Subversion Repositories HelenOS-doc

Rev

Rev 76 | Rev 79 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 76 Rev 77
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
18
 
18
 
19
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
27
      frames.</para>
28
 
28
 
29
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
33
 
33
 
34
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
39
      one.</para>
40
 
40
 
41
      <para>Every physical memory frame in a zone, is described by a structure
41
      <para>Every physical memory frame in a zone, is described by a structure
42
      that contains number of references and other data used by buddy
42
      that contains number of references and other data used by buddy
43
      system.</para>
43
      system.</para>
44
    </section>
44
    </section>
45
 
45
 
46
    <section id="frame_allocator">
46
    <section id="frame_allocator">
47
      <indexterm>
47
      <indexterm>
48
        <primary>frame allocator</primary>
48
        <primary>frame allocator</primary>
49
      </indexterm>
49
      </indexterm>
50
 
50
 
51
      <title>Frame allocator</title>
51
      <title>Frame allocator</title>
52
 
52
 
53
      <para>The frame allocator satisfies kernel requests to allocate
53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
55
      organization of physical memory, the frame allocator is always working
56
      within a context of a particular frame zone. In order to carry out the
56
      within a context of a particular frame zone. In order to carry out the
57
      allocation requests, the frame allocator is tightly integrated with the
57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure>
60
      frames in the zone. <figure>
61
          <mediaobject id="frame_alloc">
61
          <mediaobject id="frame_alloc">
-
 
62
            <imageobject role="eps">
-
 
63
              <imagedata fileref="images.vector/frame_alloc.eps" format="EPS" />
-
 
64
            </imageobject>
-
 
65
 
62
            <imageobject role="html">
66
            <imageobject role="html">
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
67
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
64
            </imageobject>
68
            </imageobject>
65
 
69
 
66
            <imageobject role="fop">
70
            <imageobject role="fop">
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
71
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
68
            </imageobject>
72
            </imageobject>
69
          </mediaobject>
73
          </mediaobject>
70
 
74
 
71
          <title>Frame allocator scheme.</title>
75
          <title>Frame allocator scheme.</title>
72
        </figure></para>
76
        </figure></para>
73
 
77
 
74
      <formalpara>
78
      <formalpara>
75
        <title>Allocation / deallocation</title>
79
        <title>Allocation / deallocation</title>
76
 
80
 
77
        <para>Upon allocation request via function <code>frame_alloc</code>,
81
        <para>Upon allocation request via function <code>frame_alloc</code>,
78
        the frame allocator first tries to find a zone that can satisfy the
82
        the frame allocator first tries to find a zone that can satisfy the
79
        request (i.e. has the required amount of free frames). Once a suitable
83
        request (i.e. has the required amount of free frames). Once a suitable
80
        zone is found, the frame allocator uses the buddy allocator on the
84
        zone is found, the frame allocator uses the buddy allocator on the
81
        zone's buddy system to perform the allocation. During deallocation,
85
        zone's buddy system to perform the allocation. During deallocation,
82
        which is triggered by a call to <code>frame_free</code>, the frame
86
        which is triggered by a call to <code>frame_free</code>, the frame
83
        allocator looks up the respective zone that contains the frame being
87
        allocator looks up the respective zone that contains the frame being
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
88
        deallocated. Afterwards, it calls the buddy allocator again, this time
85
        to take care of deallocation within the zone's buddy system.</para>
89
        to take care of deallocation within the zone's buddy system.</para>
86
      </formalpara>
90
      </formalpara>
87
    </section>
91
    </section>
88
 
92
 
89
    <section id="buddy_allocator">
93
    <section id="buddy_allocator">
90
      <indexterm>
94
      <indexterm>
91
        <primary>buddy system</primary>
95
        <primary>buddy system</primary>
92
      </indexterm>
96
      </indexterm>
93
 
97
 
94
      <title>Buddy allocator</title>
98
      <title>Buddy allocator</title>
95
 
99
 
96
      <para>In the buddy system, the memory is broken down into power-of-two
100
      <para>In the buddy system, the memory is broken down into power-of-two
97
      sized naturally aligned blocks. These blocks are organized in an array
101
      sized naturally aligned blocks. These blocks are organized in an array
98
      of lists, in which the list with index i contains all unallocated blocks
102
      of lists, in which the list with index i contains all unallocated blocks
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
103
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
100
      index i is called the order of block. Should there be two adjacent
104
      index i is called the order of block. Should there be two adjacent
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
105
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
102
      buddy allocator would coalesce them and put the resulting block in list
106
      buddy allocator would coalesce them and put the resulting block in list
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
107
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
104
      be naturally aligned. Similarily, when the allocator is asked to
108
      be naturally aligned. Similarily, when the allocator is asked to
105
      allocate a block of size
109
      allocate a block of size
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
110
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
107
      to satisfy the request from the list with index i. If the request cannot
111
      to satisfy the request from the list with index i. If the request cannot
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
112
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
109
      allocate and split a larger block from the list with index i + 1. Both
113
      allocate and split a larger block from the list with index i + 1. Both
110
      of these algorithms are recursive. The recursion ends either when there
114
      of these algorithms are recursive. The recursion ends either when there
111
      are no blocks to coalesce in the former case or when there are no blocks
115
      are no blocks to coalesce in the former case or when there are no blocks
112
      that can be split in the latter case.</para>
116
      that can be split in the latter case.</para>
113
 
