Subversion Repositories HelenOS-doc

Rev

Rev 70 | Rev 72 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 70 Rev 71
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
18
 
18
 
19
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
20
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
21
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
22
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
23
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
24
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
25
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
26
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
27
      frames.</para>
27
      frames.</para>
28
 
28
 
29
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
30
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
31
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
32
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
33
 
33
 
34
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
35
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
36
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
37
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
38
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
39
      one.</para>
39
      one.</para>
40
 
40
 
41
      <para>For each physical memory frame found in a zone, there is a frame
41
      <para>For each physical memory frame found in a zone, there is a frame
42
      structure that contains number of references and data used by buddy
42
      structure that contains number of references and data used by buddy
43
      system.</para>
43
      system.</para>
44
    </section>
44
    </section>
45
 
45
 
46
    <section id="frame_allocator">
46
    <section id="frame_allocator">
-
 
47
      <indexterm>
-
 
48
        <primary>frame allocator</primary>
-
 
49
      </indexterm>
-
 
50
 
47
      <title>Frame allocator</title>
51
      <title>Frame allocator</title>
48
 
52
 
49
      <para>The frame allocator satisfies kernel requests to allocate
53
      <para>The frame allocator satisfies kernel requests to allocate
50
      power-of-two sized blocks of physical memory. Because of zonal
54
      power-of-two sized blocks of physical memory. Because of zonal
51
      organization of physical memory, the frame allocator is always working
55
      organization of physical memory, the frame allocator is always working
52
      within a context of some frame zone. In order to carry out the
56
      within a context of some frame zone. In order to carry out the
53
      allocation requests, the frame allocator is tightly integrated with the
57
      allocation requests, the frame allocator is tightly integrated with the
54
      buddy system belonging to the zone. The frame allocator is also
58
      buddy system belonging to the zone. The frame allocator is also
55
      responsible for updating information about the number of free and busy
59
      responsible for updating information about the number of free and busy
56
      frames in the zone. <figure>
60
      frames in the zone. <figure>
57
          <mediaobject id="frame_alloc">
61
          <mediaobject id="frame_alloc">
58
            <imageobject role="html">
62
            <imageobject role="html">
59
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
63
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
60
            </imageobject>
64
            </imageobject>
61
 
65
 
62
            <imageobject role="fop">
66
            <imageobject role="fop">
63
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
67
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
64
            </imageobject>
68
            </imageobject>
65
          </mediaobject>
69
          </mediaobject>
66
 
70
 
67
          <title>Frame allocator scheme.</title>
71
          <title>Frame allocator scheme.</title>
68
        </figure></para>
72
        </figure></para>
69
 
73
 
70
      <formalpara>
74
      <formalpara>
71
        <title>Allocation / deallocation</title>
75
        <title>Allocation / deallocation</title>
72
 
76
 
73
        <para>Upon allocation request via function <code>frame_alloc</code>,
77
        <para>Upon allocation request via function <code>frame_alloc</code>,
74
        the frame allocator first tries to find a zone that can satisfy the
78
        the frame allocator first tries to find a zone that can satisfy the
75
        request (i.e. has the required amount of free frames). Once a suitable
79
        request (i.e. has the required amount of free frames). Once a suitable
76
        zone is found, the frame allocator uses the buddy allocator on the
80
        zone is found, the frame allocator uses the buddy allocator on the
77
        zone's buddy system to perform the allocation. During deallocation,
81
        zone's buddy system to perform the allocation. During deallocation,
78
        which is triggered by a call to <code>frame_free</code>, the frame
82
        which is triggered by a call to <code>frame_free</code>, the frame
79
        allocator looks up the respective zone that contains the frame being
83
        allocator looks up the respective zone that contains the frame being
80
        deallocated. Afterwards, it calls the buddy allocator again, this time
84
        deallocated. Afterwards, it calls the buddy allocator again, this time
81
        to take care of deallocation within the zone's buddy system.</para>
85
        to take care of deallocation within the zone's buddy system.</para>
82
      </formalpara>
86
      </formalpara>
83
    </section>
87
    </section>
84
 
88
 
85
    <section id="buddy_allocator">
89
    <section id="buddy_allocator">
-
 
90
      <indexterm>
-
 
91
        <primary>buddy system</primary>
-
 
92
      </indexterm>
-
 
93
 
86
      <title>Buddy allocator</title>
94
      <title>Buddy allocator</title>
87
 
95
 
88
      <para>In the buddy system, the memory is broken down into power-of-two
96
      <para>In the buddy system, the memory is broken down into power-of-two
89
      sized naturally aligned blocks. These blocks are organized in an array
97
      sized naturally aligned blocks. These blocks are organized in an array
90
      of lists, in which the list with index i contains all unallocated blocks
98
      of lists, in which the list with index i contains all unallocated blocks
91
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
99
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
92
      index i is called the order of block. Should there be two adjacent
100
      index i is called the order of block. Should there be two adjacent
93
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
101
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
94
      buddy allocator would coalesce them and put the resulting block in list
102
      buddy allocator would coalesce them and put the resulting block in list
95
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
103
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
96
      be naturally aligned. Similarily, when the allocator is asked to
104
      be naturally aligned. Similarily, when the allocator is asked to
97
      allocate a block of size
105
      allocate a block of size
98
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
106
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
99
      to satisfy the request from the list with index i. If the request cannot
107
      to satisfy the request from the list with index i. If the request cannot
100
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
108
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
101
      allocate and split a larger block from the list with index i + 1. Both
109
      allocate and split a larger block from the list with index i + 1. Both
102
      of these algorithms are recursive. The recursion ends either when there
110
      of these algorithms are recursive. The recursion ends either when there
103
      are no blocks to coalesce in the former case or when there are no blocks
111
      are no blocks to coalesce in the former case or when there are no blocks
104
      that can be split in the latter case.</para>
112
      that can be split in the latter case.</para>
105
 
