Subversion Repositories HelenOS-historic

Rev

Rev 1383 | Rev 1403 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1383 Rev 1387
1
/*
1
/*
2
 * Copyright (C) 2001-2006 Jakub Jermar
2
 * Copyright (C) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/**
29
/**
30
 * @file    as.c
30
 * @file    as.c
31
 * @brief   Address space related functions.
31
 * @brief   Address space related functions.
32
 *
32
 *
33
 * This file contains address space manipulation functions.
33
 * This file contains address space manipulation functions.
34
 * Roughly speaking, this is a higher-level client of
34
 * Roughly speaking, this is a higher-level client of
35
 * Virtual Address Translation (VAT) subsystem.
35
 * Virtual Address Translation (VAT) subsystem.
36
 *
36
 *
37
 * Functionality provided by this file allows one to
37
 * Functionality provided by this file allows one to
38
 * create address space and create, resize and share
38
 * create address space and create, resize and share
39
 * address space areas.
39
 * address space areas.
40
 *
40
 *
41
 * @see page.c
41
 * @see page.c
42
 *
42
 *
43
 */
43
 */
44
 
44
 
45
#include <mm/as.h>
45
#include <mm/as.h>
46
#include <arch/mm/as.h>
46
#include <arch/mm/as.h>
47
#include <mm/page.h>
47
#include <mm/page.h>
48
#include <mm/frame.h>
48
#include <mm/frame.h>
49
#include <mm/slab.h>
49
#include <mm/slab.h>
50
#include <mm/tlb.h>
50
#include <mm/tlb.h>
51
#include <arch/mm/page.h>
51
#include <arch/mm/page.h>
52
#include <genarch/mm/page_pt.h>
52
#include <genarch/mm/page_pt.h>
53
#include <genarch/mm/page_ht.h>
53
#include <genarch/mm/page_ht.h>
54
#include <mm/asid.h>
54
#include <mm/asid.h>
55
#include <arch/mm/asid.h>
55
#include <arch/mm/asid.h>
56
#include <synch/spinlock.h>
56
#include <synch/spinlock.h>
57
#include <synch/mutex.h>
57
#include <synch/mutex.h>
58
#include <adt/list.h>
58
#include <adt/list.h>
59
#include <adt/btree.h>
59
#include <adt/btree.h>
60
#include <proc/task.h>
60
#include <proc/task.h>
61
#include <proc/thread.h>
61
#include <proc/thread.h>
62
#include <arch/asm.h>
62
#include <arch/asm.h>
63
#include <panic.h>
63
#include <panic.h>
64
#include <debug.h>
64
#include <debug.h>
65
#include <print.h>
65
#include <print.h>
66
#include <memstr.h>
66
#include <memstr.h>
67
#include <macros.h>
67
#include <macros.h>
68
#include <arch.h>
68
#include <arch.h>
69
#include <errno.h>
69
#include <errno.h>
70
#include <config.h>
70
#include <config.h>
-
 
71
#include <align.h>
71
#include <arch/types.h>
72
#include <arch/types.h>
72
#include <typedefs.h>
73
#include <typedefs.h>
73
#include <syscall/copy.h>
74
#include <syscall/copy.h>
74
#include <arch/interrupt.h>
75
#include <arch/interrupt.h>
75
 
76
 
76
as_operations_t *as_operations = NULL;
77
as_operations_t *as_operations = NULL;
77
 
78
 
78
/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
79
/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
79
SPINLOCK_INITIALIZE(as_lock);
80
SPINLOCK_INITIALIZE(as_lock);
80
 
81
 
81
/**
82
/**
82
 * This list contains address spaces that are not active on any
83
 * This list contains address spaces that are not active on any
83
 * processor and that have valid ASID.
84
 * processor and that have valid ASID.
84
 */
85
 */
85
LIST_INITIALIZE(inactive_as_with_asid_head);
86
LIST_INITIALIZE(inactive_as_with_asid_head);
86
 
87
 
87
/** Kernel address space. */
88
/** Kernel address space. */
88
as_t *AS_KERNEL = NULL;
89
as_t *AS_KERNEL = NULL;
89
 
90
 
90
static int area_flags_to_page_flags(int aflags);
91
static int area_flags_to_page_flags(int aflags);
91
static int get_area_flags(as_area_t *a);
92
static int get_area_flags(as_area_t *a);
92
static as_area_t *find_area_and_lock(as_t *as, __address va);
93
static as_area_t *find_area_and_lock(as_t *as, __address va);
93
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
94
static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
-
 
95
int used_space_insert(as_area_t *a, __address page, count_t count);
-
 
96
int used_space_remove(as_area_t *a, __address page, count_t count);
94
 
97
 
95
/** Initialize address space subsystem. */
98
/** Initialize address space subsystem. */
96
void as_init(void)
99
void as_init(void)
97
{
100
{
98
    as_arch_init();
101
    as_arch_init();
99
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
102
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
100
    if (!AS_KERNEL)
103
    if (!AS_KERNEL)
101
        panic("can't create kernel address space\n");
104
        panic("can't create kernel address space\n");
102
   
105
   
103
}
106
}
104
 
107
 
105
/** Create address space.
108
/** Create address space.
106
 *
109
 *
107
 * @param flags Flags that influence way in wich the address space is created.
110
 * @param flags Flags that influence way in wich the address space is created.
108
 */
111
 */
109
as_t *as_create(int flags)
112
as_t *as_create(int flags)
110
{
113
{
111
    as_t *as;
114
    as_t *as;
112
 
115
 
113
    as = (as_t *) malloc(sizeof(as_t), 0);
116
    as = (as_t *) malloc(sizeof(as_t), 0);
114
    link_initialize(&as->inactive_as_with_asid_link);
117
    link_initialize(&as->inactive_as_with_asid_link);
115
    mutex_initialize(&as->lock);
118
    mutex_initialize(&as->lock);
116
    btree_create(&as->as_area_btree);
119
    btree_create(&as->as_area_btree);
117
   
120
   
118
    if (flags & FLAG_AS_KERNEL)
121
    if (flags & FLAG_AS_KERNEL)
119
        as->asid = ASID_KERNEL;
122
        as->asid = ASID_KERNEL;
120
    else
123
    else
121
        as->asid = ASID_INVALID;
124
        as->asid = ASID_INVALID;
122
   
125
   
123
    as->refcount = 0;
126
    as->refcount = 0;
124
    as->page_table = page_table_create(flags);
127
    as->page_table = page_table_create(flags);
125
 
128
 
126
    return as;
129
    return as;
127
}
130
}
128
 
131
 
129
/** Free Adress space */
132
/** Free Adress space */
130
void as_free(as_t *as)
133
void as_free(as_t *as)
131
{
134
{
132
    ASSERT(as->refcount == 0);
135
    ASSERT(as->refcount == 0);
133
 
136
 
134
    /* TODO: free as_areas and other resources held by as */
137
    /* TODO: free as_areas and other resources held by as */
135
    /* TODO: free page table */
138
    /* TODO: free page table */
136
    free(as);
139
    free(as);
137
}
140
}
138
 
141
 
139
/** Create address space area of common attributes.
142
/** Create address space area of common attributes.
140
 *
143
 *
141
 * The created address space area is added to the target address space.
144
 * The created address space area is added to the target address space.
142
 *
145
 *
143
 * @param as Target address space.
146
 * @param as Target address space.
144
 * @param flags Flags of the area memory.
147
 * @param flags Flags of the area memory.
145
 * @param size Size of area.
148
 * @param size Size of area.
146
 * @param base Base address of area.
149
 * @param base Base address of area.
147
 * @param attrs Attributes of the area.
150
 * @param attrs Attributes of the area.
148
 *
151
 *
149
 * @return Address space area on success or NULL on failure.
152
 * @return Address space area on success or NULL on failure.
150
 */
153
 */
151
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs)
154
as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs)
152
{
155
{
153
    ipl_t ipl;
156
    ipl_t ipl;
154
    as_area_t *a;
157
    as_area_t *a;
155
   
158
   
156
    if (base % PAGE_SIZE)
159
    if (base % PAGE_SIZE)
157
        return NULL;
160
        return NULL;
158
 
161
 
159
    if (!size)
162
    if (!size)
160
        return NULL;
163
        return NULL;
161
 
164
 
162
    /* Writeable executable areas are not supported. */
165
    /* Writeable executable areas are not supported. */
163
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
166
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
164
        return NULL;
167
        return NULL;
165
   
168
   
166
    ipl = interrupts_disable();
169
    ipl = interrupts_disable();
167
    mutex_lock(&as->lock);
170
    mutex_lock(&as->lock);
168
   
171
   
169
    if (!check_area_conflicts(as, base, size, NULL)) {
172
    if (!check_area_conflicts(as, base, size, NULL)) {
170
        mutex_unlock(&as->lock);
173
        mutex_unlock(&as->lock);
171
        interrupts_restore(ipl);
174
        interrupts_restore(ipl);
172
        return NULL;
175
        return NULL;
173
    }
176
    }
174
   
177
   
175
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
178
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
176
 
