Subversion Repositories HelenOS-doc

Rev

Rev 69 | Rev 71 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 69 Rev 70
1
<?xml version="1.0" encoding="UTF-8"?>
1
<?xml version="1.0" encoding="UTF-8"?>
2
<chapter id="mm">
2
<chapter id="mm">
3
  <?dbhtml filename="mm.html"?>
3
  <?dbhtml filename="mm.html"?>
4
 
4
 
5
  <title>Memory management</title>
5
  <title>Memory management</title>
6
 
6
 
7
  <para>In previous chapters, this book described the scheduling subsystem as
7
  <para>In previous chapters, this book described the scheduling subsystem as
8
  the creator of the impression that threads execute in parallel. The memory
8
  the creator of the impression that threads execute in parallel. The memory
9
  management subsystem, on the other hand, creates the impression that there
9
  management subsystem, on the other hand, creates the impression that there
10
  is enough physical memory for the kernel and that userspace tasks have the
10
  is enough physical memory for the kernel and that userspace tasks have the
11
  entire address space only for themselves.</para>
11
  entire address space only for themselves.</para>
12
 
12
 
13
  <section>
13
  <section>
14
    <title>Physical memory management</title>
14
    <title>Physical memory management</title>
15
 
15
 
16
    <section id="zones_and_frames">
16
    <section id="zones_and_frames">
17
      <indexterm><primary>memory management</primary><secondary>memory zone</secondary></indexterm>
-
 
18
      <title>Zones and frames</title>
17
      <title>Zones and frames</title>
19
 
18
 
20
      <para>HelenOS represents continuous areas of physical memory in
19
      <para>HelenOS represents continuous areas of physical memory in
21
      structures called frame zones (abbreviated as zones). Each zone contains
20
      structures called frame zones (abbreviated as zones). Each zone contains
22
      information about the number of allocated and unallocated physical
21
      information about the number of allocated and unallocated physical
23
      memory frames as well as the physical base address of the zone and
22
      memory frames as well as the physical base address of the zone and
24
      number of frames contained in it. A zone also contains an array of frame
23
      number of frames contained in it. A zone also contains an array of frame
25
      structures describing each frame of the zone and, in the last, but not
24
      structures describing each frame of the zone and, in the last, but not
26
      the least important, front, each zone is equipped with a buddy system
25
      the least important, front, each zone is equipped with a buddy system
27
      that faciliates effective allocation of power-of-two sized block of
26
      that faciliates effective allocation of power-of-two sized block of
28
      frames.</para>
27
      frames.</para>
29
 
28
 
30
      <para>This organization of physical memory provides good preconditions
29
      <para>This organization of physical memory provides good preconditions
31
      for hot-plugging of more zones. There is also one currently unused zone
30
      for hot-plugging of more zones. There is also one currently unused zone
32
      attribute: <code>flags</code>. The attribute could be used to give a
31
      attribute: <code>flags</code>. The attribute could be used to give a
33
      special meaning to some zones in the future.</para>
32
      special meaning to some zones in the future.</para>
34
 
33
 
35
      <para>The zones are linked in a doubly-linked list. This might seem a
34
      <para>The zones are linked in a doubly-linked list. This might seem a
36
      bit ineffective because the zone list is walked everytime a frame is
35
      bit ineffective because the zone list is walked everytime a frame is
37
      allocated or deallocated. However, this does not represent a significant
36
      allocated or deallocated. However, this does not represent a significant
38
      performance problem as it is expected that the number of zones will be
37
      performance problem as it is expected that the number of zones will be
39
      rather low. Moreover, most architectures merge all zones into
38
      rather low. Moreover, most architectures merge all zones into
40
      one.</para>
39
      one.</para>
41
 
40
 
42
      <para>For each physical memory frame found in a zone, there is a frame
41
      <para>For each physical memory frame found in a zone, there is a frame
43
      structure that contains number of references and data used by buddy
42
      structure that contains number of references and data used by buddy
44
      system.</para>
43
      system.</para>
45
    </section>
44
    </section>
46
 
45
 
47
    <section id="frame_allocator">
46
    <section id="frame_allocator">
48
      <indexterm><primary>memory management</primary><secondary>frame allocator</secondary></indexterm>
-
 
49
      <title>Frame allocator</title>
47
      <title>Frame allocator</title>
50
 