113
 
106
      <para>This approach greatly reduces external fragmentation of memory and
114
      <para>This approach greatly reduces external fragmentation of memory and
107
      helps in allocating bigger continuous blocks of memory aligned to their
115
      helps in allocating bigger continuous blocks of memory aligned to their
108
      size. On the other hand, the buddy allocator suffers increased internal
116
      size. On the other hand, the buddy allocator suffers increased internal
109
      fragmentation of memory and is not suitable for general kernel
117
      fragmentation of memory and is not suitable for general kernel
110
      allocations. This purpose is better addressed by the <link
118
      allocations. This purpose is better addressed by the <link
111
      linkend="slab">slab allocator</link>.<figure>
119
      linkend="slab">slab allocator</link>.<figure>
112
          <mediaobject id="buddy_alloc">
120
          <mediaobject id="buddy_alloc">
113
            <imageobject role="html">
121
            <imageobject role="html">
114
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
122
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
115
            </imageobject>
123
            </imageobject>
116
 
124
 
117
            <imageobject role="fop">
125
            <imageobject role="fop">
118
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
126
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
119
            </imageobject>
127
            </imageobject>
120
          </mediaobject>
128
          </mediaobject>
121
 
129
 
122
          <title>Buddy system scheme.</title>
130
          <title>Buddy system scheme.</title>
123
        </figure></para>
131
        </figure></para>
124
 
132
 
125
      <section>
133
      <section>
126
        <title>Implementation</title>
134
        <title>Implementation</title>
127
 
135
 
128
        <para>The buddy allocator is, in fact, an abstract framework wich can
136
        <para>The buddy allocator is, in fact, an abstract framework wich can
129
        be easily specialized to serve one particular task. It knows nothing
137
        be easily specialized to serve one particular task. It knows nothing
130
        about the nature of memory it helps to allocate. In order to beat the
138
        about the nature of memory it helps to allocate. In order to beat the
131
        lack of this knowledge, the buddy allocator exports an interface that
139
        lack of this knowledge, the buddy allocator exports an interface that
132
        each of its clients is required to implement. When supplied with an
140
        each of its clients is required to implement. When supplied with an
133
        implementation of this interface, the buddy allocator can use
141
        implementation of this interface, the buddy allocator can use
134
        specialized external functions to find a buddy for a block, split and
142
        specialized external functions to find a buddy for a block, split and
135
        coalesce blocks, manipulate block order and mark blocks busy or
143
        coalesce blocks, manipulate block order and mark blocks busy or
136
        available.</para>
144
        available.</para>
137
 
145
 
138
        <formalpara>
146
        <formalpara>
139
          <title>Data organization</title>
147
          <title>Data organization</title>
140
 
148
 
141
          <para>Each entity allocable by the buddy allocator is required to
149
          <para>Each entity allocable by the buddy allocator is required to
142
          contain space for storing block order number and a link variable
150
          contain space for storing block order number and a link variable
143
          used to interconnect blocks within the same order.</para>
151
          used to interconnect blocks within the same order.</para>
144
 
152
 
145
          <para>Whatever entities are allocated by the buddy allocator, the
153
          <para>Whatever entities are allocated by the buddy allocator, the
146
          first entity within a block is used to represent the entire block.
154
          first entity within a block is used to represent the entire block.
147
          The first entity keeps the order of the whole block. Other entities
155
          The first entity keeps the order of the whole block. Other entities
148
          within the block are assigned the magic value
156
          within the block are assigned the magic value
149
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
157
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
150
          for effective identification of buddies in a one-dimensional array
158
          for effective identification of buddies in a one-dimensional array
151
          because the entity that represents a potential buddy cannot be
159
          because the entity that represents a potential buddy cannot be
152
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
160
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
153
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
161
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
154
          not a buddy).</para>
162
          not a buddy).</para>
155
        </formalpara>
163
        </formalpara>
156
      </section>
164
      </section>
157
    </section>
165
    </section>
158
 
166
 
159
    <section id="slab">
167
    <section id="slab">
-
 
168
      <indexterm>
-
 
169
        <primary>slab allocator</primary>
-
 
170
      </indexterm>
-
 
171
 
160
      <title>Slab allocator</title>
172
      <title>Slab allocator</title>
161
 
173
 
162
      <para>The majority of memory allocation requests in the kernel is for
174
      <para>The majority of memory allocation requests in the kernel is for
163
      small, frequently used data structures. The basic idea behind the slab
175
      small, frequently used data structures. The basic idea behind the slab
164
      allocator is that commonly used objects are preallocated in continuous
176
      allocator is that commonly used objects are preallocated in continuous
165
      areas of physical memory called slabs<footnote>
177
      areas of physical memory called slabs<footnote>
166
          <para>Slabs are in fact blocks of physical memory frames allocated
178
          <para>Slabs are in fact blocks of physical memory frames allocated
167
          from the frame allocator.</para>
179
          from the frame allocator.</para>
168
        </footnote>. Whenever an object is to be allocated, the slab allocator
180
        </footnote>. Whenever an object is to be allocated, the slab allocator
169
      returns the first available item from a suitable slab corresponding to
181
      returns the first available item from a suitable slab corresponding to
170
      the object type<footnote>
182
      the object type<footnote>
171
          <para>The mechanism is rather more complicated, see the next
183
          <para>The mechanism is rather more complicated, see the next
172
          paragraph.</para>
184
          paragraph.</para>
173
        </footnote>. Due to the fact that the sizes of the requested and
185
        </footnote>. Due to the fact that the sizes of the requested and
174
      allocated object match, the slab allocator significantly reduces
186
      allocated object match, the slab allocator significantly reduces
175
      internal fragmentation.</para>
187
      internal fragmentation.</para>
176
 
