Subversion Repositories HelenOS-historic

Rev

Rev 269 | Rev 279 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 269 Rev 271
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <arch/pm.h>
29
#include <arch/pm.h>
30
#include <config.h>
30
#include <config.h>
31
#include <arch/types.h>
31
#include <arch/types.h>
32
#include <typedefs.h>
32
#include <typedefs.h>
33
#include <arch/interrupt.h>
33
#include <arch/interrupt.h>
34
#include <arch/asm.h>
34
#include <arch/asm.h>
35
#include <arch/context.h>
35
#include <arch/context.h>
36
#include <panic.h>
36
#include <panic.h>
37
#include <arch/mm/page.h>
37
#include <arch/mm/page.h>
38
#include <mm/heap.h>
38
#include <mm/heap.h>
39
#include <memstr.h>
39
#include <memstr.h>
40
#include <arch/boot/boot.h>
40
#include <arch/boot/boot.h>
41
 
41
 
42
/*
42
/*
43
 * Early ia32 configuration functions and data structures.
43
 * Early ia32 configuration functions and data structures.
44
 */
44
 */
45
 
45
 
46
/*
46
/*
47
 * We have no use for segmentation so we set up flat mode. In this
47
 * We have no use for segmentation so we set up flat mode. In this
48
 * mode, we use, for each privilege level, two segments spanning the
48
 * mode, we use, for each privilege level, two segments spanning the
49
 * whole memory. One is for code and one is for data.
49
 * whole memory. One is for code and one is for data.
50
 */
50
 */
51
struct descriptor gdt[GDT_ITEMS] = {
51
struct descriptor gdt[GDT_ITEMS] = {
52
    /* NULL descriptor */
52
    /* NULL descriptor */
53
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
53
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
54
    /* KTEXT descriptor */
54
    /* KTEXT descriptor */
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
56
    /* KDATA descriptor */
56
    /* KDATA descriptor */
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
58
    /* UTEXT descriptor */
58
    /* UTEXT descriptor */
59
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
59
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
60
    /* UDATA descriptor */
60
    /* UDATA descriptor */
61
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
61
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
62
    /* TSS descriptor - set up will be completed later */
62
    /* TSS descriptor - set up will be completed later */
63
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
63
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
64
};
64
};
65
 
65
 
66
static struct idescriptor idt[IDT_ITEMS];
66
static struct idescriptor idt[IDT_ITEMS];
67
 
67
 
68
static struct tss tss;
68
static struct tss tss;
69
 
69
 
70
struct tss *tss_p = NULL;
70
struct tss *tss_p = NULL;
71
 
71
 
72
/* gdtr is changed by kmp before next CPU is initialized */
72
/* gdtr is changed by kmp before next CPU is initialized */
73
struct ptr_16_32 bsp_bootstrap_gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt - BOOT_OFFSET) };
73
struct ptr_16_32 bsp_bootstrap_gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt - BOOT_OFFSET) };
74
struct ptr_16_32 ap_bootstrap_gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
74
struct ptr_16_32 ap_bootstrap_gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
75
struct ptr_16_32 gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
75
struct ptr_16_32 gdtr = { .limit = sizeof(gdt), .base = (__address) gdt };
76
struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
-
 
77
 
76
 
78
void gdt_setbase(struct descriptor *d, __address base)
77
void gdt_setbase(struct descriptor *d, __address base)
79
{
78
{
80
    d->base_0_15 = base & 0xffff;
79
    d->base_0_15 = base & 0xffff;
81
    d->base_16_23 = ((base) >> 16) & 0xff;
80
    d->base_16_23 = ((base) >> 16) & 0xff;
82
    d->base_24_31 = ((base) >> 24) & 0xff;
81
    d->base_24_31 = ((base) >> 24) & 0xff;
83
}
82
}
84
 
83
 
85
void gdt_setlimit(struct descriptor *d, __u32 limit)
84
void gdt_setlimit(struct descriptor *d, __u32 limit)
86
{
85
{
87
    d->limit_0_15 = limit & 0xffff;
86
    d->limit_0_15 = limit & 0xffff;
88
    d->limit_16_19 = (limit >> 16) & 0xf;
87
    d->limit_16_19 = (limit >> 16) & 0xf;
89
}
88
}
90
 
89
 
91
void idt_setoffset(struct idescriptor *d, __address offset)
90
void idt_setoffset(struct idescriptor *d, __address offset)
92
{
91
{
93
    /*
92
    /*
94
     * Offset is a linear address.
93
     * Offset is a linear address.
95
     */
94
     */
96
    d->offset_0_15 = offset & 0xffff;
95
    d->offset_0_15 = offset & 0xffff;
97
    d->offset_16_31 = offset >> 16;
96
    d->offset_16_31 = offset >> 16;
98
}
97
}
99
 
98
 
100
void tss_initialize(struct tss *t)
99
void tss_initialize(struct tss *t)
101
{
100
{
102
    memsetb((__address) t, sizeof(struct tss), 0);
101
    memsetb((__address) t, sizeof(struct tss), 0);
103
}
102
}
104
 
103
 
105
/*
104
/*
106
 * This function takes care of proper setup of IDT and IDTR.
105
 * This function takes care of proper setup of IDT and IDTR.
107
 */
106
 */
108
void idt_init(void)
107
void idt_init(void)
109
{
108
{
110
    struct idescriptor *d;
109
    struct idescriptor *d;
111
    int i;
110
    int i;
112
 
111
 
113
    for (i = 0; i < IDT_ITEMS; i++) {
112
    for (i = 0; i < IDT_ITEMS; i++) {
114
        d = &idt[i];
113
        d = &idt[i];
115
 
