Subversion Repositories HelenOS-doc

Rev

Rev 74 | Rev 77 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 74 Rev 76
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
18
 
18
 
19
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
27
      frames.</para>
28
 
28
 
29
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
33
 
33
 
34
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
39
      one.</para>
40
 
40
 
41
      <para>For each physical memory frame found in a zone, there is a frame
41
      <para>Every physical memory frame in a zone, is described by a structure
42
      structure that contains number of references and data used by buddy
42
      that contains number of references and other data used by buddy
43
      system.</para>
43
      system.</para>
44
    </section>
44
    </section>
45
 
45
 
46
    <section id="frame_allocator">
46
    <section id="frame_allocator">
47
      <indexterm>
47
      <indexterm>
48
        <primary>frame allocator</primary>
48
        <primary>frame allocator</primary>
49
      </indexterm>
49
      </indexterm>
50
 
50
 
51
      <title>Frame allocator</title>
51
      <title>Frame allocator</title>
52
 
52
 
53
      <para>The frame allocator satisfies kernel requests to allocate
53
      <para>The frame allocator satisfies kernel requests to allocate
54
      power-of-two sized blocks of physical memory. Because of zonal
54
      power-of-two sized blocks of physical memory. Because of zonal
55
      organization of physical memory, the frame allocator is always working
55
      organization of physical memory, the frame allocator is always working
56
      within a context of some frame zone. In order to carry out the
56
      within a context of a particular frame zone. In order to carry out the
57
      allocation requests, the frame allocator is tightly integrated with the
57
      allocation requests, the frame allocator is tightly integrated with the
58
      buddy system belonging to the zone. The frame allocator is also
58
      buddy system belonging to the zone. The frame allocator is also
59
      responsible for updating information about the number of free and busy
59
      responsible for updating information about the number of free and busy
60
      frames in the zone. <figure>
60
      frames in the zone. <figure>
61
          <mediaobject id="frame_alloc">
61
          <mediaobject id="frame_alloc">
62
            <imageobject role="html">
62
            <imageobject role="html">
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
64
            </imageobject>
64
            </imageobject>
65
 
65
 
66
            <imageobject role="fop">
66
            <imageobject role="fop">
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
68
            </imageobject>
68
            </imageobject>
69
          </mediaobject>
69
          </mediaobject>
70
 
70
 
71
          <title>Frame allocator scheme.</title>
71
          <title>Frame allocator scheme.</title>
72
        </figure></para>
72
        </figure></para>
73
 
73
 
74
      <formalpara>
74
      <formalpara>
75
        <title>Allocation / deallocation</title>
75
        <title>Allocation / deallocation</title>
76
 
76
 
77
        <para>Upon allocation request via function <code>frame_alloc</code>,
77
        <para>Upon allocation request via function <code>frame_alloc</code>,
78
        the frame allocator first tries to find a zone that can satisfy the
78
        the frame allocator first tries to find a zone that can satisfy the
79
        request (i.e. has the required amount of free frames). Once a suitable
79
        request (i.e. has the required amount of free frames). Once a suitable
80
        zone is found, the frame allocator uses the buddy allocator on the
80
        zone is found, the frame allocator uses the buddy allocator on the
81
        zone's buddy system to perform the allocation. During deallocation,
81
        zone's buddy system to perform the allocation. During deallocation,
82
        which is triggered by a call to <code>frame_free</code>, the frame
82
        which is triggered by a call to <code>frame_free</code>, the frame
83
        allocator looks up the respective zone that contains the frame being
83
        allocator looks up the respective zone that contains the frame being
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
85
        to take care of deallocation within the zone's buddy system.</para>
85
        to take care of deallocation within the zone's buddy system.</para>
86
      </formalpara>
86
      </formalpara>
87
    </section>
87
    </section>
88
 
88
 
89
    <section id="buddy_allocator">
89
    <section id="buddy_allocator">
90
      <indexterm>
90
      <indexterm>
91
        <primary>buddy system</primary>
91
        <primary>buddy system</primary>
92
      </indexterm>
92
      </indexterm>
93
 
93
 
94
      <title>Buddy allocator</title>
94
      <title>Buddy allocator</title>
95
 
95
 
96
      <para>In the buddy system, the memory is broken down into power-of-two
96
      <para>In the buddy system, the memory is broken down into power-of-two
97
      sized naturally aligned blocks. These blocks are organized in an array
97
      sized naturally aligned blocks. These blocks are organized in an array
98
      of lists, in which the list with index i contains all unallocated blocks
98
      of lists, in which the list with index i contains all unallocated blocks
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
100
      index i is called the order of block. Should there be two adjacent
100
      index i is called the order of block. Should there be two adjacent
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
102
      buddy allocator would coalesce them and put the resulting block in list
102
      buddy allocator would coalesce them and put the resulting block in list
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
104
      be naturally aligned. Similarily, when the allocator is asked to
104
      be naturally aligned. Similarily, when the allocator is asked to
105
      allocate a block of size
105
      allocate a block of size
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
107
      to satisfy the request from the list with index i. If the request cannot
107
      to satisfy the request from the list with index i. If the request cannot
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
109
      allocate and split a larger block from the list with index i + 1. Both
109
      allocate and split a larger block from the list with index i + 1. Both
110
      of these algorithms are recursive. The recursion ends either when there
110
      of these algorithms are recursive. The recursion ends either when there
111
      are no blocks to coalesce in the former case or when there are no blocks
111
      are no blocks to coalesce in the former case or when there are no blocks
112
      that can be split in the latter case.</para>
112
      that can be split in the latter case.</para>
113
 
