Subversion Repositories HelenOS-doc

Rev

Rev 81 | Rev 83 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 81 Rev 82
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
18
 
18
 
19
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
27
      frames.</para>
28
 
28
 
29
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
33
 
33
 
34
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
39
      one.</para>
40
 
40
 
41
      <para>Every physical memory frame in a zone, is described by a structure
41
      <para>Every physical memory frame in a zone, is described by a structure
42
      that contains number of references and other data used by buddy
42
      that contains number of references and other data used by buddy
43
      system.</para>
43
      system.</para>
44
    </section>
44
    </section>
45
 
45
 
46
    <section id="frame_allocator">
46
    <section id="frame_allocator">
47
      <indexterm>
47
      <indexterm>
48
        <primary>frame allocator</primary>
48
        <primary>frame allocator</primary>
49
      </indexterm>
49
      </indexterm>
50
 
50
 
51
      <title>Frame allocator</title>
51
      <title>Frame allocator</title>
52
 
52
 
53
      <para>The frame allocator satisfies kernel requests to allocate
53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
55
      organization of physical memory, the frame allocator is always working
56
      within a context of a particular frame zone. In order to carry out the
56
      within a context of a particular frame zone. In order to carry out the
57
      allocation requests, the frame allocator is tightly integrated with the
57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure>
60
      frames in the zone. <figure>
61
          <mediaobject id="frame_alloc">
61
          <mediaobject id="frame_alloc">
62
            <imageobject role="eps">
62
            <imageobject role="eps">
63
              <imagedata fileref="images.vector/frame_alloc.eps" format="EPS" />
63
              <imagedata fileref="images.vector/frame_alloc.eps" format="EPS" />
64
            </imageobject>
64
            </imageobject>
65
 
65
 
66
            <imageobject role="html">
66
            <imageobject role="html">
67
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
67
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
68
            </imageobject>
68
            </imageobject>
69
 
69
 
70
            <imageobject role="fop">
70
            <imageobject role="fop">
71
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
71
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
72
            </imageobject>
72
            </imageobject>
73
          </mediaobject>
73
          </mediaobject>
74
 
74
 
75
          <title>Frame allocator scheme.</title>
75
          <title>Frame allocator scheme.</title>
76
        </figure></para>
76
        </figure></para>
77
 
77
 
78
      <formalpara>
78
      <formalpara>
79
        <title>Allocation / deallocation</title>
79
        <title>Allocation / deallocation</title>
80
 
80
 
81
        <para>Upon allocation request via function <code>frame_alloc</code>,
81
        <para>Upon allocation request via function <code>frame_alloc()</code>,
82
        the frame allocator first tries to find a zone that can satisfy the
82
        the frame allocator first tries to find a zone that can satisfy the
83
        request (i.e. has the required amount of free frames). Once a suitable
83
        request (i.e. has the required amount of free frames). Once a suitable
84
        zone is found, the frame allocator uses the buddy allocator on the
84
        zone is found, the frame allocator uses the buddy allocator on the
85
        zone's buddy system to perform the allocation. During deallocation,
85
        zone's buddy system to perform the allocation. During deallocation,
86
        which is triggered by a call to <code>frame_free</code>, the frame
86
        which is triggered by a call to <code>frame_free()</code>, the frame
87
        allocator looks up the respective zone that contains the frame being
87
        allocator looks up the respective zone that contains the frame being
88
        deallocated. Afterwards, it calls the buddy allocator again, this time
88
        deallocated. Afterwards, it calls the buddy allocator again, this time
89
        to take care of deallocation within the zone's buddy system.</para>
89
        to take care of deallocation within the zone's buddy system.</para>
90
      </formalpara>
90
      </formalpara>
91
    </section>
91
    </section>
92
 
92
 
93
    <section id="buddy_allocator">
93
    <section id="buddy_allocator">
94
      <indexterm>
94
      <indexterm>
95
        <primary>buddy system</primary>
95
        <primary>buddy system</primary>
96
      </indexterm>
96
      </indexterm>
97
 
97
 
98
      <title>Buddy allocator</title>
98
      <title>Buddy allocator</title>
99
 
99
 
100
      <para>In the buddy system, the memory is broken down into power-of-two
100
      <para>In the buddy system, the memory is broken down into power-of-two
101
      sized naturally aligned blocks. These blocks are organized in an array
101
      sized naturally aligned blocks. These blocks are organized in an array
102
      of lists, in which the list with index <emphasis>i</emphasis> contains all unallocated blocks
102
      of lists, in which the list with index <emphasis>i</emphasis> contains
-
 
103
      all unallocated blocks of size
103
      of size  <emphasis>2<superscript>i</superscript></emphasis>. The
104
      <emphasis>2<superscript>i</superscript></emphasis>. The index
104
      index <emphasis>i</emphasis> is called the order of block. Should there be two adjacent
105
      <emphasis>i</emphasis> is called the order of block. Should there be two
105
      equally sized blocks in the list <emphasis>i</emphasis> (i.e. buddies), the
106
      adjacent equally sized blocks in the list <emphasis>i</emphasis> (i.e.
106
      buddy allocator would coalesce them and put the resulting block in list
107
      buddies), the buddy allocator would coalesce them and put the resulting
107
      <emphasis>i + 1</emphasis>, provided that the resulting block would
108
      block in list <emphasis>i + 1</emphasis>, provided that the resulting
108
      be naturally aligned. Similarily, when the allocator is asked to
109
      block would be naturally aligned. Similarily, when the allocator is
109
      allocate a block of size
110
      asked to allocate a block of size
110
      <emphasis>2<superscript>i</superscript></emphasis>, it first tries
111
      <emphasis>2<superscript>i</superscript></emphasis>, it first tries to
111
      to satisfy the request from the list with index <emphasis>i</emphasis>. If the request cannot
112
      satisfy the request from the list with index <emphasis>i</emphasis>. If
112
      be satisfied (i.e. the list <emphasis>i</emphasis> is empty), the buddy allocator will try to
113
      the request cannot be satisfied (i.e. the list <emphasis>i</emphasis> is
-
 
114
      empty), the buddy allocator will try to allocate and split a larger
113
      allocate and split a larger block from the list with index <emphasis>i + 1</emphasis>. Both
115
      block from the list with index <emphasis>i + 1</emphasis>. Both of these
114
      of these algorithms are recursive. The recursion ends either when there
116
      algorithms are recursive. The recursion ends either when there are no
115
      are no blocks to coalesce in the former case or when there are no blocks
117
      blocks to coalesce in the former case or when there are no blocks that
116
      that can be split in the latter case.</para>
118
      can be split in the latter case.</para>
117
 
