Subversion Repositories HelenOS-historic

Rev

Rev 1289 | Rev 1702 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 1289 Rev 1292
1
/*
1
/*
2
 * Copyright (C) 2001-2004 Jakub Jermar
2
 * Copyright (C) 2001-2004 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
#include <arch/pm.h>
29
#include <arch/pm.h>
30
#include <config.h>
30
#include <config.h>
31
#include <arch/types.h>
31
#include <arch/types.h>
32
#include <typedefs.h>
32
#include <typedefs.h>
33
#include <arch/interrupt.h>
33
#include <arch/interrupt.h>
34
#include <arch/asm.h>
34
#include <arch/asm.h>
35
#include <arch/context.h>
35
#include <arch/context.h>
36
#include <panic.h>
36
#include <panic.h>
37
#include <arch/mm/page.h>
37
#include <arch/mm/page.h>
38
#include <mm/slab.h>
38
#include <mm/slab.h>
39
#include <memstr.h>
39
#include <memstr.h>
40
#include <arch/boot/boot.h>
40
#include <arch/boot/boot.h>
41
#include <interrupt.h>
41
#include <interrupt.h>
42
 
42
 
43
/*
43
/*
44
 * Early ia32 configuration functions and data structures.
44
 * Early ia32 configuration functions and data structures.
45
 */
45
 */
46
 
46
 
47
/*
47
/*
48
 * We have no use for segmentation so we set up flat mode. In this
48
 * We have no use for segmentation so we set up flat mode. In this
49
 * mode, we use, for each privilege level, two segments spanning the
49
 * mode, we use, for each privilege level, two segments spanning the
50
 * whole memory. One is for code and one is for data.
50
 * whole memory. One is for code and one is for data.
51
 *
51
 *
52
 * One is for GS register which holds pointer to the TLS thread
52
 * One is for GS register which holds pointer to the TLS thread
53
 * structure in it's base.
53
 * structure in it's base.
54
 */
54
 */
55
descriptor_t gdt[GDT_ITEMS] = {
55
descriptor_t gdt[GDT_ITEMS] = {
56
    /* NULL descriptor */
56
    /* NULL descriptor */
57
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
57
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
58
    /* KTEXT descriptor */
58
    /* KTEXT descriptor */
59
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
59
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
60
    /* KDATA descriptor */
60
    /* KDATA descriptor */
61
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
61
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
62
    /* UTEXT descriptor */
62
    /* UTEXT descriptor */
63
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
63
    { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
64
    /* UDATA descriptor */
64
    /* UDATA descriptor */
65
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
65
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
66
    /* TSS descriptor - set up will be completed later */
66
    /* TSS descriptor - set up will be completed later */
67
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
67
    { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
68
    /* TLS descriptor */
68
    /* TLS descriptor */
69
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
69
    { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
70
    /* VESA Init descriptor */
70
    /* VESA Init descriptor */
-
 
71
#ifdef CONFIG_FB
71
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
72
    { 0xffff, 0, VESA_INIT_SEGMENT>>12, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 0, 0, 0 }
72
   
73
#endif  
73
};
74
};
74
 
75
 
75
static idescriptor_t idt[IDT_ITEMS];
76
static idescriptor_t idt[IDT_ITEMS];
76
 
77
 
77
static tss_t tss;
78
static tss_t tss;
78
 
79
 
79
tss_t *tss_p = NULL;
80
tss_t *tss_p = NULL;
80
 
81
 
81
/* gdtr is changed by kmp before next CPU is initialized */
82
/* gdtr is changed by kmp before next CPU is initialized */
82
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
83
ptr_16_32_t bootstrap_gdtr = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
83
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (__address) gdt };
84
ptr_16_32_t gdtr = { .limit = sizeof(gdt), .base = (__address) gdt };
84
 
85
 
85
void gdt_setbase(descriptor_t *d, __address base)
86
void gdt_setbase(descriptor_t *d, __address base)
86
{
87
{
87
    d->base_0_15 = base & 0xffff;
88
    d->base_0_15 = base & 0xffff;
88
    d->base_16_23 = ((base) >> 16) & 0xff;
89
    d->base_16_23 = ((base) >> 16) & 0xff;
89
    d->base_24_31 = ((base) >> 24) & 0xff;
90
    d->base_24_31 = ((base) >> 24) & 0xff;
90
}
91
}
91
 
