Subversion Repositories HelenOS-historic

Rev

Rev 1403 | Rev 1411 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1403 Rev 1409
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    as.c
30
 * @file    as.c
31
 * @brief   Address space related functions.
31
 * @brief   Address space related functions.
32
 *
32
 *
33
 * This file contains address space manipulation functions.
33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
35
 * Virtual Address Translation (VAT) subsystem.
36
 *
36
 *
37
 * Functionality provided by this file allows one to
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
38
 * create address space and create, resize and share
39
 * address space areas.
39
 * address space areas.
40
 *
40
 *
41
 * @see page.c
41
 * @see page.c
42
 *
42
 *
43
 */
43
 */
44
 
44
 
45
#include <mm/as.h>
45
#include <mm/as.h>
46
#include <arch/mm/as.h>
46
#include <arch/mm/as.h>
47
#include <mm/page.h>
47
#include <mm/page.h>
48
#include <mm/frame.h>
48
#include <mm/frame.h>
49
#include <mm/slab.h>
49
#include <mm/slab.h>
50
#include <mm/tlb.h>
50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
52
#include <genarch/mm/page_pt.h>
53
#include <genarch/mm/page_ht.h>
53
#include <genarch/mm/page_ht.h>
54
#include <mm/asid.h>
54
#include <mm/asid.h>
55
#include <arch/mm/asid.h>
55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
56
#include <synch/spinlock.h>
57
#include <synch/mutex.h>
57
#include <synch/mutex.h>
58
#include <adt/list.h>
58
#include <adt/list.h>
59
#include <adt/btree.h>
59
#include <adt/btree.h>
60
#include <proc/task.h>
60
#include <proc/task.h>
61
#include <proc/thread.h>
61
#include <proc/thread.h>
62
#include <arch/asm.h>
62
#include <arch/asm.h>
63
#include <panic.h>
63
#include <panic.h>
64
#include <debug.h>
64
#include <debug.h>
65
#include <print.h>
65
#include <print.h>
66
#include <memstr.h>
66
#include <memstr.h>
67
#include <macros.h>
67
#include <macros.h>
68
#include <arch.h>
68
#include <arch.h>
69
#include <errno.h>
69
#include <errno.h>
70
#include <config.h>
70
#include <config.h>
71
#include <align.h>
71
#include <align.h>
72
#include <arch/types.h>
72
#include <arch/types.h>
73
#include <typedefs.h>
73
#include <typedefs.h>
74
#include <syscall/copy.h>
74
#include <syscall/copy.h>
75
#include <arch/interrupt.h>
75
#include <arch/interrupt.h>
76
 
76
 
-
 
77
/** This structure contains information associated with the shared address space area. */
-
 
78
struct share_info {
-
 
79
    mutex_t lock;       /**< This lock must be acquired only when the as_area lock is held. */
-
 
80
    count_t refcount;   /**< This structure can be deallocated if refcount drops to 0. */
-
 
81
    btree_t pagemap;    /**< B+tree containing complete map of anonymous pages of the shared area. */
-
 
82
};
-
 
83
 
77
as_operations_t *as_operations = NULL;
84
as_operations_t *as_operations = NULL;
78
 
85
 
79
/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
86
/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
80
SPINLOCK_INITIALIZE(as_lock);
87
SPINLOCK_INITIALIZE(as_lock);
81
 
88
 
82
/**
89
/**
83
 * This list contains address spaces that are not active on any
90
 * This list contains address spaces that are not active on any
84
 * processor and that have valid ASID.
91
 * processor and that have valid ASID.
85
 */
92
 */
86
LIST_INITIALIZE(inactive_as_with_asid_head);
93
LIST_INITIALIZE(inactive_as_with_asid_head);
87
 
94
 
88
/** Kernel address space. */
95
/** Kernel address space. */
89
as_t *AS_KERNEL = NULL;
96
as_t *AS_KERNEL = NULL;
90
 
97
 
91
static int area_flags_to_page_flags(int aflags);
98
static int area_flags_to_page_flags(int aflags);
92
static int get_area_flags(as_area_t *a);
-
 
93
static as_area_t *find_area_and_lock(as_t *as, __address va);
99
static as_area_t *find_area_and_lock(as_t *as, __address va);
94
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
100
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
95
static int used_space_insert(as_area_t *a, __address page, count_t count);
-
 
96
static int used_space_remove(as_area_t *a, __address page, count_t count);
101
static void sh_info_remove_reference(share_info_t *sh_info);
97
 
102
 
98
/** Initialize address space subsystem. */
103
/** Initialize address space subsystem. */
99
void as_init(void)
104
void as_init(void)
100
{
105
{
101
    as_arch_init();
106
    as_arch_init();
102
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
107
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
103
    if (!AS_KERNEL)
108
    if (!AS_KERNEL)
104
        panic("can't create kernel address space\n");
109
        panic("can't create kernel address space\n");
105
   
110
   
106
}
111
}
107
 
112
 
108
/** Create address space.
113
/** Create address space.
109
 *
114
 *
110
 * @param flags Flags that influence way in wich the address space is created.
115
 * @param flags Flags that influence way in wich the address space is created.
111
 */
116
 */
112
as_t *as_create(int flags)
117
as_t *as_create(int flags)
113
{
118
{
114
    as_t *as;
119
    as_t *as;
115
 
120
 
116
    as = (as_t *) malloc(sizeof(as_t), 0);
121
    as = (as_t *) malloc(sizeof(as_t), 0);
117
    link_initialize(&as->inactive_as_with_asid_link);
122
    link_initialize(&as->inactive_as_with_asid_link);
118
    mutex_initialize(&as->lock);
123
    mutex_initialize(&as->lock);
119
    btree_create(&as->as_area_btree);
124
    btree_create(&as->as_area_btree);
120
   
125
   
121
    if (flags & FLAG_AS_KERNEL)
126
    if (flags & FLAG_AS_KERNEL)
122
        as->asid = ASID_KERNEL;
127
        as->asid = ASID_KERNEL;
123
    else
128
    else
124
        as->asid = ASID_INVALID;
129
        as->asid = ASID_INVALID;
125
   
130
   
126
    as->refcount = 0;
131
    as->refcount = 0;
127
    as->page_table = page_table_create(flags);
132
    as->page_table = page_table_create(flags);
128
 
133
 
129
    return as;
134
    return as;
130
}
135
}
131
 
136
 
132
/** Free Adress space */
137
/** Free Adress space */
133
void as_free(as_t *as)
138
void as_free(as_t *as)
134
{
139
{
135
    ASSERT(as->refcount == 0);
140
    ASSERT(as->refcount == 0);
136
 
141
 
137
    /* TODO: free as_areas and other resources held by as */
142
    /* TODO: free as_areas and other resources held by as */
138
    /* TODO: free page table */
143
    /* TODO: free page table */
139
    free(as);
144
    free(as);
140
}
145
}
141
 
146
 
142
/** Create address space area of common attributes.
147
/** Create address space area of common attributes.
143
 *
148
 *
144
 * The created address space area is added to the target address space.
149
 * The created address space area is added to the target address space.
145
 *
150
 *
146
 * @param as Target address space.
151
 * @param as Target address space.
147
 * @param flags Flags of the area memory.
152
 * @param flags Flags of the area memory.
148
 * @param size Size of area.
153
 * @param size Size of area.
149
 * @param base Base address of area.
154
 * @param base Base address of area.
150
 * @param attrs Attributes of the area.
155
 * @param attrs Attributes of the area.
-
 
156
 * @param backend Address space area backend. NULL if no backend is used.
-
 
157
 * @param backend_data NULL or a pointer to an array holding two void *.
151
 *
158
 *
152
 * @return Address space area on success or NULL on failure.
159
 * @return Address space area on success or NULL on failure.
153
 */
160
 */
154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs)
161
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
-
 
162
           mem_backend_t *backend, void **backend_data)
155
{
163
{
156
    ipl_t ipl;
164
    ipl_t ipl;
157
    as_area_t *a;
165
    as_area_t *a;
158
   
166
   
159
    if (base % PAGE_SIZE)
167
    if (base % PAGE_SIZE)
160
        return NULL;
168
        return NULL;
161
 
169
 
162
    if (!size)
170
    if (!size)
163
        return NULL;
171
        return NULL;
164
 
172
 
165
    /* Writeable executable areas are not supported. */
173
    /* Writeable executable areas are not supported. */
166
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
174
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
167
        return NULL;
175
        return NULL;
168
   
176
   
169
    ipl = interrupts_disable();
177
    ipl = interrupts_disable();
170
    mutex_lock(&as->lock);
178
    mutex_lock(&as->lock);
171
   
179
   
172
    if (!check_area_conflicts(as, base, size, NULL)) {
180
    if (!check_area_conflicts(as, base, size, NULL)) {
173
        mutex_unlock(&as->lock);
181
        mutex_unlock(&as->lock);
174
        interrupts_restore(ipl);
182
        interrupts_restore(ipl);
175
        return NULL;
183
        return NULL;
176
    }
184
    }
177
   
185
   
178
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
186
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
179
 
187
 
180
    mutex_initialize(&a->lock);
188
    mutex_initialize(&a->lock);
181
   
189
   
182
    a->flags = flags;
190
    a->flags = flags;
183
    a->attributes = attrs;
191
    a->attributes = attrs;
184
    a->pages = SIZE2FRAMES(size);
192
    a->pages = SIZE2FRAMES(size);
185
    a->base = base;
193
    a->base = base;
-
 
194
    a->sh_info = NULL;
-
 
195
    a->backend = backend;
-
 
196
    if (backend_data) {
-
 
197
        a->backend_data[0] = backend_data[0];
-
 
198
        a->backend_data[1] = backend_data[1];
-
 
199
    }
186
    btree_create(&a->used_space);
200
    btree_create(&a->used_space);
187
   
201
   
188
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
202
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
189
 
203
 
190
    mutex_unlock(&as->lock);
204
    mutex_unlock(&as->lock);
191
    interrupts_restore(ipl);
205
    interrupts_restore(ipl);
192
 
206
 
193
    return a;
207
    return a;
194
}
208
}
195
 
209
 
196
/** Find address space area and change it.
210
/** Find address space area and change it.
197
 *
211
 *
198
 * @param as Address space.
212
 * @param as Address space.
199
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
213
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
200
 * @param size New size of the virtual memory block starting at address.
214
 * @param size New size of the virtual memory block starting at address.
201
 * @param flags Flags influencing the remap operation. Currently unused.
215
 * @param flags Flags influencing the remap operation. Currently unused.
202
 *
216
 *
203
 * @return Zero on success or a value from @ref errno.h otherwise.
217
 * @return Zero on success or a value from @ref errno.h otherwise.
204
 */
218
 */
205
int as_area_resize(as_t *as, __address address, size_t size, int flags)
219
int as_area_resize(as_t *as, __address address, size_t size, int flags)
206
{
220
{
207
    as_area_t *area;
221
    as_area_t *area;
208
    ipl_t ipl;
222
    ipl_t ipl;
209
    size_t pages;
223
    size_t pages;
210
   
224
   
211
    ipl = interrupts_disable();
225
    ipl = interrupts_disable();
212
    mutex_lock(&as->lock);
226
    mutex_lock(&as->lock);
213
   