179
 
177
    mutex_initialize(&a->lock);
180
    mutex_initialize(&a->lock);
178
   
181
   
179
    a->flags = flags;
182
    a->flags = flags;
180
    a->attributes = attrs;
183
    a->attributes = attrs;
181
    a->pages = SIZE2FRAMES(size);
184
    a->pages = SIZE2FRAMES(size);
182
    a->base = base;
185
    a->base = base;
-
 
186
    btree_create(&a->used_space);
183
   
187
   
184
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
188
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
185
 
189
 
186
    mutex_unlock(&as->lock);
190
    mutex_unlock(&as->lock);
187
    interrupts_restore(ipl);
191
    interrupts_restore(ipl);
188
 
192
 
189
    return a;
193
    return a;
190
}
194
}
191
 
195
 
192
/** Find address space area and change it.
196
/** Find address space area and change it.
193
 *
197
 *
194
 * @param as Address space.
198
 * @param as Address space.
195
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
199
 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
196
 * @param size New size of the virtual memory block starting at address.
200
 * @param size New size of the virtual memory block starting at address.
197
 * @param flags Flags influencing the remap operation. Currently unused.
201
 * @param flags Flags influencing the remap operation. Currently unused.
198
 *
202
 *
199
 * @return Zero on success or a value from @ref errno.h otherwise.
203
 * @return Zero on success or a value from @ref errno.h otherwise.
200
 */
204
 */
201
int as_area_resize(as_t *as, __address address, size_t size, int flags)
205
int as_area_resize(as_t *as, __address address, size_t size, int flags)
202
{
206
{
203
    as_area_t *area;
207
    as_area_t *area;
204
    ipl_t ipl;
208
    ipl_t ipl;
205
    size_t pages;
209
    size_t pages;
206
   
210
   
207
    ipl = interrupts_disable();
211
    ipl = interrupts_disable();
208
    mutex_lock(&as->lock);
212
    mutex_lock(&as->lock);
209
   
213
   
210
    /*
214
    /*
211
     * Locate the area.
215
     * Locate the area.
212
     */
216
     */
213
    area = find_area_and_lock(as, address);
217
    area = find_area_and_lock(as, address);
214
    if (!area) {
218
    if (!area) {
215
        mutex_unlock(&as->lock);
219
        mutex_unlock(&as->lock);
216
        interrupts_restore(ipl);
220
        interrupts_restore(ipl);
217
        return ENOENT;
221
        return ENOENT;
218
    }
222
    }
219
 
223
 
220
    if (area->flags & AS_AREA_DEVICE) {
224
    if (area->flags & AS_AREA_DEVICE) {
221
        /*
225
        /*
222
         * Remapping of address space areas associated
226
         * Remapping of address space areas associated
223
         * with memory mapped devices is not supported.
227
         * with memory mapped devices is not supported.
224
         */
228
         */
225
        mutex_unlock(&area->lock);
229
        mutex_unlock(&area->lock);
226
        mutex_unlock(&as->lock);
230
        mutex_unlock(&as->lock);
227
        interrupts_restore(ipl);
231
        interrupts_restore(ipl);
228
        return ENOTSUP;
232
        return ENOTSUP;
229
    }
233
    }
230
 
234
 
231
    pages = SIZE2FRAMES((address - area->base) + size);
235
    pages = SIZE2FRAMES((address - area->base) + size);
232
    if (!pages) {
236
    if (!pages) {
233
        /*
237
        /*
234
         * Zero size address space areas are not allowed.
238
         * Zero size address space areas are not allowed.
235
         */
239
         */
236
        mutex_unlock(&area->lock);
240
        mutex_unlock(&area->lock);
237
        mutex_unlock(&as->lock);
241
        mutex_unlock(&as->lock);
238
        interrupts_restore(ipl);
242
        interrupts_restore(ipl);
239
        return EPERM;
243
        return EPERM;
240
    }
244
    }
241
   
245
   
242
    if (pages < area->pages) {
246
    if (pages < area->pages) {
243
        int i;
247
        int i;
244
 
248
 
245
        /*
249
        /*
246
         * Shrinking the area.
250
         * Shrinking the area.
247
         * No need to check for overlaps.
251
         * No need to check for overlaps.
248
         */
252
         */
249
        for (i = pages; i < area->pages; i++) {
253
        for (i = pages; i < area->pages; i++) {
250
            pte_t *pte;
254
            pte_t *pte;
251
           
255
           
252
            /*
256
            /*
253
             * Releasing physical memory.
257
             * Releasing physical memory.
254
             * This depends on the fact that the memory was allocated using frame_alloc().
258
             * This depends on the fact that the memory was allocated using frame_alloc().
255
             */
259
             */
256
            page_table_lock(as, false);
260
            page_table_lock(as, false);
257
            pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
261
            pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
258
            if (pte && PTE_VALID(pte)) {
262
            if (pte && PTE_VALID(pte)) {
259
                __address frame;
263
                __address frame;
260
 
264
 
261
                ASSERT(PTE_PRESENT(pte));
265
                ASSERT(PTE_PRESENT(pte));
262
                frame = PTE_GET_FRAME(pte);
266
                frame = PTE_GET_FRAME(pte);
263
                page_mapping_remove(as, area->base + i*PAGE_SIZE);
267
                page_mapping_remove(as, area->base + i*PAGE_SIZE);
264
                page_table_unlock(as, false);
268
                page_table_unlock(as, false);
265
 
269
 
266
                frame_free(ADDR2PFN(frame));
270
                frame_free(ADDR2PFN(frame));
267
            } else {
271
            } else {
268
                page_table_unlock(as, false);
272
                page_table_unlock(as, false);
269
            }
273
            }
270
        }
274
        }
271
        /*
275
        /*
272
         * Invalidate TLB's.
276
         * Invalidate TLB's.
273
         */
277
         */
274
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
278
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
275
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
279
        tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
276
        tlb_shootdown_finalize();
280
        tlb_shootdown_finalize();
277
    } else {
281
    } else {
278
        /*
282
        /*
279
         * Growing the area.
283
         * Growing the area.
280
         * Check for overlaps with other address space areas.
284
         * Check for overlaps with other address space areas.
281
         */
285
         */
282
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
286
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
283
            mutex_unlock(&area->lock);
287
            mutex_unlock(&area->lock);
284
            mutex_unlock(&as->lock);       
288
            mutex_unlock(&as->lock);       
285
            interrupts_restore(ipl);
289
            interrupts_restore(ipl);
286
            return EADDRNOTAVAIL;
290
            return EADDRNOTAVAIL;
287
        }
291
        }
288
    }
292
    }
289
 
293
 
290
    area->pages = pages;
294
    area->pages = pages;
291
   
295
   
292
    mutex_unlock(&area->lock);
296
    mutex_unlock(&area->lock);
293
    mutex_unlock(&as->lock);
297
    mutex_unlock(&as->lock);
294
    interrupts_restore(ipl);
298
    interrupts_restore(ipl);
295
 
299
 
296
    return 0;
300
    return 0;
297
}
301
}
298
 
302
 
299
/** Destroy address space area.
303
/** Destroy address space area.
300
 *
304
 *
301
 * @param as Address space.
305
 * @param as Address space.
302
 * @param address Address withing the area to be deleted.
306
 * @param address Address withing the area to be deleted.
303
 *
307
 *
304
 * @return Zero on success or a value from @ref errno.h on failure.
308
 * @return Zero on success or a value from @ref errno.h on failure.
305
 */
309
 */
306
int as_area_destroy(as_t *as, __address address)
310
int as_area_destroy(as_t *as, __address address)
307
{
311
{
308
    as_area_t *area;
312
    as_area_t *area;
309
    __address base;
313
    __address base;
310
    ipl_t ipl;
314
    ipl_t ipl;
311
    int i;
315
    int i;
312
 
316
 
313
    ipl = interrupts_disable();
317
    ipl = interrupts_disable();
314
    mutex_lock(&as->lock);
318
    mutex_lock(&as->lock);
315
 
319
 
316
    area = find_area_and_lock(as, address);
320
    area = find_area_and_lock(as, address);
317
    if (!area) {
321
    if (!area) {
318
        mutex_unlock(&as->lock);
322
        mutex_unlock(&as->lock);
319
        interrupts_restore(ipl);
323
        interrupts_restore(ipl);
320
        return ENOENT;
324
        return ENOENT;
321
    }
325
    }
322
 
326
 
323
    base = area->base; 
327
    base = area->base; 
324
    for (i = 0; i < area->pages; i++) {
328
    for (i = 0; i < area->pages; i++) {
325
        pte_t *pte;
329
        pte_t *pte;
326
 