188
 
-
 
189
      <indexterm>
-
 
190
        <primary>slab allocator</primary>
-
 
191
 
-
 
192
        <secondary>slab cache</secondary>
-
 
193
      </indexterm>
-
 
194
 
177
      <para>Slabs of one object type are organized in a structure called slab
195
      <para>Slabs of one object type are organized in a structure called slab
178
      cache. There are ususally more slabs in the slab cache, depending on
196
      cache. There are ususally more slabs in the slab cache, depending on
179
      previous allocations. If the the slab cache runs out of available slabs,
197
      previous allocations. If the the slab cache runs out of available slabs,
180
      new slabs are allocated. In order to exploit parallelism and to avoid
198
      new slabs are allocated. In order to exploit parallelism and to avoid
181
      locking of shared spinlocks, slab caches can have variants of
199
      locking of shared spinlocks, slab caches can have variants of
182
      processor-private slabs called magazines. On each processor, there is a
200
      processor-private slabs called magazines. On each processor, there is a
183
      two-magazine cache. Full magazines that are not part of any
201
      two-magazine cache. Full magazines that are not part of any
184
      per-processor magazine cache are stored in a global list of full
202
      per-processor magazine cache are stored in a global list of full
185
      magazines.</para>
203
      magazines.</para>
186
 
204
 
-
 
205
      <indexterm>
-
 
206
        <primary>slab allocator</primary>
-
 
207
 
-
 
208
        <secondary>magazine</secondary>
-
 
209
      </indexterm>
-
 
210
 
187
      <para>Each object begins its life in a slab. When it is allocated from
211
      <para>Each object begins its life in a slab. When it is allocated from
188
      there, the slab allocator calls a constructor that is registered in the
212
      there, the slab allocator calls a constructor that is registered in the
189
      respective slab cache. The constructor initializes and brings the object
213
      respective slab cache. The constructor initializes and brings the object
190
      into a known state. The object is then used by the user. When the user
214
      into a known state. The object is then used by the user. When the user
191
      later frees the object, the slab allocator puts it into a processor
215
      later frees the object, the slab allocator puts it into a processor
-
 
216
      private <indexterm>
-
 
217
          <primary>slab allocator</primary>
-
 
218
 
-
 
219
          <secondary>magazine</secondary>
192
      private magazine cache, from where it can be precedently allocated
220
        </indexterm>magazine cache, from where it can be precedently allocated
193
      again. Note that allocations satisfied from a magazine are already
221
      again. Note that allocations satisfied from a magazine are already
194
      initialized by the constructor. When both of the processor cached
222
      initialized by the constructor. When both of the processor cached
195
      magazines get full, the allocator will move one of the magazines to the
223
      magazines get full, the allocator will move one of the magazines to the
196
      list of full magazines. Similarily, when allocating from an empty
224
      list of full magazines. Similarily, when allocating from an empty
197
      processor magazine cache, the kernel will reload only one magazine from
225
      processor magazine cache, the kernel will reload only one magazine from
198
      the list of full magazines. In other words, the slab allocator tries to
226
      the list of full magazines. In other words, the slab allocator tries to
199
      keep the processor magazine cache only half-full in order to prevent
227
      keep the processor magazine cache only half-full in order to prevent
200
      thrashing when allocations and deallocations interleave on magazine
228
      thrashing when allocations and deallocations interleave on magazine
201
      boundaries. The advantage of this setup is that during most of the
229
      boundaries. The advantage of this setup is that during most of the
202
      allocations, no global spinlock needs to be held.</para>
230
      allocations, no global spinlock needs to be held.</para>
203
 
231
 
204
      <para>Should HelenOS run short of memory, it would start deallocating
232
      <para>Should HelenOS run short of memory, it would start deallocating
205
      objects from magazines, calling slab cache destructor on them and
233
      objects from magazines, calling slab cache destructor on them and
206
      putting them back into slabs. When a slab contanins no allocated object,
234
      putting them back into slabs. When a slab contanins no allocated object,
207
      it is immediately freed.</para>
235
      it is immediately freed.</para>
208
 
236
 
-
 
237
      <para>
209
      <para><figure>
238
        <figure>
210
          <mediaobject id="slab_alloc">
239
          <mediaobject id="slab_alloc">
211
            <imageobject role="html">
240
            <imageobject role="html">
212
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
241
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
213
            </imageobject>
242
            </imageobject>
214
          </mediaobject>
243
          </mediaobject>
215
 
244
 
216
          <title>Slab allocator scheme.</title>
245
          <title>Slab allocator scheme.</title>
217
        </figure></para>
246
        </figure>
-
 
247
      </para>
218
 
248
 
219
      <section>
249
      <section>
220
        <title>Implementation</title>
250
        <title>Implementation</title>
221
 
251
 
222
        <para>The slab allocator is closely modelled after OpenSolaris slab
252
        <para>The slab allocator is closely modelled after OpenSolaris slab
223
        allocator by Jeff Bonwick and Jonathan Adams with the following
253
        allocator by Jeff Bonwick and Jonathan Adams <xref
224
        exceptions:<itemizedlist>
254
        linkend="Bonwick01" /> with the following exceptions:<itemizedlist>
225
            <listitem>
-
 