113
 
114
      <para>This approach greatly reduces external fragmentation of memory and
114
      <para>This approach greatly reduces external fragmentation of memory and
115
      helps in allocating bigger continuous blocks of memory aligned to their
115
      helps in allocating bigger continuous blocks of memory aligned to their
116
      size. On the other hand, the buddy allocator suffers increased internal
116
      size. On the other hand, the buddy allocator suffers increased internal
117
      fragmentation of memory and is not suitable for general kernel
117
      fragmentation of memory and is not suitable for general kernel
118
      allocations. This purpose is better addressed by the <link
118
      allocations. This purpose is better addressed by the <link
119
      linkend="slab">slab allocator</link>.<figure>
119
      linkend="slab">slab allocator</link>.<figure>
120
          <mediaobject id="buddy_alloc">
120
          <mediaobject id="buddy_alloc">
121
            <imageobject role="html">
121
            <imageobject role="html">
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
123
            </imageobject>
123
            </imageobject>
124
 
124
 
125
            <imageobject role="fop">
125
            <imageobject role="fop">
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
127
            </imageobject>
127
            </imageobject>
128
          </mediaobject>
128
          </mediaobject>
129
 
129
 
130
          <title>Buddy system scheme.</title>
130
          <title>Buddy system scheme.</title>
131
        </figure></para>
131
        </figure></para>
132
 
132
 
133
      <section>
133
      <section>
134
        <title>Implementation</title>
134
        <title>Implementation</title>
135
 
135
 
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
137
        be easily specialized to serve one particular task. It knows nothing
137
        be easily specialized to serve one particular task. It knows nothing
138
        about the nature of memory it helps to allocate. In order to beat the
138
        about the nature of memory it helps to allocate. In order to beat the
139
        lack of this knowledge, the buddy allocator exports an interface that
139
        lack of this knowledge, the buddy allocator exports an interface that
140
        each of its clients is required to implement. When supplied with an
140
        each of its clients is required to implement. When supplied with an
141
        implementation of this interface, the buddy allocator can use
141
        implementation of this interface, the buddy allocator can use
142
        specialized external functions to find a buddy for a block, split and
142
        specialized external functions to find a buddy for a block, split and
143
        coalesce blocks, manipulate block order and mark blocks busy or
143
        coalesce blocks, manipulate block order and mark blocks busy or
144
        available.</para>
144
        available.</para>
145
 
145
 
146
        <formalpara>
146
        <formalpara>
147
          <title>Data organization</title>
147
          <title>Data organization</title>
148
 
148
 
149
          <para>Each entity allocable by the buddy allocator is required to
149
          <para>Each entity allocable by the buddy allocator is required to
150
          contain space for storing block order number and a link variable
150
          contain space for storing block order number and a link variable
151
          used to interconnect blocks within the same order.</para>
151
          used to interconnect blocks within the same order.</para>
152
 
152
 
153
          <para>Whatever entities are allocated by the buddy allocator, the
153
          <para>Whatever entities are allocated by the buddy allocator, the
154
          first entity within a block is used to represent the entire block.
154
          first entity within a block is used to represent the entire block.
155
          The first entity keeps the order of the whole block. Other entities
155
          The first entity keeps the order of the whole block. Other entities
156
          within the block are assigned the magic value
156
          within the block are assigned the magic value
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
158
          for effective identification of buddies in a one-dimensional array
158
          for effective identification of buddies in a one-dimensional array
159
          because the entity that represents a potential buddy cannot be
159
          because the entity that represents a potential buddy cannot be
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
162
          not a buddy).</para>
162
          not a buddy).</para>
163
        </formalpara>
163
        </formalpara>
164
      </section>
164
      </section>
165
    </section>
165
    </section>
166
 
166
 
167
    <section id="slab">
167
    <section id="slab">
168
      <indexterm>
168
      <indexterm>
169
        <primary>slab allocator</primary>
169
        <primary>slab allocator</primary>
170
      </indexterm>
170
      </indexterm>
171
 
171
 
172
      <title>Slab allocator</title>
172
      <title>Slab allocator</title>
173
 
173
 
174
      <para>The majority of memory allocation requests in the kernel is for
174
      <para>The majority of memory allocation requests in the kernel is for
175
      small, frequently used data structures. The basic idea behind the slab
175
      small, frequently used data structures. The basic idea behind the slab
176
      allocator is that commonly used objects are preallocated in continuous
176
      allocator is that commonly used objects are preallocated in continuous
177
      areas of physical memory called slabs<footnote>
177
      areas of physical memory called slabs<footnote>
178
          <para>Slabs are in fact blocks of physical memory frames allocated
178
          <para>Slabs are in fact blocks of physical memory frames allocated
179
          from the frame allocator.</para>
179
          from the frame allocator.</para>
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
181
      returns the first available item from a suitable slab corresponding to
181
      returns the first available item from a suitable slab corresponding to
182
      the object type<footnote>
182
      the object type<footnote>
183
          <para>The mechanism is rather more complicated, see the next
183
          <para>The mechanism is rather more complicated, see the next
184
          paragraph.</para>
184
          paragraph.</para>
185
        </footnote>. Due to the fact that the sizes of the requested and
185
        </footnote>. Due to the fact that the sizes of the requested and
186
      allocated object match, the slab allocator significantly reduces
186
      allocated object match, the slab allocator significantly reduces
187
      internal fragmentation.</para>
187
      internal fragmentation.</para>
188
 