117
 
114
      <para>This approach greatly reduces external fragmentation of memory and
118
      <para>This approach greatly reduces external fragmentation of memory and
115
      helps in allocating bigger continuous blocks of memory aligned to their
119
      helps in allocating bigger continuous blocks of memory aligned to their
116
      size. On the other hand, the buddy allocator suffers increased internal
120
      size. On the other hand, the buddy allocator suffers increased internal
117
      fragmentation of memory and is not suitable for general kernel
121
      fragmentation of memory and is not suitable for general kernel
118
      allocations. This purpose is better addressed by the <link
122
      allocations. This purpose is better addressed by the <link
119
      linkend="slab">slab allocator</link>.<figure>
123
      linkend="slab">slab allocator</link>.<figure>
120
          <mediaobject id="buddy_alloc">
124
          <mediaobject id="buddy_alloc">
-
 
125
            <imageobject role="eps">
-
 
126
              <imagedata fileref="images.vector/buddy_alloc.eps" format="EPS" />
-
 
127
            </imageobject>
-
 
128
 
121
            <imageobject role="html">
129
            <imageobject role="html">
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
130
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
123
            </imageobject>
131
            </imageobject>
124
 
132
 
125
            <imageobject role="fop">
133
            <imageobject role="fop">
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
134
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
127
            </imageobject>
135
            </imageobject>
128
          </mediaobject>
136
          </mediaobject>
129
 
137
 
130
          <title>Buddy system scheme.</title>
138
          <title>Buddy system scheme.</title>
131
        </figure></para>
139
        </figure></para>
132
 
140
 
133
      <section>
141
      <section>
134
        <title>Implementation</title>
142
        <title>Implementation</title>
135
 
143
 
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
144
        <para>The buddy allocator is, in fact, an abstract framework wich can
137
        be easily specialized to serve one particular task. It knows nothing
145
        be easily specialized to serve one particular task. It knows nothing
138
        about the nature of memory it helps to allocate. In order to beat the
146
        about the nature of memory it helps to allocate. In order to beat the
139
        lack of this knowledge, the buddy allocator exports an interface that
147
        lack of this knowledge, the buddy allocator exports an interface that
140
        each of its clients is required to implement. When supplied with an
148
        each of its clients is required to implement. When supplied with an
141
        implementation of this interface, the buddy allocator can use
149
        implementation of this interface, the buddy allocator can use
142
        specialized external functions to find a buddy for a block, split and
150
        specialized external functions to find a buddy for a block, split and
143
        coalesce blocks, manipulate block order and mark blocks busy or
151
        coalesce blocks, manipulate block order and mark blocks busy or
144
        available.</para>
152
        available.</para>
145
 
153
 
146
        <formalpara>
154
        <formalpara>
147
          <title>Data organization</title>
155
          <title>Data organization</title>
148
 
156
 
149
          <para>Each entity allocable by the buddy allocator is required to
157
          <para>Each entity allocable by the buddy allocator is required to
150
          contain space for storing block order number and a link variable
158
          contain space for storing block order number and a link variable
151
          used to interconnect blocks within the same order.</para>
159
          used to interconnect blocks within the same order.</para>
152
 
160
 
153
          <para>Whatever entities are allocated by the buddy allocator, the
161
          <para>Whatever entities are allocated by the buddy allocator, the
154
          first entity within a block is used to represent the entire block.
162
          first entity within a block is used to represent the entire block.
155
          The first entity keeps the order of the whole block. Other entities
163
          The first entity keeps the order of the whole block. Other entities
156
          within the block are assigned the magic value
164
          within the block are assigned the magic value
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
165
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
158
          for effective identification of buddies in a one-dimensional array
166
          for effective identification of buddies in a one-dimensional array
159
          because the entity that represents a potential buddy cannot be
167
          because the entity that represents a potential buddy cannot be
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
168
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
169
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
162
          not a buddy).</para>
170
          not a buddy).</para>
163
        </formalpara>
171
        </formalpara>
164
      </section>
172
      </section>
165
    </section>
173
    </section>
166
 
174
 
167
    <section id="slab">
175
    <section id="slab">
168
      <indexterm>
176
      <indexterm>
169
        <primary>slab allocator</primary>
177
        <primary>slab allocator</primary>
170
      </indexterm>
178
      </indexterm>
171
 
179
 
172
      <title>Slab allocator</title>
180
      <title>Slab allocator</title>
173
 
181
 
174
      <para>The majority of memory allocation requests in the kernel is for
182
      <para>The majority of memory allocation requests in the kernel is for
175
      small, frequently used data structures. The basic idea behind the slab
183
      small, frequently used data structures. The basic idea behind the slab
176
      allocator is that commonly used objects are preallocated in continuous
184
      allocator is that commonly used objects are preallocated in continuous
177
      areas of physical memory called slabs<footnote>
185
      areas of physical memory called slabs<footnote>
178
          <para>Slabs are in fact blocks of physical memory frames allocated
186
          <para>Slabs are in fact blocks of physical memory frames allocated
179
          from the frame allocator.</para>
187
          from the frame allocator.</para>
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
188
        </footnote>. Whenever an object is to be allocated, the slab allocator
181
      returns the first available item from a suitable slab corresponding to
189
      returns the first available item from a suitable slab corresponding to
182
      the object type<footnote>
190
      the object type<footnote>
183
          <para>The mechanism is rather more complicated, see the next
191
          <para>The mechanism is rather more complicated, see the next
184
          paragraph.</para>
192
          paragraph.</para>
185
        </footnote>. Due to the fact that the sizes of the requested and
193
        </footnote>. Due to the fact that the sizes of the requested and
186
      allocated object match, the slab allocator significantly reduces
194
      allocated object match, the slab allocator significantly reduces
187
      internal fragmentation.</para>
195
      internal fragmentation.</para>
188
 