227
   
214
    /*
228
    /*
215
     * Locate the area.
229
     * Locate the area.
216
     */
230
     */
217
    area = find_area_and_lock(as, address);
231
    area = find_area_and_lock(as, address);
218
    if (!area) {
232
    if (!area) {
219
        mutex_unlock(&as->lock);
233
        mutex_unlock(&as->lock);
220
        interrupts_restore(ipl);
234
        interrupts_restore(ipl);
221
        return ENOENT;
235
        return ENOENT;
222
    }
236
    }
223
 
237
 
224
    if (area->flags & AS_AREA_DEVICE) {
238
    if (area->flags & AS_AREA_DEVICE) {
225
        /*
239
        /*
226
         * Remapping of address space areas associated
240
         * Remapping of address space areas associated
227
         * with memory mapped devices is not supported.
241
         * with memory mapped devices is not supported.
228
         */
242
         */
229
        mutex_unlock(&area->lock);
243
        mutex_unlock(&area->lock);
230
        mutex_unlock(&as->lock);
244
        mutex_unlock(&as->lock);
231
        interrupts_restore(ipl);
245
        interrupts_restore(ipl);
232
        return ENOTSUP;
246
        return ENOTSUP;
233
    }
247
    }
-
 
248
    if (area->sh_info) {
-
 
249
        /*
-
 
250
         * Remapping of shared address space areas
-
 
251
         * is not supported.
-
 
252
         */
-
 
253
        mutex_unlock(&area->lock);
-
 
254
        mutex_unlock(&as->lock);
-
 
255
        interrupts_restore(ipl);
-
 
256
        return ENOTSUP;
-
 
257
    }
234
 
258
 
235
    pages = SIZE2FRAMES((address - area->base) + size);
259
    pages = SIZE2FRAMES((address - area->base) + size);
236
    if (!pages) {
260
    if (!pages) {
237
        /*
261
        /*
238
         * Zero size address space areas are not allowed.
262
         * Zero size address space areas are not allowed.
239
         */
263
         */
240
        mutex_unlock(&area->lock);
264
        mutex_unlock(&area->lock);
241
        mutex_unlock(&as->lock);
265
        mutex_unlock(&as->lock);
242
        interrupts_restore(ipl);
266
        interrupts_restore(ipl);
243
        return EPERM;
267
        return EPERM;
244
    }
268
    }
245
   
269
   
246
    if (pages < area->pages) {
270
    if (pages < area->pages) {
247
        bool cond;
271
        bool cond;
248
        __address start_free = area->base + pages*PAGE_SIZE;
272
        __address start_free = area->base + pages*PAGE_SIZE;
249
 
273
 
250
        /*
274
        /*
251
         * Shrinking the area.
275
         * Shrinking the area.
252
         * No need to check for overlaps.
276
         * No need to check for overlaps.
253
         */
277
         */
254
 
278
 
255
        /*
279
        /*
256
         * Remove frames belonging to used space starting from
280
         * Remove frames belonging to used space starting from
257
         * the highest addresses downwards until an overlap with
281
         * the highest addresses downwards until an overlap with
258
         * the resized address space area is found. Note that this
282
         * the resized address space area is found. Note that this
259
         * is also the right way to remove part of the used_space
283
         * is also the right way to remove part of the used_space
260
         * B+tree leaf list.
284
         * B+tree leaf list.
261
         */    
285
         */    
262
        for (cond = true; cond;) {
286
        for (cond = true; cond;) {
263
            btree_node_t *node;
287
            btree_node_t *node;
264
       
288
       
265
            ASSERT(!list_empty(&area->used_space.leaf_head));
289
            ASSERT(!list_empty(&area->used_space.leaf_head));
266
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
290
            node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
267
            if ((cond = (bool) node->keys)) {
291
            if ((cond = (bool) node->keys)) {
268
                __address b = node->key[node->keys - 1];
292
                __address b = node->key[node->keys - 1];
269
                count_t c = (count_t) node->value[node->keys - 1];
293
                count_t c = (count_t) node->value[node->keys - 1];
270
                int i = 0;
294
                int i = 0;
271
           
295
           
272
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
296
                if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
273
                   
297
                   
274
                    if (b + c*PAGE_SIZE <= start_free) {
298
                    if (b + c*PAGE_SIZE <= start_free) {
275
                        /*
299
                        /*
276
                         * The whole interval fits completely
300
                         * The whole interval fits completely
277
                         * in the resized address space area.
301
                         * in the resized address space area.
278
                         */
302
                         */
279
                        break;
303
                        break;
280
                    }
304
                    }
281
       
305
       
282
                    /*
306
                    /*
283
                     * Part of the interval corresponding to b and c
307
                     * Part of the interval corresponding to b and c
284
                     * overlaps with the resized address space area.
308
                     * overlaps with the resized address space area.
285
                     */
309
                     */
286
       
310
       
287
                    cond = false;   /* we are almost done */
311
                    cond = false;   /* we are almost done */
288
                    i = (start_free - b) >> PAGE_WIDTH;
312
                    i = (start_free - b) >> PAGE_WIDTH;
289
                    if (!used_space_remove(area, start_free, c - i))
313
                    if (!used_space_remove(area, start_free, c - i))
290
                        panic("Could not remove used space.");
314
                        panic("Could not remove used space.");
291
                } else {
315
                } else {
292
                    /*
316
                    /*
293
                     * The interval of used space can be completely removed.
317
                     * The interval of used space can be completely removed.
294
                     */
318
                     */
295
                    if (!used_space_remove(area, b, c))
319
                    if (!used_space_remove(area, b, c))
296
                        panic("Could not remove used space.\n");
320
                        panic("Could not remove used space.\n");
297
                }
321
                }
298
           
322
           
299
                for (; i < c; i++) {
323
                for (; i < c; i++) {
300
                    pte_t *pte;
324
                    pte_t *pte;
301
           
325
           
302
                    page_table_lock(as, false);
326
                    page_table_lock(as, false);
303
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
327
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
304
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
328
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
-
 
329
                    if (area->backend && area->backend->backend_frame_free) {
-
 
330
                        area->backend->backend_frame_free(area,
305
                    frame_free(ADDR2PFN(PTE_GET_FRAME(pte)));
331
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
-
 
332
                    }
306
                    page_mapping_remove(as, b + i*PAGE_SIZE);
333
                    page_mapping_remove(as, b + i*PAGE_SIZE);
307
                    page_table_unlock(as, false);
334
                    page_table_unlock(as, false);
308
                }
335
                }
309
            }
336
            }
310
        }
337
        }
311
        /*
338
        /*
312
         * Invalidate TLB's.
339
         * Invalidate TLB's.
313
         */
340
         */
314
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
341
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
315
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
342
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
316
        tlb_shootdown_finalize();
343
        tlb_shootdown_finalize();
317
    } else {
344
    } else {
318
        /*
345
        /*
319
         * Growing the area.
346
         * Growing the area.
320
         * Check for overlaps with other address space areas.
347
         * Check for overlaps with other address space areas.
321
         */
348
         */
322
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
349
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
323
            mutex_unlock(&area->lock);
350
            mutex_unlock(&area->lock);
324
            mutex_unlock(&as->lock);       
351
            mutex_unlock(&as->lock);       
325
            interrupts_restore(ipl);
352
            interrupts_restore(ipl);
326
            return EADDRNOTAVAIL;
353
            return EADDRNOTAVAIL;
327
        }
354
        }
328
    }
355
    }
329
 
356
 
330
    area->pages = pages;
357
    area->pages = pages;
331
   
358
   
332
    mutex_unlock(&area->lock);
359
    mutex_unlock(&area->lock);
333
    mutex_unlock(&as->lock);
360
    mutex_unlock(&as->lock);
334
    interrupts_restore(ipl);
361
    interrupts_restore(ipl);
335
 
362
 
336
    return 0;
363
    return 0;
337
}
364
}
338
 
365
 
339
/** Destroy address space area.
366
/** Destroy address space area.
340
 *
367
 *
341
 * @param as Address space.
368
 * @param as Address space.
342
 * @param address Address withing the area to be deleted.
369
 * @param address Address withing the area to be deleted.
343
 *
370
 *
344
 * @return Zero on success or a value from @ref errno.h on failure.
371
 * @return Zero on success or a value from @ref errno.h on failure.
345
 */
372
 */
346
int as_area_destroy(as_t *as, __address address)
373
int as_area_destroy(as_t *as, __address address)
347
{
374
{
348
    as_area_t *area;
375
    as_area_t *area;
349
    __address base;
376
    __address base;
350
    ipl_t ipl;
377
    ipl_t ipl;
351
 
378
 
352
    ipl = interrupts_disable();
379
    ipl = interrupts_disable();
353
    mutex_lock(&as->lock);
380
    mutex_lock(&as->lock);
354
 
381
 
355
    area = find_area_and_lock(as, address);
382
    area = find_area_and_lock(as, address);
356
    if (!area) {
383
    if (!area) {
357
        mutex_unlock(&as->lock);
384
        mutex_unlock(&as->lock);
358
        interrupts_restore(ipl);
385
        interrupts_restore(ipl);
359
        return ENOENT;
386
        return ENOENT;
360
    }
387
    }
361
 
388
 
362
    base = area->base;
389
    base = area->base;
363
    if (!(area->flags & AS_AREA_DEVICE)) {
390
    if (!(area->flags & AS_AREA_DEVICE)) {
364
        bool cond; 
391
        bool cond; 
365
   
392
   
366
        /*
393
        /*
367
         * Releasing physical memory.
394
         * Releasing physical memory.
368
         * Areas mapping memory-mapped devices are treated differently than
395
         * Areas mapping memory-mapped devices are treated differently than
369
         * areas backing frame_alloc()'ed memory.
396
         * areas backing frame_alloc()'ed memory.
370
         */
397
         */
371
 
398
 
372
        /*
399
        /*
373
         * Visit only the pages mapped by used_space B+tree.
400
         * Visit only the pages mapped by used_space B+tree.
374
         * Note that we must be very careful when walking the tree
401
         * Note that we must be very careful when walking the tree
375
         * leaf list and removing used space as the leaf list changes
402
         * leaf list and removing used space as the leaf list changes
376
         * unpredictibly after each remove. The solution is to actually
403
         * unpredictibly after each remove. The solution is to actually
377
         * not walk the tree at all, but to remove items from the head
404
         * not walk the tree at all, but to remove items from the head
378
         * of the leaf list until there are some keys left.
405
         * of the leaf list until there are some keys left.
379
         */
406
         */
380
        for (cond = true; cond;) {
407
        for (cond = true; cond;) {
381
            btree_node_t *node;
408
            btree_node_t *node;
382
       
409
       
383
            ASSERT(!list_empty(&area->used_space.leaf_head));
410
            ASSERT(!list_empty(&area->used_space.leaf_head));
384
            node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
411
            node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
385
            if ((cond = (bool) node->keys)) {
412
            if ((cond = (bool) node->keys)) {
386
                __address b = node->key[0];
413
                __address b = node->key[0];
387
                count_t i;
414
                count_t i;
388
                pte_t *pte;
415
                pte_t *pte;
389
           
416
           
390
                for (i = 0; i < (count_t) node->value[0]; i++) {
417
                for (i = 0; i < (count_t) node->value[0]; i++) {
391
                    page_table_lock(as, false);
418
                    page_table_lock(as, false);
392
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
419
                    pte = page_mapping_find(as, b + i*PAGE_SIZE);
393
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
420
                    ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
-
 