188
 
189
      <indexterm>
189
      <indexterm>
190
        <primary>slab allocator</primary>
190
        <primary>slab allocator</primary>
191
 
191
 
192
        <secondary>- slab cache</secondary>
192
        <secondary>- slab cache</secondary>
193
      </indexterm>
193
      </indexterm>
194
 
194
 
195
      <para>Slabs of one object type are organized in a structure called slab
195
      <para>Slabs of one object type are organized in a structure called slab
196
      cache. There are ususally more slabs in the slab cache, depending on
196
      cache. There are ususally more slabs in the slab cache, depending on
197
      previous allocations. If the the slab cache runs out of available slabs,
197
      previous allocations. If the the slab cache runs out of available slabs,
198
      new slabs are allocated. In order to exploit parallelism and to avoid
198
      new slabs are allocated. In order to exploit parallelism and to avoid
199
      locking of shared spinlocks, slab caches can have variants of
199
      locking of shared spinlocks, slab caches can have variants of
200
      processor-private slabs called magazines. On each processor, there is a
200
      processor-private slabs called magazines. On each processor, there is a
201
      two-magazine cache. Full magazines that are not part of any
201
      two-magazine cache. Full magazines that are not part of any
202
      per-processor magazine cache are stored in a global list of full
202
      per-processor magazine cache are stored in a global list of full
203
      magazines.</para>
203
      magazines.</para>
204
 
204
 
205
      <indexterm>
205
      <indexterm>
206
        <primary>slab allocator</primary>
206
        <primary>slab allocator</primary>
207
 
207
 
208
        <secondary>- magazine</secondary>
208
        <secondary>- magazine</secondary>
209
      </indexterm>
209
      </indexterm>
210
 
210
 
211
      <para>Each object begins its life in a slab. When it is allocated from
211
      <para>Each object begins its life in a slab. When it is allocated from
212
      there, the slab allocator calls a constructor that is registered in the
212
      there, the slab allocator calls a constructor that is registered in the
213
      respective slab cache. The constructor initializes and brings the object
213
      respective slab cache. The constructor initializes and brings the object
214
      into a known state. The object is then used by the user. When the user
214
      into a known state. The object is then used by the user. When the user
215
      later frees the object, the slab allocator puts it into a processor
215
      later frees the object, the slab allocator puts it into a processor
216
      private <indexterm>
216
      private <indexterm>
217
          <primary>slab allocator</primary>
217
          <primary>slab allocator</primary>
218
 
218
 
219
          <secondary>- magazine</secondary>
219
          <secondary>- magazine</secondary>
220
        </indexterm>magazine cache, from where it can be precedently allocated
220
        </indexterm>magazine cache, from where it can be precedently allocated
221
      again. Note that allocations satisfied from a magazine are already
221
      again. Note that allocations satisfied from a magazine are already
222
      initialized by the constructor. When both of the processor cached
222
      initialized by the constructor. When both of the processor cached
223
      magazines get full, the allocator will move one of the magazines to the
223
      magazines get full, the allocator will move one of the magazines to the
224
      list of full magazines. Similarily, when allocating from an empty
224
      list of full magazines. Similarily, when allocating from an empty
225
      processor magazine cache, the kernel will reload only one magazine from
225
      processor magazine cache, the kernel will reload only one magazine from
226
      the list of full magazines. In other words, the slab allocator tries to
226
      the list of full magazines. In other words, the slab allocator tries to
227
      keep the processor magazine cache only half-full in order to prevent
227
      keep the processor magazine cache only half-full in order to prevent
228
      thrashing when allocations and deallocations interleave on magazine
228
      thrashing when allocations and deallocations interleave on magazine
229
      boundaries. The advantage of this setup is that during most of the
229
      boundaries. The advantage of this setup is that during most of the
230
      allocations, no global spinlock needs to be held.</para>
230
      allocations, no global spinlock needs to be held.</para>
231
 
231
 
232
      <para>Should HelenOS run short of memory, it would start deallocating
232
      <para>Should HelenOS run short of memory, it would start deallocating
233
      objects from magazines, calling slab cache destructor on them and
233
      objects from magazines, calling slab cache destructor on them and
234
      putting them back into slabs. When a slab contanins no allocated object,
234
      putting them back into slabs. When a slab contanins no allocated object,
235
      it is immediately freed.</para>
235
      it is immediately freed.</para>
236
 
236
 
237
      <para>
237
      <para>
238
        <figure>
238
        <figure>
239
          <mediaobject id="slab_alloc">
239
          <mediaobject id="slab_alloc">
240
            <imageobject role="html">
240
            <imageobject role="html">
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
242
            </imageobject>
242
            </imageobject>
243
          </mediaobject>
243
          </mediaobject>
244
 
244
 
245
          <title>Slab allocator scheme.</title>
245
          <title>Slab allocator scheme.</title>
246
        </figure>
246
        </figure>
247
      </para>
247
      </para>
248
 
248
 
249
      <section>
249
      <section>
250
        <title>Implementation</title>
250
        <title>Implementation</title>
251
 
251
 
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
253
        allocator by Jeff Bonwick and Jonathan Adams <xref
253
        allocator by Jeff Bonwick and Jonathan Adams <xref
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
255
            <listitem>empty slabs are immediately deallocated and</listitem>
255
            <listitem>empty slabs are immediately deallocated and</listitem>
256
 