119
 
118
      <para>This approach greatly reduces external fragmentation of memory and
120
      <para>This approach greatly reduces external fragmentation of memory and
119
      helps in allocating bigger continuous blocks of memory aligned to their
121
      helps in allocating bigger continuous blocks of memory aligned to their
120
      size. On the other hand, the buddy allocator suffers increased internal
122
      size. On the other hand, the buddy allocator suffers increased internal
121
      fragmentation of memory and is not suitable for general kernel
123
      fragmentation of memory and is not suitable for general kernel
122
      allocations. This purpose is better addressed by the <link
124
      allocations. This purpose is better addressed by the <link
123
      linkend="slab">slab allocator</link>.<figure>
125
      linkend="slab">slab allocator</link>.<figure>
124
          <mediaobject id="buddy_alloc">
126
          <mediaobject id="buddy_alloc">
125
            <imageobject role="eps">
127
            <imageobject role="eps">
126
              <imagedata fileref="images.vector/buddy_alloc.eps" format="EPS" />
128
              <imagedata fileref="images.vector/buddy_alloc.eps" format="EPS" />
127
            </imageobject>
129
            </imageobject>
128
 
130
 
129
            <imageobject role="html">
131
            <imageobject role="html">
130
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
132
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
131
            </imageobject>
133
            </imageobject>
132
 
134
 
133
            <imageobject role="fop">
135
            <imageobject role="fop">
134
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
136
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
135
            </imageobject>
137
            </imageobject>
136
          </mediaobject>
138
          </mediaobject>
137
 
139
 
138
          <title>Buddy system scheme.</title>
140
          <title>Buddy system scheme.</title>
139
        </figure></para>
141
        </figure></para>
140
 
142
 
141
      <section>
143
      <section>
142
        <title>Implementation</title>
144
        <title>Implementation</title>
143
 
145
 
144
        <para>The buddy allocator is, in fact, an abstract framework wich can
146
        <para>The buddy allocator is, in fact, an abstract framework wich can
145
        be easily specialized to serve one particular task. It knows nothing
147
        be easily specialized to serve one particular task. It knows nothing
146
        about the nature of memory it helps to allocate. In order to beat the
148
        about the nature of memory it helps to allocate. In order to beat the
147
        lack of this knowledge, the buddy allocator exports an interface that
149
        lack of this knowledge, the buddy allocator exports an interface that
148
        each of its clients is required to implement. When supplied with an
150
        each of its clients is required to implement. When supplied with an
149
        implementation of this interface, the buddy allocator can use
151
        implementation of this interface, the buddy allocator can use
150
        specialized external functions to find a buddy for a block, split and
152
        specialized external functions to find a buddy for a block, split and
151
        coalesce blocks, manipulate block order and mark blocks busy or
153
        coalesce blocks, manipulate block order and mark blocks busy or
152
        available.</para>
154
        available.</para>
153
 
155
 
154
        <formalpara>
156
        <formalpara>
155
          <title>Data organization</title>
157
          <title>Data organization</title>
156
 
158
 
157
          <para>Each entity allocable by the buddy allocator is required to
159
          <para>Each entity allocable by the buddy allocator is required to
158
          contain space for storing block order number and a link variable
160
          contain space for storing block order number and a link variable
159
          used to interconnect blocks within the same order.</para>
161
          used to interconnect blocks within the same order.</para>
160
 
162
 
161
          <para>Whatever entities are allocated by the buddy allocator, the
163
          <para>Whatever entities are allocated by the buddy allocator, the
162
          first entity within a block is used to represent the entire block.
164
          first entity within a block is used to represent the entire block.
163
          The first entity keeps the order of the whole block. Other entities
165
          The first entity keeps the order of the whole block. Other entities
164
          within the block are assigned the magic value
166
          within the block are assigned the magic value
165
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
167
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
166
          for effective identification of buddies in a one-dimensional array
168
          for effective identification of buddies in a one-dimensional array
167
          because the entity that represents a potential buddy cannot be
169
          because the entity that represents a potential buddy cannot be
168
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
170
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
169
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
171
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
170
          not a buddy).</para>
172
          not a buddy).</para>
171
        </formalpara>
173
        </formalpara>
172
      </section>
174
      </section>
173
    </section>
175
    </section>
174
 
176
 
175
    <section id="slab">
177
    <section id="slab">
176
      <indexterm>
178
      <indexterm>
177
        <primary>slab allocator</primary>
179
        <primary>slab allocator</primary>
178
      </indexterm>
180
      </indexterm>
179
 
181
 
180
      <title>Slab allocator</title>
182
      <title>Slab allocator</title>
181
 
183
 
182
      <para>The majority of memory allocation requests in the kernel is for
184
      <para>The majority of memory allocation requests in the kernel is for
183
      small, frequently used data structures. The basic idea behind the slab
185
      small, frequently used data structures. The basic idea behind the slab
184
      allocator is that commonly used objects are preallocated in continuous
186
      allocator is that commonly used objects are preallocated in continuous
185
      areas of physical memory called slabs<footnote>
187
      areas of physical memory called slabs<footnote>
186
          <para>Slabs are in fact blocks of physical memory frames allocated
188
          <para>Slabs are in fact blocks of physical memory frames allocated
187
          from the frame allocator.</para>
189
          from the frame allocator.</para>
188
        </footnote>. Whenever an object is to be allocated, the slab allocator
190
        </footnote>. Whenever an object is to be allocated, the slab allocator
189
      returns the first available item from a suitable slab corresponding to
191
      returns the first available item from a suitable slab corresponding to
190
      the object type<footnote>
192
      the object type<footnote>
191
          <para>The mechanism is rather more complicated, see the next
193
          <para>The mechanism is rather more complicated, see the next
192
          paragraph.</para>
194
          paragraph.</para>
193
        </footnote>. Due to the fact that the sizes of the requested and
195
        </footnote>. Due to the fact that the sizes of the requested and
194
      allocated object match, the slab allocator significantly reduces
196
      allocated object match, the slab allocator significantly reduces
195
      internal fragmentation.</para>
197
      internal fragmentation.</para>
196
 
198
 
197
      <indexterm>
199
      <indexterm>
198
        <primary>slab allocator</primary>
200
        <primary>slab allocator</primary>
199
 