226
               empty slabs are immediately deallocated and
255
            <listitem>empty slabs are immediately deallocated and</listitem>
227
            </listitem>
-
 
228
 
256
 
229
            <listitem>
257
            <listitem>
230
              <para>empty magazines are deallocated when not needed.</para>
258
              <para>empty magazines are deallocated when not needed.</para>
231
            </listitem>
259
            </listitem>
232
          </itemizedlist>The following features are not currently supported
260
          </itemizedlist>The following features are not currently supported
233
        but would be easy to do: <itemizedlist>
261
        but would be easy to do: <itemizedlist>
234
            <listitem>
-
 
235
               cache coloring and
262
            <listitem>cache coloring and</listitem>
236
            </listitem>
-
 
237
 
263
 
238
            <listitem>
264
            <listitem>dynamic magazine grow (different magazine sizes are
239
               dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted).
265
            already supported, but the allocation strategy would need to be
240
            </listitem>
266
            adjusted).</listitem>
241
          </itemizedlist></para>
267
          </itemizedlist></para>
242
 
268
 
243
        <section>
269
        <section>
244
          <title>Allocation/deallocation</title>
270
          <title>Allocation/deallocation</title>
245
 
271
 
246
          <para>The following two paragraphs summarize and complete the
272
          <para>The following two paragraphs summarize and complete the
247
          description of the slab allocator operation (i.e.
273
          description of the slab allocator operation (i.e.
248
          <code>slab_alloc</code> and <code>slab_free</code>
274
          <code>slab_alloc</code> and <code>slab_free</code>
249
          operations).</para>
275
          operations).</para>
250
 
276
 
251
          <formalpara>
277
          <formalpara>
252
            <title>Allocation</title>
278
            <title>Allocation</title>
253
 
279
 
254
            <para><emphasis>Step 1.</emphasis> When an allocation request
280
            <para><emphasis>Step 1.</emphasis> When an allocation request
255
            comes, the slab allocator checks availability of memory in the
281
            comes, the slab allocator checks availability of memory in the
256
            current magazine of the local processor magazine cache. If the
282
            current magazine of the local processor magazine cache. If the
257
            available memory is there, the allocator just pops the magazine
283
            available memory is there, the allocator just pops the magazine
258
            and returns pointer to the object.</para>
284
            and returns pointer to the object.</para>
259
 
285
 
260
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
286
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
261
            processor magazine cache is empty, the allocator will attempt to
287
            processor magazine cache is empty, the allocator will attempt to
262
            swap it with the last magazine from the cache and return to the
288
            swap it with the last magazine from the cache and return to the
263
            first step. If also the last magazine is empty, the algorithm will
289
            first step. If also the last magazine is empty, the algorithm will
264
            fall through to Step 3.</para>
290
            fall through to Step 3.</para>
265
 
291
 
266
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
292
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
267
            situation when both magazines in the processor magazine cache are
293
            situation when both magazines in the processor magazine cache are
268
            empty. The allocator reloads one magazine from the shared list of
294
            empty. The allocator reloads one magazine from the shared list of
269
            full magazines. If the reload is successful (i.e. there are full
295
            full magazines. If the reload is successful (i.e. there are full
270
            magazines in the list), the algorithm continues with Step
296
            magazines in the list), the algorithm continues with Step
271
            1.</para>
297
            1.</para>
272
 
298
 
273
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
299
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
274
            object is allocated from the conventional slab layer and a pointer
300
            object is allocated from the conventional slab layer and a pointer
275
            to it is returned. If also the last magazine is full,</para>
301
            to it is returned. If also the last magazine is full,</para>
276
          </formalpara>
302
          </formalpara>
277
 
303
 
278
          <formalpara>
304
          <formalpara>
279
            <title>Deallocation</title>
305
            <title>Deallocation</title>
280
 
306
 
281
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
307
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
282
            the slab allocator checks if the current magazine of the local
308
            the slab allocator checks if the current magazine of the local
283
            processor magazine cache is not full. If yes, the pointer to the
309
            processor magazine cache is not full. If yes, the pointer to the
284
            objects is just pushed into the magazine and the algorithm
310
            objects is just pushed into the magazine and the algorithm
285
            returns.</para>
311
            returns.</para>
286
 
312
 
287
            <para><emphasis>Step 2.</emphasis> If the current magazine is
313
            <para><emphasis>Step 2.</emphasis> If the current magazine is
288
            full, the allocator will attempt to swap it with the last magazine
314
            full, the allocator will attempt to swap it with the last magazine
289
            from the cache and return to the first step. If also the last
315
            from the cache and return to the first step. If also the last
290
            magazine is empty, the algorithm will fall through to Step
316
            magazine is empty, the algorithm will fall through to Step
291
            3.</para>
317
            3.</para>
292
 
318
 
293
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
319
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
294
            situation when both magazines in the processor magazine cache are
320
            situation when both magazines in the processor magazine cache are
295
            full. The allocator moves one magazine to the shared list of full
321
            full. The allocator moves one magazine to the shared list of full
296
            magazines. The algoritm continues with Step 1.</para>
322
            magazines. The algoritm continues with Step 1.</para>
297
          </formalpara>
323
          </formalpara>
298
        </section>
324
        </section>
299
      </section>
325
      </section>
300
    </section>
326
    </section>
301
  </section>
327
  </section>
302
 
328
 
303
  <section>
329
  <section>
304
    <title>Virtual memory management</title>
330
    <title>Virtual memory management</title>
305
 