196
 
189
      <indexterm>
197
      <indexterm>
190
        <primary>slab allocator</primary>
198
        <primary>slab allocator</primary>
191
 
199
 
192
        <secondary>- slab cache</secondary>
200
        <secondary>- slab cache</secondary>
193
      </indexterm>
201
      </indexterm>
194
 
202
 
195
      <para>Slabs of one object type are organized in a structure called slab
203
      <para>Slabs of one object type are organized in a structure called slab
196
      cache. There are ususally more slabs in the slab cache, depending on
204
      cache. There are ususally more slabs in the slab cache, depending on
197
      previous allocations. If the the slab cache runs out of available slabs,
205
      previous allocations. If the the slab cache runs out of available slabs,
198
      new slabs are allocated. In order to exploit parallelism and to avoid
206
      new slabs are allocated. In order to exploit parallelism and to avoid
199
      locking of shared spinlocks, slab caches can have variants of
207
      locking of shared spinlocks, slab caches can have variants of
200
      processor-private slabs called magazines. On each processor, there is a
208
      processor-private slabs called magazines. On each processor, there is a
201
      two-magazine cache. Full magazines that are not part of any
209
      two-magazine cache. Full magazines that are not part of any
202
      per-processor magazine cache are stored in a global list of full
210
      per-processor magazine cache are stored in a global list of full
203
      magazines.</para>
211
      magazines.</para>
204
 
212
 
205
      <indexterm>
213
      <indexterm>
206
        <primary>slab allocator</primary>
214
        <primary>slab allocator</primary>
207
 
215
 
208
        <secondary>- magazine</secondary>
216
        <secondary>- magazine</secondary>
209
      </indexterm>
217
      </indexterm>
210
 
218
 
211
      <para>Each object begins its life in a slab. When it is allocated from
219
      <para>Each object begins its life in a slab. When it is allocated from
212
      there, the slab allocator calls a constructor that is registered in the
220
      there, the slab allocator calls a constructor that is registered in the
213
      respective slab cache. The constructor initializes and brings the object
221
      respective slab cache. The constructor initializes and brings the object
214
      into a known state. The object is then used by the user. When the user
222
      into a known state. The object is then used by the user. When the user
215
      later frees the object, the slab allocator puts it into a processor
223
      later frees the object, the slab allocator puts it into a processor
216
      private <indexterm>
224
      private <indexterm>
217
          <primary>slab allocator</primary>
225
          <primary>slab allocator</primary>
218
 
226
 
219
          <secondary>- magazine</secondary>
227
          <secondary>- magazine</secondary>
220
        </indexterm>magazine cache, from where it can be precedently allocated
228
        </indexterm>magazine cache, from where it can be precedently allocated
221
      again. Note that allocations satisfied from a magazine are already
229
      again. Note that allocations satisfied from a magazine are already
222
      initialized by the constructor. When both of the processor cached
230
      initialized by the constructor. When both of the processor cached
223
      magazines get full, the allocator will move one of the magazines to the
231
      magazines get full, the allocator will move one of the magazines to the
224
      list of full magazines. Similarily, when allocating from an empty
232
      list of full magazines. Similarily, when allocating from an empty
225
      processor magazine cache, the kernel will reload only one magazine from
233
      processor magazine cache, the kernel will reload only one magazine from
226
      the list of full magazines. In other words, the slab allocator tries to
234
      the list of full magazines. In other words, the slab allocator tries to
227
      keep the processor magazine cache only half-full in order to prevent
235
      keep the processor magazine cache only half-full in order to prevent
228
      thrashing when allocations and deallocations interleave on magazine
236
      thrashing when allocations and deallocations interleave on magazine
229
      boundaries. The advantage of this setup is that during most of the
237
      boundaries. The advantage of this setup is that during most of the
230
      allocations, no global spinlock needs to be held.</para>
238
      allocations, no global spinlock needs to be held.</para>
231
 
239
 
232
      <para>Should HelenOS run short of memory, it would start deallocating
240
      <para>Should HelenOS run short of memory, it would start deallocating
233
      objects from magazines, calling slab cache destructor on them and
241
      objects from magazines, calling slab cache destructor on them and
234
      putting them back into slabs. When a slab contanins no allocated object,
242
      putting them back into slabs. When a slab contanins no allocated object,
235
      it is immediately freed.</para>
243
      it is immediately freed.</para>
236
 
244
 
237
      <para>
245
      <para>
238
        <figure>
246
        <figure>
239
          <mediaobject id="slab_alloc">
247
          <mediaobject id="slab_alloc">
-
 
248
            <imageobject role="eps">
-
 
249
              <imagedata fileref="images.vector/slab_alloc.eps" format="EPS" />
-
 
250
            </imageobject>
-
 
251
 
240
            <imageobject role="html">
252
            <imageobject role="html">
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
253
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
242
            </imageobject>
254
            </imageobject>
-
 
255
 
-
 
256
            <imageobject role="fop">
-
 
257
              <imagedata fileref="images.vector/slab_alloc.svg" format="SVG" />
-
 
258
            </imageobject>
243
          </mediaobject>
259
          </mediaobject>
244
 
260
 
245
          <title>Slab allocator scheme.</title>
261
          <title>Slab allocator scheme.</title>
246
        </figure>
262
        </figure>
247
      </para>
263
      </para>
248
 
