Subversion Repositories HelenOS-doc

Rev

Rev 39 | Rev 46 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 39 Rev 45
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <section>
7
  <section>
8
    <title>Virtual memory management</title>
8
    <title>Virtual memory management</title>
9
 
9
 
10
    <section>
10
    <section>
11
      <title>Introduction</title>
11
      <title>Introduction</title>
12
 
12
 
13
      <para>Virtual memory is a special memory management technique, used by
13
      <para>Virtual memory is a special memory management technique, used by
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
14
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
15
          <listitem>
15
          <listitem>
16
             Isolate each task from other tasks that are running on the system at the same time.
16
             Isolate each task from other tasks that are running on the system at the same time.
17
          </listitem>
17
          </listitem>
18
 
18
 
19
          <listitem>
19
          <listitem>
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
20
             Allow to allocate more memory, than is actual physical memory size of the machine.
21
          </listitem>
21
          </listitem>
22
 
22
 
23
          <listitem>
23
          <listitem>
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
24
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
25
          </listitem>
25
          </listitem>
26
        </itemizedlist></para>
26
        </itemizedlist></para>
27
 
27
 
28
      <para><!--
28
      <para><!--
29
 
29
 
30
                TLB shootdown ASID/ASID:PAGE/ALL.
30
                TLB shootdown ASID/ASID:PAGE/ALL.
31
                TLB shootdown requests can come in asynchroniously
31
                TLB shootdown requests can come in asynchroniously
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
32
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
33
 
33
 
34
 
34
 
35
                <para>
35
                <para>
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
36
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
37
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
38
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
39
                </para>
39
                </para>
40
 
40
 
41
--></para>
41
--></para>
42
    </section>
42
    </section>
43
 
43
 
44
    <section>
44
    <section>
45
      <title>Paging</title>
45
      <title>Paging</title>
46
 
46
 
47
      <para>Virtual memory is usually using paged memory model, where virtual
47
      <para>Virtual memory is usually using paged memory model, where virtual
48
      memory address space is divided into the <emphasis>pages</emphasis>
48
      memory address space is divided into the <emphasis>pages</emphasis>
49
      (usually having size 4096 bytes) and physical memory is divided into the
49
      (usually having size 4096 bytes) and physical memory is divided into the
50
      frames (same sized as a page, of course). Each page may be mapped to
50
      frames (same sized as a page, of course). Each page may be mapped to
51
      some frame and then, upon memory access to the virtual address, CPU
51
      some frame and then, upon memory access to the virtual address, CPU
52
      performs <emphasis>address translation</emphasis> during the instruction
52
      performs <emphasis>address translation</emphasis> during the instruction
53
      execution. Non-existing mapping generates page fault exception, calling
53
      execution. Non-existing mapping generates page fault exception, calling
54
      kernel exception handler, thus allowing kernel to manipulate rules of
54
      kernel exception handler, thus allowing kernel to manipulate rules of
55
      memory access. Information for pages mapping is stored by kernel in the
55
      memory access. Information for pages mapping is stored by kernel in the
56
      <link linkend="page_tables">page tables</link></para>
56
      <link linkend="page_tables">page tables</link></para>
57
 
57
 
58
      <para>The majority of the architectures use multi-level page tables,
58
      <para>The majority of the architectures use multi-level page tables,
59
      which means need to access physical memory several times before getting
59
      which means need to access physical memory several times before getting
60
      physical address. This fact would make serios performance overhead in
60
      physical address. This fact would make serios performance overhead in
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
61
      virtual memory management. To avoid this <link linkend="tlb">Traslation
62
      Lookaside Buffer (TLB)</link> is used.</para>
62
      Lookaside Buffer (TLB)</link> is used.</para>
63
 
63
 
64
      <para>At the moment HelenOS does not support swapping.</para>
64
      <para>At the moment HelenOS does not support swapping.</para>
65
 
65
 
66
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
66
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
67
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
67
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
68
      stranky</para>
68
      stranky</para>
69
    </section>
69
    </section>
70
 
70
 
71
    <section>
71
    <section>
72
      <title>Address spaces</title>
72
      <title>Address spaces</title>
73
 
73
 
74
      <section>
74
      <section>
75
        <title>Address spaces and areas</title>
75
        <title>Address spaces and areas</title>
76
 
76
 
77
        <para>- adresovy prostor se sklada z tzv. address space areas
77
        <para>- adresovy prostor se sklada z tzv. address space areas
78
        usporadanych v B+stromu; tyto areas popisuji vyuzivane casti
78
        usporadanych v B+stromu; tyto areas popisuji vyuzivane casti
79
        adresoveho prostoru patrici do user address space. Kazda cast je dana
79
        adresoveho prostoru patrici do user address space. Kazda cast je dana
80
        svoji bazovou adresou, velikosti a flagy (rwx/dd).</para>
80
        svoji bazovou adresou, velikosti a flagy (rwx/dd).</para>
81
 
81
 
82
        <para>- uzivatelske thready maji moznost manipulovat se svym adresovym
82
        <para>- uzivatelske thready maji moznost manipulovat se svym adresovym
83
        prostorem (vytvaret/resizovat/sdilet) as_areas pomoci syscallu</para>
83
        prostorem (vytvaret/resizovat/sdilet) as_areas pomoci syscallu</para>
84
      </section>
84
      </section>
85
 