331
 
306
    <section>
332
    <section>
307
      <title>Introduction</title>
333
      <title>Introduction</title>
308
 
334
 
309
      <para>Virtual memory is a special memory management technique, used by
335
      <para>Virtual memory is a special memory management technique, used by
310
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
336
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
311
          <listitem>
337
          <listitem>
312
             Isolate each task from other tasks that are running on the system at the same time.
338
             Isolate each task from other tasks that are running on the system at the same time.
313
          </listitem>
339
          </listitem>
314
 
340
 
315
          <listitem>
341
          <listitem>
316
             Allow to allocate more memory, than is actual physical memory size of the machine.
342
             Allow to allocate more memory, than is actual physical memory size of the machine.
317
          </listitem>
343
          </listitem>
318
 
344
 
319
          <listitem>
345
          <listitem>
320
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
346
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
321
          </listitem>
347
          </listitem>
322
        </itemizedlist></para>
348
        </itemizedlist></para>
323
 
349
 
324
      <para><!--
350
      <para><!--
325
 
-
 
326
                TLB shootdown ASID/ASID:PAGE/ALL.
-
 
327
                TLB shootdown requests can come in asynchroniously
-
 
328
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
-
 
329
 
-
 
330
 
-
 
331
                <para>
351
                <para>
332
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
352
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
333
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
353
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
334
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
354
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
335
                </para>
355
                </para>
336
 
356
 
337
--></para>
357
--></para>
338
    </section>
358
    </section>
339
 
359
 
340
    <section>
360
    <section>
341
      <title>Paging</title>
-
 
342
 
-
 
343
      <para>Virtual memory is usually using paged memory model, where virtual
-
 
344
      memory address space is divided into the <emphasis>pages</emphasis>
-
 
345
      (usually having size 4096 bytes) and physical memory is divided into the
-
 
346
      frames (same sized as a page, of course). Each page may be mapped to
-
 
347
      some frame and then, upon memory access to the virtual address, CPU
-
 
348
      performs <emphasis>address translation</emphasis> during the instruction
-
 
349
      execution. Non-existing mapping generates page fault exception, calling
-
 
350
      kernel exception handler, thus allowing kernel to manipulate rules of
-
 
351
      memory access. Information for pages mapping is stored by kernel in the
-
 
352
      <link linkend="page_tables">page tables</link></para>
-
 
353
 
-
 
354
      <para>The majority of the architectures use multi-level page tables,
-
 
355
      which means need to access physical memory several times before getting
-
 
356
      physical address. This fact would make serios performance overhead in
-
 
357
      virtual memory management. To avoid this <link linkend="tlb">Traslation
-
 
358
      Lookaside Buffer (TLB)</link> is used.</para>
-
 
359
    </section>
-
 
360
 
-
 
361
    <section>
-
 
362
      <title>Address spaces</title>
361
      <title>Address spaces</title>
363
 
362
 
364
      <section>
363
      <section>
-
 
364
        <indexterm>
-
 
365
          <primary>address space</primary>
-
 
366
 
-
 
367
          <secondary>area</secondary>
-
 
368
        </indexterm>
-
 
369
 
365
        <title>Address space areas</title>
370
        <title>Address space areas</title>
366
 
371
 
367
        <para>Each address space consists of mutually disjunctive continuous
372
        <para>Each address space consists of mutually disjunctive continuous
368
        address space areas. Address space area is precisely defined by its
373
        address space areas. Address space area is precisely defined by its
369
        base address and the number of frames/pages is contains.</para>
374
        base address and the number of frames/pages is contains.</para>
370
 
375
 
371
        <para>Address space area , that define behaviour and permissions on
376
        <para>Address space area , that define behaviour and permissions on
372
        the particular area. <itemizedlist>
377
        the particular area. <itemizedlist>
373
            <listitem>
-
 
374
               
-
 
375
 
-
 
376
              <emphasis>AS_AREA_READ</emphasis>
378
            <listitem><emphasis>AS_AREA_READ</emphasis> flag indicates reading
377
 
-
 
378
               flag indicates reading permission.
-
 
379
            </listitem>
-
 
380
 
-
 
381
            <listitem>
-
 
382
               
-
 
383
 
-
 
384
              <emphasis>AS_AREA_WRITE</emphasis>
-
 
385
 
-
 
386
               flag indicates writing permission.
-
 
387
            </listitem>
379
            permission.</listitem>
388
 
-
 
389
            <listitem>
-
 
390
               
-
 
391
 
380
 
392
              <emphasis>AS_AREA_EXEC</emphasis>
381
            <listitem><emphasis>AS_AREA_WRITE</emphasis> flag indicates
-
 
382
            writing permission.</listitem>
393
 
383
 
-
 
384
            <listitem><emphasis>AS_AREA_EXEC</emphasis> flag indicates code
394
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
385
            execution permission. Some architectures do not support execution
395
            </listitem>
386
            persmission restriction. In this case this flag has no
396
 
-
 
397
            <listitem>
387
            effect.</listitem>
398
               
-
 
399
 
388
 
400
              <emphasis>AS_AREA_DEVICE</emphasis>
389
            <listitem><emphasis>AS_AREA_DEVICE</emphasis> marks area as mapped
401
 
-
 
402
               marks area as mapped to the device memory.
-
 
403
            </listitem>
390
            to the device memory.</listitem>
404
          </itemizedlist></para>
391
          </itemizedlist></para>
405
 
392
 
406
        <para>Kernel provides possibility tasks create/expand/shrink/share its
393
        <para>Kernel provides possibility tasks create/expand/shrink/share its
407
        address space via the set of syscalls.</para>
394
        address space via the set of syscalls.</para>
408
      </section>
395
      </section>
409
 