421
                    if (area->backend && area->backend->backend_frame_free) {
-
 
422
                        area->backend->backend_frame_free(area,
394
                    frame_free(ADDR2PFN(PTE_GET_FRAME(pte)));
423
                            b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
-
 
424
                    }
395
                    page_mapping_remove(as, b + i*PAGE_SIZE);
425
                    page_mapping_remove(as, b + i*PAGE_SIZE);
396
                    page_table_unlock(as, false);
426
                    page_table_unlock(as, false);
397
                }
427
                }
398
                if (!used_space_remove(area, b, i))
428
                if (!used_space_remove(area, b, i))
399
                    panic("Could not remove used space.\n");
429
                    panic("Could not remove used space.\n");
400
            }
430
            }
401
        }
431
        }
402
    }
432
    }
403
    btree_destroy(&area->used_space);
433
    btree_destroy(&area->used_space);
404
 
434
 
405
    /*
435
    /*
406
     * Invalidate TLB's.
436
     * Invalidate TLB's.
407
     */
437
     */
408
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
438
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
409
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
439
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
410
    tlb_shootdown_finalize();
440
    tlb_shootdown_finalize();
411
 
441
 
412
    area->attributes |= AS_AREA_ATTR_PARTIAL;
442
    area->attributes |= AS_AREA_ATTR_PARTIAL;
-
 
443
   
-
 
444
    if (area->sh_info)
-
 
445
        sh_info_remove_reference(area->sh_info);
-
 
446
       
413
    mutex_unlock(&area->lock);
447
    mutex_unlock(&area->lock);
414
 
448
 
415
    /*
449
    /*
416
     * Remove the empty area from address space.
450
     * Remove the empty area from address space.
417
     */
451
     */
418
    btree_remove(&AS->as_area_btree, base, NULL);
452
    btree_remove(&AS->as_area_btree, base, NULL);
419
   
453
   
420
    free(area);
454
    free(area);
421
   
455
   
422
    mutex_unlock(&AS->lock);
456
    mutex_unlock(&AS->lock);
423
    interrupts_restore(ipl);
457
    interrupts_restore(ipl);
424
    return 0;
458
    return 0;
425
}
459
}
426
 
460
 
427
/** Steal address space area from another task.
461
/** Steal address space area from another task.
428
 *
462
 *
429
 * Address space area is stolen from another task
463
 * Address space area is stolen from another task
430
 * Moreover, any existing mapping
464
 * Moreover, any existing mapping
431
 * is copied as well, providing thus a mechanism
465
 * is copied as well, providing thus a mechanism
432
 * for sharing group of pages. The source address
466
 * for sharing group of pages. The source address
433
 * space area and any associated mapping is preserved.
467
 * space area and any associated mapping is preserved.
434
 *
468
 *
435
 * @param src_task Pointer of source task
469
 * @param src_task Pointer of source task
436
 * @param src_base Base address of the source address space area.
470
 * @param src_base Base address of the source address space area.
437
 * @param acc_size Expected size of the source area
471
 * @param acc_size Expected size of the source area
438
 * @param dst_base Target base address
472
 * @param dst_base Target base address
439
 *
473
 *
440
 * @return Zero on success or ENOENT if there is no such task or
474
 * @return Zero on success or ENOENT if there is no such task or
441
 *     if there is no such address space area,
475
 *     if there is no such address space area,
442
 *     EPERM if there was a problem in accepting the area or
476
 *     EPERM if there was a problem in accepting the area or
443
 *     ENOMEM if there was a problem in allocating destination
477
 *     ENOMEM if there was a problem in allocating destination
444
 *     address space area.
478
 *     address space area.
445
 */
479
 */
446
int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
480
int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
447
          __address dst_base)
481
          __address dst_base)
448
{
482
{
449
    ipl_t ipl;
483
    ipl_t ipl;
450
    count_t i;
484
    count_t i;
451
    as_t *src_as;      
485
    as_t *src_as;      
452
    int src_flags;
486
    int src_flags;
453
    size_t src_size;
487
    size_t src_size;
454
    as_area_t *src_area, *dst_area;
488
    as_area_t *src_area, *dst_area;
455
 
489
 
456
    ipl = interrupts_disable();
490
    ipl = interrupts_disable();
457
    spinlock_lock(&src_task->lock);
491
    spinlock_lock(&src_task->lock);
458
    src_as = src_task->as;
492
    src_as = src_task->as;
459
   
493
   
460
    mutex_lock(&src_as->lock);
494
    mutex_lock(&src_as->lock);
461
    src_area = find_area_and_lock(src_as, src_base);
495
    src_area = find_area_and_lock(src_as, src_base);
462
    if (!src_area) {
496
    if (!src_area) {
463
        /*
497
        /*
464
         * Could not find the source address space area.
498
         * Could not find the source address space area.
465
         */
499
         */
466
        spinlock_unlock(&src_task->lock);
500
        spinlock_unlock(&src_task->lock);
467
        mutex_unlock(&src_as->lock);
501
        mutex_unlock(&src_as->lock);
468
        interrupts_restore(ipl);
502
        interrupts_restore(ipl);
469
        return ENOENT;
503
        return ENOENT;
470
    }
504
    }
471
    src_size = src_area->pages * PAGE_SIZE;
505
    src_size = src_area->pages * PAGE_SIZE;
472
    src_flags = src_area->flags;
506
    src_flags = src_area->flags;
473
    mutex_unlock(&src_area->lock);
507
    mutex_unlock(&src_area->lock);
474
    mutex_unlock(&src_as->lock);
508
    mutex_unlock(&src_as->lock);
475
 
509
 
476
    if (src_size != acc_size) {
510
    if (src_size != acc_size) {
477
        spinlock_unlock(&src_task->lock);
511
        spinlock_unlock(&src_task->lock);
478
        interrupts_restore(ipl);
512
        interrupts_restore(ipl);
479
        return EPERM;
513
        return EPERM;
480
    }
514
    }
481
    /*
515
    /*
482
     * Create copy of the source address space area.
516
     * Create copy of the source address space area.
483
     * The destination area is created with AS_AREA_ATTR_PARTIAL
517
     * The destination area is created with AS_AREA_ATTR_PARTIAL
484
     * attribute set which prevents race condition with
518
     * attribute set which prevents race condition with
485
     * preliminary as_page_fault() calls.
519
     * preliminary as_page_fault() calls.
486
     */
520
     */
487
    dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL);
521
    dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL, &anon_backend, NULL);
488
    if (!dst_area) {
522
    if (!dst_area) {
489
        /*
523
        /*
490
         * Destination address space area could not be created.
524
         * Destination address space area could not be created.
491
         */
525
         */
492
        spinlock_unlock(&src_task->lock);
526
        spinlock_unlock(&src_task->lock);
493
        interrupts_restore(ipl);
527
        interrupts_restore(ipl);
494
        return ENOMEM;
528
        return ENOMEM;
495
    }
529
    }
496
   
530
   
497
    spinlock_unlock(&src_task->lock);
531
    spinlock_unlock(&src_task->lock);
498
   
532
   
499
    /*
533
    /*
500
     * Avoid deadlock by first locking the address space with lower address.
534
     * Avoid deadlock by first locking the address space with lower address.
501
     */
535
     */
502
    if (AS < src_as) {
536
    if (AS < src_as) {
503
        mutex_lock(&AS->lock);
537
        mutex_lock(&AS->lock);
504
        mutex_lock(&src_as->lock);
538
        mutex_lock(&src_as->lock);
505
    } else {
539
    } else {
506
        mutex_lock(&AS->lock);
540
        mutex_lock(&AS->lock);
507
        mutex_lock(&src_as->lock);
541
        mutex_lock(&src_as->lock);
508
    }
542
    }
509
   
543
   
510
    for (i = 0; i < SIZE2FRAMES(src_size); i++) {
544
    for (i = 0; i < SIZE2FRAMES(src_size); i++) {
511
        pte_t *pte;
545
        pte_t *pte;
512
        __address frame;
546
        __address frame;
513
           
547
           
514
        page_table_lock(src_as, false);
548
        page_table_lock(src_as, false);
515
        pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
549
        pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
516
        if (pte && PTE_VALID(pte)) {
550
        if (pte && PTE_VALID(pte)) {
517
            ASSERT(PTE_PRESENT(pte));
551
            ASSERT(PTE_PRESENT(pte));
518
            frame = PTE_GET_FRAME(pte);
552
            frame = PTE_GET_FRAME(pte);
519
            if (!(src_flags & AS_AREA_DEVICE))
553
            if (!(src_flags & AS_AREA_DEVICE))
520
                frame_reference_add(ADDR2PFN(frame));
554
                frame_reference_add(ADDR2PFN(frame));
521
            page_table_unlock(src_as, false);
555
            page_table_unlock(src_as, false);
522
        } else {
556
        } else {
523
            page_table_unlock(src_as, false);
557
            page_table_unlock(src_as, false);
524
            continue;
558
            continue;
525
        }
559
        }
526
       
560
       
527
        page_table_lock(AS, false);
561
        page_table_lock(AS, false);
528
        page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
562
        page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
529
        page_table_unlock(AS, false);
563
        page_table_unlock(AS, false);
530
    }
564
    }
531
 
565
 
532
    /*
566
    /*
533
     * Now the destination address space area has been
567
     * Now the destination address space area has been
534
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
568
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
535
     * attribute.
569
     * attribute.
536
     */
570
     */
537
    mutex_lock(&dst_area->lock);
571
    mutex_lock(&dst_area->lock);
538
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
572
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
539
    mutex_unlock(&dst_area->lock);
573
    mutex_unlock(&dst_area->lock);
540
   
574
   
541
    mutex_unlock(&AS->lock);
575
    mutex_unlock(&AS->lock);
542
    mutex_unlock(&src_as->lock);
576
    mutex_unlock(&src_as->lock);
543
    interrupts_restore(ipl);
577
    interrupts_restore(ipl);
544
   
578
   
545
    return 0;
579
    return 0;
546
}
580
}
547
 
581
 
548
/** Initialize mapping for one page of address space.
582
/** Initialize mapping for one page of address space.
549
 *
583
 *
550
 * This functions maps 'page' to 'frame' according
584
 * This functions maps 'page' to 'frame' according
551
 * to attributes of the address space area to
585
 * to attributes of the address space area to
552
 * wich 'page' belongs.
586
 * wich 'page' belongs.
553
 *
587
 *
554
 * @param as Target address space.
588
 * @param as Target address space.
555
 * @param page Virtual page within the area.
589
 * @param page Virtual page within the area.
556
 * @param frame Physical frame to which page will be mapped.
590
 * @param frame Physical frame to which page will be mapped.
557
 */
591
 */
558
void as_set_mapping(as_t *as, __address page, __address frame)
592
void as_set_mapping(as_t *as, __address page, __address frame)
559
{
593
{
560
    as_area_t *area;
594
    as_area_t *area;
561
    ipl_t ipl;
595
    ipl_t ipl;
562
   
596
   
563
    ipl = interrupts_disable();
597
    ipl = interrupts_disable();
564
    page_table_lock(as, true);
598
    page_table_lock(as, true);
565
   
599
   
566
    area = find_area_and_lock(as, page);
600
    area = find_area_and_lock(as, page);
567
    if (!area) {
601
    if (!area) {
568
        panic("Page not part of any as_area.\n");
602
        panic("Page not part of any as_area.\n");
569
    }
603
    }
570
 