330
 
327
        /*
331
        /*
328
         * Releasing physical memory.
332
         * Releasing physical memory.
329
         * Areas mapping memory-mapped devices are treated differently than
333
         * Areas mapping memory-mapped devices are treated differently than
330
         * areas backing frame_alloc()'ed memory.
334
         * areas backing frame_alloc()'ed memory.
331
         */
335
         */
332
        page_table_lock(as, false);
336
        page_table_lock(as, false);
333
        pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
337
        pte = page_mapping_find(as, area->base + i*PAGE_SIZE);
334
        if (pte && PTE_VALID(pte)) {
338
        if (pte && PTE_VALID(pte)) {
335
            ASSERT(PTE_PRESENT(pte));
339
            ASSERT(PTE_PRESENT(pte));
336
            page_mapping_remove(as, area->base + i*PAGE_SIZE);
340
            page_mapping_remove(as, area->base + i*PAGE_SIZE);
337
            if (area->flags & AS_AREA_DEVICE) {
341
            if (area->flags & AS_AREA_DEVICE) {
338
                __address frame;
342
                __address frame;
339
                frame = PTE_GET_FRAME(pte);
343
                frame = PTE_GET_FRAME(pte);
340
                frame_free(ADDR2PFN(frame));
344
                frame_free(ADDR2PFN(frame));
341
            }
345
            }
342
            page_table_unlock(as, false);
346
            page_table_unlock(as, false);
343
        } else {
347
        } else {
344
            page_table_unlock(as, false);
348
            page_table_unlock(as, false);
345
        }
349
        }
346
    }
350
    }
347
    /*
351
    /*
348
     * Invalidate TLB's.
352
     * Invalidate TLB's.
349
     */
353
     */
350
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
354
    tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
351
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
355
    tlb_invalidate_pages(AS->asid, area->base, area->pages);
352
    tlb_shootdown_finalize();
356
    tlb_shootdown_finalize();
353
 
357
 
354
    area->attributes |= AS_AREA_ATTR_PARTIAL;
358
    area->attributes |= AS_AREA_ATTR_PARTIAL;
355
    mutex_unlock(&area->lock);
359
    mutex_unlock(&area->lock);
356
 
360
 
357
    /*
361
    /*
358
     * Remove the empty area from address space.
362
     * Remove the empty area from address space.
359
     */
363
     */
360
    btree_remove(&AS->as_area_btree, base, NULL);
364
    btree_remove(&AS->as_area_btree, base, NULL);
361
   
365
   
362
    free(area);
366
    free(area);
363
   
367
   
364
    mutex_unlock(&AS->lock);
368
    mutex_unlock(&AS->lock);
365
    interrupts_restore(ipl);
369
    interrupts_restore(ipl);
366
    return 0;
370
    return 0;
367
}
371
}
368
 
372
 
369
/** Steal address space area from another task.
373
/** Steal address space area from another task.
370
 *
374
 *
371
 * Address space area is stolen from another task
375
 * Address space area is stolen from another task
372
 * Moreover, any existing mapping
376
 * Moreover, any existing mapping
373
 * is copied as well, providing thus a mechanism
377
 * is copied as well, providing thus a mechanism
374
 * for sharing group of pages. The source address
378
 * for sharing group of pages. The source address
375
 * space area and any associated mapping is preserved.
379
 * space area and any associated mapping is preserved.
376
 *
380
 *
377
 * @param src_task Pointer of source task
381
 * @param src_task Pointer of source task
378
 * @param src_base Base address of the source address space area.
382
 * @param src_base Base address of the source address space area.
379
 * @param acc_size Expected size of the source area
383
 * @param acc_size Expected size of the source area
380
 * @param dst_base Target base address
384
 * @param dst_base Target base address
381
 *
385
 *
382
 * @return Zero on success or ENOENT if there is no such task or
386
 * @return Zero on success or ENOENT if there is no such task or
383
 *     if there is no such address space area,
387
 *     if there is no such address space area,
384
 *     EPERM if there was a problem in accepting the area or
388
 *     EPERM if there was a problem in accepting the area or
385
 *     ENOMEM if there was a problem in allocating destination
389
 *     ENOMEM if there was a problem in allocating destination
386
 *     address space area.
390
 *     address space area.
387
 */
391
 */
388
int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
392
int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
389
          __address dst_base)
393
          __address dst_base)
390
{
394
{
391
    ipl_t ipl;
395
    ipl_t ipl;
392
    count_t i;
396
    count_t i;
393
    as_t *src_as;      
397
    as_t *src_as;      
394
    int src_flags;
398
    int src_flags;
395
    size_t src_size;
399
    size_t src_size;
396
    as_area_t *src_area, *dst_area;
400
    as_area_t *src_area, *dst_area;
397
 
401
 
398
    ipl = interrupts_disable();
402
    ipl = interrupts_disable();
399
    spinlock_lock(&src_task->lock);
403
    spinlock_lock(&src_task->lock);
400
    src_as = src_task->as;
404
    src_as = src_task->as;
401
   
405
   
402
    mutex_lock(&src_as->lock);
406
    mutex_lock(&src_as->lock);
403
    src_area = find_area_and_lock(src_as, src_base);
407
    src_area = find_area_and_lock(src_as, src_base);
404
    if (!src_area) {
408
    if (!src_area) {
405
        /*
409
        /*
406
         * Could not find the source address space area.
410
         * Could not find the source address space area.
407
         */
411
         */
408
        spinlock_unlock(&src_task->lock);
412
        spinlock_unlock(&src_task->lock);
409
        mutex_unlock(&src_as->lock);
413
        mutex_unlock(&src_as->lock);
410
        interrupts_restore(ipl);
414
        interrupts_restore(ipl);
411
        return ENOENT;
415
        return ENOENT;
412
    }
416
    }
413
    src_size = src_area->pages * PAGE_SIZE;
417
    src_size = src_area->pages * PAGE_SIZE;
414
    src_flags = src_area->flags;
418
    src_flags = src_area->flags;
415
    mutex_unlock(&src_area->lock);
419
    mutex_unlock(&src_area->lock);
416
    mutex_unlock(&src_as->lock);
420
    mutex_unlock(&src_as->lock);
417
 
421
 
418
 
422
 
419
    if (src_size != acc_size) {
423
    if (src_size != acc_size) {
420
        spinlock_unlock(&src_task->lock);
424
        spinlock_unlock(&src_task->lock);
421
        interrupts_restore(ipl);
425
        interrupts_restore(ipl);
422
        return EPERM;
426
        return EPERM;
423
    }
427
    }
424
    /*
428
    /*
425
     * Create copy of the source address space area.
429
     * Create copy of the source address space area.
426
     * The destination area is created with AS_AREA_ATTR_PARTIAL
430
     * The destination area is created with AS_AREA_ATTR_PARTIAL
427
     * attribute set which prevents race condition with
431
     * attribute set which prevents race condition with
428
     * preliminary as_page_fault() calls.
432
     * preliminary as_page_fault() calls.
429
     */
433
     */
430
    dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL);
434
    dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL);
431
    if (!dst_area) {
435
    if (!dst_area) {
432
        /*
436
        /*
433
         * Destination address space area could not be created.
437
         * Destination address space area could not be created.
434
         */
438
         */
435
        spinlock_unlock(&src_task->lock);
439
        spinlock_unlock(&src_task->lock);
436
        interrupts_restore(ipl);
440
        interrupts_restore(ipl);
437
        return ENOMEM;
441
        return ENOMEM;
438
    }
442
    }
439
   
443
   
440
    spinlock_unlock(&src_task->lock);
444
    spinlock_unlock(&src_task->lock);
441
   
445
   
442
    /*
446
    /*
443
     * Avoid deadlock by first locking the address space with lower address.
447
     * Avoid deadlock by first locking the address space with lower address.
444
     */
448
     */
445
    if (AS < src_as) {
449
    if (AS < src_as) {
446
        mutex_lock(&AS->lock);
450
        mutex_lock(&AS->lock);
447
        mutex_lock(&src_as->lock);
451
        mutex_lock(&src_as->lock);
448
    } else {
452
    } else {
449
        mutex_lock(&AS->lock);
453
        mutex_lock(&AS->lock);
450
        mutex_lock(&src_as->lock);
454
        mutex_lock(&src_as->lock);
451
    }
455
    }
452
   
456
   
453
    for (i = 0; i < SIZE2FRAMES(src_size); i++) {
457
    for (i = 0; i < SIZE2FRAMES(src_size); i++) {
454
        pte_t *pte;
458
        pte_t *pte;
455
        __address frame;
459
        __address frame;
456
           
460
           
457
        page_table_lock(src_as, false);
461
        page_table_lock(src_as, false);
458
        pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
462
        pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
459
        if (pte && PTE_VALID(pte)) {
463
        if (pte && PTE_VALID(pte)) {
460
            ASSERT(PTE_PRESENT(pte));
464
            ASSERT(PTE_PRESENT(pte));
461
            frame = PTE_GET_FRAME(pte);
465
            frame = PTE_GET_FRAME(pte);
462
            if (!(src_flags & AS_AREA_DEVICE))
466
            if (!(src_flags & AS_AREA_DEVICE))
463
                frame_reference_add(ADDR2PFN(frame));
467
                frame_reference_add(ADDR2PFN(frame));
464
            page_table_unlock(src_as, false);
468
            page_table_unlock(src_as, false);
465
        } else {
469
        } else {
466
            page_table_unlock(src_as, false);
470
            page_table_unlock(src_as, false);
467
            continue;
471
            continue;
468
        }
472
        }
469
       