85
 
86
      <section>
86
      <section>
87
        <title>Address Space ID (ASID)</title>
87
        <title>Address Space ID (ASID)</title>
88
 
88
 
89
        <para>- nektery hardware umoznuje rozlisit ruzne adresove prostory od
89
        <para>- nektery hardware umoznuje rozlisit ruzne adresove prostory od
90
        sebe (cilem je maximalizovat vyuziti TLB); dela to tak, ze s kazdou
90
        sebe (cilem je maximalizovat vyuziti TLB); dela to tak, ze s kazdou
91
        polozkou TLB/strankovacich tabulek sdruzi identifikator adresoveho
91
        polozkou TLB/strankovacich tabulek sdruzi identifikator adresoveho
92
        prostoru (ASID, RID, ppc32 ???). Tyto id mivaji ruznou sirku: 8-bitu
92
        prostoru (ASID, RID, ppc32 ???). Tyto id mivaji ruznou sirku: 8-bitu
93
        az 24-bitu (kolik ma ppc32?)</para>
93
        az 24-bitu (kolik ma ppc32?)</para>
94
 
94
 
95
        <para>- kernel tomu rozumi a sam pouziva abstrakci ASIDu (na ia64 to
95
        <para>- kernel tomu rozumi a sam pouziva abstrakci ASIDu (na ia64 to
96
        je napr. cislo odvozene od RIDu, na mips32 to je ASID samotny);
96
        je napr. cislo odvozene od RIDu, na mips32 to je ASID samotny);
97
        existence ASIDu je nutnou podminkou pouziti _global_ page hash table
97
        existence ASIDu je nutnou podminkou pouziti _global_ page hash table
98
        mechanismu.</para>
98
        mechanismu.</para>
99
 
99
 
100
        <para>- na vsech arch. plati, ze asidu je mnohem mene, nez teoreticky
100
        <para>- na vsech arch. plati, ze asidu je mnohem mene, nez teoreticky
101
        pocet soucasne bezicich tasku ~ adresovych prostoru, takze je
101
        pocet soucasne bezicich tasku ~ adresovych prostoru, takze je
102
        implementovan mechanismus, ktery umoznuje jednomu adresovemu prostoru
102
        implementovan mechanismus, ktery umoznuje jednomu adresovemu prostoru
103
        ASID odebrat a pridelit ho jinemu</para>
103
        ASID odebrat a pridelit ho jinemu</para>
104
 
104
 
105
        <para>- vztah task ~ adresovy prostor: teoreticky existuje moznost, ze
105
        <para>- vztah task ~ adresovy prostor: teoreticky existuje moznost, ze
106
        je adresovy prostor sdilen vice tasky, avsak tuto moznost nepouzivame
106
        je adresovy prostor sdilen vice tasky, avsak tuto moznost nepouzivame
107
        a neni ani nijak osetrena. Tim padem plati, ze kazdy task ma vlastni
107
        a neni ani nijak osetrena. Tim padem plati, ze kazdy task ma vlastni
108
        adresovy prostor</para>
108
        adresovy prostor</para>
109
      </section>
109
      </section>
110
    </section>
110
    </section>
111
 
111
 
112
    <section>
112
    <section>
113
      <title>Virtual address translation</title>
113
      <title>Virtual address translation</title>
114
 
114
 
115
      <section id="page_tables">
115
      <section id="page_tables">
116
        <title>Page tables</title>
116
        <title>Page tables</title>
117
 
117
 
118
        <para>HelenOS kernel has two different approaches to the paging
118
        <para>HelenOS kernel has two different approaches to the paging
119
        implementation: <emphasis>4 level page tables</emphasis> and
119
        implementation: <emphasis>4 level page tables</emphasis> and
120
        <emphasis>global hash tables</emphasis>, which are accessible via
120
        <emphasis>global hash tables</emphasis>, which are accessible via
121
        generic paging abstraction layer. This division was caused by the
121
        generic paging abstraction layer. This division was caused by the
122
        major architectural differences between different platforms.</para>
122
        major architectural differences between different platforms.</para>
123
 
123
 
124
        <formalpara>
124
        <formalpara>
125
          <title>4-level page tables</title>
125
          <title>4-level page tables</title>
126
 
126
 
127
          <para>4-level page tables are the generalization of the hardware
127
          <para>4-level page tables are the generalization of the hardware
128
          capabilities of the certain platforms. <itemizedlist>
128
          capabilities of the certain platforms. <itemizedlist>
129
              <listitem>
129
              <listitem>
130
                 ia32 uses 2-level page tables, with full hardware support.
130
                 ia32 uses 2-level page tables, with full hardware support.
131
              </listitem>
131
              </listitem>
132
 
132
 
133
              <listitem>
133
              <listitem>
134
                 amd64 uses 4-level page tables, also coming with full hardware support.
134
                 amd64 uses 4-level page tables, also coming with full hardware support.
135
              </listitem>
135
              </listitem>
136
 
136
 
137
              <listitem>
137
              <listitem>
138
                 mips and ppc32 have 2-level tables, software simulated support.
138
                 mips and ppc32 have 2-level tables, software simulated support.
139
              </listitem>
139
              </listitem>
140
            </itemizedlist></para>
140
            </itemizedlist></para>
141
        </formalpara>
141
        </formalpara>
142
 