256
 
257
            <listitem>
257
            <listitem>
258
              <para>empty magazines are deallocated when not needed.</para>
258
              <para>empty magazines are deallocated when not needed.</para>
259
            </listitem>
259
            </listitem>
260
          </itemizedlist>The following features are not currently supported
260
          </itemizedlist>The following features are not currently supported
261
        but would be easy to do: <itemizedlist>
261
        but would be easy to do: <itemizedlist>
262
            <listitem>cache coloring and</listitem>
262
            <listitem>cache coloring and</listitem>
263
 
263
 
264
            <listitem>dynamic magazine grow (different magazine sizes are
264
            <listitem>dynamic magazine grow (different magazine sizes are
265
            already supported, but the allocation strategy would need to be
265
            already supported, but the allocation strategy would need to be
266
            adjusted).</listitem>
266
            adjusted).</listitem>
267
          </itemizedlist></para>
267
          </itemizedlist></para>
268
 
268
 
269
        <section>
269
        <section>
270
          <title>Allocation/deallocation</title>
270
          <title>Allocation/deallocation</title>
271
 
271
 
272
          <para>The following two paragraphs summarize and complete the
272
          <para>The following two paragraphs summarize and complete the
273
          description of the slab allocator operation (i.e.
273
          description of the slab allocator operation (i.e.
274
          <code>slab_alloc</code> and <code>slab_free</code>
274
          <code>slab_alloc</code> and <code>slab_free</code>
275
          operations).</para>
275
          operations).</para>
276
 
276
 
277
          <formalpara>
277
          <formalpara>
278
            <title>Allocation</title>
278
            <title>Allocation</title>
279
 
279
 
280
            <para><emphasis>Step 1.</emphasis> When an allocation request
280
            <para><emphasis>Step 1.</emphasis> When an allocation request
281
            comes, the slab allocator checks availability of memory in the
281
            comes, the slab allocator checks availability of memory in the
282
            current magazine of the local processor magazine cache. If the
282
            current magazine of the local processor magazine cache. If the
283
            available memory is there, the allocator just pops the magazine
283
            available memory is there, the allocator just pops the object from
284
            and returns pointer to the object.</para>
284
            magazine and returns it.</para>
285
 
285
 
286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
287
            processor magazine cache is empty, the allocator will attempt to
287
            processor magazine cache is empty, the allocator will attempt to
288
            swap it with the last magazine from the cache and return to the
288
            swap it with the last magazine from the cache and return to the
289
            first step. If also the last magazine is empty, the algorithm will
289
            first step. If also the last magazine is empty, the algorithm will
290
            fall through to Step 3.</para>
290
            fall through to Step 3.</para>
291
 
291
 
292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
293
            situation when both magazines in the processor magazine cache are
293
            situation when both magazines in the processor magazine cache are
294
            empty. The allocator reloads one magazine from the shared list of
294
            empty. The allocator reloads one magazine from the shared list of
295
            full magazines. If the reload is successful (i.e. there are full
295
            full magazines. If the reload is successful (i.e. there are full
296
            magazines in the list), the algorithm continues with Step
296
            magazines in the list), the algorithm continues with Step
297
            1.</para>
297
            1.</para>
298
 
298
 
299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
300
            object is allocated from the conventional slab layer and a pointer
300
            object is allocated from the conventional slab layer and a pointer
301
            to it is returned. If also the last magazine is full,</para>
301
            to it is returned. If also the last magazine is full,</para>
302
          </formalpara>
302
          </formalpara>
303
 
303
 
304
          <formalpara>
304
          <formalpara>
305
            <title>Deallocation</title>
305
            <title>Deallocation</title>
306
 
306
 
307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
308
            the slab allocator checks if the current magazine of the local
308
            the slab allocator checks if the current magazine of the local
309
            processor magazine cache is not full. If yes, the pointer to the
309
            processor magazine cache is not full. If it is, the pointer to the
310
            objects is just pushed into the magazine and the algorithm
310
            objects is just pushed into the magazine and the algorithm
311
            returns.</para>
311
            returns.</para>
312
 
312
 
313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
314
            full, the allocator will attempt to swap it with the last magazine
314
            full, the allocator will attempt to swap it with the last magazine
315
            from the cache and return to the first step. If also the last
315
            from the cache and return to the first step. If also the last
316
            magazine is empty, the algorithm will fall through to Step
316
            magazine is empty, the algorithm will fall through to Step
317
            3.</para>
317
            3.</para>
318
 
318
 
319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
320
            situation when both magazines in the processor magazine cache are
320
            situation when both magazines in the processor magazine cache are
-
 
321
            full. The allocator tries to allocate a new empty magazine and
321
            full. The allocator moves one magazine to the shared list of full
322
            flush one of the full magazines to the shared list of full
322
            magazines. The algoritm continues with Step 1.</para>
323
            magazines. If it is successfull, the algoritm continues with Step
-
 
324
            1.</para>
-
 
325
 
-
 
326
            <para><emphasis>Step 4. </emphasis>In case of low memory condition
-
 
327
            when the allocation of empty magazine fails, the object is moved
-
 
328
            directly into slab. In the worst case object deallocation does not
-
 
329
            need to allocate any additional memory.</para>
323
          </formalpara>
330
          </formalpara>
324
        </section>
331
        </section>
325
      </section>
332
      </section>
326
    </section>
333
    </section>
327
  </section>
334
  </section>
328
 