48
 
51
      <para>The frame allocator satisfies kernel requests to allocate
49
      <para>The frame allocator satisfies kernel requests to allocate
52
      power-of-two sized blocks of physical memory. Because of zonal
50
      power-of-two sized blocks of physical memory. Because of zonal
53
      organization of physical memory, the frame allocator is always working
51
      organization of physical memory, the frame allocator is always working
54
      within a context of some frame zone. In order to carry out the
52
      within a context of some frame zone. In order to carry out the
55
      allocation requests, the frame allocator is tightly integrated with the
53
      allocation requests, the frame allocator is tightly integrated with the
56
      buddy system belonging to the zone. The frame allocator is also
54
      buddy system belonging to the zone. The frame allocator is also
57
      responsible for updating information about the number of free and busy
55
      responsible for updating information about the number of free and busy
58
      frames in the zone. <figure>
56
      frames in the zone. <figure>
59
          <mediaobject id="frame_alloc">
57
          <mediaobject id="frame_alloc">
60
            <imageobject role="html">
58
            <imageobject role="html">
61
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
59
              <imagedata fileref="images/frame_alloc.png" format="PNG" />
62
            </imageobject>
60
            </imageobject>
63
 
61
 
64
            <imageobject role="fop">
62
            <imageobject role="fop">
65
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
63
              <imagedata fileref="images.vector/frame_alloc.svg" format="SVG" />
66
            </imageobject>
64
            </imageobject>
67
          </mediaobject>
65
          </mediaobject>
68
 
66
 
69
          <title>Frame allocator scheme.</title>
67
          <title>Frame allocator scheme.</title>
70
        </figure></para>
68
        </figure></para>
71
 
69
 
72
      <formalpara>
70
      <formalpara>
73
        <title>Allocation / deallocation</title>
71
        <title>Allocation / deallocation</title>
74
 
72
 
75
        <para>Upon allocation request via function <code>frame_alloc</code>,
73
        <para>Upon allocation request via function <code>frame_alloc</code>,
76
        the frame allocator first tries to find a zone that can satisfy the
74
        the frame allocator first tries to find a zone that can satisfy the
77
        request (i.e. has the required amount of free frames). Once a suitable
75
        request (i.e. has the required amount of free frames). Once a suitable
78
        zone is found, the frame allocator uses the buddy allocator on the
76
        zone is found, the frame allocator uses the buddy allocator on the
79
        zone's buddy system to perform the allocation. During deallocation,
77
        zone's buddy system to perform the allocation. During deallocation,
80
        which is triggered by a call to <code>frame_free</code>, the frame
78
        which is triggered by a call to <code>frame_free</code>, the frame
81
        allocator looks up the respective zone that contains the frame being
79
        allocator looks up the respective zone that contains the frame being
82
        deallocated. Afterwards, it calls the buddy allocator again, this time
80
        deallocated. Afterwards, it calls the buddy allocator again, this time
83
        to take care of deallocation within the zone's buddy system.</para>
81
        to take care of deallocation within the zone's buddy system.</para>
84
      </formalpara>
82
      </formalpara>
85
    </section>
83
    </section>
86
 
84
 
87
    <section id="buddy_allocator">
85
    <section id="buddy_allocator">
88
      <indexterm><primary>memory management</primary><secondary>buddy system</secondary></indexterm>
-
 
89
      <title>Buddy allocator</title>
86
      <title>Buddy allocator</title>
90
 
87
 
91
      <para>In the buddy system, the memory is broken down into power-of-two
88
      <para>In the buddy system, the memory is broken down into power-of-two
92
      sized naturally aligned blocks. These blocks are organized in an array
89
      sized naturally aligned blocks. These blocks are organized in an array
93
      of lists, in which the list with index i contains all unallocated blocks
90
      of lists, in which the list with index i contains all unallocated blocks
94
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
91
      of size <mathphrase>2<superscript>i</superscript></mathphrase>. The
95
      index i is called the order of block. Should there be two adjacent
92
      index i is called the order of block. Should there be two adjacent
96
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
93
      equally sized blocks in the list i<mathphrase />(i.e. buddies), the
97
      buddy allocator would coalesce them and put the resulting block in list
94
      buddy allocator would coalesce them and put the resulting block in list
98
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
95
      <mathphrase>i + 1</mathphrase>, provided that the resulting block would
99
      be naturally aligned. Similarily, when the allocator is asked to
96
      be naturally aligned. Similarily, when the allocator is asked to
100
      allocate a block of size
97
      allocate a block of size
101
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
98
      <mathphrase>2<superscript>i</superscript></mathphrase>, it first tries
102
      to satisfy the request from the list with index i. If the request cannot
99
      to satisfy the request from the list with index i. If the request cannot
103
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
100
      be satisfied (i.e. the list i is empty), the buddy allocator will try to
104
      allocate and split a larger block from the list with index i + 1. Both
101
      allocate and split a larger block from the list with index i + 1. Both
105
      of these algorithms are recursive. The recursion ends either when there
102
      of these algorithms are recursive. The recursion ends either when there
106
      are no blocks to coalesce in the former case or when there are no blocks
103
      are no blocks to coalesce in the former case or when there are no blocks
107
      that can be split in the latter case.</para>
104
      that can be split in the latter case.</para>
108
 