92
 
92
void gdt_setlimit(descriptor_t *d, __u32 limit)
93
void gdt_setlimit(descriptor_t *d, __u32 limit)
93
{
94
{
94
    d->limit_0_15 = limit & 0xffff;
95
    d->limit_0_15 = limit & 0xffff;
95
    d->limit_16_19 = (limit >> 16) & 0xf;
96
    d->limit_16_19 = (limit >> 16) & 0xf;
96
}
97
}
97
 
98
 
98
void idt_setoffset(idescriptor_t *d, __address offset)
99
void idt_setoffset(idescriptor_t *d, __address offset)
99
{
100
{
100
    /*
101
    /*
101
     * Offset is a linear address.
102
     * Offset is a linear address.
102
     */
103
     */
103
    d->offset_0_15 = offset & 0xffff;
104
    d->offset_0_15 = offset & 0xffff;
104
    d->offset_16_31 = offset >> 16;
105
    d->offset_16_31 = offset >> 16;
105
}
106
}
106
 
107
 
107
void tss_initialize(tss_t *t)
108
void tss_initialize(tss_t *t)
108
{
109
{
109
    memsetb((__address) t, sizeof(struct tss), 0);
110
    memsetb((__address) t, sizeof(struct tss), 0);
110
}
111
}
111
 
112
 
112
/*
113
/*
113
 * This function takes care of proper setup of IDT and IDTR.
114
 * This function takes care of proper setup of IDT and IDTR.
114
 */
115
 */
115
void idt_init(void)
116
void idt_init(void)
116
{
117
{
117
    idescriptor_t *d;
118
    idescriptor_t *d;
118
    int i;
119
    int i;
119
 
120
 
120
    for (i = 0; i < IDT_ITEMS; i++) {
121
    for (i = 0; i < IDT_ITEMS; i++) {
121
        d = &idt[i];
122
        d = &idt[i];
122
 
123
 
123
        d->unused = 0;
124
        d->unused = 0;
124
        d->selector = selector(KTEXT_DES);
125
        d->selector = selector(KTEXT_DES);
125
 
126
 
126
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
127
        d->access = AR_PRESENT | AR_INTERRUPT;  /* masking interrupt */
127
 
128
 
128
        if (i == VECTOR_SYSCALL) {
129
        if (i == VECTOR_SYSCALL) {
129
            /*
130
            /*
130
             * The syscall interrupt gate must be calleable from userland.
131
             * The syscall interrupt gate must be calleable from userland.
131
             */
132
             */
132
            d->access |= DPL_USER;
133
            d->access |= DPL_USER;
133
        }
134
        }
134
       
135
       
135
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
136
        idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
136
        exc_register(i, "undef", (iroutine) null_interrupt);
137
        exc_register(i, "undef", (iroutine) null_interrupt);
137
    }
138
    }
138
    exc_register(13, "gp_fault", (iroutine) gp_fault);
139
    exc_register(13, "gp_fault", (iroutine) gp_fault);
139
    exc_register( 7, "nm_fault", (iroutine) nm_fault);
140
    exc_register( 7, "nm_fault", (iroutine) nm_fault);
140
    exc_register(12, "ss_fault", (iroutine) ss_fault);
141
    exc_register(12, "ss_fault", (iroutine) ss_fault);
141
    exc_register(19, "simd_fp", (iroutine) simd_fp_exception);
142
    exc_register(19, "simd_fp", (iroutine) simd_fp_exception);
142
}
143
}
143
 
144
 
144
 
145
 
145
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
146
/* Clean IOPL(12,13) and NT(14) flags in EFLAGS register */
146
static void clean_IOPL_NT_flags(void)
147
static void clean_IOPL_NT_flags(void)
147
{
148
{
148
    __asm__ volatile (
149
    __asm__ volatile (
149
        "pushfl\n"
150
        "pushfl\n"
150
        "pop %%eax\n"
151
        "pop %%eax\n"
151
        "and $0xffff8fff, %%eax\n"
152
        "and $0xffff8fff, %%eax\n"
152
        "push %%eax\n"
153
        "push %%eax\n"
153
        "popfl\n"
154
        "popfl\n"
154
        : : : "eax"
155
        : : : "eax"
155
    );
156
    );
156
}
157
}
157
 