335
 
329
  <section>
336
  <section>
330
    <title>Virtual memory management</title>
337
    <title>Virtual memory management</title>
331
 
338
 
332
    <section>
339
    <section>
333
      <title>Introduction</title>
340
      <title>Introduction</title>
334
 
341
 
335
      <para>Virtual memory is a special memory management technique, used by
342
      <para>Virtual memory is a special memory management technique, used by
336
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
343
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
337
          <listitem>
344
          <listitem>
338
             Isolate each task from other tasks that are running on the system at the same time.
345
             Isolate each task from other tasks that are running on the system at the same time.
339
          </listitem>
346
          </listitem>
340
 
347
 
341
          <listitem>
348
          <listitem>
342
             Allow to allocate more memory, than is actual physical memory size of the machine.
349
             Allow to allocate more memory, than is actual physical memory size of the machine.
343
          </listitem>
350
          </listitem>
344
 
351
 
345
          <listitem>
352
          <listitem>
346
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
353
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
347
          </listitem>
354
          </listitem>
348
        </itemizedlist></para>
355
        </itemizedlist></para>
349
 
356
 
350
      <para><!--
357
      <para><!--
351
                <para>
358
                <para>
352
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
359
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
353
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
360
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
354
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
361
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
355
                </para>
362
                </para>
356
 
363
 
357
--></para>
364
--></para>
358
    </section>
365
    </section>
359
 
366
 
360
    <section>
367
    <section>
361
      <title>Address spaces</title>
368
      <title>Address spaces</title>
362
 
369
 
363
      <section>
370
      <section>
364
        <indexterm>
371
        <indexterm>
365
          <primary>address space</primary>
372
          <primary>address space</primary>
366
 
373
 
367
          <secondary>- area</secondary>
374
          <secondary>- area</secondary>
368
        </indexterm>
375
        </indexterm>
369
 
376
 
370
        <title>Address space areas</title>
377
        <title>Address space areas</title>
371
 
378
 
372
        <para>Each address space consists of mutually disjunctive continuous
379
        <para>Each address space consists of mutually disjunctive continuous
373
        address space areas. Address space area is precisely defined by its
380
        address space areas. Address space area is precisely defined by its
374
        base address and the number of frames/pages is contains.</para>
381
        base address and the number of frames/pages is contains.</para>
375
 
382
 
376
        <para>Address space area , that define behaviour and permissions on
383
        <para>Address space area , that define behaviour and permissions on
377
        the particular area. <itemizedlist>
384
        the particular area. <itemizedlist>
378
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
385
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
379
            permission.</listitem>
386
            permission.</listitem>
380
 
387
 
381
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
388
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
382
            writing permission.</listitem>
389
            writing permission.</listitem>
383
 
390
 
384
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
391
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
385
            execution permission. Some architectures do not support execution
392
            execution permission. Some architectures do not support execution
386
            persmission restriction. In this case this flag has no
393
            persmission restriction. In this case this flag has no
387
            effect.</listitem>
394
            effect.</listitem>
388
 
395
 
389
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
396
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
390
            to the device memory.</listitem>
397
            to the device memory.</listitem>
391
          </itemizedlist></para>
398
          </itemizedlist></para>
392
 
399
 
393
        <para>Kernel provides possibility tasks create/expand/shrink/share its
400
        <para>Kernel provides possibility tasks create/expand/shrink/share its
394
        address space via the set of syscalls.</para>
401
        address space via the set of syscalls.</para>
395
      </section>
402
      </section>
396
 
403
 
397
      <section>
404
      <section>
398
        <indexterm>
405
        <indexterm>
399
          <primary>address space</primary>
406
          <primary>address space</primary>
400
 
407
 
401
          <secondary>- ASID</secondary>
408
          <secondary>- ASID</secondary>
402
        </indexterm>
409
        </indexterm>
403
 
410
 
404
        <title>Address Space ID (ASID)</title>
411
        <title>Address Space ID (ASID)</title>
405
 
412
 
406
        <para>When switching to the different task, kernel also require to
413
        <para>Every task in the operating system has it's own view of the
407
        switch mappings to the different address space. In case TLB cannot
414
        virtual memory. When performing context switch between different
408
        distinguish address space mappings, all mapping information in TLB
415
        tasks, the kernel must switch the address space mapping as well. As
409
        from the old address space must be flushed, which can create certain
416
        modern processors perform very aggressive caching of virtual mappings,
410
        uncessary overhead during the task switching. To avoid this, some
417
        flushing the complete TLB on every context switch would be very
411
        architectures have capability to segregate different address spaces on
418
        inefficient. To avoid such performance penalty, some architectures
412
        hardware level introducing the address space identifier as a part of
419
        introduce an address space identifier, which allows storing several
413
        TLB record, telling the virtual address space translation unit to
-
 
414
        which address space this record is applicable.</para>
420
        different mappings inside TLB.</para>
415
 
421
 
416
        <para>HelenOS kernel can take advantage of this hardware supported
422
        <para>HelenOS kernel can take advantage of this hardware support by
417
        identifier by having an ASID abstraction which is somehow related to
423
        having an ASID abstraction. I.e. on ia64 kernel ASID is derived from
418
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
-
 