142
 
143
        <formalpara>
143
        <formalpara>
144
          <title>Global hash tables</title>
144
          <title>Global hash tables</title>
145
 
145
 
146
          <para>- global page hash table: existuje jen jedna v celem systemu
146
          <para>- global page hash table: existuje jen jedna v celem systemu
147
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
147
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
148
          genericke hash table s oddelenymi collision chains</para>
148
          genericke hash table s oddelenymi collision chains</para>
149
        </formalpara>
149
        </formalpara>
150
 
150
 
151
        <para>Thanks to the abstract paging interface, there is possibility
151
        <para>Thanks to the abstract paging interface, there is possibility
152
        left have more paging implementations, for example B-Tree page
152
        left have more paging implementations, for example B-Tree page
153
        tables.</para>
153
        tables.</para>
154
      </section>
154
      </section>
155
 
155
 
156
      <section id="tlb">
156
      <section id="tlb">
157
        <title>Translation Lookaside buffer</title>
157
        <title>Translation Lookaside buffer</title>
158
 
158
 
159
        <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
159
        <para>- TLB cachuji informace ve strankovacich tabulkach; alternativne
160
        se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
160
        se lze na strankovaci tabulky (ci ruzne hw rozsireni [e.g. VHPT, ppc32
161
        hw hash table]) divat jako na velke TLB</para>
161
        hw hash table]) divat jako na velke TLB</para>
162
 
162
 
163
        <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
163
        <para>- pri modifikaci mapovani nebo odstraneni mapovani ze
164
        strankovacich tabulek je potreba zajistit konsistenci TLB a techto
164
        strankovacich tabulek je potreba zajistit konsistenci TLB a techto
165
        tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
165
        tabulek; nutne delat na vsech CPU; na to mame zjednodusenou verzi TLB
166
        shootdown mechanismu; je to variace na algoritmus popsany zde: D.
166
        shootdown mechanismu; je to variace na algoritmus popsany zde: D.
167
        Black et al., "Translation Lookaside Buffer Consistency: A Software
167
        Black et al., "Translation Lookaside Buffer Consistency: A Software
168
        Approach," Proc. Third Int'l Conf. Architectural Support for
168
        Approach," Proc. Third Int'l Conf. Architectural Support for
169
        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
169
        Programming Languages and Operating Systems, 1989, pp. 113-122.</para>
170
 
170
 
171
        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
171
        <para>- nutno poznamenat, ze existuji odlehcenejsi verze TLB shootdown
172
        algoritmu</para>
172
        algoritmu</para>
173
      </section>
173
      </section>
174
    </section>
174
    </section>
175
  </section>
175
  </section>
176
 
176
 
177
  <!-- End of VM -->
177
  <!-- End of VM -->
178
 
178
 
179
  <section>
179
  <section>
180
    <!-- Phys mem -->
180
    <!-- Phys mem -->
181
 
181
 
182
    <title>Physical memory management</title>
182
    <title>Physical memory management</title>
183
 
183
 
184
    <section id="zones_and_frames">
184
    <section id="zones_and_frames">
185
      <title>Zones and frames</title>
185
      <title>Zones and frames</title>
186
 
186
 
187
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
187
      <para><!--graphic fileref="images/mm2.png" /--><!--graphic fileref="images/buddy_alloc.svg" format="SVG" /--></para>
188
 
188
 
189
      <para>On some architectures not whole physical memory is available for
189
      <para>On some architectures not whole physical memory is available for
190
      conventional usage. This limitations require from kernel to maintain a
190
      conventional usage. This limitations require from kernel to maintain a
191
      table of available and unavailable ranges of physical memory addresses.
191
      table of available and unavailable ranges of physical memory addresses.
192
      Main idea of zones is in creating memory zone entity, that is a
192
      Main idea of zones is in creating memory zone entity, that is a
193
      continuous chunk of memory available for allocation. If some chunk is
193
      continuous chunk of memory available for allocation. If some chunk is
194
      not available, we simply do not put it in any zone.</para>
194
      not available, we simply do not put it in any zone.</para>
195
 
195
 
196
      <para>Zone is also serves for informational purposes, containing
196
      <para>Zone is also serves for informational purposes, containing
197
      information about number of free and busy frames. Physical memory
197
      information about number of free and busy frames. Physical memory
198
      allocation is also done inside the certain zone. Allocation of zone
198
      allocation is also done inside the certain zone. Allocation of zone
199
      frame must be organized by the <link linkend="frame_allocator">frame
199
      frame must be organized by the <link linkend="frame_allocator">frame
200
      allocator</link> associated with the zone.</para>
200
      allocator</link> associated with the zone.</para>
201
 
201
 
202
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
202
      <para>Some of the architectures (mips32, ppc32) have only one zone, that
203
      covers whole physical memory, and the others (like ia32) may have
203
      covers whole physical memory, and the others (like ia32) may have
204
      multiple zones. Information about zones on current machine is stored in
204
      multiple zones. Information about zones on current machine is stored in
205
      BIOS hardware tables or can be hardcoded into kernel during compile
205
      BIOS hardware tables or can be hardcoded into kernel during compile
206
      time.</para>
206
      time.</para>
207
    </section>
207
    </section>
208
 