604
 
-
 
605
    ASSERT(!area->backend);
-
 
606
   
571
    page_mapping_insert(as, page, frame, get_area_flags(area));
607
    page_mapping_insert(as, page, frame, as_area_get_flags(area));
572
    if (!used_space_insert(area, page, 1))
608
    if (!used_space_insert(area, page, 1))
573
        panic("Could not insert used space.\n");
609
        panic("Could not insert used space.\n");
574
   
610
   
575
    mutex_unlock(&area->lock);
611
    mutex_unlock(&area->lock);
576
    page_table_unlock(as, true);
612
    page_table_unlock(as, true);
577
    interrupts_restore(ipl);
613
    interrupts_restore(ipl);
578
}
614
}
579
 
615
 
580
/** Handle page fault within the current address space.
616
/** Handle page fault within the current address space.
581
 *
617
 *
582
 * This is the high-level page fault handler.
618
 * This is the high-level page fault handler. It decides
-
 
619
 * whether the page fault can be resolved by any backend
-
 
620
 * and if so, it invokes the backend to resolve the page
-
 
621
 * fault.
-
 
622
 *
583
 * Interrupts are assumed disabled.
623
 * Interrupts are assumed disabled.
584
 *
624
 *
585
 * @param page Faulting page.
625
 * @param page Faulting page.
586
 * @param istate Pointer to interrupted state.
626
 * @param istate Pointer to interrupted state.
587
 *
627
 *
-
 
628
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
588
 * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace().
629
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
589
 */
630
 */
590
int as_page_fault(__address page, istate_t *istate)
631
int as_page_fault(__address page, istate_t *istate)
591
{
632
{
592
    pte_t *pte;
633
    pte_t *pte;
593
    as_area_t *area;
634
    as_area_t *area;
594
    __address frame;
-
 
595
   
635
   
596
    if (!THREAD)
636
    if (!THREAD)
597
        return 0;
637
        return AS_PF_FAULT;
598
       
638
       
599
    ASSERT(AS);
639
    ASSERT(AS);
600
 
640
 
601
    mutex_lock(&AS->lock);
641
    mutex_lock(&AS->lock);
602
    area = find_area_and_lock(AS, page);   
642
    area = find_area_and_lock(AS, page);   
603
    if (!area) {
643
    if (!area) {
604
        /*
644
        /*
605
         * No area contained mapping for 'page'.
645
         * No area contained mapping for 'page'.
606
         * Signal page fault to low-level handler.
646
         * Signal page fault to low-level handler.
607
         */
647
         */
608
        mutex_unlock(&AS->lock);
648
        mutex_unlock(&AS->lock);
609
        goto page_fault;
649
        goto page_fault;
610
    }
650
    }
611
 
651
 
612
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
652
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
613
        /*
653
        /*
614
         * The address space area is not fully initialized.
654
         * The address space area is not fully initialized.
615
         * Avoid possible race by returning error.
655
         * Avoid possible race by returning error.
616
         */
656
         */
617
        mutex_unlock(&area->lock);
657
        mutex_unlock(&area->lock);
618
        mutex_unlock(&AS->lock);
658
        mutex_unlock(&AS->lock);
619
        goto page_fault;       
659
        goto page_fault;       
620
    }
660
    }
621
 
661
 
-
 
662
    if (!area->backend || !area->backend->backend_page_fault) {
-
 
663
        /*
-
 
664
         * The address space area is not backed by any backend
622
    ASSERT(!(area->flags & AS_AREA_DEVICE));
665
         * or the backend cannot handle page faults.
-
 
666
         */
-
 
667
        mutex_unlock(&area->lock);
-
 
668
        mutex_unlock(&AS->lock);
-
 
669
        goto page_fault;       
-
 
670
    }
623
 
671
 
624
    page_table_lock(AS, false);
672
    page_table_lock(AS, false);
625
   
673
   
626
    /*
674
    /*
627
     * To avoid race condition between two page faults
675
     * To avoid race condition between two page faults
628
     * on the same address, we need to make sure
676
     * on the same address, we need to make sure
629
     * the mapping has not been already inserted.
677
     * the mapping has not been already inserted.
630
     */
678
     */
631
    if ((pte = page_mapping_find(AS, page))) {
679
    if ((pte = page_mapping_find(AS, page))) {
632
        if (PTE_PRESENT(pte)) {
680
        if (PTE_PRESENT(pte)) {
633
            page_table_unlock(AS, false);
681
            page_table_unlock(AS, false);
634
            mutex_unlock(&area->lock);
682
            mutex_unlock(&area->lock);
635
            mutex_unlock(&AS->lock);
683
            mutex_unlock(&AS->lock);
636
            return 1;
684
            return AS_PF_OK;
637
        }
685
        }
638
    }
686
    }
639
 
-
 
640
    /*
-
 
641
     * In general, there can be several reasons that
-
 
642
     * can have caused this fault.
-
 
643
     *
-
 
644
     * - non-existent mapping: the area is a scratch
-
 
645
     *   area (e.g. stack) and so far has not been
-
 
646
     *   allocated a frame for the faulting page
-
 
647
     *
-
 
648
     * - non-present mapping: another possibility,
-
 
649
     *   currently not implemented, would be frame
-
 
650
     *   reuse; when this becomes a possibility,
-
 
651
     *   do not forget to distinguish between
-
 
652
     *   the different causes
-
 
653
     */
-
 
654
    frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
-
 
655
    memsetb(PA2KA(frame), FRAME_SIZE, 0);
-
 
656
   
687
   
657
    /*
688
    /*
658
     * Map 'page' to 'frame'.
-
 
659
     * Note that TLB shootdown is not attempted as only new information is being
-
 
660
     * inserted into page tables.
689
     * Resort to the backend page fault handler.
661
     */
690
     */
662
    page_mapping_insert(AS, page, frame, get_area_flags(area));
691
    if (area->backend->backend_page_fault(area, page) != AS_PF_OK) {
663
    if (!used_space_insert(area, ALIGN_DOWN(page, PAGE_SIZE), 1))
692
        page_table_unlock(AS, false);
664
        panic("Could not insert used space.\n");
693
        mutex_unlock(&area->lock);
665
    page_table_unlock(AS, false);
694
        mutex_unlock(&AS->lock);
-
 
695
        goto page_fault;
-
 
696
    }
666
   
697
   
-
 
698
    page_table_unlock(AS, false);
667
    mutex_unlock(&area->lock);
699
    mutex_unlock(&area->lock);
668
    mutex_unlock(&AS->lock);
700
    mutex_unlock(&AS->lock);
669
    return AS_PF_OK;
701
    return AS_PF_OK;
670
 
702
 
671
page_fault:
703
page_fault:
672
    if (!THREAD)
-
 
673
        return AS_PF_FAULT;
-
 
674
   
-
 
675
    if (THREAD->in_copy_from_uspace) {
704
    if (THREAD->in_copy_from_uspace) {
676
        THREAD->in_copy_from_uspace = false;
705
        THREAD->in_copy_from_uspace = false;
677
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
706
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
678
    } else if (THREAD->in_copy_to_uspace) {
707
    } else if (THREAD->in_copy_to_uspace) {
679
        THREAD->in_copy_to_uspace = false;
708
        THREAD->in_copy_to_uspace = false;
680
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
709
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
681
    } else {
710
    } else {
682
        return AS_PF_FAULT;
711
        return AS_PF_FAULT;
683
    }
712
    }
684
 
713
 
685
    return AS_PF_DEFER;
714
    return AS_PF_DEFER;
686
}
715
}
687
 
716
 
688
/** Switch address spaces.
717
/** Switch address spaces.
689
 *
718
 *
690
 * Note that this function cannot sleep as it is essentially a part of
719
 * Note that this function cannot sleep as it is essentially a part of
691
 * the scheduling. Sleeping here would lead to deadlock on wakeup.
720
 * the scheduling. Sleeping here would lead to deadlock on wakeup.
692
 *
721
 *
693
 * @param old Old address space or NULL.
722
 * @param old Old address space or NULL.
694
 * @param new New address space.
723
 * @param new New address space.
695
 */
724
 */
696
void as_switch(as_t *old, as_t *new)
725
void as_switch(as_t *old, as_t *new)
697
{
726
{
698
    ipl_t ipl;
727
    ipl_t ipl;
699
    bool needs_asid = false;
728
    bool needs_asid = false;
700
   
729
   
701
    ipl = interrupts_disable();
730
    ipl = interrupts_disable();
702
    spinlock_lock(&as_lock);
731
    spinlock_lock(&as_lock);
703
 
732
 
704
    /*
733
    /*
705
     * First, take care of the old address space.
734
     * First, take care of the old address space.
706
     */
735
     */
707
    if (old) {
736
    if (old) {
708
        mutex_lock_active(&old->lock);
737
        mutex_lock_active(&old->lock);
709
        ASSERT(old->refcount);
738
        ASSERT(old->refcount);
710
        if((--old->refcount == 0) && (old != AS_KERNEL)) {
739
        if((--old->refcount == 0) && (old != AS_KERNEL)) {
711
            /*
740
            /*
712
             * The old address space is no longer active on
741
             * The old address space is no longer active on
713
             * any processor. It can be appended to the
742
             * any processor. It can be appended to the
714
             * list of inactive address spaces with assigned
743
             * list of inactive address spaces with assigned
715
             * ASID.
744
             * ASID.
716
             */
745
             */
717
             ASSERT(old->asid != ASID_INVALID);
746
             ASSERT(old->asid != ASID_INVALID);
718
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
747
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
719
        }
748
        }
720
        mutex_unlock(&old->lock);
749
        mutex_unlock(&old->lock);
721
    }
750
    }
722
 
751
 
723
    /*
752
    /*
724
     * Second, prepare the new address space.
753
     * Second, prepare the new address space.
725
     */
754
     */
726
    mutex_lock_active(&new->lock);
755
    mutex_lock_active(&new->lock);
727
    if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
756
    if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
728
        if (new->asid != ASID_INVALID)
757
        if (new->asid != ASID_INVALID)
729
            list_remove(&new->inactive_as_with_asid_link);
758
            list_remove(&new->inactive_as_with_asid_link);
730
        else
759
        else
731
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
760
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
732
    }
761
    }
733
    SET_PTL0_ADDRESS(new->page_table);
762
    SET_PTL0_ADDRESS(new->page_table);
734
    mutex_unlock(&new->lock);
763
    mutex_unlock(&new->lock);
735
 
764
 
736
    if (needs_asid) {
765
    if (needs_asid) {
737
        /*
766
        /*
738
         * Allocation of new ASID was deferred
767
         * Allocation of new ASID was deferred
739
         * until now in order to avoid deadlock.
768
         * until now in order to avoid deadlock.
740
         */
769
         */
741
        asid_t asid;
770
        asid_t asid;
742
       
771
       
743
        asid = asid_get();
772
        asid = asid_get();
744
        mutex_lock_active(&new->lock);
773
        mutex_lock_active(&new->lock);
745
        new->asid = asid;
774
        new->asid = asid;
746
        mutex_unlock(&new->lock);
775
        mutex_unlock(&new->lock);
747
    }
776
    }
748
    spinlock_unlock(&as_lock);
777
    spinlock_unlock(&as_lock);
749
    interrupts_restore(ipl);
778
    interrupts_restore(ipl);
750
   