264
 
249
      <section>
265
      <section>
250
        <title>Implementation</title>
266
        <title>Implementation</title>
251
 
267
 
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
268
        <para>The slab allocator is closely modelled after OpenSolaris slab
253
        allocator by Jeff Bonwick and Jonathan Adams <xref
269
        allocator by Jeff Bonwick and Jonathan Adams <xref
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
270
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
255
            <listitem>empty slabs are immediately deallocated and</listitem>
271
            <listitem>empty slabs are immediately deallocated and</listitem>
256
 
272
 
257
            <listitem>
273
            <listitem>
258
              <para>empty magazines are deallocated when not needed.</para>
274
              <para>empty magazines are deallocated when not needed.</para>
259
            </listitem>
275
            </listitem>
260
          </itemizedlist>The following features are not currently supported
276
          </itemizedlist>The following features are not currently supported
261
        but would be easy to do: <itemizedlist>
277
        but would be easy to do: <itemizedlist>
262
            <listitem>cache coloring and</listitem>
278
            <listitem>cache coloring and</listitem>
263
 
279
 
264
            <listitem>dynamic magazine grow (different magazine sizes are
280
            <listitem>dynamic magazine grow (different magazine sizes are
265
            already supported, but the allocation strategy would need to be
281
            already supported, but the allocation strategy would need to be
266
            adjusted).</listitem>
282
            adjusted).</listitem>
267
          </itemizedlist></para>
283
          </itemizedlist></para>
268
 
284
 
269
        <section>
285
        <section>
270
          <title>Allocation/deallocation</title>
286
          <title>Allocation/deallocation</title>
271
 
287
 
272
          <para>The following two paragraphs summarize and complete the
288
          <para>The following two paragraphs summarize and complete the
273
          description of the slab allocator operation (i.e.
289
          description of the slab allocator operation (i.e.
274
          <code>slab_alloc</code> and <code>slab_free</code>
290
          <code>slab_alloc</code> and <code>slab_free</code>
275
          operations).</para>
291
          operations).</para>
276
 
292
 
277
          <formalpara>
293
          <formalpara>
278
            <title>Allocation</title>
294
            <title>Allocation</title>
279
 
295
 
280
            <para><emphasis>Step 1.</emphasis> When an allocation request
296
            <para><emphasis>Step 1.</emphasis> When an allocation request
281
            comes, the slab allocator checks availability of memory in the
297
            comes, the slab allocator checks availability of memory in the
282
            current magazine of the local processor magazine cache. If the
298
            current magazine of the local processor magazine cache. If the
283
            available memory is there, the allocator just pops the object from
299
            available memory is there, the allocator just pops the object from
284
            magazine and returns it.</para>
300
            magazine and returns it.</para>
285
 
301
 
286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
302
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
287
            processor magazine cache is empty, the allocator will attempt to
303
            processor magazine cache is empty, the allocator will attempt to
288
            swap it with the last magazine from the cache and return to the
304
            swap it with the last magazine from the cache and return to the
289
            first step. If also the last magazine is empty, the algorithm will
305
            first step. If also the last magazine is empty, the algorithm will
290
            fall through to Step 3.</para>
306
            fall through to Step 3.</para>
291
 
307
 
292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
308
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
293
            situation when both magazines in the processor magazine cache are
309
            situation when both magazines in the processor magazine cache are
294
            empty. The allocator reloads one magazine from the shared list of
310
            empty. The allocator reloads one magazine from the shared list of
295
            full magazines. If the reload is successful (i.e. there are full
311
            full magazines. If the reload is successful (i.e. there are full
296
            magazines in the list), the algorithm continues with Step
312
            magazines in the list), the algorithm continues with Step
297
            1.</para>
313
            1.</para>
298
 
314
 
299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
315
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
300
            object is allocated from the conventional slab layer and a pointer
316
            object is allocated from the conventional slab layer and a pointer
301
            to it is returned. If also the last magazine is full,</para>
317
            to it is returned. If also the last magazine is full,</para>
302
          </formalpara>
318
          </formalpara>
303
 
319
 
304
          <formalpara>
320
          <formalpara>
305
            <title>Deallocation</title>
321
            <title>Deallocation</title>
306
 
322
 
307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
323
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
308
            the slab allocator checks if the current magazine of the local
324
            the slab allocator checks if the current magazine of the local
309
            processor magazine cache is not full. If it is, the pointer to the
325
            processor magazine cache is not full. If it is, the pointer to the
310
            objects is just pushed into the magazine and the algorithm
326
            objects is just pushed into the magazine and the algorithm
311
            returns.</para>
327
            returns.</para>
312
 
328
 
313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
329
            <para><emphasis>Step 2.</emphasis> If the current magazine is
314
            full, the allocator will attempt to swap it with the last magazine
330
            full, the allocator will attempt to swap it with the last magazine
315
            from the cache and return to the first step. If also the last
331
            from the cache and return to the first step. If also the last
316
            magazine is empty, the algorithm will fall through to Step
332
            magazine is empty, the algorithm will fall through to Step
317
            3.</para>
333
            3.</para>
318
 
334
 
319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
335
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
320
            situation when both magazines in the processor magazine cache are
336
            situation when both magazines in the processor magazine cache are
321
            full. The allocator tries to allocate a new empty magazine and
337
            full. The allocator tries to allocate a new empty magazine and
322
            flush one of the full magazines to the shared list of full
338
            flush one of the full magazines to the shared list of full
323
            magazines. If it is successfull, the algoritm continues with Step
339
            magazines. If it is successfull, the algoritm continues with Step
324
            1.</para>
340
            1.</para>
325
 