201
 
200
        <secondary>- slab cache</secondary>
202
        <secondary>- slab cache</secondary>
201
      </indexterm>
203
      </indexterm>
202
 
204
 
203
      <para>Slabs of one object type are organized in a structure called slab
205
      <para>Slabs of one object type are organized in a structure called slab
204
      cache. There are ususally more slabs in the slab cache, depending on
206
      cache. There are ususally more slabs in the slab cache, depending on
205
      previous allocations. If the the slab cache runs out of available slabs,
207
      previous allocations. If the the slab cache runs out of available slabs,
206
      new slabs are allocated. In order to exploit parallelism and to avoid
208
      new slabs are allocated. In order to exploit parallelism and to avoid
207
      locking of shared spinlocks, slab caches can have variants of
209
      locking of shared spinlocks, slab caches can have variants of
208
      processor-private slabs called magazines. On each processor, there is a
210
      processor-private slabs called magazines. On each processor, there is a
209
      two-magazine cache. Full magazines that are not part of any
211
      two-magazine cache. Full magazines that are not part of any
210
      per-processor magazine cache are stored in a global list of full
212
      per-processor magazine cache are stored in a global list of full
211
      magazines.</para>
213
      magazines.</para>
212
 
214
 
213
      <indexterm>
215
      <indexterm>
214
        <primary>slab allocator</primary>
216
        <primary>slab allocator</primary>
215
 
217
 
216
        <secondary>- magazine</secondary>
218
        <secondary>- magazine</secondary>
217
      </indexterm>
219
      </indexterm>
218
 
220
 
219
      <para>Each object begins its life in a slab. When it is allocated from
221
      <para>Each object begins its life in a slab. When it is allocated from
220
      there, the slab allocator calls a constructor that is registered in the
222
      there, the slab allocator calls a constructor that is registered in the
221
      respective slab cache. The constructor initializes and brings the object
223
      respective slab cache. The constructor initializes and brings the object
222
      into a known state. The object is then used by the user. When the user
224
      into a known state. The object is then used by the user. When the user
223
      later frees the object, the slab allocator puts it into a processor
225
      later frees the object, the slab allocator puts it into a processor
224
      private <indexterm>
226
      private <indexterm>
225
          <primary>slab allocator</primary>
227
          <primary>slab allocator</primary>
226
 
228
 
227
          <secondary>- magazine</secondary>
229
          <secondary>- magazine</secondary>
228
        </indexterm>magazine cache, from where it can be precedently allocated
230
        </indexterm>magazine cache, from where it can be precedently allocated
229
      again. Note that allocations satisfied from a magazine are already
231
      again. Note that allocations satisfied from a magazine are already
230
      initialized by the constructor. When both of the processor cached
232
      initialized by the constructor. When both of the processor cached
231
      magazines get full, the allocator will move one of the magazines to the
233
      magazines get full, the allocator will move one of the magazines to the
232
      list of full magazines. Similarily, when allocating from an empty
234
      list of full magazines. Similarily, when allocating from an empty
233
      processor magazine cache, the kernel will reload only one magazine from
235
      processor magazine cache, the kernel will reload only one magazine from
234
      the list of full magazines. In other words, the slab allocator tries to
236
      the list of full magazines. In other words, the slab allocator tries to
235
      keep the processor magazine cache only half-full in order to prevent
237
      keep the processor magazine cache only half-full in order to prevent
236
      thrashing when allocations and deallocations interleave on magazine
238
      thrashing when allocations and deallocations interleave on magazine
237
      boundaries. The advantage of this setup is that during most of the
239
      boundaries. The advantage of this setup is that during most of the
238
      allocations, no global spinlock needs to be held.</para>
240
      allocations, no global spinlock needs to be held.</para>
239
 
241
 
240
      <para>Should HelenOS run short of memory, it would start deallocating
242
      <para>Should HelenOS run short of memory, it would start deallocating
241
      objects from magazines, calling slab cache destructor on them and
243
      objects from magazines, calling slab cache destructor on them and
242
      putting them back into slabs. When a slab contanins no allocated object,
244
      putting them back into slabs. When a slab contanins no allocated object,
243
      it is immediately freed.</para>
245
      it is immediately freed.</para>
244
 
246
 
245
      <para>
247
      <para>
246
        <figure>
248
        <figure>
247
          <mediaobject id="slab_alloc">
249
          <mediaobject id="slab_alloc">
248
            <imageobject role="eps">
250
            <imageobject role="eps">
249
              <imagedata fileref="images.vector/slab_alloc.eps" format="EPS" />
251
              <imagedata fileref="images.vector/slab_alloc.eps" format="EPS" />
250
            </imageobject>
252
            </imageobject>
251
 
253
 
252
            <imageobject role="html">
254
            <imageobject role="html">
253
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
255
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
254
            </imageobject>
256
            </imageobject>
255
 
257
 
256
            <imageobject role="fop">
258
            <imageobject role="fop">
257
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
259
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
258
            </imageobject>
260
            </imageobject>
259
          </mediaobject>
261
          </mediaobject>
260
 
262
 
261
          <title>Slab allocator scheme.</title>
263
          <title>Slab allocator scheme.</title>
262
        </figure>
264
        </figure>
263
      </para>
265
      </para>
264
 
266
 
265
      <section>
267
      <section>
266
        <title>Implementation</title>
268
        <title>Implementation</title>
267
 
269
 
268
        <para>The slab allocator is closely modelled after OpenSolaris slab
270
        <para>The slab allocator is closely modelled after OpenSolaris slab
269
        allocator by Jeff Bonwick and Jonathan Adams <xref
271
        allocator by Jeff Bonwick and Jonathan Adams <xref
270
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
272
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
-
 
273
            <listitem>
271
            <listitem><para>empty slabs are immediately deallocated and</para></listitem>
274
              <para>empty slabs are immediately deallocated and</para>
-
 
275
            </listitem>
272
 
276
 
273
            <listitem>
277
            <listitem>
274
              <para>empty magazines are deallocated when not needed.</para>
278
              <para>empty magazines are deallocated when not needed.</para>
275
            </listitem>
279
            </listitem>
276
          </itemizedlist>The following features are not currently supported
280
          </itemizedlist>The following features are not currently supported
277
        but would be easy to do: <itemizedlist>
281
        but would be easy to do: <itemizedlist>
278
            <listitem>cache coloring and</listitem>
282
            <listitem>cache coloring and</listitem>
279
 