779
   
751
    /*
780
    /*
752
     * Perform architecture-specific steps.
781
     * Perform architecture-specific steps.
753
     * (e.g. write ASID to hardware register etc.)
782
     * (e.g. write ASID to hardware register etc.)
754
     */
783
     */
755
    as_install_arch(new);
784
    as_install_arch(new);
756
   
785
   
757
    AS = new;
786
    AS = new;
758
}
787
}
759
 
788
 
760
/** Convert address space area flags to page flags.
789
/** Convert address space area flags to page flags.
761
 *
790
 *
762
 * @param aflags Flags of some address space area.
791
 * @param aflags Flags of some address space area.
763
 *
792
 *
764
 * @return Flags to be passed to page_mapping_insert().
793
 * @return Flags to be passed to page_mapping_insert().
765
 */
794
 */
766
int area_flags_to_page_flags(int aflags)
795
int area_flags_to_page_flags(int aflags)
767
{
796
{
768
    int flags;
797
    int flags;
769
 
798
 
770
    flags = PAGE_USER | PAGE_PRESENT;
799
    flags = PAGE_USER | PAGE_PRESENT;
771
   
800
   
772
    if (aflags & AS_AREA_READ)
801
    if (aflags & AS_AREA_READ)
773
        flags |= PAGE_READ;
802
        flags |= PAGE_READ;
774
       
803
       
775
    if (aflags & AS_AREA_WRITE)
804
    if (aflags & AS_AREA_WRITE)
776
        flags |= PAGE_WRITE;
805
        flags |= PAGE_WRITE;
777
   
806
   
778
    if (aflags & AS_AREA_EXEC)
807
    if (aflags & AS_AREA_EXEC)
779
        flags |= PAGE_EXEC;
808
        flags |= PAGE_EXEC;
780
   
809
   
781
    if (!(aflags & AS_AREA_DEVICE))
810
    if (!(aflags & AS_AREA_DEVICE))
782
        flags |= PAGE_CACHEABLE;
811
        flags |= PAGE_CACHEABLE;
783
       
812
       
784
    return flags;
813
    return flags;
785
}
814
}
786
 
815
 
787
/** Compute flags for virtual address translation subsytem.
816
/** Compute flags for virtual address translation subsytem.
788
 *
817
 *
789
 * The address space area must be locked.
818
 * The address space area must be locked.
790
 * Interrupts must be disabled.
819
 * Interrupts must be disabled.
791
 *
820
 *
792
 * @param a Address space area.
821
 * @param a Address space area.
793
 *
822
 *
794
 * @return Flags to be used in page_mapping_insert().
823
 * @return Flags to be used in page_mapping_insert().
795
 */
824
 */
796
int get_area_flags(as_area_t *a)
825
int as_area_get_flags(as_area_t *a)
797
{
826
{
798
    return area_flags_to_page_flags(a->flags);
827
    return area_flags_to_page_flags(a->flags);
799
}
828
}
800
 
829
 
801
/** Create page table.
830
/** Create page table.
802
 *
831
 *
803
 * Depending on architecture, create either address space
832
 * Depending on architecture, create either address space
804
 * private or global page table.
833
 * private or global page table.
805
 *
834
 *
806
 * @param flags Flags saying whether the page table is for kernel address space.
835
 * @param flags Flags saying whether the page table is for kernel address space.
807
 *
836
 *
808
 * @return First entry of the page table.
837
 * @return First entry of the page table.
809
 */
838
 */
810
pte_t *page_table_create(int flags)
839
pte_t *page_table_create(int flags)
811
{
840
{
812
        ASSERT(as_operations);
841
        ASSERT(as_operations);
813
        ASSERT(as_operations->page_table_create);
842
        ASSERT(as_operations->page_table_create);
814
 
843
 
815
        return as_operations->page_table_create(flags);
844
        return as_operations->page_table_create(flags);
816
}
845
}
817
 
846
 
818
/** Lock page table.
847
/** Lock page table.
819
 *
848
 *
820
 * This function should be called before any page_mapping_insert(),
849
 * This function should be called before any page_mapping_insert(),
821
 * page_mapping_remove() and page_mapping_find().
850
 * page_mapping_remove() and page_mapping_find().
822
 *
851
 *
823
 * Locking order is such that address space areas must be locked
852
 * Locking order is such that address space areas must be locked
824
 * prior to this call. Address space can be locked prior to this
853
 * prior to this call. Address space can be locked prior to this
825
 * call in which case the lock argument is false.
854
 * call in which case the lock argument is false.
826
 *
855
 *
827
 * @param as Address space.
856
 * @param as Address space.
828
 * @param lock If false, do not attempt to lock as->lock.
857
 * @param lock If false, do not attempt to lock as->lock.
829
 */
858
 */
830
void page_table_lock(as_t *as, bool lock)
859
void page_table_lock(as_t *as, bool lock)
831
{
860
{
832
    ASSERT(as_operations);
861
    ASSERT(as_operations);
833
    ASSERT(as_operations->page_table_lock);
862
    ASSERT(as_operations->page_table_lock);
834
 
863
 
835
    as_operations->page_table_lock(as, lock);
864
    as_operations->page_table_lock(as, lock);
836
}
865
}
837
 
866
 
838
/** Unlock page table.
867
/** Unlock page table.
839
 *
868
 *
840
 * @param as Address space.
869
 * @param as Address space.
841
 * @param unlock If false, do not attempt to unlock as->lock.
870
 * @param unlock If false, do not attempt to unlock as->lock.
842
 */
871
 */
843
void page_table_unlock(as_t *as, bool unlock)
872
void page_table_unlock(as_t *as, bool unlock)
844
{
873
{
845
    ASSERT(as_operations);
874
    ASSERT(as_operations);
846
    ASSERT(as_operations->page_table_unlock);
875
    ASSERT(as_operations->page_table_unlock);
847
 
876
 
848
    as_operations->page_table_unlock(as, unlock);
877
    as_operations->page_table_unlock(as, unlock);
849
}
878
}
850
 
879
 
851
 
880
 
852
/** Find address space area and lock it.
881
/** Find address space area and lock it.
853
 *
882
 *
854
 * The address space must be locked and interrupts must be disabled.
883
 * The address space must be locked and interrupts must be disabled.
855
 *
884
 *
856
 * @param as Address space.
885
 * @param as Address space.
857
 * @param va Virtual address.
886
 * @param va Virtual address.
858
 *
887
 *
859
 * @return Locked address space area containing va on success or NULL on failure.
888
 * @return Locked address space area containing va on success or NULL on failure.
860
 */
889
 */
861
as_area_t *find_area_and_lock(as_t *as, __address va)
890
as_area_t *find_area_and_lock(as_t *as, __address va)
862
{
891
{
863
    as_area_t *a;
892
    as_area_t *a;
864
    btree_node_t *leaf, *lnode;
893
    btree_node_t *leaf, *lnode;
865
    int i;
894
    int i;
866
   
895
   
867
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
896
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
868
    if (a) {
897
    if (a) {
869
        /* va is the base address of an address space area */
898
        /* va is the base address of an address space area */
870
        mutex_lock(&a->lock);
899
        mutex_lock(&a->lock);
871
        return a;
900
        return a;
872
    }
901
    }
873
   
902
   
874
    /*
903
    /*
875
     * Search the leaf node and the righmost record of its left neighbour
904
     * Search the leaf node and the righmost record of its left neighbour
876
     * to find out whether this is a miss or va belongs to an address
905
     * to find out whether this is a miss or va belongs to an address
877
     * space area found there.
906
     * space area found there.
878
     */
907
     */
879
   
908
   
880
    /* First, search the leaf node itself. */
909
    /* First, search the leaf node itself. */
881
    for (i = 0; i < leaf->keys; i++) {
910
    for (i = 0; i < leaf->keys; i++) {
882
        a = (as_area_t *) leaf->value[i];
911
        a = (as_area_t *) leaf->value[i];
883
        mutex_lock(&a->lock);
912
        mutex_lock(&a->lock);
884
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
913
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
885
            return a;
914
            return a;
886
        }
915
        }
887
        mutex_unlock(&a->lock);
916
        mutex_unlock(&a->lock);
888
    }
917
    }
889
 
918
 
890
    /*
919
    /*
891
     * Second, locate the left neighbour and test its last record.
920
     * Second, locate the left neighbour and test its last record.
892
     * Because of its position in the B+tree, it must have base < va.
921
     * Because of its position in the B+tree, it must have base < va.
893
     */
922
     */
894
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
923
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
895
        a = (as_area_t *) lnode->value[lnode->keys - 1];
924
        a = (as_area_t *) lnode->value[lnode->keys - 1];
896
        mutex_lock(&a->lock);
925
        mutex_lock(&a->lock);
897
        if (va < a->base + a->pages * PAGE_SIZE) {
926
        if (va < a->base + a->pages * PAGE_SIZE) {
898
            return a;
927
            return a;
899
        }
928
        }
900
        mutex_unlock(&a->lock);
929
        mutex_unlock(&a->lock);
901
    }
930
    }
902
 
931
 
903
    return NULL;
932
    return NULL;
904
}
933
}
905
 
934
 
906
/** Check area conflicts with other areas.
935
/** Check area conflicts with other areas.
907
 *
936
 *
908
 * The address space must be locked and interrupts must be disabled.
937
 * The address space must be locked and interrupts must be disabled.
909
 *
938
 *
910
 * @param as Address space.
939
 * @param as Address space.
911
 * @param va Starting virtual address of the area being tested.
940
 * @param va Starting virtual address of the area being tested.
912
 * @param size Size of the area being tested.
941
 * @param size Size of the area being tested.
913
 * @param avoid_area Do not touch this area.
942
 * @param avoid_area Do not touch this area.
914
 *
943
 *
915
 * @return True if there is no conflict, false otherwise.
944
 * @return True if there is no conflict, false otherwise.
916
 */
945
 */
917
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
946
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
918
{
947
{
919
    as_area_t *a;
948
    as_area_t *a;
920
    btree_node_t *leaf, *node;
949
    btree_node_t *leaf, *node;
921
    int i;
950
    int i;
922
   
951
   
923
    /*
952
    /*
924
     * We don't want any area to have conflicts with NULL page.
953
     * We don't want any area to have conflicts with NULL page.
925
     */
954
     */
926
    if (overlaps(va, size, NULL, PAGE_SIZE))
955
    if (overlaps(va, size, NULL, PAGE_SIZE))
927
        return false;
956
        return false;
928
   
957
   
929
    /*
958
    /*
930
     * The leaf node is found in O(log n), where n is proportional to
959
     * The leaf node is found in O(log n), where n is proportional to
931
     * the number of address space areas belonging to as.
960
     * the number of address space areas belonging to as.
932
     * The check for conflicts is then attempted on the rightmost
961
     * The check for conflicts is then attempted on the rightmost
933
     * record in the left neighbour, the leftmost record in the right
962
     * record in the left neighbour, the leftmost record in the right
934
     * neighbour and all records in the leaf node itself.
963
     * neighbour and all records in the leaf node itself.
935
     */
964
     */
936
   
965
   
937
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
966
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
938
        if (a != avoid_area)
967
        if (a != avoid_area)
939
            return false;
968
            return false;
940
    }
969
    }
941
   