341
 
326
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
342
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
327
            when the allocation of empty magazine fails, the object is moved
343
            when the allocation of empty magazine fails, the object is moved
328
            directly into slab. In the worst case object deallocation does not
344
            directly into slab. In the worst case object deallocation does not
329
            need to allocate any additional memory.</para>
345
            need to allocate any additional memory.</para>
330
          </formalpara>
346
          </formalpara>
331
        </section>
347
        </section>
332
      </section>
348
      </section>
333
    </section>
349
    </section>
334
  </section>
350
  </section>
335
 
351
 
336
  <section>
352
  <section>
337
    <title>Virtual memory management</title>
353
    <title>Virtual memory management</title>
338
 
354
 
339
    <section>
355
    <section>
340
      <title>Introduction</title>
356
      <title>Introduction</title>
341
 
357
 
342
      <para>Virtual memory is a special memory management technique, used by
358
      <para>Virtual memory is a special memory management technique, used by
343
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
359
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
344
          <listitem>
360
          <listitem>
345
             Isolate each task from other tasks that are running on the system at the same time.
361
             Isolate each task from other tasks that are running on the system at the same time.
346
          </listitem>
362
          </listitem>
347
 
363
 
348
          <listitem>
364
          <listitem>
349
             Allow to allocate more memory, than is actual physical memory size of the machine.
365
             Allow to allocate more memory, than is actual physical memory size of the machine.
350
          </listitem>
366
          </listitem>
351
 
367
 
352
          <listitem>
368
          <listitem>
353
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
369
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
354
          </listitem>
370
          </listitem>
355
        </itemizedlist></para>
371
        </itemizedlist></para>
356
 
372
 
357
      <para><!--
373
      <para><!--
358
                <para>
374
                <para>
359
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
375
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
360
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
376
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
361
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
377
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
362
                </para>
378
                </para>
363
 
379
 
364
--></para>
380
--></para>
365
    </section>
381
    </section>
366
 
382
 
367
    <section>
383
    <section>
368
      <title>Address spaces</title>
384
      <title>Address spaces</title>
369
 
385
 
370
      <section>
386
      <section>
371
        <indexterm>
387
        <indexterm>
372
          <primary>address space</primary>
388
          <primary>address space</primary>
373
 
389
 
374
          <secondary>- area</secondary>
390
          <secondary>- area</secondary>
375
        </indexterm>
391
        </indexterm>
376
 
392
 
377
        <title>Address space areas</title>
393
        <title>Address space areas</title>
378
 
394
 
379
        <para>Each address space consists of mutually disjunctive continuous
395
        <para>Each address space consists of mutually disjunctive continuous
380
        address space areas. Address space area is precisely defined by its
396
        address space areas. Address space area is precisely defined by its
381
        base address and the number of frames/pages is contains.</para>
397
        base address and the number of frames/pages is contains.</para>
382
 
398
 
383
        <para>Address space area , that define behaviour and permissions on
399
        <para>Address space area , that define behaviour and permissions on
384
        the particular area. <itemizedlist>
400
        the particular area. <itemizedlist>
385
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
401
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
386
            permission.</listitem>
402
            permission.</listitem>
387
 
403
 
388
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
404
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
389
            writing permission.</listitem>
405
            writing permission.</listitem>
390
 
406
 
391
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
407
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
392
            execution permission. Some architectures do not support execution
408
            execution permission. Some architectures do not support execution
393
            persmission restriction. In this case this flag has no
409
            persmission restriction. In this case this flag has no
394
            effect.</listitem>
410
            effect.</listitem>
395
 
411
 
396
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
412
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
397
            to the device memory.</listitem>
413
            to the device memory.</listitem>
398
          </itemizedlist></para>
414
          </itemizedlist></para>
399
 
415
 
400
        <para>Kernel provides possibility tasks create/expand/shrink/share its
416
        <para>Kernel provides possibility tasks create/expand/shrink/share its
401
        address space via the set of syscalls.</para>
417
        address space via the set of syscalls.</para>
402
      </section>
418
      </section>
403
 
419
 
404
      <section>
420
      <section>
405
        <indexterm>
421
        <indexterm>
406
          <primary>address space</primary>
422
          <primary>address space</primary>
407
 
423
 
408
          <secondary>- ASID</secondary>
424
          <secondary>- ASID</secondary>
409
        </indexterm>
425
        </indexterm>
410
 
426
 
411
        <title>Address Space ID (ASID)</title>
427
        <title>Address Space ID (ASID)</title>
412
 
428
 
413
        <para>Every task in the operating system has it's own view of the
429
        <para>Every task in the operating system has it's own view of the
414
        virtual memory. When performing context switch between different
430
        virtual memory. When performing context switch between different
415
        tasks, the kernel must switch the address space mapping as well. As
431
        tasks, the kernel must switch the address space mapping as well. As
416
        modern processors perform very aggressive caching of virtual mappings,
432
        modern processors perform very aggressive caching of virtual mappings,
417
        flushing the complete TLB on every context switch would be very
433
        flushing the complete TLB on every context switch would be very
418
        inefficient. To avoid such performance penalty, some architectures
434
        inefficient. To avoid such performance penalty, some architectures
419
        introduce an address space identifier, which allows storing several
435
        introduce an address space identifier, which allows storing several
420
        different mappings inside TLB.</para>
436
        different mappings inside TLB.</para>
421
 