208
 
209
    <section id="frame_allocator">
209
    <section id="frame_allocator">
210
      <title>Frame allocator</title>
210
      <title>Frame allocator</title>
211
 
211
 
212
      <para><mediaobject id="frame_alloc">
212
      <para><mediaobject id="frame_alloc">
213
          <imageobject role="html">
213
          <imageobject role="html">
214
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
214
            <imagedata fileref="images/frame_alloc.png" format="PNG" />
215
          </imageobject>
215
          </imageobject>
216
 
216
 
217
          <imageobject role="fop">
217
          <imageobject role="fop">
218
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
218
            <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
219
          </imageobject>
219
          </imageobject>
220
        </mediaobject></para>
220
        </mediaobject></para>
221
 
221
 
222
      <formalpara>
222
      <formalpara>
223
        <title>Overview</title>
223
        <title>Overview</title>
224
 
224
 
225
        <para>Frame allocator provides physical memory allocation for the
225
        <para>Frame allocator provides physical memory allocation for the
226
        kernel. Because of zonal organization of physical memory, frame
226
        kernel. Because of zonal organization of physical memory, frame
227
        allocator is always working in context of some zone, thus making
227
        allocator is always working in context of some zone, thus making
228
        impossible to allocate a piece of memory, which lays in different
228
        impossible to allocate a piece of memory, which lays in different
229
        zone, which cannot happen, because two adjacent zones can be merged
229
        zone, which cannot happen, because two adjacent zones can be merged
230
        into one. Frame allocator is also being responsible to update
230
        into one. Frame allocator is also being responsible to update
231
        information on the number of free/busy frames in zone. Physical memory
231
        information on the number of free/busy frames in zone. Physical memory
232
        allocation inside one <link linkend="zones_and_frames">memory
232
        allocation inside one <link linkend="zones_and_frames">memory
233
        zone</link> is being handled by an instance of <link
233
        zone</link> is being handled by an instance of <link
234
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
234
        linkend="buddy_allocator">buddy allocator</link> tailored to allocate
235
        blocks of physical memory frames.</para>
235
        blocks of physical memory frames.</para>
236
      </formalpara>
236
      </formalpara>
237
 
237
 
238
      <formalpara>
238
      <formalpara>
239
        <title>Allocation / deallocation</title>
239
        <title>Allocation / deallocation</title>
240
 
240
 
241
        <para>Upon allocation request, frame allocator tries to find first
241
        <para>Upon allocation request, frame allocator tries to find first
242
        zone, that can satisfy the incoming request (has required amount of
242
        zone, that can satisfy the incoming request (has required amount of
243
        free frames to allocate). During deallocation, frame allocator needs
243
        free frames to allocate). During deallocation, frame allocator needs
244
        to find zone, that contain deallocated frame. This approach could
244
        to find zone, that contain deallocated frame. This approach could
245
        bring up two potential problems: <itemizedlist>
245
        bring up two potential problems: <itemizedlist>
246
            <listitem>
246
            <listitem>
247
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
247
               Linear search of zones does not any good to performance, but number of zones is not expected to be high. And if yes, list of zones can be replaced with more time-efficient B-tree.
248
            </listitem>
248
            </listitem>
249
 
249
 
250
            <listitem>
250
            <listitem>
251
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
251
               Quickly find out if zone contains required number of frames to allocate and if this chunk of memory is properly aligned. This issue is perfectly solved bu the buddy allocator.
252
            </listitem>
252
            </listitem>
253
          </itemizedlist></para>
253
          </itemizedlist></para>
254
      </formalpara>
254
      </formalpara>
255
    </section>
255
    </section>
256
 
256
 
257
    <section id="buddy_allocator">
257
    <section id="buddy_allocator">
258
      <title>Buddy allocator</title>
258
      <title>Buddy allocator</title>
259
 
259
 
260
      <section>
260
      <section>
261
        <title>Overview</title>
261
        <title>Overview</title>
262
 
262
 
263
        <para><mediaobject id="buddy_alloc">
263
        <para><mediaobject id="buddy_alloc">
264
            <imageobject role="html">
264
            <imageobject role="html">
265
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
265
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
266
            </imageobject>
266
            </imageobject>
267
 
267
 
268
            <imageobject role="fop">
268
            <imageobject role="fop">
269
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
269
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
270
            </imageobject>
270
            </imageobject>
271
          </mediaobject></para>
271
          </mediaobject></para>
272
 
272
 
273
        <para>In buddy allocator, memory is broken down into power-of-two
273
        <para>In the buddy allocator, the memory is broken down into
274
        sized naturally aligned blocks. These blocks are organized in an array
274
        power-of-two sized naturally aligned blocks. These blocks are
-
 