473
       
470
        page_table_lock(AS, false);
474
        page_table_lock(AS, false);
471
        page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
475
        page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
472
        page_table_unlock(AS, false);
476
        page_table_unlock(AS, false);
473
    }
477
    }
474
 
478
 
475
    /*
479
    /*
476
     * Now the destination address space area has been
480
     * Now the destination address space area has been
477
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
481
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
478
     * attribute.
482
     * attribute.
479
     */
483
     */
480
    mutex_lock(&dst_area->lock);
484
    mutex_lock(&dst_area->lock);
481
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
485
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
482
    mutex_unlock(&dst_area->lock);
486
    mutex_unlock(&dst_area->lock);
483
   
487
   
484
    mutex_unlock(&AS->lock);
488
    mutex_unlock(&AS->lock);
485
    mutex_unlock(&src_as->lock);
489
    mutex_unlock(&src_as->lock);
486
    interrupts_restore(ipl);
490
    interrupts_restore(ipl);
487
   
491
   
488
    return 0;
492
    return 0;
489
}
493
}
490
 
494
 
491
/** Initialize mapping for one page of address space.
495
/** Initialize mapping for one page of address space.
492
 *
496
 *
493
 * This functions maps 'page' to 'frame' according
497
 * This functions maps 'page' to 'frame' according
494
 * to attributes of the address space area to
498
 * to attributes of the address space area to
495
 * wich 'page' belongs.
499
 * wich 'page' belongs.
496
 *
500
 *
497
 * @param as Target address space.
501
 * @param as Target address space.
498
 * @param page Virtual page within the area.
502
 * @param page Virtual page within the area.
499
 * @param frame Physical frame to which page will be mapped.
503
 * @param frame Physical frame to which page will be mapped.
500
 */
504
 */
501
void as_set_mapping(as_t *as, __address page, __address frame)
505
void as_set_mapping(as_t *as, __address page, __address frame)
502
{
506
{
503
    as_area_t *area;
507
    as_area_t *area;
504
    ipl_t ipl;
508
    ipl_t ipl;
505
   
509
   
506
    ipl = interrupts_disable();
510
    ipl = interrupts_disable();
507
    page_table_lock(as, true);
511
    page_table_lock(as, true);
508
   
512
   
509
    area = find_area_and_lock(as, page);
513
    area = find_area_and_lock(as, page);
510
    if (!area) {
514
    if (!area) {
511
        panic("page not part of any as_area\n");
515
        panic("page not part of any as_area\n");
512
    }
516
    }
513
 
517
 
514
    page_mapping_insert(as, page, frame, get_area_flags(area));
518
    page_mapping_insert(as, page, frame, get_area_flags(area));
515
   
519
   
516
    mutex_unlock(&area->lock);
520
    mutex_unlock(&area->lock);
517
    page_table_unlock(as, true);
521
    page_table_unlock(as, true);
518
    interrupts_restore(ipl);
522
    interrupts_restore(ipl);
519
}
523
}
520
 
524
 
521
/** Handle page fault within the current address space.
525
/** Handle page fault within the current address space.
522
 *
526
 *
523
 * This is the high-level page fault handler.
527
 * This is the high-level page fault handler.
524
 * Interrupts are assumed disabled.
528
 * Interrupts are assumed disabled.
525
 *
529
 *
526
 * @param page Faulting page.
530
 * @param page Faulting page.
527
 * @param istate Pointer to interrupted state.
531
 * @param istate Pointer to interrupted state.
528
 *
532
 *
529
 * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace().
533
 * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace().
530
 */
534
 */
531
int as_page_fault(__address page, istate_t *istate)
535
int as_page_fault(__address page, istate_t *istate)
532
{
536
{
533
    pte_t *pte;
537
    pte_t *pte;
534
    as_area_t *area;
538
    as_area_t *area;
535
    __address frame;
539
    __address frame;
536
   
540
   
537
    if (!THREAD)
541
    if (!THREAD)
538
        return 0;
542
        return 0;
539
       
543
       
540
    ASSERT(AS);
544
    ASSERT(AS);
541
 
545
 
542
    mutex_lock(&AS->lock);
546
    mutex_lock(&AS->lock);
543
    area = find_area_and_lock(AS, page);   
547
    area = find_area_and_lock(AS, page);   
544
    if (!area) {
548
    if (!area) {
545
        /*
549
        /*
546
         * No area contained mapping for 'page'.
550
         * No area contained mapping for 'page'.
547
         * Signal page fault to low-level handler.
551
         * Signal page fault to low-level handler.
548
         */
552
         */
549
        mutex_unlock(&AS->lock);
553
        mutex_unlock(&AS->lock);
550
        goto page_fault;
554
        goto page_fault;
551
    }
555
    }
552
 
556
 
553
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
557
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
554
        /*
558
        /*
555
         * The address space area is not fully initialized.
559
         * The address space area is not fully initialized.
556
         * Avoid possible race by returning error.
560
         * Avoid possible race by returning error.
557
         */
561
         */
558
        mutex_unlock(&area->lock);
562
        mutex_unlock(&area->lock);
559
        mutex_unlock(&AS->lock);
563
        mutex_unlock(&AS->lock);
560
        goto page_fault;       
564
        goto page_fault;       
561
    }
565
    }
562
 
566
 
563
    ASSERT(!(area->flags & AS_AREA_DEVICE));
567
    ASSERT(!(area->flags & AS_AREA_DEVICE));
564
 
568
 
565
    page_table_lock(AS, false);
569
    page_table_lock(AS, false);
566
   
570
   
567
    /*
571
    /*
568
     * To avoid race condition between two page faults
572
     * To avoid race condition between two page faults
569
     * on the same address, we need to make sure
573
     * on the same address, we need to make sure
570
     * the mapping has not been already inserted.
574
     * the mapping has not been already inserted.
571
     */
575
     */
572
    if ((pte = page_mapping_find(AS, page))) {
576
    if ((pte = page_mapping_find(AS, page))) {
573
        if (PTE_PRESENT(pte)) {
577
        if (PTE_PRESENT(pte)) {
574
            page_table_unlock(AS, false);
578
            page_table_unlock(AS, false);
575
            mutex_unlock(&area->lock);
579
            mutex_unlock(&area->lock);
576
            mutex_unlock(&AS->lock);
580
            mutex_unlock(&AS->lock);
577
            return 1;
581
            return 1;
578
        }
582
        }
579
    }
583
    }
580
 
584
 
581
    /*
585
    /*
582
     * In general, there can be several reasons that
586
     * In general, there can be several reasons that
583
     * can have caused this fault.
587
     * can have caused this fault.
584
     *
588
     *
585
     * - non-existent mapping: the area is a scratch
589
     * - non-existent mapping: the area is a scratch
586
     *   area (e.g. stack) and so far has not been
590
     *   area (e.g. stack) and so far has not been
587
     *   allocated a frame for the faulting page
591
     *   allocated a frame for the faulting page
588
     *
592
     *
589
     * - non-present mapping: another possibility,
593
     * - non-present mapping: another possibility,
590
     *   currently not implemented, would be frame
594
     *   currently not implemented, would be frame
591
     *   reuse; when this becomes a possibility,
595
     *   reuse; when this becomes a possibility,
592
     *   do not forget to distinguish between
596
     *   do not forget to distinguish between
593
     *   the different causes
597
     *   the different causes
594
     */
598
     */
595
    frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
599
    frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
596
    memsetb(PA2KA(frame), FRAME_SIZE, 0);
600
    memsetb(PA2KA(frame), FRAME_SIZE, 0);
597
   
601
   
598
    /*
602
    /*
599
     * Map 'page' to 'frame'.
603
     * Map 'page' to 'frame'.
600
     * Note that TLB shootdown is not attempted as only new information is being
604
     * Note that TLB shootdown is not attempted as only new information is being
601
     * inserted into page tables.
605
     * inserted into page tables.
602
     */
606
     */
603
    page_mapping_insert(AS, page, frame, get_area_flags(area));
607
    page_mapping_insert(AS, page, frame, get_area_flags(area));
604
    page_table_unlock(AS, false);
608
    page_table_unlock(AS, false);
605
   
609
   
606
    mutex_unlock(&area->lock);
610
    mutex_unlock(&area->lock);
607
    mutex_unlock(&AS->lock);
611
    mutex_unlock(&AS->lock);
608
    return AS_PF_OK;
612
    return AS_PF_OK;
609
 
613
 
610
page_fault:
614
page_fault:
611
    if (!THREAD)
615
    if (!THREAD)
612
        return AS_PF_FAULT;
616
        return AS_PF_FAULT;
613
   
617
   
614
    if (THREAD->in_copy_from_uspace) {
618
    if (THREAD->in_copy_from_uspace) {
615
        THREAD->in_copy_from_uspace = false;
619
        THREAD->in_copy_from_uspace = false;
616
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
620
        istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
617
    } else if (THREAD->in_copy_to_uspace) {
621
    } else if (THREAD->in_copy_to_uspace) {
618
        THREAD->in_copy_to_uspace = false;
622
        THREAD->in_copy_to_uspace = false;
619
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
623
        istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
620
    } else {
624
    } else {
621
        return AS_PF_FAULT;
625
        return AS_PF_FAULT;
622
    }
626
    }
623
 