437
 
422
        <para>HelenOS kernel can take advantage of this hardware support by
438
        <para>HelenOS kernel can take advantage of this hardware support by
423
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
439
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
424
        RID (region identifier) and on the mips32 kernel ASID is actually the
440
        RID (region identifier) and on the mips32 kernel ASID is actually the
425
        hardware identifier. As expected, this ASID information record is the
441
        hardware identifier. As expected, this ASID information record is the
426
        part of <emphasis>as_t</emphasis> structure.</para>
442
        part of <emphasis>as_t</emphasis> structure.</para>
427
 
443
 
428
        <para>Due to the hardware limitations, hardware ASID has limited
444
        <para>Due to the hardware limitations, hardware ASID has limited
429
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
445
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
430
        impossible to use it as unique address space identifier for all tasks
446
        impossible to use it as unique address space identifier for all tasks
431
        running in the system. In such situations special ASID stealing
447
        running in the system. In such situations special ASID stealing
432
        algoritm is used, which takes ASID from inactive task and assigns it
448
        algoritm is used, which takes ASID from inactive task and assigns it
433
        to the active task.</para>
449
        to the active task.</para>
434
 
450
 
435
        <indexterm>
451
        <indexterm>
436
          <primary>address space</primary>
452
          <primary>address space</primary>
437
 
453
 
438
          <secondary>- ASID stealing</secondary>
454
          <secondary>- ASID stealing</secondary>
439
        </indexterm>
455
        </indexterm>
440
 
456
 
441
        <para>
457
        <para>
442
          <classname>ASID stealing algoritm here.</classname>
458
          <classname>ASID stealing algoritm here.</classname>
443
        </para>
459
        </para>
444
      </section>
460
      </section>
445
    </section>
461
    </section>
446
 
462
 
447
    <section id="paging">
463
    <section id="paging">
448
      <title>Virtual address translation</title>
464
      <title>Virtual address translation</title>
449
 
465
 
450
      <section>
466
      <section>
451
        <title>Introduction</title>
467
        <title>Introduction</title>
452
 
468
 
453
        <para>Virtual memory is usually using paged memory model, where
469
        <para>Virtual memory is usually using paged memory model, where
454
        virtual memory address space is divided into the
470
        virtual memory address space is divided into the
455
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
471
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
456
        physical memory is divided into the frames (same sized as a page, of
472
        physical memory is divided into the frames (same sized as a page, of
457
        course). Each page may be mapped to some frame and then, upon memory
473
        course). Each page may be mapped to some frame and then, upon memory
458
        access to the virtual address, CPU performs <emphasis>address
474
        access to the virtual address, CPU performs <emphasis>address
459
        translation</emphasis> during the instruction execution. Non-existing
475
        translation</emphasis> during the instruction execution. Non-existing
460
        mapping generates page fault exception, calling kernel exception
476
        mapping generates page fault exception, calling kernel exception
461
        handler, thus allowing kernel to manipulate rules of memory access.
477
        handler, thus allowing kernel to manipulate rules of memory access.
462
        Information for pages mapping is stored by kernel in the <link
478
        Information for pages mapping is stored by kernel in the <link
463
        linkend="page_tables">page tables</link></para>
479
        linkend="page_tables">page tables</link></para>
464
 
480
 
465
        <indexterm>
481
        <indexterm>
466
          <primary>page tables</primary>
482
          <primary>page tables</primary>
467
        </indexterm>
483
        </indexterm>
468
 
484
 
469
        <para>The majority of the architectures use multi-level page tables,
485
        <para>The majority of the architectures use multi-level page tables,
470
        which means need to access physical memory several times before
486
        which means need to access physical memory several times before
471
        getting physical address. This fact would make serios performance
487
        getting physical address. This fact would make serios performance
472
        overhead in virtual memory management. To avoid this <link
488
        overhead in virtual memory management. To avoid this <link
473
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
489
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
474
 
490
 
475
        <para>HelenOS kernel has two different approaches to the paging
491
        <para>HelenOS kernel has two different approaches to the paging
476
        implementation: <emphasis>4 level page tables</emphasis> and
492
        implementation: <emphasis>4 level page tables</emphasis> and
477
        <emphasis>global hash table</emphasis>, which are accessible via
493
        <emphasis>global hash table</emphasis>, which are accessible via
478
        generic paging abstraction layer. Such different functionality was
494
        generic paging abstraction layer. Such different functionality was
479
        caused by the major architectural differences between supported
495
        caused by the major architectural differences between supported
480
        platforms. This abstraction is implemented with help of the global
496
        platforms. This abstraction is implemented with help of the global
481
        structure of pointers to basic mapping functions
497
        structure of pointers to basic mapping functions
482
        <emphasis>page_mapping_operations</emphasis>. To achieve different
498
        <emphasis>page_mapping_operations</emphasis>. To achieve different
483
        functionality of page tables, corresponding layer must implement
499
        functionality of page tables, corresponding layer must implement
484
        functions, declared in
500
        functions, declared in
485
        <emphasis>page_mapping_operations</emphasis></para>
501
        <emphasis>page_mapping_operations</emphasis></para>
486
 
502
 
487
        <para>Thanks to the abstract paging interface, there was a place left
503
        <para>Thanks to the abstract paging interface, there was a place left
488
        for more paging implementations (besides already implemented
504
        for more paging implementations (besides already implemented
489
        hieararchical page tables and hash table), for example <indexterm>
505
        hieararchical page tables and hash table), for example <indexterm>
490
            <primary>B-tree</primary>
506
            <primary>B-tree</primary>
491
          </indexterm> B-Tree based page tables.</para>
507
          </indexterm> B-Tree based page tables.</para>
492
      </section>
508
      </section>
493
 