275
        organized in an array of lists, in which the list with index i
275
        of lists in which list with index i contains all unallocated blocks of
276
        contains all unallocated blocks of size
276
        the size <mathphrase>2<superscript>i</superscript></mathphrase>. The
277
        <mathphrase>2<superscript>i</superscript></mathphrase>. The index i is
277
        index i is called the order of block. Should there be two adjacent
278
        called the order of block. Should there be two adjacent equally sized
278
        equally sized blocks in list <mathphrase>i</mathphrase> (i.e.
279
        blocks in the list i<mathphrase> </mathphrase>(i.e. buddies), the
279
        buddies), the buddy allocator would coalesce them and put the
280
        buddy allocator would coalesce them and put the resulting block in
280
        resulting block in list <mathphrase>i + 1</mathphrase>, provided that
281
        list <mathphrase>i + 1</mathphrase>, provided that the resulting block
281
        the resulting block would be naturally aligned. Similarily, when the
282
        would be naturally aligned. Similarily, when the allocator is asked to
282
        allocator is asked to allocate a block of size
283
        allocate a block of size
283
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
284
        <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
284
        to satisfy the request from list with index i. If the request cannot
285
        to satisfy the request from the list with index i. If the request
285
        be satisfied (i.e. the list i is empty), the buddy allocator will try
286
        cannot be satisfied (i.e. the list i is empty), the buddy allocator
286
        to allocate and split larger block from list with index i + 1. Both of
287
        will try to allocate and split a larger block from the list with index
287
        these algorithms are recursive. The recursion ends either when there
288
        i + 1. Both of these algorithms are recursive. The recursion ends
288
        are no blocks to coalesce in the former case or when there are no
289
        either when there are no blocks to coalesce in the former case or when
289
        blocks that can be split in the latter case.</para>
290
        there are no blocks that can be split in the latter case.</para>
290
 
291
 
291
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
292
        <!--graphic fileref="images/mm1.png" format="EPS" /-->
292
 
293
 
293
        <para>This approach greatly reduces external fragmentation of memory
294
        <para>This approach greatly reduces external fragmentation of memory
294
        and helps in allocating bigger continuous blocks of memory aligned to
295
        and helps in allocating bigger continuous blocks of memory aligned to
295
        their size. On the other hand, the buddy allocator suffers increased
296
        their size. On the other hand, the buddy allocator suffers increased
296
        internal fragmentation of memory and is not suitable for general
297
        internal fragmentation of memory and is not suitable for general
297
        kernel allocations. This purpose is better addressed by the <link
298
        kernel allocations. This purpose is better addressed by the <link
298
        linkend="slab">slab allocator</link>.</para>
299
        linkend="slab">slab allocator</link>.</para>
299
      </section>
300
      </section>
300
 
301
 
301
      <section>
302
      <section>
302
        <title>Implementation</title>
303
        <title>Implementation</title>
303
 
304
 
304
        <para>The buddy allocator is, in fact, an abstract framework wich can
305
        <para>The buddy allocator is, in fact, an abstract framework wich can
305
        be easily specialized to serve one particular task. It knows nothing
306
        be easily specialized to serve one particular task. It knows nothing
306
        about the nature of memory it helps to allocate. In order to beat the
307
        about the nature of memory it helps to allocate. In order to beat the
307
        lack of this knowledge, the buddy allocator exports an interface that
308
        lack of this knowledge, the buddy allocator exports an interface that
308
        each of its clients is required to implement. When supplied an
309
        each of its clients is required to implement. When supplied with an
309
        implementation of this interface, the buddy allocator can use
310
        implementation of this interface, the buddy allocator can use
310
        specialized external functions to find buddy for a block, split and
311
        specialized external functions to find a buddy for a block, split and
311
        coalesce blocks, manipulate block order and mark blocks busy or
312
        coalesce blocks, manipulate block order and mark blocks busy or
312
        available. For precize documentation of this interface, refer to
313
        available. For precise documentation of this interface, refer to
313
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
314
        <emphasis>"HelenOS Generic Kernel Reference Manual"</emphasis>.</para>
314
 
315
 
315
        <formalpara>
316
        <formalpara>
316
          <title>Data organization</title>
317
          <title>Data organization</title>
317
 
318
 
318
          <para>Each entity allocable by the buddy allocator is required to
319
          <para>Each entity allocable by the buddy allocator is required to
319
          contain space for storing block order number and a link variable
320
          contain space for storing block order number and a link variable
320
          used to interconnect blocks within the same order.</para>
321
          used to interconnect blocks within the same order.</para>
321
 
322
 
322
          <para>Whatever entities are allocated by the buddy allocator, the
323
          <para>Whatever entities are allocated by the buddy allocator, the
323
          first entity within a block is used to represent the entire block.
324
          first entity within a block is used to represent the entire block.
324
          The first entity keeps the order of the whole block. Other entities
325
          The first entity keeps the order of the whole block. Other entities
325
          within the block are assigned the magic value
326
          within the block are assigned the magic value
326
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
327
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
327
          for effective identification of buddies in one-dimensional array
328
          for effective identification of buddies in a one-dimensional array
328
          because the entity that represents a potential buddy cannot be
329
          because the entity that represents a potential buddy cannot be
329
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
330
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
330
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
331
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
331
          not a buddy).</para>
332
          not a buddy).</para>
332
 
333
 
333
          <para>Buddy allocator always uses first frame to represent frame
334
          <para>The buddy allocator always uses the first frame to represent
334
          block. This frame contains <varname>buddy_order</varname> variable
335
          the frame block. This frame contains <varname>buddy_order</varname>
335
          to provide information about the block size it actually represents (
336
          variable to provide information about the block size it actually
-
 