105
 
109
      <para>This approach greatly reduces external fragmentation of memory and
106
      <para>This approach greatly reduces external fragmentation of memory and
110
      helps in allocating bigger continuous blocks of memory aligned to their
107
      helps in allocating bigger continuous blocks of memory aligned to their
111
      size. On the other hand, the buddy allocator suffers increased internal
108
      size. On the other hand, the buddy allocator suffers increased internal
112
      fragmentation of memory and is not suitable for general kernel
109
      fragmentation of memory and is not suitable for general kernel
113
      allocations. This purpose is better addressed by the <link
110
      allocations. This purpose is better addressed by the <link
114
      linkend="slab">slab allocator</link>.<figure>
111
      linkend="slab">slab allocator</link>.<figure>
115
          <mediaobject id="buddy_alloc">
112
          <mediaobject id="buddy_alloc">
116
            <imageobject role="html">
113
            <imageobject role="html">
117
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
114
              <imagedata fileref="images/buddy_alloc.png" format="PNG" />
118
            </imageobject>
115
            </imageobject>
119
 
116
 
120
            <imageobject role="fop">
117
            <imageobject role="fop">
121
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
118
              <imagedata fileref="images.vector/buddy_alloc.svg" format="SVG" />
122
            </imageobject>
119
            </imageobject>
123
          </mediaobject>
120
          </mediaobject>
124
 
121
 
125
          <title>Buddy system scheme.</title>
122
          <title>Buddy system scheme.</title>
126
        </figure></para>
123
        </figure></para>
127
 
124
 
128
      <section>
125
      <section>
129
        <title>Implementation</title>
126
        <title>Implementation</title>
130
 
127
 
131
        <para>The buddy allocator is, in fact, an abstract framework wich can
128
        <para>The buddy allocator is, in fact, an abstract framework wich can
132
        be easily specialized to serve one particular task. It knows nothing
129
        be easily specialized to serve one particular task. It knows nothing
133
        about the nature of memory it helps to allocate. In order to beat the
130
        about the nature of memory it helps to allocate. In order to beat the
134
        lack of this knowledge, the buddy allocator exports an interface that
131
        lack of this knowledge, the buddy allocator exports an interface that
135
        each of its clients is required to implement. When supplied with an
132
        each of its clients is required to implement. When supplied with an
136
        implementation of this interface, the buddy allocator can use
133
        implementation of this interface, the buddy allocator can use
137
        specialized external functions to find a buddy for a block, split and
134
        specialized external functions to find a buddy for a block, split and
138
        coalesce blocks, manipulate block order and mark blocks busy or
135
        coalesce blocks, manipulate block order and mark blocks busy or
139
        available.</para>
136
        available.</para>
140
 
137
 
141
        <formalpara>
138
        <formalpara>
142
          <title>Data organization</title>
139
          <title>Data organization</title>
143
 
140
 
144
          <para>Each entity allocable by the buddy allocator is required to
141
          <para>Each entity allocable by the buddy allocator is required to
145
          contain space for storing block order number and a link variable
142
          contain space for storing block order number and a link variable
146
          used to interconnect blocks within the same order.</para>
143
          used to interconnect blocks within the same order.</para>
147
 
144
 
148
          <para>Whatever entities are allocated by the buddy allocator, the
145
          <para>Whatever entities are allocated by the buddy allocator, the
149
          first entity within a block is used to represent the entire block.
146
          first entity within a block is used to represent the entire block.
150
          The first entity keeps the order of the whole block. Other entities
147
          The first entity keeps the order of the whole block. Other entities
151
          within the block are assigned the magic value
148
          within the block are assigned the magic value
152
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
149
          <constant>BUDDY_INNER_BLOCK</constant>. This is especially important
153
          for effective identification of buddies in a one-dimensional array
150
          for effective identification of buddies in a one-dimensional array
154
          because the entity that represents a potential buddy cannot be
151
          because the entity that represents a potential buddy cannot be
155
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
152
          associated with <constant>BUDDY_INNER_BLOCK</constant> (i.e. if it
156
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
153
          is associated with <constant>BUDDY_INNER_BLOCK</constant> then it is
157
          not a buddy).</para>
154
          not a buddy).</para>
158
        </formalpara>
155
        </formalpara>
159
      </section>
156
      </section>
160
    </section>
157
    </section>
161
 