627
 
624
    return AS_PF_DEFER;
628
    return AS_PF_DEFER;
625
}
629
}
626
 
630
 
627
/** Switch address spaces.
631
/** Switch address spaces.
628
 *
632
 *
629
 * Note that this function cannot sleep as it is essentially a part of
633
 * Note that this function cannot sleep as it is essentially a part of
630
 * the scheduling. Sleeping here would lead to deadlock on wakeup.
634
 * the scheduling. Sleeping here would lead to deadlock on wakeup.
631
 *
635
 *
632
 * @param old Old address space or NULL.
636
 * @param old Old address space or NULL.
633
 * @param new New address space.
637
 * @param new New address space.
634
 */
638
 */
635
void as_switch(as_t *old, as_t *new)
639
void as_switch(as_t *old, as_t *new)
636
{
640
{
637
    ipl_t ipl;
641
    ipl_t ipl;
638
    bool needs_asid = false;
642
    bool needs_asid = false;
639
   
643
   
640
    ipl = interrupts_disable();
644
    ipl = interrupts_disable();
641
    spinlock_lock(&as_lock);
645
    spinlock_lock(&as_lock);
642
 
646
 
643
    /*
647
    /*
644
     * First, take care of the old address space.
648
     * First, take care of the old address space.
645
     */
649
     */
646
    if (old) {
650
    if (old) {
647
        mutex_lock_active(&old->lock);
651
        mutex_lock_active(&old->lock);
648
        ASSERT(old->refcount);
652
        ASSERT(old->refcount);
649
        if((--old->refcount == 0) && (old != AS_KERNEL)) {
653
        if((--old->refcount == 0) && (old != AS_KERNEL)) {
650
            /*
654
            /*
651
             * The old address space is no longer active on
655
             * The old address space is no longer active on
652
             * any processor. It can be appended to the
656
             * any processor. It can be appended to the
653
             * list of inactive address spaces with assigned
657
             * list of inactive address spaces with assigned
654
             * ASID.
658
             * ASID.
655
             */
659
             */
656
             ASSERT(old->asid != ASID_INVALID);
660
             ASSERT(old->asid != ASID_INVALID);
657
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
661
             list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
658
        }
662
        }
659
        mutex_unlock(&old->lock);
663
        mutex_unlock(&old->lock);
660
    }
664
    }
661
 
665
 
662
    /*
666
    /*
663
     * Second, prepare the new address space.
667
     * Second, prepare the new address space.
664
     */
668
     */
665
    mutex_lock_active(&new->lock);
669
    mutex_lock_active(&new->lock);
666
    if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
670
    if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
667
        if (new->asid != ASID_INVALID)
671
        if (new->asid != ASID_INVALID)
668
            list_remove(&new->inactive_as_with_asid_link);
672
            list_remove(&new->inactive_as_with_asid_link);
669
        else
673
        else
670
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
674
            needs_asid = true;  /* defer call to asid_get() until new->lock is released */
671
    }
675
    }
672
    SET_PTL0_ADDRESS(new->page_table);
676
    SET_PTL0_ADDRESS(new->page_table);
673
    mutex_unlock(&new->lock);
677
    mutex_unlock(&new->lock);
674
 
678
 
675
    if (needs_asid) {
679
    if (needs_asid) {
676
        /*
680
        /*
677
         * Allocation of new ASID was deferred
681
         * Allocation of new ASID was deferred
678
         * until now in order to avoid deadlock.
682
         * until now in order to avoid deadlock.
679
         */
683
         */
680
        asid_t asid;
684
        asid_t asid;
681
       
685
       
682
        asid = asid_get();
686
        asid = asid_get();
683
        mutex_lock_active(&new->lock);
687
        mutex_lock_active(&new->lock);
684
        new->asid = asid;
688
        new->asid = asid;
685
        mutex_unlock(&new->lock);
689
        mutex_unlock(&new->lock);
686
    }
690
    }
687
    spinlock_unlock(&as_lock);
691
    spinlock_unlock(&as_lock);
688
    interrupts_restore(ipl);
692
    interrupts_restore(ipl);
689
   
693
   
690
    /*
694
    /*
691
     * Perform architecture-specific steps.
695
     * Perform architecture-specific steps.
692
     * (e.g. write ASID to hardware register etc.)
696
     * (e.g. write ASID to hardware register etc.)
693
     */
697
     */
694
    as_install_arch(new);
698
    as_install_arch(new);
695
   
699
   
696
    AS = new;
700
    AS = new;
697
}
701
}
698
 
702
 
699
/** Convert address space area flags to page flags.
703
/** Convert address space area flags to page flags.
700
 *
704
 *
701
 * @param aflags Flags of some address space area.
705
 * @param aflags Flags of some address space area.
702
 *
706
 *
703
 * @return Flags to be passed to page_mapping_insert().
707
 * @return Flags to be passed to page_mapping_insert().
704
 */
708
 */
705
int area_flags_to_page_flags(int aflags)
709
int area_flags_to_page_flags(int aflags)
706
{
710
{
707
    int flags;
711
    int flags;
708
 
712
 
709
    flags = PAGE_USER | PAGE_PRESENT;
713
    flags = PAGE_USER | PAGE_PRESENT;
710
   
714
   
711
    if (aflags & AS_AREA_READ)
715
    if (aflags & AS_AREA_READ)
712
        flags |= PAGE_READ;
716
        flags |= PAGE_READ;
713
       
717
       
714
    if (aflags & AS_AREA_WRITE)
718
    if (aflags & AS_AREA_WRITE)
715
        flags |= PAGE_WRITE;
719
        flags |= PAGE_WRITE;
716
   
720
   
717
    if (aflags & AS_AREA_EXEC)
721
    if (aflags & AS_AREA_EXEC)
718
        flags |= PAGE_EXEC;
722
        flags |= PAGE_EXEC;
719
   
723
   
720
    if (!(aflags & AS_AREA_DEVICE))
724
    if (!(aflags & AS_AREA_DEVICE))
721
        flags |= PAGE_CACHEABLE;
725
        flags |= PAGE_CACHEABLE;
722
       
726
       
723
    return flags;
727
    return flags;
724
}
728
}
725
 
729
 
726
/** Compute flags for virtual address translation subsytem.
730
/** Compute flags for virtual address translation subsytem.
727
 *
731
 *
728
 * The address space area must be locked.
732
 * The address space area must be locked.
729
 * Interrupts must be disabled.
733
 * Interrupts must be disabled.
730
 *
734
 *
731
 * @param a Address space area.
735
 * @param a Address space area.
732
 *
736
 *
733
 * @return Flags to be used in page_mapping_insert().
737
 * @return Flags to be used in page_mapping_insert().
734
 */
738
 */
735
int get_area_flags(as_area_t *a)
739
int get_area_flags(as_area_t *a)
736
{
740
{
737
    return area_flags_to_page_flags(a->flags);
741
    return area_flags_to_page_flags(a->flags);
738
}
742
}
739
 
743
 
740
/** Create page table.
744
/** Create page table.
741
 *
745
 *
742
 * Depending on architecture, create either address space
746
 * Depending on architecture, create either address space
743
 * private or global page table.
747
 * private or global page table.
744
 *
748
 *
745
 * @param flags Flags saying whether the page table is for kernel address space.
749
 * @param flags Flags saying whether the page table is for kernel address space.
746
 *
750
 *
747
 * @return First entry of the page table.
751
 * @return First entry of the page table.
748
 */
752
 */
749
pte_t *page_table_create(int flags)
753
pte_t *page_table_create(int flags)
750
{
754
{
751
        ASSERT(as_operations);
755
        ASSERT(as_operations);
752
        ASSERT(as_operations->page_table_create);
756
        ASSERT(as_operations->page_table_create);
753
 
757
 
754
        return as_operations->page_table_create(flags);
758
        return as_operations->page_table_create(flags);
755
}
759
}
756
 
760
 
757
/** Lock page table.
761
/** Lock page table.
758
 *
762
 *
759
 * This function should be called before any page_mapping_insert(),
763
 * This function should be called before any page_mapping_insert(),
760
 * page_mapping_remove() and page_mapping_find().
764
 * page_mapping_remove() and page_mapping_find().
761
 *
765
 *
762
 * Locking order is such that address space areas must be locked
766
 * Locking order is such that address space areas must be locked
763
 * prior to this call. Address space can be locked prior to this
767
 * prior to this call. Address space can be locked prior to this
764
 * call in which case the lock argument is false.
768
 * call in which case the lock argument is false.
765
 *
769
 *
766
 * @param as Address space.
770
 * @param as Address space.
767
 * @param lock If false, do not attempt to lock as->lock.
771
 * @param lock If false, do not attempt to lock as->lock.
768
 */
772
 */
769
void page_table_lock(as_t *as, bool lock)
773
void page_table_lock(as_t *as, bool lock)
770
{
774
{
771
    ASSERT(as_operations);
775
    ASSERT(as_operations);
772
    ASSERT(as_operations->page_table_lock);
776
    ASSERT(as_operations->page_table_lock);
773
 