509
 
494
      <section id="page_tables">
510
      <section id="page_tables">
495
        <indexterm>
511
        <indexterm>
496
          <primary>page tables</primary>
512
          <primary>page tables</primary>
497
 
513
 
498
          <secondary>- hierarchical</secondary>
514
          <secondary>- hierarchical</secondary>
499
        </indexterm>
515
        </indexterm>
500
 
516
 
501
        <title>Hierarchical 4-level page tables</title>
517
        <title>Hierarchical 4-level page tables</title>
502
 
518
 
503
        <para>Hierarchical 4-level page tables are the generalization of the
519
        <para>Hierarchical 4-level page tables are the generalization of the
504
        hardware capabilities of most architectures. Each address space has
520
        hardware capabilities of most architectures. Each address space has
505
        its own page tables.<itemizedlist>
521
        its own page tables.<itemizedlist>
506
            <listitem>ia32 uses 2-level page tables, with full hardware
522
            <listitem>ia32 uses 2-level page tables, with full hardware
507
            support.</listitem>
523
            support.</listitem>
508
 
524
 
509
            <listitem>amd64 uses 4-level page tables, also coming with full
525
            <listitem>amd64 uses 4-level page tables, also coming with full
510
            hardware support.</listitem>
526
            hardware support.</listitem>
511
 
527
 
512
            <listitem>mips and ppc32 have 2-level tables, software simulated
528
            <listitem>mips and ppc32 have 2-level tables, software simulated
513
            support.</listitem>
529
            support.</listitem>
514
          </itemizedlist></para>
530
          </itemizedlist></para>
515
      </section>
531
      </section>
516
 
532
 
517
      <section>
533
      <section>
518
        <indexterm>
534
        <indexterm>
519
          <primary>page tables</primary>
535
          <primary>page tables</primary>
520
 
536
 
521
          <secondary>- hashing</secondary>
537
          <secondary>- hashing</secondary>
522
        </indexterm>
538
        </indexterm>
523
 
539
 
524
        <title>Global hash table</title>
540
        <title>Global hash table</title>
525
 
541
 
526
        <para>Implementation of the global hash table was encouraged by the
542
        <para>Implementation of the global hash table was encouraged by the
527
        ia64 architecture support. One of the major differences between global
543
        ia64 architecture support. One of the major differences between global
528
        hash table and hierarchical tables is that global hash table exists
544
        hash table and hierarchical tables is that global hash table exists
529
        only once in the system and the hierarchical tables are maintained per
545
        only once in the system and the hierarchical tables are maintained per
530
        address space.</para>
546
        address space.</para>
531
 
547
 
532
        <para>Thus, hash table contains information about all address spaces
548
        <para>Thus, hash table contains information about all address spaces
533
        mappings in the system, so, the hash of an entry must contain
549
        mappings in the system, so, the hash of an entry must contain
534
        information of both address space pointer or id and the virtual
550
        information of both address space pointer or id and the virtual
535
        address of the page. Generic hash table implementation assumes that
551
        address of the page. Generic hash table implementation assumes that
536
        the addresses of the pointers to the address spaces are likely to be
552
        the addresses of the pointers to the address spaces are likely to be
537
        on the close addresses, so it uses least significant bits for hash;
553
        on the close addresses, so it uses least significant bits for hash;
538
        also it assumes that the virtual page addresses have roughly the same
554
        also it assumes that the virtual page addresses have roughly the same
539
        probability of occurring, so the least significant bits of VPN compose
555
        probability of occurring, so the least significant bits of VPN compose
540
        the hash index.</para>
556
        the hash index.</para>
541
 
557
 
542
        <para>Paging hash table uses generic hash table with collision chains
558
        <para>Paging hash table uses generic hash table with collision chains
543
        (see the <link linkend="hashtables">Data Structures</link> chapter of
559
        (see the <link linkend="hashtables">Data Structures</link> chapter of
544
        this manual for details).</para>
560
        this manual for details).</para>
545
      </section>
561
      </section>
546
    </section>
562
    </section>
547
 
563
 
548
    <section id="tlb">
564
    <section id="tlb">
549
      <indexterm>
565
      <indexterm>
550
        <primary>TLB</primary>
566
        <primary>TLB</primary>
551
      </indexterm>
567
      </indexterm>
552
 
568
 
553
      <title>Translation Lookaside buffer</title>
569
      <title>Translation Lookaside buffer</title>
554
 
570
 
555
      <para>Due to the extensive overhead during the page mapping lookup in
571
      <para>Due to the extensive overhead during the page mapping lookup in
556
      the page tables, all architectures has fast assotiative cache memory
572
      the page tables, all architectures has fast assotiative cache memory
557
      built-in CPU. This memory called TLB stores recently used page table
573
      built-in CPU. This memory called TLB stores recently used page table
558
      entries.</para>
574
      entries.</para>
559
 
575
 
560
      <section id="tlb_shootdown">
576
      <section id="tlb_shootdown">
561
        <indexterm>
577
        <indexterm>
562
          <primary>TLB</primary>
578
          <primary>TLB</primary>
563
 
579
 
564
          <secondary>- TLB shootdown</secondary>
580
          <secondary>- TLB shootdown</secondary>
565
        </indexterm>
581
        </indexterm>
566
 
582
 
567
        <title>TLB consistency. TLB shootdown algorithm.</title>
583
        <title>TLB consistency. TLB shootdown algorithm.</title>
568
 
