Subversion Repositories HelenOS-historic

Rev

Rev 113 | Rev 141 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 113 Rev 125
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <arch/pm.h>
29
#include <arch/pm.h>
30
#include <config.h>
30
#include <config.h>
31
#include <arch/types.h>
31
#include <arch/types.h>
32
#include <typedefs.h>
32
#include <typedefs.h>
33
#include <arch/interrupt.h>
33
#include <arch/interrupt.h>
34
#include <arch/asm.h>
34
#include <arch/asm.h>
35
#include <arch/context.h>
35
#include <arch/context.h>
36
#include <panic.h>
36
#include <panic.h>
37
 
37
 
38
/*
38
/*
39
 * Early ia32 configuration functions and data structures.
39
 * Early ia32 configuration functions and data structures.
40
 */
40
 */
41
 
41
 
42
/*
42
/*
43
 * We have no use for segmentation so we set up flat mode. In this
43
 * We have no use for segmentation so we set up flat mode. In this
44
 * mode, we use, for each privilege level, two segments spanning the
44
 * mode, we use, for each privilege level, two segments spanning the
45
 * whole memory. One is for code and one is for data.
45
 * whole memory. One is for code and one is for data.
46
 */
46
 */
47
struct descriptor gdt[GDT_ITEMS] = {
47
struct descriptor gdt[GDT_ITEMS] = {
48
    /* NULL descriptor */
48
    /* NULL descriptor */
49
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
49
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
50
    /* KTEXT descriptor */
50
    /* KTEXT descriptor */
51
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
51
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
52
    /* KDATA descriptor */
52
    /* KDATA descriptor */
53
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
53
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
54
    /* UTEXT descriptor */
54
    /* UTEXT descriptor */
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
55
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
56
    /* UDATA descriptor */
56
    /* UDATA descriptor */
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
57
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
58
    /* TSS descriptor - set up will be completed later */
58
    /* TSS descriptor - set up will be completed later */
59
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
59
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
60
};
60
};
61
 
61
 
62
static struct idescriptor idt[IDT_ITEMS];
62
static struct idescriptor idt[IDT_ITEMS];
63
 
63
 
64
static struct tss tss;
64
static struct tss tss;
65
 
65
 
66
struct tss *tss_p = NULL;
66
struct tss *tss_p = NULL;
67
 
67
 
68
/* gdtr is changed by kmp before next CPU is initialized */
68
/* gdtr is changed by kmp before next CPU is initialized */
69
struct ptr_16_32 gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
69
struct ptr_16_32 gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
70
struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
70
struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
71
 
71
 
72
void gdt_setbase(struct descriptor *d, __address base)
72
void gdt_setbase(struct descriptor *d, __address base)
73
{
73
{
74
        d->base_0_15 = base & 0xffff;
74
    d->base_0_15 = base & 0xffff;
75
        d->base_16_23 = ((base) >> 16) & 0xff;
75
    d->base_16_23 = ((base) >> 16) & 0xff;
76
        d->base_24_31 = ((base) >> 24) & 0xff;
76
    d->base_24_31 = ((base) >> 24) & 0xff;
77
 
-
 
78
}
77
}
79
 
78
 
80
void gdt_setlimit(struct descriptor *d, __u32 limit)
79
void gdt_setlimit(struct descriptor *d, __u32 limit)
81
{
80
{
82
        d->limit_0_15 = limit & 0xffff;
81
    d->limit_0_15 = limit & 0xffff;
83
        d->limit_16_19 = (limit >> 16) & 0xf;
82
    d->limit_16_19 = (limit >> 16) & 0xf;
84
}
83
}
85
 
84
 
86
void idt_setoffset(struct idescriptor *d, __address offset)
85
void idt_setoffset(struct idescriptor *d, __address offset)
87
{
86
{
88
    /*
87
    /*
89
     * Offset is a linear address.
88
     * Offset is a linear address.
90
     */
89
     */
91
    d->offset_0_15 = offset & 0xffff;
90
    d->offset_0_15 = offset & 0xffff;
92
    d->offset_16_31 = offset >> 16;
91
    d->offset_16_31 = offset >> 16;
93
}
92
}
94
 