396
 
410
      <section>
397
      <section>
-
 
398
        <indexterm>
-
 
399
          <primary>address space</primary>
-
 
400
 
-
 
401
          <secondary>ASID</secondary>
-
 
402
        </indexterm>
-
 
403
 
411
        <title>Address Space ID (ASID)</title>
404
        <title>Address Space ID (ASID)</title>
412
 
405
 
413
        <para>When switching to the different task, kernel also require to
406
        <para>When switching to the different task, kernel also require to
414
        switch mappings to the different address space. In case TLB cannot
407
        switch mappings to the different address space. In case TLB cannot
415
        distinguish address space mappings, all mapping information in TLB
408
        distinguish address space mappings, all mapping information in TLB
416
        from the old address space must be flushed, which can create certain
409
        from the old address space must be flushed, which can create certain
417
        uncessary overhead during the task switching. To avoid this, some
410
        uncessary overhead during the task switching. To avoid this, some
418
        architectures have capability to segregate different address spaces on
411
        architectures have capability to segregate different address spaces on
419
        hardware level introducing the address space identifier as a part of
412
        hardware level introducing the address space identifier as a part of
420
        TLB record, telling the virtual address space translation unit to
413
        TLB record, telling the virtual address space translation unit to
421
        which address space this record is applicable.</para>
414
        which address space this record is applicable.</para>
422
 
415
 
423
        <para>HelenOS kernel can take advantage of this hardware supported
416
        <para>HelenOS kernel can take advantage of this hardware supported
424
        identifier by having an ASID abstraction which is somehow related to
417
        identifier by having an ASID abstraction which is somehow related to
425
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
418
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
426
        derived from RID (region identifier) and on the mips32 kernel ASID is
419
        derived from RID (region identifier) and on the mips32 kernel ASID is
427
        actually the hardware identifier. As expected, this ASID information
420
        actually the hardware identifier. As expected, this ASID information
428
        record is the part of <emphasis>as_t</emphasis> structure.</para>
421
        record is the part of <emphasis>as_t</emphasis> structure.</para>
429
 
422
 
430
        <para>Due to the hardware limitations, hardware ASID has limited
423
        <para>Due to the hardware limitations, hardware ASID has limited
431
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
424
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
432
        impossible to use it as unique address space identifier for all tasks
425
        impossible to use it as unique address space identifier for all tasks
433
        running in the system. In such situations special ASID stealing
426
        running in the system. In such situations special ASID stealing
434
        algoritm is used, which takes ASID from inactive task and assigns it
427
        algoritm is used, which takes ASID from inactive task and assigns it
435
        to the active task.</para>
428
        to the active task.</para>
436
 
429
 
-
 
430
        <indexterm>
-
 
431
          <primary>address space</primary>
-
 
432
 
-
 
433
          <secondary>ASID stealing</secondary>
-
 
434
        </indexterm>
-
 
435
 
-
 
436
        <para>
437
        <para><classname>ASID stealing algoritm here.</classname></para>
437
          <classname>ASID stealing algoritm here.</classname>
-
 
438
        </para>
438
      </section>
439
      </section>
439
    </section>
440
    </section>
440
 
441
 
441
    <section>
442
    <section id="paging">
442
      <title>Virtual address translation</title>
443
      <title>Virtual address translation</title>
443
 
444
 
444
      <section id="page_tables">
445
      <section>
445
        <title>Page tables</title>
446
        <title>Introduction</title>
-
 
447
 
-
 
448
        <para>Virtual memory is usually using paged memory model, where
-
 
449
        virtual memory address space is divided into the
-
 
450
        <emphasis>pages</emphasis> (usually having size 4096 bytes) and
-
 
451
        physical memory is divided into the frames (same sized as a page, of
-
 
452
        course). Each page may be mapped to some frame and then, upon memory
-
 
453
        access to the virtual address, CPU performs <emphasis>address
-
 
454
        translation</emphasis> during the instruction execution. Non-existing
-
 
455
        mapping generates page fault exception, calling kernel exception
-
 
456
        handler, thus allowing kernel to manipulate rules of memory access.
-
 
457
        Information for pages mapping is stored by kernel in the <link
-
 
458
        linkend="page_tables">page tables</link></para>
-
 
459
 
-
 
460
        <indexterm>
-
 
461
          <primary>page tables</primary>
-
 
462
        </indexterm>
-
 
463
 
-
 
464
        <para>The majority of the architectures use multi-level page tables,
-
 
465
        which means need to access physical memory several times before
-
 
466
        getting physical address. This fact would make serios performance
-
 
467
        overhead in virtual memory management. To avoid this <link
-
 
468
        linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is used.</para>
446
 
469
 
447
        <para>HelenOS kernel has two different approaches to the paging
470
        <para>HelenOS kernel has two different approaches to the paging
448
        implementation: <emphasis>4 level page tables</emphasis> and
471
        implementation: <emphasis>4 level page tables</emphasis> and
449
        <emphasis>global hash tables</emphasis>, which are accessible via
472
        <emphasis>global hash table</emphasis>, which are accessible via
450
        generic paging abstraction layer. Such different functionality was
473
        generic paging abstraction layer. Such different functionality was
451
        caused by the major architectural differences between supported
474
        caused by the major architectural differences between supported
452
        platforms. This abstraction is implemented with help of the global
475
        platforms. This abstraction is implemented with help of the global
453
        structure of pointers to basic mapping functions
476
        structure of pointers to basic mapping functions
454
        <emphasis>page_mapping_operations</emphasis>. To achieve different
477
        <emphasis>page_mapping_operations</emphasis>. To achieve different
455
        functionality of page tables, corresponding layer must implement
478
        functionality of page tables, corresponding layer must implement
456
        functions, declared in
479
        functions, declared in
457
        <emphasis>page_mapping_operations</emphasis></para>
480
        <emphasis>page_mapping_operations</emphasis></para>
458
 
