                          sizeof(slab_t),
801
                          0, NULL, NULL,
808
                          0, NULL, NULL,
802
                          SLAB_CACHE_SLINSIDE);
809
                          SLAB_CACHE_SLINSIDE);
803
 
810
 
804
    /* Initialize structures for malloc */
811
    /* Initialize structures for malloc */
805
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
812
    for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
806
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
813
         i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
807
         i++, size <<= 1) {
814
         i++, size <<= 1) {
808
        malloc_caches[i] = slab_cache_create(malloc_names[i],
815
        malloc_caches[i] = slab_cache_create(malloc_names[i],
809
                             size, 0,
816
                             size, 0,
810
                             NULL,NULL,0);
817
                             NULL,NULL,0);
811
    }
818
    }
812
#ifdef CONFIG_DEBUG       
819
#ifdef CONFIG_DEBUG       
813
    _slab_initialized = 1;
820
    _slab_initialized = 1;
814
#endif
821
#endif
815
}
822
}
816
 
823
 
817
/**************************************/
824
/**************************************/
818
/* kalloc/kfree functions             */
825
/* kalloc/kfree functions             */
819
void * kalloc(unsigned int size, int flags)
826
void * kalloc(unsigned int size, int flags)
820
{
827
{
821
    int idx;
828
    int idx;
822
 
829
 
823
    ASSERT(_slab_initialized);
830
    ASSERT(_slab_initialized);
824
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
831
    ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
825
   
832
   
826
    if (size < (1 << SLAB_MIN_MALLOC_W))
833
    if (size < (1 << SLAB_MIN_MALLOC_W))
827
        size = (1 << SLAB_MIN_MALLOC_W);
834
        size = (1 << SLAB_MIN_MALLOC_W);
828
 
835
 
829
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
836
    idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
830
 
837
 
831
    return slab_alloc(malloc_caches[idx], flags);
838
    return slab_alloc(malloc_caches[idx], flags);
832
}
839
}
833
 
840
 
834
 
841
 
835
void kfree(void *obj)
842
void kfree(void *obj)
836
{
843
{
837
    slab_t *slab;
844
    slab_t *slab;
838
 
845
 
839
    if (!obj) return;
846
    if (!obj) return;
840
 
847
 
841
    slab = obj2slab(obj);
848
    slab = obj2slab(obj);
842
    _slab_free(slab->cache, obj, slab);
849
    _slab_free(slab->cache, obj, slab);
843
}
850
}
844
 
851