283
 
280
            <listitem>dynamic magazine grow (different magazine sizes are
284
            <listitem>dynamic magazine grow (different magazine sizes are
281
            already supported, but the allocation strategy would need to be
285
            already supported, but the allocation strategy would need to be
282
            adjusted).</listitem>
286
            adjusted).</listitem>
283
          </itemizedlist></para>
287
          </itemizedlist></para>
284
 
288
 
285
        <section>
289
        <section>
286
          <title>Allocation/deallocation</title>
290
          <title>Allocation/deallocation</title>
287
 
291
 
288
          <para>The following two paragraphs summarize and complete the
292
          <para>The following two paragraphs summarize and complete the
289
          description of the slab allocator operation (i.e.
293
          description of the slab allocator operation (i.e.
290
          <code>slab_alloc</code> and <code>slab_free</code>
294
          <code>slab_alloc()</code> and <code>slab_free()</code>
291
          operations).</para>
295
          functions).</para>
292
 
296
 
293
          <formalpara>
297
          <formalpara>
294
            <title>Allocation</title>
298
            <title>Allocation</title>
295
 
299
 
296
            <para><emphasis>Step 1.</emphasis> When an allocation request
300
            <para><emphasis>Step 1.</emphasis> When an allocation request
297
            comes, the slab allocator checks availability of memory in the
301
            comes, the slab allocator checks availability of memory in the
298
            current magazine of the local processor magazine cache. If the
302
            current magazine of the local processor magazine cache. If the
299
            available memory is there, the allocator just pops the object from
303
            available memory is there, the allocator just pops the object from
300
            magazine and returns it.</para>
304
            magazine and returns it.</para>
301
 
305
 
302
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
306
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
303
            processor magazine cache is empty, the allocator will attempt to
307
            processor magazine cache is empty, the allocator will attempt to
304
            swap it with the last magazine from the cache and return to the
308
            swap it with the last magazine from the cache and return to the
305
            first step. If also the last magazine is empty, the algorithm will
309
            first step. If also the last magazine is empty, the algorithm will
306
            fall through to Step 3.</para>
310
            fall through to Step 3.</para>
307
 
311
 
308
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
312
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
309
            situation when both magazines in the processor magazine cache are
313
            situation when both magazines in the processor magazine cache are
310
            empty. The allocator reloads one magazine from the shared list of
314
            empty. The allocator reloads one magazine from the shared list of
311
            full magazines. If the reload is successful (i.e. there are full
315
            full magazines. If the reload is successful (i.e. there are full
312
            magazines in the list), the algorithm continues with Step
316
            magazines in the list), the algorithm continues with Step
313
            1.</para>
317
            1.</para>
314
 
318
 
315
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
319
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
316
            object is allocated from the conventional slab layer and a pointer
320
            object is allocated from the conventional slab layer and a pointer
317
            to it is returned. If also the last magazine is full,</para>
321
            to it is returned. If also the last magazine is full,</para>
318
          </formalpara>
322
          </formalpara>
319
 
323
 
320
          <formalpara>
324
          <formalpara>
321
            <title>Deallocation</title>
325
            <title>Deallocation</title>
322
 
326
 
323
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
327
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
324
            the slab allocator checks if the current magazine of the local
328
            the slab allocator checks if the current magazine of the local
325
            processor magazine cache is not full. If it is, the pointer to the
329
            processor magazine cache is not full. If it is, the pointer to the
326
            objects is just pushed into the magazine and the algorithm
330
            objects is just pushed into the magazine and the algorithm
327
            returns.</para>
331
            returns.</para>
328
 
332
 
329
            <para><emphasis>Step 2.</emphasis> If the current magazine is
333
            <para><emphasis>Step 2.</emphasis> If the current magazine is
330
            full, the allocator will attempt to swap it with the last magazine
334
            full, the allocator will attempt to swap it with the last magazine
331
            from the cache and return to the first step. If also the last
335
            from the cache and return to the first step. If also the last
332
            magazine is empty, the algorithm will fall through to Step
336
            magazine is empty, the algorithm will fall through to Step
333
            3.</para>
337
            3.</para>
334
 
338
 
335
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
339
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
336
            situation when both magazines in the processor magazine cache are
340
            situation when both magazines in the processor magazine cache are
337
            full. The allocator tries to allocate a new empty magazine and
341
            full. The allocator tries to allocate a new empty magazine and
338
            flush one of the full magazines to the shared list of full
342
            flush one of the full magazines to the shared list of full
339
            magazines. If it is successfull, the algoritm continues with Step
343
            magazines. If it is successfull, the algoritm continues with Step
340
            1.</para>
344
            1.</para>
341
 
345
 
342
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
346
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
343
            when the allocation of empty magazine fails, the object is moved
347
            when the allocation of empty magazine fails, the object is moved
344
            directly into slab. In the worst case object deallocation does not
348
            directly into slab. In the worst case object deallocation does not
345
            need to allocate any additional memory.</para>
349
            need to allocate any additional memory.</para>
346
          </formalpara>
350
          </formalpara>
347
        </section>
351
        </section>
348
      </section>
352
      </section>
349
    </section>
353
    </section>
350
  </section>
354
  </section>
351
 
355
 
352
  <section>
356
  <section>
353
    <title>Virtual memory management</title>
357
    <title>Virtual memory management</title>
354
 
358
 
-
 
359
    <para>Virtual memory is essential for an operating system because it makes
-
 
360
    several things possible. First, it helps to isolate tasks from each other
-
 
361
    by encapsulating them in their private address spaces. Second, virtual
-
 
362
    memory can give tasks the feeling of more memory available than is
-
 
363
    actually possible. And third, by using virtual memory, there might be
-
 
364
    multiple copies of the same program, linked to the same addresses, running
-
 
365
    in the system. There are at least two known mechanisms for implementing
-
 
366
    virtual memory: segmentation and paging. Even though some processor
-
 
367
    architectures supported by HelenOS<footnote>
-
 
368
        <para>ia32 has full-fledged segmentation.</para>
-
 
369
      </footnote> provide both mechanism, the kernel makes use solely of
-
 
370
    paging.</para>
-
 
371
 
355
    <section>
372
    <section id="paging">
356
      <title>Introduction</title>
373
      <title>VAT subsystem</title>
-
 
374
 
-
 
375
      <para>In a paged virtual memory, the entire virtual address space is
-
 
376
      divided into small power-of-two sized naturally aligned blocks called
-
 