481
 
-
 
482
        <para>Thanks to the abstract paging interface, there was a place left
-
 
483
        for more paging implementations (besides already implemented
-
 
484
        hieararchical page tables and hash table), for example B-Tree based
459
        <formalpara>
485
        page tables.</para>
460
          <title>4-level page tables</title>
486
      </section>
461
 
487
 
462
          <para>4-level page tables are the generalization of the hardware
-
 
463
          capabilities of several architectures.<itemizedlist>
-
 
464
              <listitem>
-
 
465
                 ia32 uses 2-level page tables, with full hardware support.
-
 
466
              </listitem>
488
      <section id="page_tables">
467
 
-
 
468
              <listitem>
-
 
469
                 amd64 uses 4-level page tables, also coming with full hardware support.
-
 
470
              </listitem>
-
 
471
 
-
 
472
              <listitem>
489
        <indexterm>
473
                 mips and ppc32 have 2-level tables, software simulated support.
-
 
474
              </listitem>
-
 
475
            </itemizedlist></para>
490
          <primary>page tables</primary>
476
        </formalpara>
-
 
477
 
491
 
478
        <formalpara>
492
          <secondary>hierarchical</secondary>
479
          <title>Global hash tables</title>
493
        </indexterm>
480
 
494
 
-
 
495
        <title>Hierarchical 4-level page tables</title>
-
 
496
 
481
          <para>- global page hash table: existuje jen jedna v celem systemu
497
        <para>Hierarchical 4-level page tables are the generalization of the
482
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
498
        hardware capabilities of most architectures. Each address space has
483
          genericke hash table s oddelenymi collision chains. ASID support is
499
        its own page tables.<itemizedlist>
484
          required to use global hash tables.</para>
500
            <listitem>ia32 uses 2-level page tables, with full hardware
485
        </formalpara>
501
            support.</listitem>
-
 
502
 
-
 
503
            <listitem>amd64 uses 4-level page tables, also coming with full
-
 
504
            hardware support.</listitem>
486
 
505
 
487
        <para>Thanks to the abstract paging interface, there is possibility
506
            <listitem>mips and ppc32 have 2-level tables, software simulated
488
        left have more paging implementations, for example B-Tree page
507
            support.</listitem>
489
        tables.</para>
508
          </itemizedlist></para>
490
      </section>
509
      </section>
491
 
510
 
492
      <section id="tlb">
511
      <section>
-
 
512
        <indexterm>
493
        <title>Translation Lookaside buffer</title>
513
          <primary>page tables</primary>
494
 
514
 
495
        <para>Due to the extensive overhead during the page mapping lookup in
-
 
496
        the page tables, all architectures has fast assotiative cache memory
-
 
497
        built-in CPU. This memory called TLB stores recently used page table
515
          <secondary>hashing</secondary>
498
        entries.</para>
516
        </indexterm>
499
 
517
 
500
        <section id="tlb_shootdown">
518
        <title>Global hash table</title>
501
          <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
502
 
519
 
503
          <para>Operating system is responsible for keeping TLB consistent by
520
        <para>Implementation of the global hash table was encouraged by the
504
          invalidating the contents of TLB, whenever there is some change in
521
        ia64 architecture support. One of the major differences between global
505
          page tables. Those changes may occur when page or group of pages
522
        hash table and hierarchical tables is that global hash table exists
506
          were unmapped, mapping is changed or system switching active address
-
 
507
          space to schedule a new system task (which is a batch unmap of all
-
 
508
          address space mappings). Moreover, this invalidation operation must
-
 
509
          be done an all system CPUs because each CPU has its own independent
523
        only once in the system and the hierarchical tables are maintained per
510
          TLB cache. Thus maintaining TLB consistency on SMP configuration as
-
 
511
          not as trivial task as it looks at the first glance. Naive solution
-
 
512
          would assume remote TLB invalidatation, which is not possible on the
-
 
513
          most of the architectures, because of the simple fact - flushing TLB
-
 
514
          is allowed only on the local CPU and there is no possibility to
-
 
515
          access other CPUs' TLB caches.</para>
524
        address space.</para>
516
 
525
 
517
          <para>Technique of remote invalidation of TLB entries is called "TLB
526
        <para>Thus, hash table contains information about all address spaces
518
          shootdown". HelenOS uses a variation of the algorithm described by
527
        mappings in the system, so, the hash of an entry must contain
519
          D. Black et al., "Translation Lookaside Buffer Consistency: A
-
 
520
          Software Approach," Proc. Third Int'l Conf. Architectural Support
-
 
521
          for Programming Languages and Operating Systems, 1989, pp.
528
        information of both address space pointer or id and the virtual
522
          113-122.</para>
-
 
523
 
-
 
524
          <para>As the situation demands, you will want partitial invalidation
-
 
525
          of TLB caches. In case of simple memory mapping change it is
529
        address of the page. Generic hash table implementation assumes that
526
          necessary to invalidate only one or more adjacent pages. In case if
530
        the addresses of the pointers to the address spaces are likely to be
527
          the architecture is aware of ASIDs, during the address space
531
        on the close addresses, so it uses least significant bits for hash;
528
          switching, kernel invalidates only entries from this particular
532
        also it assumes that the virtual page addresses have roughly the same
529
          address space. Final option of the TLB invalidation is the complete
533
        probability of occurring, so the least significant bits of VPN compose
530
          TLB cache invalidation, which is the operation that flushes all
-
 