777
 
774
    as_operations->page_table_lock(as, lock);
778
    as_operations->page_table_lock(as, lock);
775
}
779
}
776
 
780
 
777
/** Unlock page table.
781
/** Unlock page table.
778
 *
782
 *
779
 * @param as Address space.
783
 * @param as Address space.
780
 * @param unlock If false, do not attempt to unlock as->lock.
784
 * @param unlock If false, do not attempt to unlock as->lock.
781
 */
785
 */
782
void page_table_unlock(as_t *as, bool unlock)
786
void page_table_unlock(as_t *as, bool unlock)
783
{
787
{
784
    ASSERT(as_operations);
788
    ASSERT(as_operations);
785
    ASSERT(as_operations->page_table_unlock);
789
    ASSERT(as_operations->page_table_unlock);
786
 
790
 
787
    as_operations->page_table_unlock(as, unlock);
791
    as_operations->page_table_unlock(as, unlock);
788
}
792
}
789
 
793
 
790
 
794
 
791
/** Find address space area and lock it.
795
/** Find address space area and lock it.
792
 *
796
 *
793
 * The address space must be locked and interrupts must be disabled.
797
 * The address space must be locked and interrupts must be disabled.
794
 *
798
 *
795
 * @param as Address space.
799
 * @param as Address space.
796
 * @param va Virtual address.
800
 * @param va Virtual address.
797
 *
801
 *
798
 * @return Locked address space area containing va on success or NULL on failure.
802
 * @return Locked address space area containing va on success or NULL on failure.
799
 */
803
 */
800
as_area_t *find_area_and_lock(as_t *as, __address va)
804
as_area_t *find_area_and_lock(as_t *as, __address va)
801
{
805
{
802
    as_area_t *a;
806
    as_area_t *a;
803
    btree_node_t *leaf, *lnode;
807
    btree_node_t *leaf, *lnode;
804
    int i;
808
    int i;
805
   
809
   
806
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
810
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
807
    if (a) {
811
    if (a) {
808
        /* va is the base address of an address space area */
812
        /* va is the base address of an address space area */
809
        mutex_lock(&a->lock);
813
        mutex_lock(&a->lock);
810
        return a;
814
        return a;
811
    }
815
    }
812
   
816
   
813
    /*
817
    /*
814
     * Search the leaf node and the righmost record of its left neighbour
818
     * Search the leaf node and the righmost record of its left neighbour
815
     * to find out whether this is a miss or va belongs to an address
819
     * to find out whether this is a miss or va belongs to an address
816
     * space area found there.
820
     * space area found there.
817
     */
821
     */
818
   
822
   
819
    /* First, search the leaf node itself. */
823
    /* First, search the leaf node itself. */
820
    for (i = 0; i < leaf->keys; i++) {
824
    for (i = 0; i < leaf->keys; i++) {
821
        a = (as_area_t *) leaf->value[i];
825
        a = (as_area_t *) leaf->value[i];
822
        mutex_lock(&a->lock);
826
        mutex_lock(&a->lock);
823
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
827
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
824
            return a;
828
            return a;
825
        }
829
        }
826
        mutex_unlock(&a->lock);
830
        mutex_unlock(&a->lock);
827
    }
831
    }
828
 
832
 
829
    /*
833
    /*
830
     * Second, locate the left neighbour and test its last record.
834
     * Second, locate the left neighbour and test its last record.
831
     * Because of its position in the B+tree, it must have base < va.
835
     * Because of its position in the B+tree, it must have base < va.
832
     */
836
     */
833
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
837
    if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
834
        a = (as_area_t *) lnode->value[lnode->keys - 1];
838
        a = (as_area_t *) lnode->value[lnode->keys - 1];
835
        mutex_lock(&a->lock);
839
        mutex_lock(&a->lock);
836
        if (va < a->base + a->pages * PAGE_SIZE) {
840
        if (va < a->base + a->pages * PAGE_SIZE) {
837
            return a;
841
            return a;
838
        }
842
        }
839
        mutex_unlock(&a->lock);
843
        mutex_unlock(&a->lock);
840
    }
844
    }
841
 
845
 
842
    return NULL;
846
    return NULL;
843
}
847
}
844
 
848
 
845
/** Check area conflicts with other areas.
849
/** Check area conflicts with other areas.
846
 *
850
 *
847
 * The address space must be locked and interrupts must be disabled.
851
 * The address space must be locked and interrupts must be disabled.
848
 *
852
 *
849
 * @param as Address space.
853
 * @param as Address space.
850
 * @param va Starting virtual address of the area being tested.
854
 * @param va Starting virtual address of the area being tested.
851
 * @param size Size of the area being tested.
855
 * @param size Size of the area being tested.
852
 * @param avoid_area Do not touch this area.
856
 * @param avoid_area Do not touch this area.
853
 *
857
 *
854
 * @return True if there is no conflict, false otherwise.
858
 * @return True if there is no conflict, false otherwise.
855
 */
859
 */
856
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
860
bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
857
{
861
{
858
    as_area_t *a;
862
    as_area_t *a;
859
    btree_node_t *leaf, *node;
863
    btree_node_t *leaf, *node;
860
    int i;
864
    int i;
861
   
865
   
862
    /*
866
    /*
863
     * We don't want any area to have conflicts with NULL page.
867
     * We don't want any area to have conflicts with NULL page.
864
     */
868
     */
865
    if (overlaps(va, size, NULL, PAGE_SIZE))
869
    if (overlaps(va, size, NULL, PAGE_SIZE))
866
        return false;
870
        return false;
867
   
871
   
868
    /*
872
    /*
869
     * The leaf node is found in O(log n), where n is proportional to
873
     * The leaf node is found in O(log n), where n is proportional to
870
     * the number of address space areas belonging to as.
874
     * the number of address space areas belonging to as.
871
     * The check for conflicts is then attempted on the rightmost
875
     * The check for conflicts is then attempted on the rightmost
872
     * record in the left neighbour, the leftmost record in the right
876
     * record in the left neighbour, the leftmost record in the right
873
     * neighbour and all records in the leaf node itself.
877
     * neighbour and all records in the leaf node itself.
874
     */
878
     */
875
   
879
   
876
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
880
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
877
        if (a != avoid_area)
881
        if (a != avoid_area)
878
            return false;
882
            return false;
879
    }
883
    }
880
   
884
   
881
    /* First, check the two border cases. */
885
    /* First, check the two border cases. */
882
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
886
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
883
        a = (as_area_t *) node->value[node->keys - 1];
887
        a = (as_area_t *) node->value[node->keys - 1];
884
        mutex_lock(&a->lock);
888
        mutex_lock(&a->lock);
885
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
889
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
886
            mutex_unlock(&a->lock);
890
            mutex_unlock(&a->lock);
887
            return false;
891
            return false;
888
        }
892
        }
889
        mutex_unlock(&a->lock);
893
        mutex_unlock(&a->lock);
890
    }
894
    }
891
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
895
    if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
892
        a = (as_area_t *) node->value[0];
896
        a = (as_area_t *) node->value[0];
893
        mutex_lock(&a->lock);
897
        mutex_lock(&a->lock);
894
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
898
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
895
            mutex_unlock(&a->lock);
899
            mutex_unlock(&a->lock);
896
            return false;
900
            return false;
897
        }
901
        }
898
        mutex_unlock(&a->lock);
902
        mutex_unlock(&a->lock);
899
    }
903
    }
900
   
904
   
901
    /* Second, check the leaf node. */
905
    /* Second, check the leaf node. */
902
    for (i = 0; i < leaf->keys; i++) {
906
    for (i = 0; i < leaf->keys; i++) {
903
        a = (as_area_t *) leaf->value[i];
907
        a = (as_area_t *) leaf->value[i];
904
   
908
   
905
        if (a == avoid_area)
909
        if (a == avoid_area)
906
            continue;
910
            continue;
907
   
911
   
908
        mutex_lock(&a->lock);
912
        mutex_lock(&a->lock);
909
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
913
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
910
            mutex_unlock(&a->lock);
914
            mutex_unlock(&a->lock);
911
            return false;
915
            return false;
912
        }
916
        }
913
        mutex_unlock(&a->lock);
917
        mutex_unlock(&a->lock);
914
    }
918
    }
915
 
919
 
916
    /*
920
    /*
917
     * So far, the area does not conflict with other areas.
921
     * So far, the area does not conflict with other areas.
918
     * Check if it doesn't conflict with kernel address space.
922
     * Check if it doesn't conflict with kernel address space.
919
     */  
923
     */  
920
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
924
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
921
        return !overlaps(va, size,
925
        return !overlaps(va, size,
922
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
926
            KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
923
    }
927
    }
924
 
928
 
925
    return true;
929
    return true;
926
}
930
}
927
 
931
 
928
/** Return size of the address space area with given base.  */
932
/** Return size of the address space area with given base.  */
929
size_t as_get_size(__address base)
933
size_t as_get_size(__address base)
930
{
934
{
931
    ipl_t ipl;
935
    ipl_t ipl;
932
    as_area_t *src_area;
936
    as_area_t *src_area;
933
    size_t size;
937
    size_t size;
934
 