377
      pages. The processor implements a translation mechanism, that allows the
-
 
378
      operating system to manage mappings between set of pages and set of
-
 
379
      indentically sized and identically aligned pieces of physical memory
-
 
380
      called frames. In a result, references to continuous virtual memory
-
 
381
      areas don't necessarily need to reference continuos area of physical
-
 
382
      memory. Supported page sizes usually range from several kilobytes to
-
 
383
      several megabytes. Each page that takes part in the mapping is
-
 
384
      associated with certain attributes that further desribe the mapping
-
 
385
      (e.g. access rights, dirty and accessed bits and present bit).</para>
-
 
386
 
-
 
387
      <para>When the processor accesses a page that is not present (i.e. its
-
 
388
      present bit is not set), the operating system is notified through a
-
 
389
      special exception called page fault. It is then up to the operating
-
 
390
      system to service the page fault. In HelenOS, some page faults are fatal
-
 
391
      and result in either task termination or, in the worse case, kernel
-
 
392
      panic<footnote>
-
 
393
          <para>Such a condition would be either caused by a hardware failure
-
 
394
          or a bug in the kernel.</para>
-
 
395
        </footnote>, while other page faults are used to load memory on demand
-
 
396
      or to notify the kernel about certain events.</para>
-
 
397
 
-
 
398
      <indexterm>
-
 
399
        <primary>page tables</primary>
-
 
400
      </indexterm>
-
 
401
 
-
 
402
      <para>The set of all page mappings is stored in a memory structure
-
 
403
      called page tables. Some architectures have no hardware support for page
-
 
404
      tables<footnote>
-
 
405
          <para>On mips32, TLB-only model is used and the operating system is
-
 
406
          responsible for managing software defined page tables.</para>
-
 
407
        </footnote> while other processor architectures<footnote>
-
 
408
          <para>Like amd64 and ia32.</para>
-
 
409
        </footnote> understand the whole memory format thereof. Despite all
-
 
410
      the possible differences in page table formats, the HelenOS VAT
-
 
411
      subsystem<footnote>
-
 
412
          <para>Virtual Address Translation subsystem.</para>
-
 
413
        </footnote> unifies the page table operations under one programming
-
 
414
      interface. For all parts of the kernel, three basic functions are
-
 
415
      provided:</para>
-
 
416
 
-
 
417
      <itemizedlist>
-
 
418
        <listitem>
-
 
419
          <para><code>page_mapping_insert()</code>,</para>
-
 
420
        </listitem>
-
 
421
 
-
 
422
        <listitem>
-
 
423
          <para><code>page_mapping_find()</code> and</para>
-
 
424
        </listitem>
-
 
425
 
-
 
426
        <listitem>
-
 
427
          <para><code>page_mapping_remove()</code>.</para>
-
 
428
        </listitem>
-
 
429
      </itemizedlist>
-
 
430
 
-
 
431
      <para>The <code>page_mapping_insert()</code> function is used to
-
 
432
      introduce a mapping for one virtual memory page belonging to a
-
 
433
      particular address space into the page tables. Once the mapping is in
-
 
434
      the page tables, it can be searched by <code>page_mapping_find()</code>
-
 
435
      and removed by <code>page_mapping_remove()</code>. All of these
-
 
436
      functions internally select the page table mechanism specific functions
-
 
437
      that carry out the self operation.</para>
-
 
438
 
-
 
439
      <para>There are currently two supported mechanisms: generic 4-level
-
 
440
      hierarchical page tables and global page hash table. Both of the
-
 
441
      mechanisms are generic as they cover several hardware platforms. For
-
 
442
      instance, the 4-level hierarchical page table mechanism is used by
-
 
443
      amd64, ia32, mips32 and ppc32, respectively. These architectures have
-
 
444
      the following page table format: 4-level, 2-level, TLB-only and hardware
-
 
445
      hash table, respectively. On the other hand, the global page hash table
-
 
446
      is used on ia64 that can be TLB-only or use a hardware hash table.
-
 
447
      Although only two mechanisms are currently implemented, other mechanisms
-
 
448
      (e.g. B+tree) can be easily added.</para>
-
 
449
 
-
 
450
      <section id="page_tables">
-
 
451
        <indexterm>
-
 
452
          <primary>page tables</primary>
-
 
453
 
-
 
454
          <secondary>- hierarchical</secondary>
-
 
455
        </indexterm>
357
 
456
 
358
      <para>Virtual memory is a special memory management technique, used by
457
        <title>Hierarchical 4-level page tables</title>
359
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
-
 
360
          <listitem>
-
 
361
             Isolate each task from other tasks that are running on the system at the same time.
-
 
362
          </listitem>
-
 
363
 
458
 
364
          <listitem>
459
        <para>Hierarchical 4-level page tables are generalization of the
365
             Allow to allocate more memory, than is actual physical memory size of the machine.
460
        frequently used hierarchical model of page tables. In this mechanism,
366
          </listitem>
461
        each address space has its own page tables. To avoid confusion in
367
 
-
 
368
          <listitem>
462
        terminology used by hardware vendors, in HelenOS, the root level page
369
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
463
        table is called PTL0, the two middle levels are called PTL1 and PTL2,
370
          </listitem>
464
        and, finally, the leaf level is called PTL3. All architectures using
371
        </itemizedlist></para>
465
        this mechanism are required to use PTL0 and PTL3. However, the middle
372
 
-
 
373
      <para><!--
-
 
374
                <para>
466
        levels can be left out, depending on the hardware hierachy or
375
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
467
        structure of software-only page tables. The genericity is achieved
376
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
468
        through a set of macros that define transitions from one level to
377
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
469
        another. Unused levels are optimised out by the compiler.</para>
378
                </para>
470
      </section>
379
 
471
 
-
 
472
      <section>
-
 
473
        <indexterm>
-
 
474
          <primary>page tables</primary>
-
 
475
 
-
 
476
          <secondary>- hashing</secondary>
-
 
477
        </indexterm>
-
 
478
 
-
 
479
        <title>Global page hash table</title>
-
 
480
 
-
 
481
        <para>Implementation of the global page hash table was encouraged by
-
 
482
        64-bit architectures that can have rather sparse address spaces. The
-
 
483
        hash table contains valid mappings only. Each entry of the hash table
-
 
484
        contains an address space pointer, virtual memory page number (VPN),
-
 
485
        physical memory frame number (PFN) and a set of flags. The pair of the
-
 