419
        derived from RID (region identifier) and on the mips32 kernel ASID is
424
        RID (region identifier) and on the mips32 kernel ASID is actually the
420
        actually the hardware identifier. As expected, this ASID information
425
        hardware identifier. As expected, this ASID information record is the
421
        record is the part of <emphasis>as_t</emphasis> structure.</para>
426
        part of <emphasis>as_t</emphasis> structure.</para>
422
 
427
 
423
        <para>Due to the hardware limitations, hardware ASID has limited
428
        <para>Due to the hardware limitations, hardware ASID has limited
424
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
429
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
425
        impossible to use it as unique address space identifier for all tasks
430
        impossible to use it as unique address space identifier for all tasks
426
        running in the system. In such situations special ASID stealing
431
        running in the system. In such situations special ASID stealing
427
        algoritm is used, which takes ASID from inactive task and assigns it
432
        algoritm is used, which takes ASID from inactive task and assigns it
428
        to the active task.</para>
433
        to the active task.</para>
429
 
434
 
430
        <indexterm>
435
        <indexterm>
431
          <primary>address space</primary>
436
          <primary>address space</primary>
432
 
437
 
433
          <secondary>- ASID stealing</secondary>
438
          <secondary>- ASID stealing</secondary>
434
        </indexterm>
439
        </indexterm>
435
 
440
 
436
        <para>
441
        <para>
437
          <classname>ASID stealing algoritm here.</classname>
442
          <classname>ASID stealing algoritm here.</classname>
438
        </para>
443
        </para>
439
      </section>
444
      </section>
440
    </section>
445
    </section>
441
 
446
 
442
    <section id="paging">
447
    <section id="paging">
443
      <title>Virtual address translation</title>
448
      <title>Virtual address translation</title>
444
 
449
 
445
      <section>
450
      <section>
446
        <title>Introduction</title>
451
        <title>Introduction</title>
447
 
452
 
448
        <para>Virtual memory is usually using paged memory model, where
453
        <para>Virtual memory is usually using paged memory model, where
449
        virtual memory address space is divided into the
454
        virtual memory address space is divided into the
450
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
455
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
451
        physical memory is divided into the frames (same sized as a page, of
456
        physical memory is divided into the frames (same sized as a page, of
452
        course). Each page may be mapped to some frame and then, upon memory
457
        course). Each page may be mapped to some frame and then, upon memory
453
        access to the virtual address, CPU performs <emphasis>address
458
        access to the virtual address, CPU performs <emphasis>address
454
        translation</emphasis> during the instruction execution. Non-existing
459
        translation</emphasis> during the instruction execution. Non-existing
455
        mapping generates page fault exception, calling kernel exception
460
        mapping generates page fault exception, calling kernel exception
456
        handler, thus allowing kernel to manipulate rules of memory access.
461
        handler, thus allowing kernel to manipulate rules of memory access.
457
        Information for pages mapping is stored by kernel in the <link
462
        Information for pages mapping is stored by kernel in the <link
458
        linkend="page_tables">page tables</link></para>
463
        linkend="page_tables">page tables</link></para>
459
 
464
 
460
        <indexterm>
465
        <indexterm>
461
          <primary>page tables</primary>
466
          <primary>page tables</primary>
462
        </indexterm>
467
        </indexterm>
463
 
468
 
464
        <para>The majority of the architectures use multi-level page tables,
469
        <para>The majority of the architectures use multi-level page tables,
465
        which means need to access physical memory several times before
470
        which means need to access physical memory several times before
466
        getting physical address. This fact would make serios performance
471
        getting physical address. This fact would make serios performance
467
        overhead in virtual memory management. To avoid this <link
472
        overhead in virtual memory management. To avoid this <link
468
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
473
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
469
 
474
 
470
        <para>HelenOS kernel has two different approaches to the paging
475
        <para>HelenOS kernel has two different approaches to the paging
471
        implementation: <emphasis>4 level page tables</emphasis> and
476
        implementation: <emphasis>4 level page tables</emphasis> and
472
        <emphasis>global hash table</emphasis>, which are accessible via
477
        <emphasis>global hash table</emphasis>, which are accessible via
473
        generic paging abstraction layer. Such different functionality was
478
        generic paging abstraction layer. Such different functionality was
474
        caused by the major architectural differences between supported
479
        caused by the major architectural differences between supported
475
        platforms. This abstraction is implemented with help of the global
480
        platforms. This abstraction is implemented with help of the global
476
        structure of pointers to basic mapping functions
481
        structure of pointers to basic mapping functions
477
        <emphasis>page_mapping_operations</emphasis>. To achieve different
482
        <emphasis>page_mapping_operations</emphasis>. To achieve different
478
        functionality of page tables, corresponding layer must implement
483
        functionality of page tables, corresponding layer must implement
479
        functions, declared in
484
        functions, declared in
480
        <emphasis>page_mapping_operations</emphasis></para>
485
        <emphasis>page_mapping_operations</emphasis></para>
481
 
486
 
482
        <para>Thanks to the abstract paging interface, there was a place left
487
        <para>Thanks to the abstract paging interface, there was a place left
483
        for more paging implementations (besides already implemented
488
        for more paging implementations (besides already implemented
484
        hieararchical page tables and hash table), for example <indexterm>
489
        hieararchical page tables and hash table), for example <indexterm>
485
            <primary>B-tree</primary>
490
            <primary>B-tree</primary>
486
          </indexterm> B-Tree based page tables.</para>
491
          </indexterm> B-Tree based page tables.</para>
487
      </section>
492
      </section>
488
 