337
          represents (
336
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
338
          <mathphrase>2<superscript>buddy_order</superscript></mathphrase>
337
          frames block). Other frames in block have this value set to magic
339
          frames block). Other frames in block have this value set to magic
338
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
340
          <constant>BUDDY_INNER_BLOCK</constant> that is much greater than
339
          buddy <varname>max_order</varname> value.</para>
341
          buddy <varname>max_order</varname> value.</para>
340
 
342
 
341
          <para>Each <varname>frame_t</varname> also contains pointer member
343
          <para>Each <varname>frame_t</varname> also contains pointer member
342
          to hold frame structure in the linked list inside one order.</para>
344
          to hold frame structure in the linked list inside one order.</para>
343
        </formalpara>
345
        </formalpara>
344
 
346
 
345
        <formalpara>
347
        <formalpara>
346
          <title>Allocation algorithm</title>
348
          <title>Allocation algorithm</title>
347
 
349
 
348
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
350
          <para>Upon <mathphrase>2<superscript>i</superscript></mathphrase>
349
          frames block allocation request, allocator checks if there are any
351
          frames block allocation request, allocator checks if there are any
350
          blocks available at the order list <varname>i</varname>. If yes,
352
          blocks available at the order list <varname>i</varname>. If yes,
351
          removes block from order list and returns its address. If no,
353
          removes block from order list and returns its address. If no,
352
          recursively allocates
354
          recursively allocates
353
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
355
          <mathphrase>2<superscript>i+1</superscript></mathphrase> frame
354
          block, splits it into two
356
          block, splits it into two
355
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
357
          <mathphrase>2<superscript>i</superscript></mathphrase> frame blocks.
356
          Then adds one of the blocks to the <varname>i</varname> order list
358
          Then adds one of the blocks to the <varname>i</varname> order list
357
          and returns address of another.</para>
359
          and returns address of another.</para>
358
        </formalpara>
360
        </formalpara>
359
 
361
 
360
        <formalpara>
362
        <formalpara>
361
          <title>Deallocation algorithm</title>
363
          <title>Deallocation algorithm</title>
362
 
364
 
363
          <para>Check if block has so called buddy (another free
365
          <para>Check if block has so called buddy (another free
364
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
366
          <mathphrase>2<superscript>i</superscript></mathphrase> frame block
365
          that can be linked with freed block into the
367
          that can be linked with freed block into the
366
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
368
          <mathphrase>2<superscript>i+1</superscript></mathphrase> block).
367
          Technically, buddy is a odd/even block for even/odd block
369
          Technically, buddy is a odd/even block for even/odd block
368
          respectively. Plus we can put an extra requirement, that resulting
370
          respectively. Plus we can put an extra requirement, that resulting
369
          block must be aligned to its size. This requirement guarantees
371
          block must be aligned to its size. This requirement guarantees
370
          natural block alignment for the blocks coming out the allocation
372
          natural block alignment for the blocks coming out the allocation
371
          system.</para>
373
          system.</para>
372
 
374
 
373
          <para>Using direct pointer arithmetics,
375
          <para>Using direct pointer arithmetics,
374
          <varname>frame_t::ref_count</varname> and
376
          <varname>frame_t::ref_count</varname> and
375
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
377
          <varname>frame_t::buddy_order</varname> variables, finding buddy is
376
          done at constant time.</para>
378
          done at constant time.</para>
377
        </formalpara>
379
        </formalpara>
378
      </section>
380
      </section>
379
    </section>
381
    </section>
380
 
382
 
381
    <section id="slab">
383
    <section id="slab">
382
      <title>Slab allocator</title>
384
      <title>Slab allocator</title>
383
 
385
 
384
      <section>
386
      <section>
385
        <title>Overview</title>
387
        <title>Overview</title>
386
 
388
 
387
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
389
        <para><termdef><glossterm>Slab</glossterm> represents a contiguous
388
        piece of memory, usually made of several physically contiguous
390
        piece of memory, usually made of several physically contiguous
389
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
391
        pages.</termdef> <termdef><glossterm>Slab cache</glossterm> consists
390
        of one or more slabs.</termdef></para>
392
        of one or more slabs.</termdef></para>
391
 
393
 
392
        <para>The majority of memory allocation requests in the kernel are for
394
        <para>The majority of memory allocation requests in the kernel are for
393
        small, frequently used data structures. For this purpose the slab
395
        small, frequently used data structures. For this purpose the slab
394
        allocator is a perfect solution. The basic idea behind the slab
396
        allocator is a perfect solution. The basic idea behind the slab
395
        allocator is to have lists of commonly used objects available packed
397
        allocator is to have lists of commonly used objects available packed
396
        into pages. This avoids the overhead of allocating and destroying
398
        into pages. This avoids the overhead of allocating and destroying
397
        commonly used types of objects such threads, virtual memory structures
399
        commonly used types of objects such threads, virtual memory structures
398
        etc. Also due to the exact allocated size matching, slab allocation
400
        etc. Also due to the exact allocated size matching, slab allocation
399
        completely eliminates internal fragmentation issue.</para>
401
        completely eliminates internal fragmentation issue.</para>
400
      </section>
402
      </section>
401
 
403
 
402
      <section>
404
      <section>
403
        <title>Implementation</title>
405
        <title>Implementation</title>
404
 