486
        address space pointer and the virtual memory page number is used as a
-
 
487
        key for the hash table. One of the major differences between the
-
 
488
        global page hash table and hierarchical 4-level page tables is that
-
 
489
        there is only a single global page hash table in the system while
-
 
490
        hierarchical page tables exist per address space. Thus, the global
-
 
491
        page hash table contains information about mappings of all address
-
 
492
        spaces in the system. </para>
-
 
493
 
-
 
494
        <para>The global page hash table mechanism uses the generic hash table
-
 
495
        type as described in the chapter about <link linkend="hashtables">data
-
 
496
        structures</link> earlier in this book.</para>
-
 
497
      </section>
-
 
498
    </section>
-
 
499
  </section>
-
 
500
 
-
 
501
  <section id="tlb">
-
 
502
    <indexterm>
-
 
503
      <primary>TLB</primary>
-
 
504
    </indexterm>
-
 
505
 
-
 
506
    <title>Translation Lookaside buffer</title>
-
 
507
 
-
 
508
    <para>Due to the extensive overhead during the page mapping lookup in the
-
 
509
    page tables, all architectures has fast assotiative cache memory built-in
-
 
510
    CPU. This memory called TLB stores recently used page table
-
 
511
    entries.</para>
-
 
512
 
-
 
513
    <section id="tlb_shootdown">
-
 
514
      <indexterm>
-
 
515
        <primary>TLB</primary>
-
 
516
 
-
 
517
        <secondary>- TLB shootdown</secondary>
-
 
518
      </indexterm>
-
 
519
 
-
 
520
      <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
521
 
-
 
522
      <para>Operating system is responsible for keeping TLB consistent by
-
 
523
      invalidating the contents of TLB, whenever there is some change in page
-
 
524
      tables. Those changes may occur when page or group of pages were
-
 
525
      unmapped, mapping is changed or system switching active address space to
-
 
526
      schedule a new system task. Moreover, this invalidation operation must
-
 
527
      be done an all system CPUs because each CPU has its own independent TLB
-
 
528
      cache. Thus maintaining TLB consistency on SMP configuration as not as
-
 
529
      trivial task as it looks on the first glance. Naive solution would
-
 
530
      assume that is the CPU which wants to invalidate TLB will invalidate TLB
-
 
531
      caches on other CPUs. It is not possible on the most of the
-
 
532
      architectures, because of the simple fact - flushing TLB is allowed only
-
 
533
      on the local CPU and there is no possibility to access other CPUs' TLB
-
 
534
      caches, thus invalidate TLB remotely.</para>
-
 
535
 
-
 
536
      <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
537
      shootdown". HelenOS uses a variation of the algorithm described by D.
-
 
538
      Black et al., "Translation Lookaside Buffer Consistency: A Software
-
 
539
      Approach," Proc. Third Int'l Conf. Architectural Support for Programming
-
 
540
      Languages and Operating Systems, 1989, pp. 113-122. <xref
-
 
541
      linkend="Black89" /></para>
-
 
542
 
-
 
543
      <para>As the situation demands, you will want partitial invalidation of
-
 
544
      TLB caches. In case of simple memory mapping change it is necessary to
-
 
545
      invalidate only one or more adjacent pages. In case if the architecture
-
 
546
      is aware of ASIDs, when kernel needs to dump some ASID to use by another
-
 
547
      task, it invalidates only entries from this particular address space.
-
 
548
      Final option of the TLB invalidation is the complete TLB cache
-
 
549
      invalidation, which is the operation that flushes all entries in
380
--></para>
550
      TLB.</para>
-
 
551
 
-
 
552
      <para>TLB shootdown is performed in two phases.</para>
-
 
553
 
-
 
554
      <formalpara>
-
 
555
        <title>Phase 1.</title>
-
 
556
 
-
 
557
        <para>First, initiator locks a global TLB spinlock, then request is
-
 
558
        being put to the local request cache of every other CPU in the system
-
 
559
        protected by its spinlock. In case the cache is full, all requests in
-
 
560
        the cache are replaced by one request, indicating global TLB flush.
-
 
561
        Then the initiator thread sends an IPI message indicating the TLB
-
 
562
        shootdown request to the rest of the CPUs and waits actively until all
-
 
563
        CPUs confirm TLB invalidating action execution by setting up a special
-
 
564
        flag. After setting this flag this thread is blocked on the TLB
-
 
565
        spinlock, held by the initiator.</para>
-
 
566
      </formalpara>
-
 
567
 
-
 
568
      <formalpara>
-
 
569
        <title>Phase 2.</title>
-
 
570
 
-
 
571
        <para>All CPUs are waiting on the TLB spinlock to execute TLB
-
 
572
        invalidation action and have indicated their intention to the
-
 
573
        initiator. Initiator continues, cleaning up its TLB and releasing the
-
 
574
        global TLB spinlock. After this all other CPUs gain and immidiately
-
 
575
        release TLB spinlock and perform TLB invalidation actions.</para>
-
 
576
      </formalpara>
381
    </section>
577
    </section>
382
 
578
 
383
    <section>
579
    <section>
384
      <title>Address spaces</title>
580
      <title>Address spaces</title>
385
 
581
 
386
      <section>
582
      <section>
387
        <indexterm>
583
        <indexterm>
388
          <primary>address space</primary>
584
          <primary>address space</primary>
389
 
585
 
390
          <secondary>- area</secondary>
586
          <secondary>- area</secondary>
391
        </indexterm>
587
        </indexterm>
392
 
588
 
393
        <title>Address space areas</title>
589
        <title>Address space areas</title>
394
 
590
 
395
        <para>Each address space consists of mutually disjunctive continuous
591
        <para>Each address space consists of mutually disjunctive continuous
396
        address space areas. Address space area is precisely defined by its
592
        address space areas. Address space area is precisely defined by its
397
        base address and the number of frames/pages is contains.</para>
593
        base address and the number of frames/pages is contains.</para>
398
 
594
 
399
        <para>Address space area , that define behaviour and permissions on
595
        <para>Address space area , that define behaviour and permissions on
400
        the particular area. <itemizedlist>
596
        the particular area. <itemizedlist>
401
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
597
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
402
            permission.</listitem>
598
            permission.</listitem>
403
 
599
 
404
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
600
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
405
            writing permission.</listitem>
601
            writing permission.</listitem>
406
 