970
   
942
    /* First, check the two border cases. */
971
    /* First, check the two border cases. */
943
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
972
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
944
        a = (as_area_t *) node->value[node->keys - 1];
973
        a = (as_area_t *) node->value[node->keys - 1];
945
        mutex_lock(&a->lock);
974
        mutex_lock(&a->lock);
946
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
975
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
947
            mutex_unlock(&a->lock);
976
            mutex_unlock(&a->lock);
948
            return false;
977
            return false;
949
        }
978
        }
950
        mutex_unlock(&a->lock);
979
        mutex_unlock(&a->lock);
951
    }
980
    }
952
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
981
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
953
        a = (as_area_t *) node->value[0];
982
        a = (as_area_t *) node->value[0];
954
        mutex_lock(&a->lock);
983
        mutex_lock(&a->lock);
955
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
984
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
956
            mutex_unlock(&a->lock);
985
            mutex_unlock(&a->lock);
957
            return false;
986
            return false;
958
        }
987
        }
959
        mutex_unlock(&a->lock);
988
        mutex_unlock(&a->lock);
960
    }
989
    }
961
   
990
   
962
    /* Second, check the leaf node. */
991
    /* Second, check the leaf node. */
963
    for (i = 0; i < leaf->keys; i++) {
992
    for (i = 0; i < leaf->keys; i++) {
964
        a = (as_area_t *) leaf->value[i];
993
        a = (as_area_t *) leaf->value[i];
965
   
994
   
966
        if (a == avoid_area)
995
        if (a == avoid_area)
967
            continue;
996
            continue;
968
   
997
   
969
        mutex_lock(&a->lock);
998
        mutex_lock(&a->lock);
970
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
999
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
971
            mutex_unlock(&a->lock);
1000
            mutex_unlock(&a->lock);
972
            return false;
1001
            return false;
973
        }
1002
        }
974
        mutex_unlock(&a->lock);
1003
        mutex_unlock(&a->lock);
975
    }
1004
    }
976
 
1005
 
977
    /*
1006
    /*
978
     * So far, the area does not conflict with other areas.
1007
     * So far, the area does not conflict with other areas.
979
     * Check if it doesn't conflict with kernel address space.
1008
     * Check if it doesn't conflict with kernel address space.
980
     */  
1009
     */  
981
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1010
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
982
        return !overlaps(va, size,
1011
        return !overlaps(va, size,
983
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1012
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
984
    }
1013
    }
985
 
1014
 
986
    return true;
1015
    return true;
987
}
1016
}
988
 
1017
 
989
/** Return size of the address space area with given base.  */
1018
/** Return size of the address space area with given base.  */
990
size_t as_get_size(__address base)
1019
size_t as_get_size(__address base)
991
{
1020
{
992
    ipl_t ipl;
1021
    ipl_t ipl;
993
    as_area_t *src_area;
1022
    as_area_t *src_area;
994
    size_t size;
1023
    size_t size;
995
 
1024
 
996
    ipl = interrupts_disable();
1025
    ipl = interrupts_disable();
997
    src_area = find_area_and_lock(AS, base);
1026
    src_area = find_area_and_lock(AS, base);
998
    if (src_area){
1027
    if (src_area){
999
        size = src_area->pages * PAGE_SIZE;
1028
        size = src_area->pages * PAGE_SIZE;
1000
        mutex_unlock(&src_area->lock);
1029
        mutex_unlock(&src_area->lock);
1001
    } else {
1030
    } else {
1002
        size = 0;
1031
        size = 0;
1003
    }
1032
    }
1004
    interrupts_restore(ipl);
1033
    interrupts_restore(ipl);
1005
    return size;
1034
    return size;
1006
}
1035
}
1007
 
1036
 
1008
/** Mark portion of address space area as used.
1037
/** Mark portion of address space area as used.
1009
 *
1038
 *
1010
 * The address space area must be already locked.
1039
 * The address space area must be already locked.
1011
 *
1040
 *
1012
 * @param a Address space area.
1041
 * @param a Address space area.
1013
 * @param page First page to be marked.
1042
 * @param page First page to be marked.
1014
 * @param count Number of page to be marked.
1043
 * @param count Number of page to be marked.
1015
 *
1044
 *
1016
 * @return 0 on failure and 1 on success.
1045
 * @return 0 on failure and 1 on success.
1017
 */
1046
 */
1018
int used_space_insert(as_area_t *a, __address page, count_t count)
1047
int used_space_insert(as_area_t *a, __address page, count_t count)
1019
{
1048
{
1020
    btree_node_t *leaf, *node;
1049
    btree_node_t *leaf, *node;
1021
    count_t pages;
1050
    count_t pages;
1022
    int i;
1051
    int i;
1023
 
1052
 
1024
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1053
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1025
    ASSERT(count);
1054
    ASSERT(count);
1026
 
1055
 
1027
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1056
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1028
    if (pages) {
1057
    if (pages) {
1029
        /*
1058
        /*
1030
         * We hit the beginning of some used space.
1059
         * We hit the beginning of some used space.
1031
         */
1060
         */
1032
        return 0;
1061
        return 0;
1033
    }
1062
    }
1034
 
1063
 
1035
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1064
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1036
    if (node) {
1065
    if (node) {
1037
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1066
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1038
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1067
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1039
       
1068
       
1040
        /*
1069
        /*
1041
         * Examine the possibility that the interval fits
1070
         * Examine the possibility that the interval fits
1042
         * somewhere between the rightmost interval of
1071
         * somewhere between the rightmost interval of
1043
         * the left neigbour and the first interval of the leaf.
1072
         * the left neigbour and the first interval of the leaf.
1044
         */
1073
         */
1045
         
1074
         
1046
        if (page >= right_pg) {
1075
        if (page >= right_pg) {
1047
            /* Do nothing. */
1076
            /* Do nothing. */
1048
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1077
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1049
            /* The interval intersects with the left interval. */
1078
            /* The interval intersects with the left interval. */
1050
            return 0;
1079
            return 0;
1051
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1080
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1052
            /* The interval intersects with the right interval. */
1081
            /* The interval intersects with the right interval. */
1053
            return 0;          
1082
            return 0;          
1054
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1083
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1055
            /* The interval can be added by merging the two already present intervals. */
1084
            /* The interval can be added by merging the two already present intervals. */
1056
            node->value[node->keys - 1] += count + right_cnt;
1085
            node->value[node->keys - 1] += count + right_cnt;
1057
            btree_remove(&a->used_space, right_pg, leaf);
1086
            btree_remove(&a->used_space, right_pg, leaf);
1058
            return 1;
1087
            return 1;
1059
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1088
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1060
            /* The interval can be added by simply growing the left interval. */
1089
            /* The interval can be added by simply growing the left interval. */
1061
            node->value[node->keys - 1] += count;
1090
            node->value[node->keys - 1] += count;
1062
            return 1;
1091
            return 1;
1063
        } else if (page + count*PAGE_SIZE == right_pg) {
1092
        } else if (page + count*PAGE_SIZE == right_pg) {
1064
            /*
1093
            /*
1065
             * The interval can be addded by simply moving base of the right
1094
             * The interval can be addded by simply moving base of the right
1066
             * interval down and increasing its size accordingly.
1095
             * interval down and increasing its size accordingly.
1067
             */
1096
             */
1068
            leaf->value[0] += count;
1097
            leaf->value[0] += count;
1069
            leaf->key[0] = page;
1098
            leaf->key[0] = page;
1070
            return 1;
1099
            return 1;
1071
        } else {
1100
        } else {
1072
            /*
1101
            /*
1073
             * The interval is between both neigbouring intervals,
1102
             * The interval is between both neigbouring intervals,
1074
             * but cannot be merged with any of them.
1103
             * but cannot be merged with any of them.
1075
             */
1104
             */
1076
            btree_insert(&a->used_space, page, (void *) count, leaf);
1105
            btree_insert(&a->used_space, page, (void *) count, leaf);
1077
            return 1;
1106
            return 1;
1078
        }
1107
        }
1079
    } else if (page < leaf->key[0]) {
1108
    } else if (page < leaf->key[0]) {
1080
        __address right_pg = leaf->key[0];
1109
        __address right_pg = leaf->key[0];
1081
        count_t right_cnt = (count_t) leaf->value[0];
1110
        count_t right_cnt = (count_t) leaf->value[0];
1082
   
1111
   
1083
        /*
1112
        /*
1084
         * Investigate the border case in which the left neighbour does not
1113
         * Investigate the border case in which the left neighbour does not
1085
         * exist but the interval fits from the left.
1114
         * exist but the interval fits from the left.
1086
         */
1115
         */
1087
         
1116
         
1088
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1117
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1089
            /* The interval intersects with the right interval. */
1118
            /* The interval intersects with the right interval. */
1090
            return 0;
1119
            return 0;
1091
        } else if (page + count*PAGE_SIZE == right_pg) {
1120
        } else if (page + count*PAGE_SIZE == right_pg) {
1092
            /*
1121
            /*
1093
             * The interval can be added by moving the base of the right interval down
1122
             * The interval can be added by moving the base of the right interval down
1094
             * and increasing its size accordingly.
1123
             * and increasing its size accordingly.
1095
             */
1124
             */
1096
            leaf->key[0] = page;
1125
            leaf->key[0] = page;
1097
            leaf->value[0] += count;
1126
            leaf->value[0] += count;
1098
            return 1;
1127
            return 1;
1099
        } else {
1128
        } else {
1100
            /*
1129
            /*
1101
             * The interval doesn't adjoin with the right interval.
1130
             * The interval doesn't adjoin with the right interval.
1102
             * It must be added individually.
1131
             * It must be added individually.
1103
             */
1132
             */
1104
            btree_insert(&a->used_space, page, (void *) count, leaf);
1133
            btree_insert(&a->used_space, page, (void *) count, leaf);
1105
            return 1;
1134
            return 1;
1106
        }
1135
        }
1107
    }
1136
    }
1108
 
1137
 
1109
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1138
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1110
    if (node) {
1139
    if (node) {
1111
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1140
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1112
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1141
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1113
       
1142
       
1114
        /*
1143
        /*
1115
         * Examine the possibility that the interval fits
1144
         * Examine the possibility that the interval fits
1116
         * somewhere between the leftmost interval of
1145
         * somewhere between the leftmost interval of
1117
         * the right neigbour and the last interval of the leaf.
1146
         * the right neigbour and the last interval of the leaf.
1118
         */
1147
         */
1119
 