406
 
405
        <para><mediaobject id="slab_alloc">
407
        <para><mediaobject id="slab_alloc">
406
            <imageobject role="html">
408
            <imageobject role="html">
407
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
409
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
408
            </imageobject>
410
            </imageobject>
409
 
411
 
410
            <imageobject role="fop">
412
            <imageobject role="fop">
411
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
413
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
412
            </imageobject>
414
            </imageobject>
413
          </mediaobject></para>
415
          </mediaobject></para>
414
 
416
 
415
        <para>The SLAB allocator is closely modelled after <ulink
417
        <para>The SLAB allocator is closely modelled after <ulink
416
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
418
        url="http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/">
417
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
419
        OpenSolaris SLAB allocator by Jeff Bonwick and Jonathan Adams </ulink>
418
        with the following exceptions: <itemizedlist>
420
        with the following exceptions: <itemizedlist>
419
            <listitem>
421
            <listitem>
420
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
422
               empty SLABS are deallocated immediately (in Linux they are kept in linked list, in Solaris ???)
421
            </listitem>
423
            </listitem>
422
 
424
 
423
            <listitem>
425
            <listitem>
424
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
426
               empty magazines are deallocated when not needed (in Solaris they are held in linked list in slab cache)
425
            </listitem>
427
            </listitem>
426
          </itemizedlist> Following features are not currently supported but
428
          </itemizedlist> Following features are not currently supported but
427
        would be easy to do: <itemizedlist>
429
        would be easy to do: <itemizedlist>
428
            <listitem>
430
            <listitem>
429
               - cache coloring
431
               - cache coloring
430
            </listitem>
432
            </listitem>
431
 
433
 
432
            <listitem>
434
            <listitem>
433
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
435
               - dynamic magazine grow (different magazine sizes are already supported, but we would need to adjust allocation strategy)
434
            </listitem>
436
            </listitem>
435
          </itemizedlist></para>
437
          </itemizedlist></para>
436
 
438
 
437
        <section>
439
        <section>
438
          <title>Magazine layer</title>
440
          <title>Magazine layer</title>
439
 
441
 
440
          <para>Due to the extensive bottleneck on SMP architures, caused by
442
          <para>Due to the extensive bottleneck on SMP architures, caused by
441
          global SLAB locking mechanism, making processing of all slab
443
          global SLAB locking mechanism, making processing of all slab
442
          allocation requests serialized, a new layer was introduced to the
444
          allocation requests serialized, a new layer was introduced to the
443
          classic slab allocator design. Slab allocator was extended to
445
          classic slab allocator design. Slab allocator was extended to
444
          support per-CPU caches 'magazines' to achieve good SMP scaling.
446
          support per-CPU caches 'magazines' to achieve good SMP scaling.
445
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
447
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
446
          a per-CPU caching scheme called as <glossterm>magazine
448
          a per-CPU caching scheme called as <glossterm>magazine
447
          layer</glossterm></termdef>.</para>
449
          layer</glossterm></termdef>.</para>
448
 
450
 
449
          <para>Magazine is a N-element cache of objects, so each magazine can
451
          <para>Magazine is a N-element cache of objects, so each magazine can
450
          satisfy N allocations. Magazine behaves like a automatic weapon
452
          satisfy N allocations. Magazine behaves like a automatic weapon
451
          magazine (LIFO, stack), so the allocation/deallocation become simple
453
          magazine (LIFO, stack), so the allocation/deallocation become simple
452
          push/pop pointer operation. Trick is that CPU does not access global
454
          push/pop pointer operation. Trick is that CPU does not access global
453
          slab allocator data during the allocation from its magazine, thus
455
          slab allocator data during the allocation from its magazine, thus
454
          making possible parallel allocations between CPUs.</para>
456
          making possible parallel allocations between CPUs.</para>
455
 
457
 
456
          <para>Implementation also requires adding another feature as the
458
          <para>Implementation also requires adding another feature as the
457
          CPU-bound magazine is actually a pair of magazines to avoid
459
          CPU-bound magazine is actually a pair of magazines to avoid
458
          thrashing when during allocation/deallocatiion of 1 item at the
460
          thrashing when during allocation/deallocatiion of 1 item at the
459
          magazine size boundary. LIFO order is enforced, which should avoid
461
          magazine size boundary. LIFO order is enforced, which should avoid
460
          fragmentation as much as possible.</para>
462
          fragmentation as much as possible.</para>
461
 
463
 
462
          <para>Another important entity of magazine layer is a full magazine
464
          <para>Another important entity of magazine layer is a full magazine
463
          depot, that stores full magazines which are used by any of the CPU
465
          depot, that stores full magazines which are used by any of the CPU
464
          magazine caches to reload active CPU magazine. Magazine depot can be
466
          magazine caches to reload active CPU magazine. Magazine depot can be
465
          pre-filled with full magazines during initialization, but in current
467
          pre-filled with full magazines during initialization, but in current
466
          implementation it is filled during object deallocation, when CPU
468
          implementation it is filled during object deallocation, when CPU
467
          magazine becomes full.</para>
469
          magazine becomes full.</para>
468
 