602
 
407
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
603
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
408
            execution permission. Some architectures do not support execution
604
            execution permission. Some architectures do not support execution
409
            persmission restriction. In this case this flag has no
605
            persmission restriction. In this case this flag has no
410
            effect.</listitem>
606
            effect.</listitem>
411
 
607
 
412
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
608
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
413
            to the device memory.</listitem>
609
            to the device memory.</listitem>
414
          </itemizedlist></para>
610
          </itemizedlist></para>
415
 
611
 
416
        <para>Kernel provides possibility tasks create/expand/shrink/share its
612
        <para>Kernel provides possibility tasks create/expand/shrink/share its
417
        address space via the set of syscalls.</para>
613
        address space via the set of syscalls.</para>
418
      </section>
614
      </section>
419
 
615
 
420
      <section>
616
      <section>
421
        <indexterm>
617
        <indexterm>
422
          <primary>address space</primary>
618
          <primary>address space</primary>
423
 
619
 
424
          <secondary>- ASID</secondary>
620
          <secondary>- ASID</secondary>
425
        </indexterm>
621
        </indexterm>
426
 
622
 
427
        <title>Address Space ID (ASID)</title>
623
        <title>Address Space ID (ASID)</title>
428
 
624
 
429
        <para>Every task in the operating system has it's own view of the
625
        <para>Every task in the operating system has it's own view of the
430
        virtual memory. When performing context switch between different
626
        virtual memory. When performing context switch between different
431
        tasks, the kernel must switch the address space mapping as well. As
627
        tasks, the kernel must switch the address space mapping as well. As
432
        modern processors perform very aggressive caching of virtual mappings,
628
        modern processors perform very aggressive caching of virtual mappings,
433
        flushing the complete TLB on every context switch would be very
629
        flushing the complete TLB on every context switch would be very
434
        inefficient. To avoid such performance penalty, some architectures
630
        inefficient. To avoid such performance penalty, some architectures
435
        introduce an address space identifier, which allows storing several
631
        introduce an address space identifier, which allows storing several
436
        different mappings inside TLB.</para>
632
        different mappings inside TLB.</para>
437
 
633
 
438
        <para>HelenOS kernel can take advantage of this hardware support by
634
        <para>HelenOS kernel can take advantage of this hardware support by
439
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
635
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
440
        RID (region identifier) and on the mips32 kernel ASID is actually the
636
        RID (region identifier) and on the mips32 kernel ASID is actually the
441
        hardware identifier. As expected, this ASID information record is the
637
        hardware identifier. As expected, this ASID information record is the
442
        part of <emphasis>as_t</emphasis> structure.</para>
638
        part of <emphasis>as_t</emphasis> structure.</para>
443
 
639
 
444
        <para>Due to the hardware limitations, hardware ASID has limited
640
        <para>Due to the hardware limitations, hardware ASID has limited
445
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
641
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
446
        impossible to use it as unique address space identifier for all tasks
642
        impossible to use it as unique address space identifier for all tasks
447
        running in the system. In such situations special ASID stealing
643
        running in the system. In such situations special ASID stealing
448
        algoritm is used, which takes ASID from inactive task and assigns it
644
        algoritm is used, which takes ASID from inactive task and assigns it
449
        to the active task.</para>
645
        to the active task.</para>
450
 
646
 
451
        <indexterm>
647
        <indexterm>
452
          <primary>address space</primary>
648
          <primary>address space</primary>
453
 
649
 
454
          <secondary>- ASID stealing</secondary>
650
          <secondary>- ASID stealing</secondary>
455
        </indexterm>
651
        </indexterm>
456
 
652
 
457
        <para>
653
        <para>
458
          <classname>ASID stealing algoritm here.</classname>
654
          <classname>ASID stealing algoritm here.</classname>
459
        </para>
655
        </para>
460
      </section>
656
      </section>
461
    </section>
-
 
462
 
-
 
463
    <section id="paging">
-
 
464
      <title>Virtual address translation</title>
-
 
465
 
-
 
466
      <section>
-
 
467
        <title>Introduction</title>
-
 
468
 
-
 
469
        <para>Virtual memory is usually using paged memory model, where
-
 
470
        virtual memory address space is divided into the
-
 
471
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
-
 
472
        physical memory is divided into the frames (same sized as a page, of
-
 
473
        course). Each page may be mapped to some frame and then, upon memory
-
 
474
        access to the virtual address, CPU performs <emphasis>address
-
 
475
        translation</emphasis> during the instruction execution. Non-existing
-
 
476
        mapping generates page fault exception, calling kernel exception
-
 
477
        handler, thus allowing kernel to manipulate rules of memory access.
-
 
478
        Information for pages mapping is stored by kernel in the <link
-
 
479
        linkend="page_tables">page tables</link></para>
-
 
480
 
-
 
481
        <indexterm>
-
 
482
          <primary>page tables</primary>
-
 
483
        </indexterm>
-
 
484
 
-
 
485
        <para>The majority of the architectures use multi-level page tables,
-
 
486
        which means need to access physical memory several times before
-
 
487
        getting physical address. This fact would make serios performance
-
 
488
        overhead in virtual memory management. To avoid this <link
-
 
489
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
-
 
490
 
-
 
491
        <para>HelenOS kernel has two different approaches to the paging
-
 
492
        implementation: <emphasis>4 level page tables</emphasis> and
-
 
493
        <emphasis>global hash table</emphasis>, which are accessible via
-
 
494
        generic paging abstraction layer. Such different functionality was
-
 
495
        caused by the major architectural differences between supported
-
 
496
        platforms. This abstraction is implemented with help of the global
-
 
497
        structure of pointers to basic mapping functions
-
 
498
        <emphasis>page_mapping_operations</emphasis>. To achieve different
-
 
499
        functionality of page tables, corresponding layer must implement
-
 
500
        functions, declared in
-
 
501
        <emphasis>page_mapping_operations</emphasis></para>
-
 
502
 
-
 
503
        <para>Thanks to the abstract paging interface, there was a place left
-
 
504
        for more paging implementations (besides already implemented
-
 
505
        hieararchical page tables and hash table), for example <indexterm>
-
 
506
            <primary>B-tree</primary>
-
 
507
          </indexterm> B-Tree based page tables.</para>
-
 
508
      </section>
-
 
509
 
-
 
510
      <section id="page_tables">
-
 
511
        <indexterm>
-
 
512
          <primary>page tables</primary>
-
 
513
 
-
 
514
          <secondary>- hierarchical</secondary>
-
 
515
        </indexterm>
-
 
516
 
-
 
517
        <title>Hierarchical 4-level page tables</title>
-
 
518
 
-
 
519
        <para>Hierarchical 4-level page tables are the generalization of the
-
 