114
 
116
        d->unused = 0;
115
        d->unused = 0;
117
        d->selector = selector(KTEXT_DES);
116
        d->selector = selector(KTEXT_DES);
118
 
117
 
119
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
118
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
120
 
119
 
121
        if (i == VECTOR_SYSCALL) {
120
        if (i == VECTOR_SYSCALL) {
122
            /*
121
            /*
123
             * The syscall interrupt gate must be calleable from userland.
122
             * The syscall interrupt gate must be calleable from userland.
124
             */
123
             */
125
            d->access |= DPL_USER;
124
            d->access |= DPL_USER;
126
        }
125
        }
127
       
126
       
128
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
127
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
129
        trap_register(i, null_interrupt);
128
        trap_register(i, null_interrupt);
130
    }
129
    }
131
    trap_register(13, gp_fault);
130
    trap_register(13, gp_fault);
132
    trap_register( 7, nm_fault);
131
    trap_register( 7, nm_fault);
133
    trap_register(12, ss_fault);
132
    trap_register(12, ss_fault);
134
}
133
}
135
 
134
 
136
 
135
 
137
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
136
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
138
static void clean_IOPL_NT_flags(void)
137
static void clean_IOPL_NT_flags(void)
139
{
138
{
140
    asm
139
    asm
141
    (
140
    (
142
        "pushfl;"
141
        "pushfl;"
143
        "pop %%eax;"
142
        "pop %%eax;"
144
        "and $0xffff8fff,%%eax;"
143
        "and $0xffff8fff,%%eax;"
145
        "push %%eax;"
144
        "push %%eax;"
146
        "popfl;"
145
        "popfl;"
147
        :
146
        :
148
        :
147
        :
149
        :"%eax"
148
        :"%eax"
150
    );
149
    );
151
}
150
}
152
 
151
 
153
/* Clean AM(18) flag in CR0 register */
152
/* Clean AM(18) flag in CR0 register */
154
static void clean_AM_flag(void)
153
static void clean_AM_flag(void)
155
{
154
{
156
    asm
155
    asm
157
    (
156
    (
158
        "mov %%cr0,%%eax;"
157
        "mov %%cr0,%%eax;"
159
        "and $0xFFFBFFFF,%%eax;"
158
        "and $0xFFFBFFFF,%%eax;"
160
        "mov %%eax,%%cr0;"
159
        "mov %%eax,%%cr0;"
161
        :
160
        :
162
        :
161
        :
163
        :"%eax"
162
        :"%eax"
164
    );
163
    );
165
}
164
}
166
 
165
 
167
void pm_init(void)
166
void pm_init(void)
168
{
167
{
169
    struct descriptor *gdt_p = (struct descriptor *) PA2KA(gdtr.base);
168
    struct descriptor *gdt_p = (struct descriptor *) gdtr.base;
170
 
-
 
-
 
169
    struct ptr_16_32 idtr;
171
 
170
 
172
    /*
171
    /*
173
     * Update addresses in GDT and IDT to their virtual counterparts.
172
     * Update addresses in GDT and IDT to their virtual counterparts.
174
     */
173
     */
175
    if (config.cpu_active == 1)
-
 
176
        gdtr.base = (__address) gdt;
174
    idtr.limit = sizeof(idt);
177
    idtr.base = (__address) idt;
175
    idtr.base = (__address) idt;
178
    __asm__ volatile ("lgdt %0\n" : : "m" (gdtr));
176
    __asm__ volatile ("lgdt %0\n" : : "m" (gdtr));
179
    __asm__ volatile ("lidt %0\n" : : "m" (idtr)); 
177
    __asm__ volatile ("lidt %0\n" : : "m" (idtr)); 
180
   
178
   
181
    /*
179
    /*
182
     * Each CPU has its private GDT and TSS.
180
     * Each CPU has its private GDT and TSS.
183
     * All CPUs share one IDT.
181
     * All CPUs share one IDT.
184
     */
182
     */
185
 
183
 
186
    if (config.cpu_active == 1) {
184
    if (config.cpu_active == 1) {
187
        idt_init();
185
        idt_init();
188
        /*
186
        /*
189
         * NOTE: bootstrap CPU has statically allocated TSS, because
187
         * NOTE: bootstrap CPU has statically allocated TSS, because
190
         * the heap hasn't been initialized so far.
188
         * the heap hasn't been initialized so far.
191
         */
189
         */
192
        tss_p = &tss;
190
        tss_p = &tss;
193
    }
191
    }
194
    else {
192
    else {
195
        tss_p = (struct tss *) malloc(sizeof(struct tss));
193
        tss_p = (struct tss *) malloc(sizeof(struct tss));
196
        if (!tss_p)
194
        if (!tss_p)
197
            panic("could not allocate TSS\n");
195
            panic("could not allocate TSS\n");
198
    }
196
    }
199
 
197
 
200
    tss_initialize(tss_p);
198
    tss_initialize(tss_p);
201
   
199
   
202
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
200
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
203
    gdt_p[TSS_DES].special = 1;
201
    gdt_p[TSS_DES].special = 1;
204
    gdt_p[TSS_DES].granularity = 1;
202
    gdt_p[TSS_DES].granularity = 1;
205
   
203
   
206
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
204
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
207
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
205
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
208
 
206
 
209
    /*
207
    /*
210
     * As of this moment, the current CPU has its own GDT pointing
208
     * As of this moment, the current CPU has its own GDT pointing
211
     * to its own TSS. We just need to load the TR register.
209
     * to its own TSS. We just need to load the TR register.
212
     */
210
     */
213
    __asm__ volatile ("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
211
    __asm__ volatile ("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
214
   
212
   
215
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels */
213
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels */
216
    clean_AM_flag();          /* Disable alignment check */
214
    clean_AM_flag();          /* Disable alignment check */
217
}
215
}
218
 
216