158
 
158
/* Clean AM(18) flag in CR0 register */
159
/* Clean AM(18) flag in CR0 register */
159
static void clean_AM_flag(void)
160
static void clean_AM_flag(void)
160
{
161
{
161
    __asm__ volatile (
162
    __asm__ volatile (
162
        "mov %%cr0, %%eax\n"
163
        "mov %%cr0, %%eax\n"
163
        "and $0xfffbffff, %%eax\n"
164
        "and $0xfffbffff, %%eax\n"
164
        "mov %%eax, %%cr0\n"
165
        "mov %%eax, %%cr0\n"
165
        : : : "eax"
166
        : : : "eax"
166
    );
167
    );
167
}
168
}
168
 
169
 
169
void pm_init(void)
170
void pm_init(void)
170
{
171
{
171
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
172
    descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
172
    ptr_16_32_t idtr;
173
    ptr_16_32_t idtr;
173
 
174
 
174
    /*
175
    /*
175
     * Update addresses in GDT and IDT to their virtual counterparts.
176
     * Update addresses in GDT and IDT to their virtual counterparts.
176
     */
177
     */
177
    idtr.limit = sizeof(idt);
178
    idtr.limit = sizeof(idt);
178
    idtr.base = (__address) idt;
179
    idtr.base = (__address) idt;
179
    gdtr_load(&gdtr);
180
    gdtr_load(&gdtr);
180
    idtr_load(&idtr);
181
    idtr_load(&idtr);
181
   
182
   
182
    /*
183
    /*
183
     * Each CPU has its private GDT and TSS.
184
     * Each CPU has its private GDT and TSS.
184
     * All CPUs share one IDT.
185
     * All CPUs share one IDT.
185
     */
186
     */
186
 
187
 
187
    if (config.cpu_active == 1) {
188
    if (config.cpu_active == 1) {
188
        idt_init();
189
        idt_init();
189
        /*
190
        /*
190
         * NOTE: bootstrap CPU has statically allocated TSS, because
191
         * NOTE: bootstrap CPU has statically allocated TSS, because
191
         * the heap hasn't been initialized so far.
192
         * the heap hasn't been initialized so far.
192
         */
193
         */
193
        tss_p = &tss;
194
        tss_p = &tss;
194
    }
195
    }
195
    else {
196
    else {
196
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
197
        tss_p = (tss_t *) malloc(sizeof(tss_t), FRAME_ATOMIC);
197
        if (!tss_p)
198
        if (!tss_p)
198
            panic("could not allocate TSS\n");
199
            panic("could not allocate TSS\n");
199
    }
200
    }
200
 
201
 
201
    tss_initialize(tss_p);
202
    tss_initialize(tss_p);
202
   
203
   
203
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
204
    gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
204
    gdt_p[TSS_DES].special = 1;
205
    gdt_p[TSS_DES].special = 1;
205
    gdt_p[TSS_DES].granularity = 0;
206
    gdt_p[TSS_DES].granularity = 0;
206
   
207
   
207
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
208
    gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
208
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
209
    gdt_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
209
 
210
 
210
    /*
211
    /*
211
     * As of this moment, the current CPU has its own GDT pointing
212
     * As of this moment, the current CPU has its own GDT pointing
212
     * to its own TSS. We just need to load the TR register.
213
     * to its own TSS. We just need to load the TR register.
213
     */
214
     */
214
    tr_load(selector(TSS_DES));
215
    tr_load(selector(TSS_DES));
215
   
216
   
216
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
217
    clean_IOPL_NT_flags();    /* Disable I/O on nonprivileged levels and clear NT flag. */
217
    clean_AM_flag();          /* Disable alignment check */
218
    clean_AM_flag();          /* Disable alignment check */
218
}
219
}
219
 
220
 
220
void set_tls_desc(__address tls)
221
void set_tls_desc(__address tls)
221
{
222
{
222
    ptr_16_32_t cpugdtr;
223
    ptr_16_32_t cpugdtr;
223
    descriptor_t *gdt_p;
224
    descriptor_t *gdt_p;
224
 
225
 
225
    gdtr_store(&cpugdtr);
226
    gdtr_store(&cpugdtr);
226
    gdt_p = (descriptor_t *) cpugdtr.base;
227
    gdt_p = (descriptor_t *) cpugdtr.base;
227
    gdt_setbase(&gdt_p[TLS_DES], tls);
228
    gdt_setbase(&gdt_p[TLS_DES], tls);
228
    /* Reload gdt register to update GS in CPU */
229
    /* Reload gdt register to update GS in CPU */
229
    gdtr_load(&cpugdtr);
230
    gdtr_load(&cpugdtr);
230
}
231
}
231
 
232