1148
 
1120
        if (page < left_pg) {
1149
        if (page < left_pg) {
1121
            /* Do nothing. */
1150
            /* Do nothing. */
1122
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1151
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1123
            /* The interval intersects with the left interval. */
1152
            /* The interval intersects with the left interval. */
1124
            return 0;
1153
            return 0;
1125
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1154
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1126
            /* The interval intersects with the right interval. */
1155
            /* The interval intersects with the right interval. */
1127
            return 0;          
1156
            return 0;          
1128
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1157
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1129
            /* The interval can be added by merging the two already present intervals. */
1158
            /* The interval can be added by merging the two already present intervals. */
1130
            leaf->value[leaf->keys - 1] += count + right_cnt;
1159
            leaf->value[leaf->keys - 1] += count + right_cnt;
1131
            btree_remove(&a->used_space, right_pg, node);
1160
            btree_remove(&a->used_space, right_pg, node);
1132
            return 1;
1161
            return 1;
1133
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1162
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1134
            /* The interval can be added by simply growing the left interval. */
1163
            /* The interval can be added by simply growing the left interval. */
1135
            leaf->value[leaf->keys - 1] +=  count;
1164
            leaf->value[leaf->keys - 1] +=  count;
1136
            return 1;
1165
            return 1;
1137
        } else if (page + count*PAGE_SIZE == right_pg) {
1166
        } else if (page + count*PAGE_SIZE == right_pg) {
1138
            /*
1167
            /*
1139
             * The interval can be addded by simply moving base of the right
1168
             * The interval can be addded by simply moving base of the right
1140
             * interval down and increasing its size accordingly.
1169
             * interval down and increasing its size accordingly.
1141
             */
1170
             */
1142
            node->value[0] += count;
1171
            node->value[0] += count;
1143
            node->key[0] = page;
1172
            node->key[0] = page;
1144
            return 1;
1173
            return 1;
1145
        } else {
1174
        } else {
1146
            /*
1175
            /*
1147
             * The interval is between both neigbouring intervals,
1176
             * The interval is between both neigbouring intervals,
1148
             * but cannot be merged with any of them.
1177
             * but cannot be merged with any of them.
1149
             */
1178
             */
1150
            btree_insert(&a->used_space, page, (void *) count, leaf);
1179
            btree_insert(&a->used_space, page, (void *) count, leaf);
1151
            return 1;
1180
            return 1;
1152
        }
1181
        }
1153
    } else if (page >= leaf->key[leaf->keys - 1]) {
1182
    } else if (page >= leaf->key[leaf->keys - 1]) {
1154
        __address left_pg = leaf->key[leaf->keys - 1];
1183
        __address left_pg = leaf->key[leaf->keys - 1];
1155
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1184
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1156
   
1185
   
1157
        /*
1186
        /*
1158
         * Investigate the border case in which the right neighbour does not
1187
         * Investigate the border case in which the right neighbour does not
1159
         * exist but the interval fits from the right.
1188
         * exist but the interval fits from the right.
1160
         */
1189
         */
1161
         
1190
         
1162
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1191
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1163
            /* The interval intersects with the left interval. */
1192
            /* The interval intersects with the left interval. */
1164
            return 0;
1193
            return 0;
1165
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1194
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1166
            /* The interval can be added by growing the left interval. */
1195
            /* The interval can be added by growing the left interval. */
1167
            leaf->value[leaf->keys - 1] += count;
1196
            leaf->value[leaf->keys - 1] += count;
1168
            return 1;
1197
            return 1;
1169
        } else {
1198
        } else {
1170
            /*
1199
            /*
1171
             * The interval doesn't adjoin with the left interval.
1200
             * The interval doesn't adjoin with the left interval.
1172
             * It must be added individually.
1201
             * It must be added individually.
1173
             */
1202
             */
1174
            btree_insert(&a->used_space, page, (void *) count, leaf);
1203
            btree_insert(&a->used_space, page, (void *) count, leaf);
1175
            return 1;
1204
            return 1;
1176
        }
1205
        }
1177
    }
1206
    }
1178
   
1207
   
1179
    /*
1208
    /*
1180
     * Note that if the algorithm made it thus far, the interval can fit only
1209
     * Note that if the algorithm made it thus far, the interval can fit only
1181
     * between two other intervals of the leaf. The two border cases were already
1210
     * between two other intervals of the leaf. The two border cases were already
1182
     * resolved.
1211
     * resolved.
1183
     */
1212
     */
1184
    for (i = 1; i < leaf->keys; i++) {
1213
    for (i = 1; i < leaf->keys; i++) {
1185
        if (page < leaf->key[i]) {
1214
        if (page < leaf->key[i]) {
1186
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1215
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1187
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1216
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1188
 
1217
 
1189
            /*
1218
            /*
1190
             * The interval fits between left_pg and right_pg.
1219
             * The interval fits between left_pg and right_pg.
1191
             */
1220
             */
1192
 
1221
 
1193
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1222
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1194
                /* The interval intersects with the left interval. */
1223
                /* The interval intersects with the left interval. */
1195
                return 0;
1224
                return 0;
1196
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1225
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1197
                /* The interval intersects with the right interval. */
1226
                /* The interval intersects with the right interval. */
1198
                return 0;          
1227
                return 0;          
1199
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1228
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1200
                /* The interval can be added by merging the two already present intervals. */
1229
                /* The interval can be added by merging the two already present intervals. */
1201
                leaf->value[i - 1] += count + right_cnt;
1230
                leaf->value[i - 1] += count + right_cnt;
1202
                btree_remove(&a->used_space, right_pg, leaf);
1231
                btree_remove(&a->used_space, right_pg, leaf);
1203
                return 1;
1232
                return 1;
1204
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1233
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1205
                /* The interval can be added by simply growing the left interval. */
1234
                /* The interval can be added by simply growing the left interval. */
1206
                leaf->value[i - 1] += count;
1235
                leaf->value[i - 1] += count;
1207
                return 1;
1236
                return 1;
1208
            } else if (page + count*PAGE_SIZE == right_pg) {
1237
            } else if (page + count*PAGE_SIZE == right_pg) {
1209
                /*
1238
                /*
1210
                     * The interval can be addded by simply moving base of the right
1239
                     * The interval can be addded by simply moving base of the right
1211
                 * interval down and increasing its size accordingly.
1240
                 * interval down and increasing its size accordingly.
1212
                 */
1241
                 */
1213
                leaf->value[i] += count;
1242
                leaf->value[i] += count;
1214
                leaf->key[i] = page;
1243
                leaf->key[i] = page;
1215
                return 1;
1244
                return 1;
1216
            } else {
1245
            } else {
1217
                /*
1246
                /*
1218
                 * The interval is between both neigbouring intervals,
1247
                 * The interval is between both neigbouring intervals,
1219
                 * but cannot be merged with any of them.
1248
                 * but cannot be merged with any of them.
1220
                 */
1249
                 */
1221
                btree_insert(&a->used_space, page, (void *) count, leaf);
1250
                btree_insert(&a->used_space, page, (void *) count, leaf);
1222
                return 1;
1251
                return 1;
1223
            }
1252
            }
1224
        }
1253
        }
1225
    }
1254
    }
1226
 
1255
 
1227
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1256
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1228
}
1257
}
1229
 
1258
 
1230
/** Mark portion of address space area as unused.
1259
/** Mark portion of address space area as unused.
1231
 *
1260
 *
1232
 * The address space area must be already locked.
1261
 * The address space area must be already locked.
1233
 *
1262
 *
1234
 * @param a Address space area.
1263
 * @param a Address space area.
1235
 * @param page First page to be marked.
1264
 * @param page First page to be marked.
1236
 * @param count Number of page to be marked.
1265
 * @param count Number of page to be marked.
1237
 *
1266
 *
1238
 * @return 0 on failure and 1 on success.
1267
 * @return 0 on failure and 1 on success.
1239
 */
1268
 */
1240
int used_space_remove(as_area_t *a, __address page, count_t count)
1269
int used_space_remove(as_area_t *a, __address page, count_t count)
1241
{
1270
{
1242
    btree_node_t *leaf, *node;
1271
    btree_node_t *leaf, *node;
1243
    count_t pages;
1272
    count_t pages;
1244
    int i;
1273
    int i;
1245
 
1274
 
1246
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1275
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1247
    ASSERT(count);
1276
    ASSERT(count);
1248
 
1277
 
1249
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1278
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1250
    if (pages) {
1279
    if (pages) {
1251
        /*
1280
        /*
1252
         * We are lucky, page is the beginning of some interval.
1281
         * We are lucky, page is the beginning of some interval.
1253
         */
1282
         */
1254
        if (count > pages) {
1283
        if (count > pages) {
1255
            return 0;
1284
            return 0;
1256
        } else if (count == pages) {
1285
        } else if (count == pages) {
1257
            btree_remove(&a->used_space, page, leaf);
1286
            btree_remove(&a->used_space, page, leaf);
1258
            return 1;
1287
            return 1;
1259
        } else {
1288
        } else {
1260
            /*
1289
            /*
1261
             * Find the respective interval.
1290
             * Find the respective interval.
1262
             * Decrease its size and relocate its start address.
1291
             * Decrease its size and relocate its start address.
1263
             */
1292
             */
1264
            for (i = 0; i < leaf->keys; i++) {
1293
            for (i = 0; i < leaf->keys; i++) {
1265
                if (leaf->key[i] == page) {
1294
                if (leaf->key[i] == page) {
1266
                    leaf->key[i] += count*PAGE_SIZE;
1295
                    leaf->key[i] += count*PAGE_SIZE;
1267
                    leaf->value[i] -= count;
1296
                    leaf->value[i] -= count;
1268
                    return 1;
1297
                    return 1;
1269
                }
1298
                }
1270
            }
1299
            }
1271
            goto error;
1300
            goto error;
1272
        }
1301
        }
1273
    }
1302
    }
1274
 
1303
 
1275
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1304
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1276
    if (node && page < leaf->key[0]) {
1305
    if (node && page < leaf->key[0]) {
1277
        __address left_pg = node->key[node->keys - 1];
1306
        __address left_pg = node->key[node->keys - 1];
1278
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1307
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1279
 
1308
 
1280
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1309
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1281
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1310
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1282
                /*
1311
                /*
1283
                 * The interval is contained in the rightmost interval
1312
                 * The interval is contained in the rightmost interval
1284
                 * of the left neighbour and can be removed by
1313
                 * of the left neighbour and can be removed by
1285
                 * updating the size of the bigger interval.
1314
                 * updating the size of the bigger interval.
1286
                 */
1315
                 */
1287
                node->value[node->keys - 1] -= count;
1316
                node->value[node->keys - 1] -= count;
1288
                return 1;
1317
                return 1;
1289
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1318
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1290
                count_t new_cnt;
1319
                count_t new_cnt;
1291
               
1320
               
1292
                /*
1321
                /*
1293
                 * The interval is contained in the rightmost interval
1322
                 * The interval is contained in the rightmost interval
1294
                 * of the left neighbour but its removal requires
1323
                 * of the left neighbour but its removal requires
1295
                 * both updating the size of the original interval and
1324
                 * both updating the size of the original interval and
1296
                 * also inserting a new interval.
1325
                 * also inserting a new interval.
1297
                 */
1326
                 */
1298
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1327
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1299
                node->value[node->keys - 1] -= count + new_cnt;
1328
                node->value[node->keys - 1] -= count + new_cnt;
1300
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1329
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1301
                return 1;
1330
                return 1;
1302
            }
1331
            }
1303
        }
1332
        }
1304
        return 0;
1333
        return 0;
1305
    } else if (page < leaf->key[0]) {
1334
    } else if (page < leaf->key[0]) {
1306
        return 0;
1335
        return 0;
1307
    }
1336
    }
1308
   
1337
   
1309
    if (page > leaf->key[leaf->keys - 1]) {
1338
    if (page > leaf->key[leaf->keys - 1]) {
1310
        __address left_pg = leaf->key[leaf->keys - 1];
1339
        __address left_pg = leaf->key[leaf->keys - 1];
1311
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1340
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1312
 