584
 
569
        <para>Operating system is responsible for keeping TLB consistent by
585
        <para>Operating system is responsible for keeping TLB consistent by
570
        invalidating the contents of TLB, whenever there is some change in
586
        invalidating the contents of TLB, whenever there is some change in
571
        page tables. Those changes may occur when page or group of pages were
587
        page tables. Those changes may occur when page or group of pages were
572
        unmapped, mapping is changed or system switching active address space
588
        unmapped, mapping is changed or system switching active address space
573
        to schedule a new system task. Moreover, this invalidation operation
589
        to schedule a new system task. Moreover, this invalidation operation
574
        must be done an all system CPUs because each CPU has its own
590
        must be done an all system CPUs because each CPU has its own
575
        independent TLB cache. Thus maintaining TLB consistency on SMP
591
        independent TLB cache. Thus maintaining TLB consistency on SMP
576
        configuration as not as trivial task as it looks on the first glance.
592
        configuration as not as trivial task as it looks on the first glance.
577
        Naive solution would assume that is the CPU which wants to invalidate
593
        Naive solution would assume that is the CPU which wants to invalidate
578
        TLB will invalidate TLB caches on other CPUs. It is not possible on
594
        TLB will invalidate TLB caches on other CPUs. It is not possible on
579
        the most of the architectures, because of the simple fact - flushing
595
        the most of the architectures, because of the simple fact - flushing
580
        TLB is allowed only on the local CPU and there is no possibility to
596
        TLB is allowed only on the local CPU and there is no possibility to
581
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
597
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
582
 
598
 
583
        <para>Technique of remote invalidation of TLB entries is called "TLB
599
        <para>Technique of remote invalidation of TLB entries is called "TLB
584
        shootdown". HelenOS uses a variation of the algorithm described by D.
600
        shootdown". HelenOS uses a variation of the algorithm described by D.
585
        Black et al., "Translation Lookaside Buffer Consistency: A Software
601
        Black et al., "Translation Lookaside Buffer Consistency: A Software
586
        Approach," Proc. Third Int'l Conf. Architectural Support for
602
        Approach," Proc. Third Int'l Conf. Architectural Support for
587
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
603
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
588
        linkend="Black89" /></para>
604
        linkend="Black89" /></para>
589
 
605
 
590
        <para>As the situation demands, you will want partitial invalidation
606
        <para>As the situation demands, you will want partitial invalidation
591
        of TLB caches. In case of simple memory mapping change it is necessary
607
        of TLB caches. In case of simple memory mapping change it is necessary
592
        to invalidate only one or more adjacent pages. In case if the
608
        to invalidate only one or more adjacent pages. In case if the
593
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
609
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
594
        use by another task, it invalidates only entries from this particular
610
        use by another task, it invalidates only entries from this particular
595
        address space. Final option of the TLB invalidation is the complete
611
        address space. Final option of the TLB invalidation is the complete
596
        TLB cache invalidation, which is the operation that flushes all
612
        TLB cache invalidation, which is the operation that flushes all
597
        entries in TLB.</para>
613
        entries in TLB.</para>
598
 
614
 
599
        <para>TLB shootdown is performed in two phases.</para>
615
        <para>TLB shootdown is performed in two phases.</para>
600
 
616
 
601
        <formalpara>
617
        <formalpara>
602
          <title>Phase 1.</title>
618
          <title>Phase 1.</title>
603
 
619
 
604
          <para>First, initiator locks a global TLB spinlock, then request is
620
          <para>First, initiator locks a global TLB spinlock, then request is
605
          being put to the local request cache of every other CPU in the
621
          being put to the local request cache of every other CPU in the
606
          system protected by its spinlock. In case the cache is full, all
622
          system protected by its spinlock. In case the cache is full, all
607
          requests in the cache are replaced by one request, indicating global
623
          requests in the cache are replaced by one request, indicating global
608
          TLB flush. Then the initiator thread sends an IPI message indicating
624
          TLB flush. Then the initiator thread sends an IPI message indicating
609
          the TLB shootdown request to the rest of the CPUs and waits actively
625
          the TLB shootdown request to the rest of the CPUs and waits actively
610
          until all CPUs confirm TLB invalidating action execution by setting
626
          until all CPUs confirm TLB invalidating action execution by setting
611
          up a special flag. After setting this flag this thread is blocked on
627
          up a special flag. After setting this flag this thread is blocked on
612
          the TLB spinlock, held by the initiator.</para>
628
          the TLB spinlock, held by the initiator.</para>
613
        </formalpara>
629
        </formalpara>
614
 
630
 
615
        <formalpara>
631
        <formalpara>
616
          <title>Phase 2.</title>
632
          <title>Phase 2.</title>
617
 
633
 
618
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
634
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
619
          invalidation action and have indicated their intention to the
635
          invalidation action and have indicated their intention to the
620
          initiator. Initiator continues, cleaning up its TLB and releasing
636
          initiator. Initiator continues, cleaning up its TLB and releasing
621
          the global TLB spinlock. After this all other CPUs gain and
637
          the global TLB spinlock. After this all other CPUs gain and
622
          immidiately release TLB spinlock and perform TLB invalidation
638
          immidiately release TLB spinlock and perform TLB invalidation
623
          actions.</para>
639
          actions.</para>
624
        </formalpara>
640
        </formalpara>
625
      </section>
641
      </section>
626
    </section>
642
    </section>
627
  </section>
643
  </section>
628
</chapter>
644
</chapter>