493
 
489
      <section id="page_tables">
494
      <section id="page_tables">
490
        <indexterm>
495
        <indexterm>
491
          <primary>page tables</primary>
496
          <primary>page tables</primary>
492
 
497
 
493
          <secondary>- hierarchical</secondary>
498
          <secondary>- hierarchical</secondary>
494
        </indexterm>
499
        </indexterm>
495
 
500
 
496
        <title>Hierarchical 4-level page tables</title>
501
        <title>Hierarchical 4-level page tables</title>
497
 
502
 
498
        <para>Hierarchical 4-level page tables are the generalization of the
503
        <para>Hierarchical 4-level page tables are the generalization of the
499
        hardware capabilities of most architectures. Each address space has
504
        hardware capabilities of most architectures. Each address space has
500
        its own page tables.<itemizedlist>
505
        its own page tables.<itemizedlist>
501
            <listitem>ia32 uses 2-level page tables, with full hardware
506
            <listitem>ia32 uses 2-level page tables, with full hardware
502
            support.</listitem>
507
            support.</listitem>
503
 
508
 
504
            <listitem>amd64 uses 4-level page tables, also coming with full
509
            <listitem>amd64 uses 4-level page tables, also coming with full
505
            hardware support.</listitem>
510
            hardware support.</listitem>
506
 
511
 
507
            <listitem>mips and ppc32 have 2-level tables, software simulated
512
            <listitem>mips and ppc32 have 2-level tables, software simulated
508
            support.</listitem>
513
            support.</listitem>
509
          </itemizedlist></para>
514
          </itemizedlist></para>
510
      </section>
515
      </section>
511
 
516
 
512
      <section>
517
      <section>
513
        <indexterm>
518
        <indexterm>
514
          <primary>page tables</primary>
519
          <primary>page tables</primary>
515
 
520
 
516
          <secondary>- hashing</secondary>
521
          <secondary>- hashing</secondary>
517
        </indexterm>
522
        </indexterm>
518
 
523
 
519
        <title>Global hash table</title>
524
        <title>Global hash table</title>
520
 
525
 
521
        <para>Implementation of the global hash table was encouraged by the
526
        <para>Implementation of the global hash table was encouraged by the
522
        ia64 architecture support. One of the major differences between global
527
        ia64 architecture support. One of the major differences between global
523
        hash table and hierarchical tables is that global hash table exists
528
        hash table and hierarchical tables is that global hash table exists
524
        only once in the system and the hierarchical tables are maintained per
529
        only once in the system and the hierarchical tables are maintained per
525
        address space.</para>
530
        address space.</para>
526
 
531
 
527
        <para>Thus, hash table contains information about all address spaces
532
        <para>Thus, hash table contains information about all address spaces
528
        mappings in the system, so, the hash of an entry must contain
533
        mappings in the system, so, the hash of an entry must contain
529
        information of both address space pointer or id and the virtual
534
        information of both address space pointer or id and the virtual
530
        address of the page. Generic hash table implementation assumes that
535
        address of the page. Generic hash table implementation assumes that
531
        the addresses of the pointers to the address spaces are likely to be
536
        the addresses of the pointers to the address spaces are likely to be
532
        on the close addresses, so it uses least significant bits for hash;
537
        on the close addresses, so it uses least significant bits for hash;
533
        also it assumes that the virtual page addresses have roughly the same
538
        also it assumes that the virtual page addresses have roughly the same
534
        probability of occurring, so the least significant bits of VPN compose
539
        probability of occurring, so the least significant bits of VPN compose
535
        the hash index.</para>
540
        the hash index.</para>
536
 
541
 
537
        <para>Paging hash table uses generic hash table with collision chains
542
        <para>Paging hash table uses generic hash table with collision chains
538
        (see the <link linkend="hashtables">Data Structures</link> chapter of
543
        (see the <link linkend="hashtables">Data Structures</link> chapter of
539
        this manual for details).</para>
544
        this manual for details).</para>
540
      </section>
545
      </section>
541
    </section>
546
    </section>
542
 
547
 
543
    <section id="tlb">
548
    <section id="tlb">
544
      <indexterm>
549
      <indexterm>
545
        <primary>TLB</primary>
550
        <primary>TLB</primary>
546
      </indexterm>
551
      </indexterm>
547
 
552
 
548
      <title>Translation Lookaside buffer</title>
553
      <title>Translation Lookaside buffer</title>
549
 
554
 
550
      <para>Due to the extensive overhead during the page mapping lookup in
555
      <para>Due to the extensive overhead during the page mapping lookup in
551
      the page tables, all architectures has fast assotiative cache memory
556
      the page tables, all architectures has fast assotiative cache memory
552
      built-in CPU. This memory called TLB stores recently used page table
557
      built-in CPU. This memory called TLB stores recently used page table
553
      entries.</para>
558
      entries.</para>
554
 
559
 
555
      <section id="tlb_shootdown">
560
      <section id="tlb_shootdown">
556
        <indexterm>
561
        <indexterm>
557
          <primary>TLB</primary>
562
          <primary>TLB</primary>
558
 
563
 
559
          <secondary>- TLB shootdown</secondary>
564
          <secondary>- TLB shootdown</secondary>
560
        </indexterm>
565
        </indexterm>
561
 
566
 
562
        <title>TLB consistency. TLB shootdown algorithm.</title>
567
        <title>TLB consistency. TLB shootdown algorithm.</title>
563
 