531
          entries in TLB.</para>
534
        the hash index.</para>
532
 
535
 
533
          <para>TLB shootdown is performed in two phases. First, the initiator
536
        <para>- global page hash table: existuje jen jedna v celem systemu
534
          process sends an IPI message indicating the TLB shootdown request to
537
        (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
535
          the rest of the CPUs. Then, it waits until all CPUs confirm TLB
538
        genericke hash table s oddelenymi collision chains. ASID support is
536
          invalidating action execution.</para>
539
        required to use global hash tables.</para>
537
        </section>
-
 
538
      </section>
540
      </section>
539
    </section>
541
    </section>
540
 
542
 
541
    <section>
543
    <section id="tlb">
-
 
544
      <indexterm>
-
 
545
        <primary>TLB</primary>
542
      <title>---</title>
546
      </indexterm>
-
 
547
 
-
 
548
      <title>Translation Lookaside buffer</title>
-
 
549
 
-
 
550
      <para>Due to the extensive overhead during the page mapping lookup in
-
 
551
      the page tables, all architectures has fast assotiative cache memory
-
 
552
      built-in CPU. This memory called TLB stores recently used page table
-
 
553
      entries.</para>
-
 
554
 
-
 
555
      <section id="tlb_shootdown">
-
 
556
        <indexterm>
-
 
557
          <primary>TLB</primary>
-
 
558
 
-
 
559
          <secondary>TLB shootdown</secondary>
-
 
560
        </indexterm>
-
 
561
 
-
 
562
        <title>TLB consistency. TLB shootdown algorithm.</title>
-
 
563
 
-
 
564
        <para>Operating system is responsible for keeping TLB consistent by
-
 
565
        invalidating the contents of TLB, whenever there is some change in
-
 
566
        page tables. Those changes may occur when page or group of pages were
-
 
567
        unmapped, mapping is changed or system switching active address space
-
 
568
        to schedule a new system task. Moreover, this invalidation operation
-
 
569
        must be done an all system CPUs because each CPU has its own
-
 
570
        independent TLB cache. Thus maintaining TLB consistency on SMP
-
 
571
        configuration as not as trivial task as it looks on the first glance.
-
 
572
        Naive solution would assume that is the CPU which wants to invalidate
-
 
573
        TLB will invalidate TLB caches on other CPUs. It is not possible on
-
 
574
        the most of the architectures, because of the simple fact - flushing
-
 
575
        TLB is allowed only on the local CPU and there is no possibility to
-
 
576
        access other CPUs' TLB caches, thus invalidate TLB remotely.</para>
-
 
577
 
-
 
578
        <para>Technique of remote invalidation of TLB entries is called "TLB
-
 
579
        shootdown". HelenOS uses a variation of the algorithm described by D.
-
 
580
        Black et al., "Translation Lookaside Buffer Consistency: A Software
-
 
581
        Approach," Proc. Third Int'l Conf. Architectural Support for
-
 
582
        Programming Languages and Operating Systems, 1989, pp. 113-122. <xref
-
 
583
        linkend="Black89" /></para>
-
 
584
 
-
 
585
        <para>As the situation demands, you will want partitial invalidation
-
 
586
        of TLB caches. In case of simple memory mapping change it is necessary
-
 
587
        to invalidate only one or more adjacent pages. In case if the
-
 
588
        architecture is aware of ASIDs, when kernel needs to dump some ASID to
-
 
589
        use by another task, it invalidates only entries from this particular
-
 
590
        address space. Final option of the TLB invalidation is the complete
-
 
591
        TLB cache invalidation, which is the operation that flushes all
-
 
592
        entries in TLB.</para>
543
 
593
 
544
      <para>At the moment HelenOS does not support swapping.</para>
594
        <para>TLB shootdown is performed in two phases.</para>
545
 
595
 
-
 
596
        <formalpara>
-
 
597
          <title>Phase 1.</title>
-
 
598
 
546
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
599
          <para>First, initiator locks a global TLB spinlock, then request is
-
 
600
          being put to the local request cache of every other CPU in the
-
 
601
          system protected by its spinlock. In case the cache is full, all
547
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
602
          requests in the cache are replaced by one request, indicating global
-
 
603
          TLB flush. Then the initiator thread sends an IPI message indicating
-
 
604
          the TLB shootdown request to the rest of the CPUs and waits actively
-
 
605
          until all CPUs confirm TLB invalidating action execution by setting
-
 
606
          up a special flag. After setting this flag this thread is blocked on
-
 
607
          the TLB spinlock, held by the initiator.</para>
-
 
608
        </formalpara>
-
 
609
 
-
 
610
        <formalpara>
-
 
611
          <title>Phase 2.</title>
-
 
612
 
-
 
613
          <para>All CPUs are waiting on the TLB spinlock to execute TLB
-
 
614
          invalidation action and have indicated their intention to the
-
 
615
          initiator. Initiator continues, cleaning up its TLB and releasing
-
 
616
          the global TLB spinlock. After this all other CPUs gain and
-
 
617
          immidiately release TLB spinlock and perform TLB invalidation
548
      stranky</para>
618
          actions.</para>
-
 
619
        </formalpara>
-
 
620
      </section>
549
    </section>
621
    </section>
550
  </section>
622
  </section>
551
</chapter>
623
</chapter>