93
 
95
void tss_initialize(struct tss *t)
94
void tss_initialize(struct tss *t)
96
{
95
{
97
    memsetb((__address) t, sizeof(struct tss), 0);
96
    memsetb((__address) t, sizeof(struct tss), 0);
98
}
97
}
99
 
98
 
100
/*
99
/*
101
 * This function takes care of proper setup of IDT and IDTR.
100
 * This function takes care of proper setup of IDT and IDTR.
102
 */
101
 */
103
void idt_init(void)
102
void idt_init(void)
104
{
103
{
105
    struct idescriptor *d;
104
    struct idescriptor *d;
106
    int i;
105
    int i;
107
   
106
 
108
    for (i = 0; i < IDT_ITEMS; i++) {
107
    for (i = 0; i < IDT_ITEMS; i++) {
109
        d = &idt[i];
108
        d = &idt[i];
110
 
109
 
111
        d->unused = 0;
110
        d->unused = 0;
112
        d->selector = selector(KTEXT_DES);
111
        d->selector = selector(KTEXT_DES);
113
 
112
 
114
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
113
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
115
 
114
 
116
        if (i == VECTOR_SYSCALL) {
115
        if (i == VECTOR_SYSCALL) {
117
            /*
116
            /*
118
             * The syscall interrupt gate must be calleable from userland.
117
             * The syscall interrupt gate must be calleable from userland.
119
             */
118
             */
120
            d->access |= DPL_USER;
119
            d->access |= DPL_USER;
121
        }
120
        }
122
       
121
       
123
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
122
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
124
        trap_register(i, null_interrupt);
123
        trap_register(i, null_interrupt);
125
    }
124
    }
126
    trap_register(13, gp_fault);
125
    trap_register(13, gp_fault);
127
    trap_register( 7, nm_fault);
126
    trap_register( 7, nm_fault);
128
    trap_register(12, ss_fault);
127
    trap_register(12, ss_fault);
129
}
128
}
130
 
129
 
131
 
130
 
132
void pm_init(void)
131
void pm_init(void)
133
{
132
{
134
    struct descriptor *gdt_p = (struct descriptor *) PA2KA(gdtr.base);
133
    struct descriptor *gdt_p = (struct descriptor *) PA2KA(gdtr.base);
135
 
134
 
136
    /*
135
    /*
137
     * Each CPU has its private GDT and TSS.
136
     * Each CPU has its private GDT and TSS.
138
     * All CPUs share one IDT.
137
     * All CPUs share one IDT.
139
     */
138
     */
140
 
139
 
141
    if (config.cpu_active == 1) {
140
    if (config.cpu_active == 1) {
142
        idt_init();
141
        idt_init();
143
        /*
142
        /*
144
         * NOTE: bootstrap CPU has statically allocated TSS, because
143
         * NOTE: bootstrap CPU has statically allocated TSS, because
145
         * the heap hasn't been initialized so far.
144
         * the heap hasn't been initialized so far.
146
         */
145
         */
147
        tss_p = &tss;
146
        tss_p = &tss;
148
    }
147
    }
149
    else {
148
    else {
150
        tss_p = (struct tss *) malloc(sizeof(struct tss));
149
        tss_p = (struct tss *) malloc(sizeof(struct tss));
151
        if (!tss_p)
150
        if (!tss_p)
152
            panic("could not allocate TSS\n");
151
            panic("could not allocate TSS\n");
153
    }
152
    }
154
 
153
 
155
    tss_initialize(tss_p);
154
    tss_initialize(tss_p);
156
   
155
   
157
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
156
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
158
    gdt_p[TSS_DES].special = 1;
157
    gdt_p[TSS_DES].special = 1;
159
    gdt_p[TSS_DES].granularity = 1;
158
    gdt_p[TSS_DES].granularity = 1;
160
   
159
   
161
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
160
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
162
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
161
    gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
163
 
162
 
164
    /*
163
    /*
165
     * As of this moment, the current CPU has its own GDT pointing
164
     * As of this moment, the current CPU has its own GDT pointing
166
     * to its own TSS. We just need to load the TR register.
165
     * to its own TSS. We just need to load the TR register.
167
     */
166
     */
168
    __asm__("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
167
    __asm__("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
169
}
168
}
170
 
169