1341
 
1313
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1342
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1314
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1343
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1315
                /*
1344
                /*
1316
                 * The interval is contained in the rightmost interval
1345
                 * The interval is contained in the rightmost interval
1317
                 * of the leaf and can be removed by updating the size
1346
                 * of the leaf and can be removed by updating the size
1318
                 * of the bigger interval.
1347
                 * of the bigger interval.
1319
                 */
1348
                 */
1320
                leaf->value[leaf->keys - 1] -= count;
1349
                leaf->value[leaf->keys - 1] -= count;
1321
                return 1;
1350
                return 1;
1322
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1351
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1323
                count_t new_cnt;
1352
                count_t new_cnt;
1324
               
1353
               
1325
                /*
1354
                /*
1326
                 * The interval is contained in the rightmost interval
1355
                 * The interval is contained in the rightmost interval
1327
                 * of the leaf but its removal requires both updating
1356
                 * of the leaf but its removal requires both updating
1328
                 * the size of the original interval and
1357
                 * the size of the original interval and
1329
                 * also inserting a new interval.
1358
                 * also inserting a new interval.
1330
                 */
1359
                 */
1331
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1360
                new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1332
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1361
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1333
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1362
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1334
                return 1;
1363
                return 1;
1335
            }
1364
            }
1336
        }
1365
        }
1337
        return 0;
1366
        return 0;
1338
    }  
1367
    }  
1339
   
1368
   
1340
    /*
1369
    /*
1341
     * The border cases have been already resolved.
1370
     * The border cases have been already resolved.
1342
     * Now the interval can be only between intervals of the leaf.
1371
     * Now the interval can be only between intervals of the leaf.
1343
     */
1372
     */
1344
    for (i = 1; i < leaf->keys - 1; i++) {
1373
    for (i = 1; i < leaf->keys - 1; i++) {
1345
        if (page < leaf->key[i]) {
1374
        if (page < leaf->key[i]) {
1346
            __address left_pg = leaf->key[i - 1];
1375
            __address left_pg = leaf->key[i - 1];
1347
            count_t left_cnt = (count_t) leaf->value[i - 1];
1376
            count_t left_cnt = (count_t) leaf->value[i - 1];
1348
 
1377
 
1349
            /*
1378
            /*
1350
             * Now the interval is between intervals corresponding to (i - 1) and i.
1379
             * Now the interval is between intervals corresponding to (i - 1) and i.
1351
             */
1380
             */
1352
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1381
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1353
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1382
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1354
                    /*
1383
                    /*
1355
                    * The interval is contained in the interval (i - 1)
1384
                    * The interval is contained in the interval (i - 1)
1356
                     * of the leaf and can be removed by updating the size
1385
                     * of the leaf and can be removed by updating the size
1357
                     * of the bigger interval.
1386
                     * of the bigger interval.
1358
                     */
1387
                     */
1359
                    leaf->value[i - 1] -= count;
1388
                    leaf->value[i - 1] -= count;
1360
                    return 1;
1389
                    return 1;
1361
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1390
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1362
                    count_t new_cnt;
1391
                    count_t new_cnt;
1363
               
1392
               
1364
                    /*
1393
                    /*
1365
                     * The interval is contained in the interval (i - 1)
1394
                     * The interval is contained in the interval (i - 1)
1366
                     * of the leaf but its removal requires both updating
1395
                     * of the leaf but its removal requires both updating
1367
                     * the size of the original interval and
1396
                     * the size of the original interval and
1368
                     * also inserting a new interval.
1397
                     * also inserting a new interval.
1369
                     */
1398
                     */
1370
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1399
                    new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1371
                    leaf->value[i - 1] -= count + new_cnt;
1400
                    leaf->value[i - 1] -= count + new_cnt;
1372
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1401
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1373
                    return 1;
1402
                    return 1;
1374
                }
1403
                }
1375
            }
1404
            }
1376
            return 0;
1405
            return 0;
1377
        }
1406
        }
1378
    }
1407
    }
1379
 
1408
 
1380
error:
1409
error:
1381
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1410
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1382
}
1411
}
1383
 
1412
 
-
 
1413
/** Remove reference to address space area share info.
-
 
1414
 *
-
 
1415
 * If the reference count drops to 0, the sh_info is deallocated.
-
 
1416
 *
-
 
1417
 * @param sh_info Pointer to address space area share info.
-
 
1418
 */
-
 
1419
void sh_info_remove_reference(share_info_t *sh_info)
-
 
1420
{
-
 
1421
    bool dealloc = false;
-
 
1422
 
-
 
1423
    mutex_lock(&sh_info->lock);
-
 
1424
    ASSERT(sh_info->refcount);
-
 
1425
    if (--sh_info->refcount == 0) {
-
 
1426
        dealloc = true;
-
 
1427
        bool cond;
-
 
1428
       
-
 
1429
        /*
-
 
1430
         * Now walk carefully the pagemap B+tree and free/remove
-
 
1431
         * reference from all frames found there.
-
 
1432
         */
-
 
1433
        for (cond = true; cond;) {
-
 
1434
            btree_node_t *node;
-
 
1435
           
-
 
1436
            ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
-
 
1437
            node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
-
 
1438
            if ((cond = node->keys)) {
-
 
1439
                frame_free(ADDR2PFN((__address) node->value[0]));
-
 
1440
                btree_remove(&sh_info->pagemap, node->key[0], node);
-
 
1441
            }
-
 
1442
        }
-
 
1443
       
-
 
1444
    }
-
 
1445
    mutex_unlock(&sh_info->lock);
-
 
1446
   
-
 
1447
    if (dealloc) {
-
 
1448
        btree_destroy(&sh_info->pagemap);
-
 
1449
        free(sh_info);
-
 
1450
    }
-
 
1451
}
-
 
1452
 
-
 
1453
static int anon_page_fault(as_area_t *area, __address addr);
-
 
1454
static void anon_frame_free(as_area_t *area, __address page, __address frame);
-
 
1455
 
-
 
1456
/*
-
 
1457
 * Anonymous memory backend.
-
 
1458
 */
-
 
1459
mem_backend_t anon_backend = {
-
 
1460
    .backend_page_fault = anon_page_fault,
-
 
1461
    .backend_frame_free = anon_frame_free
-
 
1462
};
-
 
1463
 
-
 
1464
/** Service a page fault in the anonymous memory address space area.
-
 
1465
 *
-
 
1466
 * The address space area and page tables must be already locked.
-
 
1467
 *
-
 
1468
 * @param area Pointer to the address space area.
-
 
1469
 * @param addr Faulting virtual address.
-
 
1470
 *
-
 
1471
 * @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
-
 
1472
 */
-
 
1473
int anon_page_fault(as_area_t *area, __address addr)
-
 
1474
{
-
 
1475
    __address frame;
-
 
1476
 
-
 
1477
    if (area->sh_info) {
-
 
1478
        btree_node_t *leaf;
-
 
1479
       
-
 
1480
        /*
-
 
1481
         * The area is shared, chances are that the mapping can be found
-
 
1482
         * in the pagemap of the address space area share info structure.
-
 
1483
         * In the case that the pagemap does not contain the respective
-
 
1484
         * mapping, a new frame is allocated and the mapping is created.
-
 
1485
         */
-
 
1486
        mutex_lock(&area->sh_info->lock);
-
 
1487
        frame = (__address) btree_search(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE), &leaf);
-
 
1488
        if (!frame) {
-
 
1489
            bool allocate = true;
-
 
1490
            int i;
-
 
1491
           
-
 
1492
            /*
-
 
1493
             * Zero can be returned as a valid frame address.
-
 
1494
             * Just a small workaround.
-
 
1495
             */
-
 
1496
            for (i = 0; i < leaf->keys; i++) {
-
 
1497
                if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
-
 
1498
                    allocate = false;
-
 
1499
                    break;
-
 
1500
                }
-
 
1501
            }
-
 
1502
            if (allocate) {
-
 
1503
                frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
-
 
1504
                memsetb(PA2KA(frame), FRAME_SIZE, 0);
-
 
1505
               
-
 
1506
                /*
-
 
1507
                 * Insert the address of the newly allocated frame to the pagemap.
-
 
1508
                 */
-
 
1509
                btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE), (void *) frame, leaf);
-
 
1510
            }
-
 
1511
        }
-
 
1512
        mutex_unlock(&area->sh_info->lock);
-
 
1513
    } else {
-
 
1514
 
-
 
1515
        /*
-
 
1516
         * In general, there can be several reasons that
-
 
1517
         * can have caused this fault.
-
 
1518
         *
-
 
1519
         * - non-existent mapping: the area is an anonymous
-
 
1520
         *   area (e.g. heap or stack) and so far has not been
-
 
1521
         *   allocated a frame for the faulting page
-
 
1522
         *
-
 
1523
         * - non-present mapping: another possibility,
-
 
1524
         *   currently not implemented, would be frame
-
 
1525
         *   reuse; when this becomes a possibility,
-
 
1526
         *   do not forget to distinguish between
-
 
1527
         *   the different causes
-
 
1528
         */
-
 
1529
        frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
-
 
1530
        memsetb(PA2KA(frame), FRAME_SIZE, 0);
-
 
1531
    }
-
 
1532
   
-
 
1533
    /*
-
 
1534
     * Map 'page' to 'frame'.
-
 
1535
     * Note that TLB shootdown is not attempted as only new information is being
-
 
1536
     * inserted into page tables.
-
 
1537
     */
-
 
1538
    page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
-
 
1539
    if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
-
 
1540
        panic("Could not insert used space.\n");
-
 
1541
       
-
 
1542
    return AS_PF_OK;
-
 
1543
}
-
 
1544
 
-
 
1545
/** Free a frame that is backed by the anonymous memory backend.
-
 
1546
 *
-
 
1547
 * The address space area and page tables must be already locked.
-
 
1548
 *
-
 
1549
 * @param area Ignored.
-
 
1550
 * @param page Ignored.
-
 
1551
 * @param frame Frame to be released.
-
 
1552
 */
-
 
1553
void anon_frame_free(as_area_t *area, __address page, __address frame)
-
 
1554
{
-
 
1555
    frame_free(ADDR2PFN(frame));
-
 
1556
}
-
 
1557
 
1384
/*
1558
/*
1385
 * Address space related syscalls.
1559
 * Address space related syscalls.
1386
 */
1560
 */
1387
 
1561
 
1388
/** Wrapper for as_area_create(). */
1562
/** Wrapper for as_area_create(). */
1389
__native sys_as_area_create(__address address, size_t size, int flags)
1563
__native sys_as_area_create(__address address, size_t size, int flags)
1390
{
1564
{
1391
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE))
1565
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1392
        return (__native) address;
1566
        return (__native) address;
1393
    else
1567
    else
1394
        return (__native) -1;
1568
        return (__native) -1;
1395
}
1569
}
1396
 
1570
 
1397
/** Wrapper for as_area_resize. */
1571
/** Wrapper for as_area_resize. */
1398
__native sys_as_area_resize(__address address, size_t size, int flags)
1572
__native sys_as_area_resize(__address address, size_t size, int flags)
1399
{
1573
{
1400
    return (__native) as_area_resize(AS, address, size, 0);
1574
    return (__native) as_area_resize(AS, address, size, 0);
1401
}
1575
}
1402
 
1576
 
1403
/** Wrapper for as_area_destroy. */
1577
/** Wrapper for as_area_destroy. */
1404
__native sys_as_area_destroy(__address address)
1578
__native sys_as_area_destroy(__address address)
1405
{
1579
{
1406
    return (__native) as_area_destroy(AS, address);
1580
    return (__native) as_area_destroy(AS, address);
1407
}
1581
}
1408
 
1582