938
 
935
    ipl = interrupts_disable();
939
    ipl = interrupts_disable();
936
    src_area = find_area_and_lock(AS, base);
940
    src_area = find_area_and_lock(AS, base);
937
    if (src_area){
941
    if (src_area){
938
        size = src_area->pages * PAGE_SIZE;
942
        size = src_area->pages * PAGE_SIZE;
939
        mutex_unlock(&src_area->lock);
943
        mutex_unlock(&src_area->lock);
940
    } else {
944
    } else {
941
        size = 0;
945
        size = 0;
942
    }
946
    }
943
    interrupts_restore(ipl);
947
    interrupts_restore(ipl);
944
    return size;
948
    return size;
945
}
949
}
-
 
950
 
-
 
951
/** Mark portion of address space area as used.
-
 
952
 *
-
 
953
 * The address space area must be already locked.
-
 
954
 *
-
 
955
 * @param a Address space area.
-
 
956
 * @param page First page to be marked.
-
 
957
 * @param count Number of page to be marked.
-
 
958
 *
-
 
959
 * @return 0 on failure and 1 on success.
-
 
960
 */
-
 
961
int used_space_insert(as_area_t *a, __address page, count_t count)
-
 
962
{
-
 
963
    btree_node_t *leaf, *node;
-
 
964
    count_t pages;
-
 
965
    int i;
-
 
966
 
-
 
967
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
-
 
968
    ASSERT(count);
-
 
969
 
-
 
970
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
-
 
971
    if (pages) {
-
 
972
        /*
-
 
973
         * We hit the beginning of some used space.
-
 
974
         */
-
 
975
        return 0;
-
 
976
    }
-
 
977
 
-
 
978
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
-
 
979
    if (node) {
-
 
980
        __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
-
 
981
        count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
-
 
982
       
-
 
983
        /*
-
 
984
         * Examine the possibility that the interval fits
-
 
985
         * somewhere between the rightmost interval of
-
 
986
         * the left neigbour and the first interval of the leaf.
-
 
987
         */
-
 
988
         
-
 
989
        if (page >= right_pg) {
-
 
990
            /* Do nothing. */
-
 
991
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
-
 
992
            /* The interval intersects with the left interval. */
-
 
993
            return 0;
-
 
994
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
-
 
995
            /* The interval intersects with the right interval. */
-
 
996
            return 0;          
-
 
997
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
-
 
998
            /* The interval can be added by merging the two already present intervals. */
-
 
999
            node->value[node->keys - 1] += (count_t) count + right_cnt;
-
 
1000
            btree_remove(&a->used_space, right_pg, leaf);
-
 
1001
            return 1;
-
 
1002
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
-
 
1003
            /* The interval can be added by simply growing the left interval. */
-
 
1004
            node->value[node->keys - 1] += (count_t) count;
-
 
1005
            return 1;
-
 
1006
        } else if (page + count*PAGE_SIZE == right_pg) {
-
 
1007
            /*
-
 
1008
             * The interval can be addded by simply moving base of the right
-
 
1009
             * interval down and increasing its size accordingly.
-
 
1010
             */
-
 
1011
            leaf->value[0] += (count_t) count;
-
 
1012
            leaf->key[0] = page;
-
 
1013
            return 1;
-
 
1014
        } else {
-
 
1015
            /*
-
 
1016
             * The interval is between both neigbouring intervals,
-
 
1017
             * but cannot be merged with any of them.
-
 
1018
             */
-
 
1019
            btree_insert(&a->used_space, page, (void *) count, leaf);
-
 
1020
            return 1;
-
 
1021
        }
-
 
1022
    } else if (page < leaf->key[0]) {
-
 
1023
        __address right_pg = leaf->key[0];
-
 
1024
        count_t right_cnt = (count_t) leaf->value[0];
-
 
1025
   
-
 
1026
        /*
-
 
1027
         * Investigate the border case in which the left neighbour does not
-
 
1028
         * exist but the interval fits from the left.
-
 
1029
         */
-
 
1030
         
-
 
1031
        if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
-
 
1032
            /* The interval intersects with the right interval. */
-
 
1033
            return 0;
-
 
1034
        } else if (page + count*PAGE_SIZE == right_pg) {
-
 
1035
            /*
-
 
1036
             * The interval can be added by moving the base of the right interval down
-
 
1037
             * and increasing its size accordingly.
-
 
1038
             */
-
 
1039
            leaf->key[0] = page;
-
 
1040
            leaf->value[0] += (count_t) count;
-
 
1041
            return 1;
-
 
1042
        } else {
-
 
1043
            /*
-
 
1044
             * The interval doesn't adjoin with the right interval.
-
 
1045
             * It must be added individually.
-
 
1046
             */
-
 
1047
            btree_insert(&a->used_space, page, (void *) count, leaf);
-
 
1048
            return 1;
-
 
1049
        }
-
 
1050
    }
-
 
1051
 
-
 
1052
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
-
 
1053
    if (node) {
-
 
1054
        __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
-
 
1055
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
-
 
1056
       
-
 
1057
        /*
-
 
1058
         * Examine the possibility that the interval fits
-
 
1059
         * somewhere between the leftmost interval of
-
 
1060
         * the right neigbour and the last interval of the leaf.
-
 
1061
         */
-
 
1062
 
-
 
1063
        if (page < left_pg) {
-
 
1064
            /* Do nothing. */
-
 
1065
        } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
-
 
1066
            /* The interval intersects with the left interval. */
-
 
1067
            return 0;
-
 
1068
        } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
-
 
1069
            /* The interval intersects with the right interval. */
-
 
1070
            return 0;          
-
 
1071
        } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
-
 
1072
            /* The interval can be added by merging the two already present intervals. */
-
 
1073
            leaf->value[leaf->keys - 1] += (count_t) count + right_cnt;
-
 
1074
            btree_remove(&a->used_space, right_pg, node);
-
 
1075
            return 1;
-
 
1076
        } else if (page == left_pg + left_cnt*PAGE_SIZE) {
-
 
1077
            /* The interval can be added by simply growing the left interval. */
-
 
1078
            leaf->value[leaf->keys - 1] += (count_t) count;
-
 
1079
            return 1;
-
 
1080
        } else if (page + count*PAGE_SIZE == right_pg) {
-
 
1081
            /*
-
 
1082
             * The interval can be addded by simply moving base of the right
-
 
1083
             * interval down and increasing its size accordingly.
-
 
1084
             */
-
 
1085
            node->value[0] += (count_t) count;
-
 
1086
            node->key[0] = page;
-
 
1087
            return 1;
-
 
1088
        } else {
-
 
1089
            /*
-
 
1090
             * The interval is between both neigbouring intervals,
-
 
1091
             * but cannot be merged with any of them.
-
 
1092
             */
-
 
1093
            btree_insert(&a->used_space, page, (void *) count, leaf);
-
 
1094
            return 1;
-
 
1095
        }
-
 
1096
    } else if (page >= leaf->key[leaf->keys - 1]) {
-
 
1097
        __address left_pg = leaf->key[leaf->keys - 1];
-
 
1098
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
-
 
1099
   
-
 
1100
        /*
-
 
1101
         * Investigate the border case in which the right neighbour does not
-
 
1102
         * exist but the interval fits from the right.
-
 
1103
         */
-
 
1104
         
-
 
1105
        if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
-
 
1106
            /* The interval intersects with the right interval. */
-
 
1107
            return 0;
-
 
1108
        } else if (left_pg + left_cnt*PAGE_SIZE == page) {
-
 
1109
            /* The interval can be added by growing the left interval. */
-
 
1110
            leaf->value[leaf->keys - 1] += (count_t) count;
-
 
1111
            return 1;
-
 
1112
        } else {
-
 
1113
            /*
-
 
1114
             * The interval doesn't adjoin with the left interval.
-
 
1115
             * It must be added individually.
-
 
1116
             */
-
 
1117
            btree_insert(&a->used_space, page, (void *) count, leaf);
-
 
1118
            return 1;
-
 
1119
        }
-
 
1120
    }
-
 
1121
   
-
 
1122
    /*
-
 
1123
     * Note that if the algorithm made it thus far, the interval can fit only
-
 
1124
     * between two other intervals of the leaf. The two border cases were already
-
 
1125
     * resolved.
-
 
1126
     */
-
 
1127
    for (i = 1; i < leaf->keys; i++) {
-
 
1128
        if (page < leaf->key[i]) {
-
 
1129
            __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
-
 
1130
            count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
-
 
1131
 
-
 
1132
            /*
-
 
1133
             * The interval fits between left_pg and right_pg.
-
 
1134
             */
-
 
1135
 
-
 
1136
            if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
-
 
1137
                /* The interval intersects with the left interval. */
-
 
1138
                return 0;
-
 
1139
            } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
-
 
1140
                /* The interval intersects with the right interval. */
-
 
1141
                return 0;          
-
 
1142
            } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
-
 
1143
                /* The interval can be added by merging the two already present intervals. */
-
 