568
 
564
        <para>Operating system is responsible for keeping TLB consistent by
569
        <para>Operating system is responsible for keeping TLB consistent by
565
        invalidating the contents of TLB, whenever there is some change in
570
        invalidating the contents of TLB, whenever there is some change in
566
        page tables. Those changes may occur when page or group of pages were
571
        page tables. Those changes may occur when page or group of pages were
567
        unmapped, mapping is changed or system switching active address space
572
        unmapped, mapping is changed or system switching active address space
568
        to schedule a new system task. Moreover, this invalidation operation
573
        to schedule a new system task. Moreover, this invalidation operation
569
        must be done an all system CPUs because each CPU has its own
574
        must be done an all system CPUs because each CPU has its own
570
        independent TLB cache. Thus maintaining TLB consistency on SMP
575
        independent TLB cache. Thus maintaining TLB consistency on SMP
571
        configuration as not as trivial task as it looks on the first glance.
576
        configuration as not as trivial task as it looks on the first glance.
572
        Naive solution would assume that is the CPU which wants to invalidate
577
        Naive solution would assume that is the CPU which wants to invalidate
573
        TLB will invalidate TLB caches on other CPUs. It is not possible on
578
        TLB will invalidate TLB caches on other CPUs. It is not possible on
574
        the most of the architectures, because of the simple fact - flushing
579
        the most of the architectures, because of the simple fact - flushing
575
        TLB is allowed only on the local CPU and there is no possibility to
580
        TLB is allowed only on the local CPU and there is no possibility to
576
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
581
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
577
 
582
 
578
        <para>Technique of remote invalidation of TLB entries is called "TLB
583
        <para>Technique of remote invalidation of TLB entries is called "TLB
579
        shootdown". HelenOS uses a variation of the algorithm described by D.
584
        shootdown". HelenOS uses a variation of the algorithm described by D.
580
        Black et al., "Translation Lookaside Buffer Consistency: A Software
585
        Black et al., "Translation Lookaside Buffer Consistency: A Software
581
        Approach," Proc. Third Int'l Conf. Architectural Support for
586
        Approach," Proc. Third Int'l Conf. Architectural Support for
582
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
587
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
583
        linkend="Black89" /></para>
588
        linkend="Black89" /></para>
584
 
589
 
585
        <para>As the situation demands, you will want partitial invalidation
590
        <para>As the situation demands, you will want partitial invalidation
586
        of TLB caches. In case of simple memory mapping change it is necessary
591
        of TLB caches. In case of simple memory mapping change it is necessary
587
        to invalidate only one or more adjacent pages. In case if the
592
        to invalidate only one or more adjacent pages. In case if the
588
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
593
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
589
        use by another task, it invalidates only entries from this particular
594
        use by another task, it invalidates only entries from this particular
590
        address space. Final option of the TLB invalidation is the complete
595
        address space. Final option of the TLB invalidation is the complete
591
        TLB cache invalidation, which is the operation that flushes all
596
        TLB cache invalidation, which is the operation that flushes all
592
        entries in TLB.</para>
597
        entries in TLB.</para>
593
 
598
 
594
        <para>TLB shootdown is performed in two phases.</para>
599
        <para>TLB shootdown is performed in two phases.</para>
595
 
600
 
596
        <formalpara>
601
        <formalpara>
597
          <title>Phase 1.</title>
602
          <title>Phase 1.</title>
598
 
603
 
599
          <para>First, initiator locks a global TLB spinlock, then request is
604
          <para>First, initiator locks a global TLB spinlock, then request is
600
          being put to the local request cache of every other CPU in the
605
          being put to the local request cache of every other CPU in the
601
          system protected by its spinlock. In case the cache is full, all
606
          system protected by its spinlock. In case the cache is full, all
602
          requests in the cache are replaced by one request, indicating global
607
          requests in the cache are replaced by one request, indicating global
603
          TLB flush. Then the initiator thread sends an IPI message indicating
608
          TLB flush. Then the initiator thread sends an IPI message indicating
604
          the TLB shootdown request to the rest of the CPUs and waits actively
609
          the TLB shootdown request to the rest of the CPUs and waits actively
605
          until all CPUs confirm TLB invalidating action execution by setting
610
          until all CPUs confirm TLB invalidating action execution by setting
606
          up a special flag. After setting this flag this thread is blocked on
611
          up a special flag. After setting this flag this thread is blocked on
607
          the TLB spinlock, held by the initiator.</para>
612
          the TLB spinlock, held by the initiator.</para>
608
        </formalpara>
613
        </formalpara>
609
 
614
 
610
        <formalpara>
615
        <formalpara>
611
          <title>Phase 2.</title>
616
          <title>Phase 2.</title>
612
 
617
 
613
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
618
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
614
          invalidation action and have indicated their intention to the
619
          invalidation action and have indicated their intention to the
615
          initiator. Initiator continues, cleaning up its TLB and releasing
620
          initiator. Initiator continues, cleaning up its TLB and releasing
616
          the global TLB spinlock. After this all other CPUs gain and
621
          the global TLB spinlock. After this all other CPUs gain and
617
          immidiately release TLB spinlock and perform TLB invalidation
622
          immidiately release TLB spinlock and perform TLB invalidation
618
          actions.</para>
623
          actions.</para>
619
        </formalpara>
624
        </formalpara>
620
      </section>
625
      </section>
621
    </section>
626
    </section>
622
  </section>
627
  </section>
623
</chapter>
628
</chapter>