470
 
469
          <para>Slab allocator control structures are allocated from special
471
          <para>Slab allocator control structures are allocated from special
470
          slabs, that are marked by special flag, indicating that it should
472
          slabs, that are marked by special flag, indicating that it should
471
          not be used for slab magazine layer. This is done to avoid possible
473
          not be used for slab magazine layer. This is done to avoid possible
472
          infinite recursions and deadlock during conventional slab allocaiton
474
          infinite recursions and deadlock during conventional slab allocaiton
473
          requests.</para>
475
          requests.</para>
474
        </section>
476
        </section>
475
 
477
 
476
        <section>
478
        <section>
477
          <title>Allocation/deallocation</title>
479
          <title>Allocation/deallocation</title>
478
 
480
 
479
          <para>Every cache contains list of full slabs and list of partialy
481
          <para>Every cache contains list of full slabs and list of partialy
480
          full slabs. Empty slabs are immediately freed (thrashing will be
482
          full slabs. Empty slabs are immediately freed (thrashing will be
481
          avoided because of magazines).</para>
483
          avoided because of magazines).</para>
482
 
484
 
483
          <para>The SLAB allocator allocates lots of space and does not free
485
          <para>The SLAB allocator allocates lots of space and does not free
484
          it. When frame allocator fails to allocate the frame, it calls
486
          it. When frame allocator fails to allocate the frame, it calls
485
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
487
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
486
          The light reclaim releases slabs from cpu-shared magazine-list,
488
          The light reclaim releases slabs from cpu-shared magazine-list,
487
          until at least 1 slab is deallocated in each cache (this algorithm
489
          until at least 1 slab is deallocated in each cache (this algorithm
488
          should probably change). The brutal reclaim removes all cached
490
          should probably change). The brutal reclaim removes all cached
489
          objects, even from CPU-bound magazines.</para>
491
          objects, even from CPU-bound magazines.</para>
490
 
492
 
491
          <formalpara>
493
          <formalpara>
492
            <title>Allocation</title>
494
            <title>Allocation</title>
493
 
495
 
494
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
496
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
495
            request, slab allocator first of all checks availability of memory
497
            request, slab allocator first of all checks availability of memory
496
            in local CPU-bound magazine. If it is there, we would just "pop"
498
            in local CPU-bound magazine. If it is there, we would just "pop"
497
            the CPU magazine and return the pointer to object.</para>
499
            the CPU magazine and return the pointer to object.</para>
498
 
500
 
499
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
501
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
500
            empty, allocator will attempt to reload magazin, swapping it with
502
            empty, allocator will attempt to reload magazin, swapping it with
501
            second CPU magazine and returns to the first step.</para>
503
            second CPU magazine and returns to the first step.</para>
502
 
504
 
503
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
505
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
504
            when both CPU-bound magazines are empty, which makes allocator to
506
            when both CPU-bound magazines are empty, which makes allocator to
505
            access shared full-magazines depot to reload CPU-bound magazines.
507
            access shared full-magazines depot to reload CPU-bound magazines.
506
            If reload is succesful (meaning there are full magazines in depot)
508
            If reload is succesful (meaning there are full magazines in depot)
507
            algoritm continues at Step 1.</para>
509
            algoritm continues at Step 1.</para>
508
 
510
 
509
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
511
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
510
            In this step object is allocated from the conventional slab layer
512
            In this step object is allocated from the conventional slab layer
511
            and pointer is returned.</para>
513
            and pointer is returned.</para>
512
          </formalpara>
514
          </formalpara>
513
 
515
 
514
          <formalpara>
516
          <formalpara>
515
            <title>Deallocation</title>
517
            <title>Deallocation</title>
516
 
518
 
517
            <para><emphasis>Step 1.</emphasis> During deallocation request,
519
            <para><emphasis>Step 1.</emphasis> During deallocation request,
518
            slab allocator will check if the local CPU-bound magazine is not
520
            slab allocator will check if the local CPU-bound magazine is not
519
            full. In this case we will just push the pointer to this
521
            full. In this case we will just push the pointer to this
520
            magazine.</para>
522
            magazine.</para>
521
 
523
 
522
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
524
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
523
            full, allocator will attempt to reload magazin, swapping it with
525
            full, allocator will attempt to reload magazin, swapping it with
524
            second CPU magazine and returns to the first step.</para>
526
            second CPU magazine and returns to the first step.</para>
525
 
527
 
526
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
528
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
527
            when both CPU-bound magazines are full, which makes allocator to
529
            when both CPU-bound magazines are full, which makes allocator to
528
            access shared full-magazines depot to put one of the magazines to
530
            access shared full-magazines depot to put one of the magazines to
529
            the depot and creating new empty magazine. Algoritm continues at
531
            the depot and creating new empty magazine. Algoritm continues at
530
            Step 1.</para>
532
            Step 1.</para>
531
          </formalpara>
533
          </formalpara>
532
        </section>
534
        </section>
533
      </section>
535
      </section>
534
    </section>
536
    </section>
535
 
537
 
536
    <!-- End of Physmem -->
538
    <!-- End of Physmem -->
537
  </section>
539
  </section>
538
 
540
 
539
  <section>
541
  <section>
540
    <title>Memory sharing</title>
542
    <title>Memory sharing</title>
541
 
543
 
542
    <para>Not implemented yet(?)</para>
544
    <para>Not implemented yet(?)</para>
543
  </section>
545
  </section>
544
</chapter>
546
</chapter>