1144
                leaf->value[i - 1] += (count_t) count + right_cnt;
-
 
1145
                btree_remove(&a->used_space, right_pg, leaf);
-
 
1146
                return 1;
-
 
1147
            } else if (page == left_pg + left_cnt*PAGE_SIZE) {
-
 
1148
                /* The interval can be added by simply growing the left interval. */
-
 
1149
                leaf->value[i - 1] += (count_t) count;
-
 
1150
                return 1;
-
 
1151
            } else if (page + count*PAGE_SIZE == right_pg) {
-
 
1152
                /*
-
 
1153
                     * The interval can be addded by simply moving base of the right
-
 
1154
                 * interval down and increasing its size accordingly.
-
 
1155
                 */
-
 
1156
                leaf->value[i] += (count_t) count;
-
 
1157
                leaf->key[i] = page;
-
 
1158
                return 1;
-
 
1159
            } else {
-
 
1160
                /*
-
 
1161
                 * The interval is between both neigbouring intervals,
-
 
1162
                 * but cannot be merged with any of them.
-
 
1163
                 */
-
 
1164
                btree_insert(&a->used_space, page, (void *) count, leaf);
-
 
1165
                return 1;
-
 
1166
            }
-
 
1167
        }
-
 
1168
    }
-
 
1169
 
-
 
1170
    panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
-
 
1171
}
-
 
1172
 
-
 
1173
/** Mark portion of address space area as unused.
-
 
1174
 *
-
 
1175
 * The address space area must be already locked.
-
 
1176
 *
-
 
1177
 * @param a Address space area.
-
 
1178
 * @param page First page to be marked.
-
 
1179
 * @param count Number of page to be marked.
-
 
1180
 *
-
 
1181
 * @return 0 on failure and 1 on success.
-
 
1182
 */
-
 
1183
int used_space_remove(as_area_t *a, __address page, count_t count)
-
 
1184
{
-
 
1185
    btree_node_t *leaf, *node;
-
 
1186
    count_t pages;
-
 
1187
    int i;
-
 
1188
 
-
 
1189
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
-
 
1190
    ASSERT(count);
-
 
1191
 
-
 
1192
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
-
 
1193
    if (pages) {
-
 
1194
        /*
-
 
1195
         * We are lucky, page is the beginning of some interval.
-
 
1196
         */
-
 
1197
        if (count > pages) {
-
 
1198
            return 0;
-
 
1199
        } else if (count == pages) {
-
 
1200
            btree_remove(&a->used_space, page, leaf);
-
 
1201
        } else {
-
 
1202
            /*
-
 
1203
             * Find the respective interval.
-
 
1204
             * Decrease its size and relocate its start address.
-
 
1205
             */
-
 
1206
            for (i = 0; i < leaf->keys; i++) {
-
 
1207
                if (leaf->key[i] == page) {
-
 
1208
                    leaf->key[i] += count*PAGE_SIZE;
-
 
1209
                    leaf->value[i] -= (count_t) count;
-
 
1210
                    return 1;
-
 
1211
                }
-
 
1212
            }
-
 
1213
            goto error;
-
 
1214
        }
-
 
1215
    }
-
 
1216
 
-
 
1217
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
-
 
1218
    if (node && page < leaf->key[0]) {
-
 
1219
        __address left_pg = node->key[node->keys - 1];
-
 
1220
        count_t left_cnt = (count_t) node->value[node->keys - 1];
-
 
1221
 
-
 
1222
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
-
 
1223
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
-
 
1224
                /*
-
 
1225
                 * The interval is contained in the rightmost interval
-
 
1226
                 * of the left neighbour and can be removed by
-
 
1227
                 * updating the size of the bigger interval.
-
 
1228
                 */
-
 
1229
                node->value[node->keys - 1] -= (count_t) count;
-
 
1230
                return 1;
-
 
1231
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
-
 
1232
                count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
-
 
1233
               
-
 
1234
                /*
-
 
1235
                 * The interval is contained in the rightmost interval
-
 
1236
                 * of the left neighbour but its removal requires
-
 
1237
                 * both updating the size of the original interval and
-
 
1238
                 * also inserting a new interval.
-
 
1239
                 */
-
 
1240
                node->value[node->keys - 1] -= (count_t) count + new_cnt;
-
 
1241
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
-
 
1242
                return 1;
-
 
1243
            }
-
 
1244
        }
-
 
1245
        return 0;
-
 
1246
    } else if (page < leaf->key[0]) {
-
 
1247
        return 0;
-
 
1248
    }
-
 
1249
   
-
 
1250
    if (page > leaf->key[leaf->keys - 1]) {
-
 
1251
        __address left_pg = leaf->key[leaf->keys - 1];
-
 
1252
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
-
 
1253
 
-
 
1254
        if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
-
 
1255
            if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
-
 
1256
                /*
-
 
1257
                 * The interval is contained in the rightmost interval
-
 
1258
                 * of the leaf and can be removed by updating the size
-
 
1259
                 * of the bigger interval.
-
 
1260
                 */
-
 
1261
                leaf->value[leaf->keys - 1] -= (count_t) count;
-
 
1262
                return 1;
-
 
1263
            } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
-
 
1264
                count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
-
 
1265
               
-
 
1266
                /*
-
 
1267
                 * The interval is contained in the rightmost interval
-
 
1268
                 * of the leaf but its removal requires both updating
-
 
1269
                 * the size of the original interval and
-
 
1270
                 * also inserting a new interval.
-
 
1271
                 */
-
 
1272
                leaf->value[leaf->keys - 1] -= (count_t) count + new_cnt;
-
 
1273
                btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
-
 
1274
                return 1;
-
 
1275
            }
-
 
1276
        }
-
 
1277
        return 0;
-
 
1278
    }  
-
 
1279
   
-
 
1280
    /*
-
 
1281
     * The border cases have been already resolved.
-
 
1282
     * Now the interval can be only between intervals of the leaf.
-
 
1283
     */
-
 
1284
    for (i = 1; i < leaf->keys - 1; i++) {
-
 
1285
        if (page < leaf->key[i]) {
-
 
1286
            __address left_pg = leaf->key[i - 1];
-
 
1287
            count_t left_cnt = (count_t) leaf->value[i - 1];
-
 
1288
 
-
 
1289
            /*
-
 
1290
             * Now the interval is between intervals corresponding to (i - 1) and i.
-
 
1291
             */
-
 
1292
            if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
-
 
1293
                if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
-
 
1294
                    /*
-
 
1295
                    * The interval is contained in the interval (i - 1)
-
 
1296
                     * of the leaf and can be removed by updating the size
-
 
1297
                     * of the bigger interval.
-
 
1298
                     */
-
 
1299
                    leaf->value[i - 1] -= (count_t) count;
-
 
1300
                    return 1;
-
 
1301
                } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
-
 
1302
                    count_t new_cnt = (left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE);
-
 
1303
               
-
 
1304
                    /*
-
 
1305
                     * The interval is contained in the interval (i - 1)
-
 
1306
                     * of the leaf but its removal requires both updating
-
 
1307
                     * the size of the original interval and
-
 
1308
                     * also inserting a new interval.
-
 
1309
                     */
-
 
1310
                    leaf->value[i - 1] -= (count_t) count + new_cnt;
-
 
1311
                    btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
-
 
1312
                    return 1;
-
 
1313
                }
-
 
1314
            }
-
 
1315
            return 0;
-
 
1316
        }
-
 
1317
    }
-
 
1318
 
-
 
1319
error:
-
 
1320
    panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
-
 
1321
}
946
 
1322
 
947
/*
1323
/*
948
 * Address space related syscalls.
1324
 * Address space related syscalls.
949
 */
1325
 */
950
 
1326
 
951
/** Wrapper for as_area_create(). */
1327
/** Wrapper for as_area_create(). */
952
__native sys_as_area_create(__address address, size_t size, int flags)
1328
__native sys_as_area_create(__address address, size_t size, int flags)
953
{
1329
{
954
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE))
1330
    if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE))
955
        return (__native) address;
1331
        return (__native) address;
956
    else
1332
    else
957
        return (__native) -1;
1333
        return (__native) -1;
958
}
1334
}
959
 
1335
 
960
/** Wrapper for as_area_resize. */
1336
/** Wrapper for as_area_resize. */
961
__native sys_as_area_resize(__address address, size_t size, int flags)
1337
__native sys_as_area_resize(__address address, size_t size, int flags)
962
{
1338
{
963
    return (__native) as_area_resize(AS, address, size, 0);
1339
    return (__native) as_area_resize(AS, address, size, 0);
964
}
1340
}
965
 
1341
 
966
/** Wrapper for as_area_destroy. */
1342
/** Wrapper for as_area_destroy. */
967
__native sys_as_area_destroy(__address address)
1343
__native sys_as_area_destroy(__address address)
968
{
1344
{
969
    return (__native) as_area_destroy(AS, address);
1345
    return (__native) as_area_destroy(AS, address);
970
}
1346
}
971
 
1347