520
        hardware capabilities of most architectures. Each address space has
-
 
521
        its own page tables.<itemizedlist>
-
 
522
            <listitem>ia32 uses 2-level page tables, with full hardware
-
 
523
            support.</listitem>
-
 
524
 
-
 
525
            <listitem>amd64 uses 4-level page tables, also coming with full
-
 
526
            hardware support.</listitem>
-
 
527
 
-
 
528
            <listitem>mips and ppc32 have 2-level tables, software simulated
-
 
529
            support.</listitem>
-
 
530
          </itemizedlist></para>
-
 
531
      </section>
-
 
532
 
-
 
533
      <section>
-
 
534
        <indexterm>
-
 
535
          <primary>page tables</primary>
-
 
536
 
-
 
537
          <secondary>- hashing</secondary>
-
 
538
        </indexterm>
-
 
539
 
-
 
540
        <title>Global hash table</title>
-
 
541
 
-
 
542
        <para>Implementation of the global hash table was encouraged by the
-
 
543
        ia64 architecture support. One of the major differences between global
-
 
544
        hash table and hierarchical tables is that global hash table exists
-
 
545
        only once in the system and the hierarchical tables are maintained per
-
 
546
        address space.</para>
-
 
547
 
-
 
548
        <para>Thus, hash table contains information about all address spaces
-
 
549
        mappings in the system, so, the hash of an entry must contain
-
 
550
        information of both address space pointer or id and the virtual
-
 
551
        address of the page. Generic hash table implementation assumes that
-
 
552
        the addresses of the pointers to the address spaces are likely to be
-
 
553
        on the close addresses, so it uses least significant bits for hash;
-
 
554
        also it assumes that the virtual page addresses have roughly the same
-
 
555
        probability of occurring, so the least significant bits of VPN compose
-
 
556
        the hash index.</para>
-
 
557
 
-
 
558
        <para>Paging hash table uses generic hash table with collision chains
-
 
559
        (see the <link linkend="hashtables">Data Structures</link> chapter of
-
 
560
        this manual for details).</para>
-
 
561
      </section>
-
 
562
    </section>
-
 
563
 
-
 
564
    <section id="tlb">
-
 
565
      <indexterm>
-
 
566
        <primary>TLB</primary>
-
 
567
      </indexterm>
-
 
568
 
-
 
569
      <title>Translation Lookaside buffer</title>
-
 
570
 
-
 
571
      <para>Due to the extensive overhead during the page mapping lookup in
-
 
572
      the page tables, all architectures has fast assotiative cache memory
-
 
573
      built-in CPU. This memory called TLB stores recently used page table
-
 
574
      entries.</para>
-
 
575
 
-
 
576
      <section id="tlb_shootdown">
-
 
577
        <indexterm>
-
 
578
          <primary>TLB</primary>
-
 
579
 
-
 
580
          <secondary>- TLB shootdown</secondary>
-
 
581
        </indexterm>
-
 
582
 
-
 
583
        <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
584
 
-
 
585
        <para>Operating system is responsible for keeping TLB consistent by
-
 
586
        invalidating the contents of TLB, whenever there is some change in
-
 
587
        page tables. Those changes may occur when page or group of pages were
-
 
588
        unmapped, mapping is changed or system switching active address space
-
 
589
        to schedule a new system task. Moreover, this invalidation operation
-
 
590
        must be done an all system CPUs because each CPU has its own
-
 
591
        independent TLB cache. Thus maintaining TLB consistency on SMP
-
 
592
        configuration as not as trivial task as it looks on the first glance.
-
 
593
        Naive solution would assume that is the CPU which wants to invalidate
-
 
594
        TLB will invalidate TLB caches on other CPUs. It is not possible on
-
 
595
        the most of the architectures, because of the simple fact - flushing
-
 
596
        TLB is allowed only on the local CPU and there is no possibility to
-
 
597
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
-
 
598
 
-
 
599
        <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
600
        shootdown". HelenOS uses a variation of the algorithm described by D.
-
 
601
        Black et al., "Translation Lookaside Buffer Consistency: A Software
-
 
602
        Approach," Proc. Third Int'l Conf. Architectural Support for
-
 
603
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
-
 
604
        linkend="Black89" /></para>
-
 
605
 
-
 
606
        <para>As the situation demands, you will want partitial invalidation
-
 
607
        of TLB caches. In case of simple memory mapping change it is necessary
-
 
608
        to invalidate only one or more adjacent pages. In case if the
-
 
609
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
-
 
610
        use by another task, it invalidates only entries from this particular
-
 
611
        address space. Final option of the TLB invalidation is the complete
-
 
612
        TLB cache invalidation, which is the operation that flushes all
-
 
613
        entries in TLB.</para>
-
 
614
 
-
 
615
        <para>TLB shootdown is performed in two phases.</para>
-
 
616
 
-
 
617
        <formalpara>
-
 
618
          <title>Phase 1.</title>
-
 
619
 
-
 
620
          <para>First, initiator locks a global TLB spinlock, then request is
-
 
621
          being put to the local request cache of every other CPU in the
-
 
622
          system protected by its spinlock. In case the cache is full, all
-
 
623
          requests in the cache are replaced by one request, indicating global
-
 
624
          TLB flush. Then the initiator thread sends an IPI message indicating
-
 
625
          the TLB shootdown request to the rest of the CPUs and waits actively
-
 
626
          until all CPUs confirm TLB invalidating action execution by setting
-
 
627
          up a special flag. After setting this flag this thread is blocked on
-
 
628
          the TLB spinlock, held by the initiator.</para>
-
 
629
        </formalpara>
-
 
630
 
-
 
631
        <formalpara>
-
 
632
          <title>Phase 2.</title>
-
 
633
 
-
 
634
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
-
 
635
          invalidation action and have indicated their intention to the
-
 
636
          initiator. Initiator continues, cleaning up its TLB and releasing
-
 
637
          the global TLB spinlock. After this all other CPUs gain and
-
 
638
          immidiately release TLB spinlock and perform TLB invalidation
-
 
639
          actions.</para>
-
 
640
        </formalpara>
-
 
641
      </section>
-
 
642
    </section>
657
    </section>
643
  </section>
658
  </section>
644
</chapter>
659
</chapter>