158
 
162
    <section id="slab">
159
    <section id="slab">
163
    <indexterm><primary>memory management</primary><secondary>slab</secondary></indexterm>      
-
 
164
    <title>Slab allocator</title>
160
      <title>Slab allocator</title>
165
 
161
 
166
      <para>The majority of memory allocation requests in the kernel is for
162
      <para>The majority of memory allocation requests in the kernel is for
167
      small, frequently used data structures. The basic idea behind the slab
163
      small, frequently used data structures. The basic idea behind the slab
168
      allocator is that commonly used objects are preallocated in continuous
164
      allocator is that commonly used objects are preallocated in continuous
169
      areas of physical memory called slabs<footnote>
165
      areas of physical memory called slabs<footnote>
170
          <para>Slabs are in fact blocks of physical memory frames allocated
166
          <para>Slabs are in fact blocks of physical memory frames allocated
171
          from the frame allocator.</para>
167
          from the frame allocator.</para>
172
        </footnote>. Whenever an object is to be allocated, the slab allocator
168
        </footnote>. Whenever an object is to be allocated, the slab allocator
173
      returns the first available item from a suitable slab corresponding to
169
      returns the first available item from a suitable slab corresponding to
174
      the object type<footnote>
170
      the object type<footnote>
175
          <para>The mechanism is rather more complicated, see the next
171
          <para>The mechanism is rather more complicated, see the next
176
          paragraph.</para>
172
          paragraph.</para>
177
        </footnote>. Due to the fact that the sizes of the requested and
173
        </footnote>. Due to the fact that the sizes of the requested and
178
      allocated object match, the slab allocator significantly reduces
174
      allocated object match, the slab allocator significantly reduces
179
      internal fragmentation.</para>
175
      internal fragmentation.</para>
180
 
176
 
181
      <para>Slabs of one object type are organized in a structure called slab
177
      <para>Slabs of one object type are organized in a structure called slab
182
      cache. There are ususally more slabs in the slab cache, depending on
178
      cache. There are ususally more slabs in the slab cache, depending on
183
      previous allocations. If the the slab cache runs out of available slabs,
179
      previous allocations. If the the slab cache runs out of available slabs,
184
      new slabs are allocated. In order to exploit parallelism and to avoid
180
      new slabs are allocated. In order to exploit parallelism and to avoid
185
      locking of shared spinlocks, slab caches can have variants of
181
      locking of shared spinlocks, slab caches can have variants of
186
      processor-private slabs called magazines. On each processor, there is a
182
      processor-private slabs called magazines. On each processor, there is a
187
      two-magazine cache. Full magazines that are not part of any
183
      two-magazine cache. Full magazines that are not part of any
188
      per-processor magazine cache are stored in a global list of full
184
      per-processor magazine cache are stored in a global list of full
189
      magazines.</para>
185
      magazines.</para>
190
 
186
 
191
      <para>Each object begins its life in a slab. When it is allocated from
187
      <para>Each object begins its life in a slab. When it is allocated from
192
      there, the slab allocator calls a constructor that is registered in the
188
      there, the slab allocator calls a constructor that is registered in the
193
      respective slab cache. The constructor initializes and brings the object
189
      respective slab cache. The constructor initializes and brings the object
194
      into a known state. The object is then used by the user. When the user
190
      into a known state. The object is then used by the user. When the user
195
      later frees the object, the slab allocator puts it into a processor
191
      later frees the object, the slab allocator puts it into a processor
196
      private magazine cache, from where it can be precedently allocated
192
      private magazine cache, from where it can be precedently allocated
197
      again. Note that allocations satisfied from a magazine are already
193
      again. Note that allocations satisfied from a magazine are already
198
      initialized by the constructor. When both of the processor cached
194
      initialized by the constructor. When both of the processor cached
199
      magazines get full, the allocator will move one of the magazines to the
195
      magazines get full, the allocator will move one of the magazines to the
200
      list of full magazines. Similarily, when allocating from an empty
196
      list of full magazines. Similarily, when allocating from an empty
201
      processor magazine cache, the kernel will reload only one magazine from
197
      processor magazine cache, the kernel will reload only one magazine from
202
      the list of full magazines. In other words, the slab allocator tries to
198
      the list of full magazines. In other words, the slab allocator tries to
203
      keep the processor magazine cache only half-full in order to prevent
199
      keep the processor magazine cache only half-full in order to prevent
204
      thrashing when allocations and deallocations interleave on magazine
200
      thrashing when allocations and deallocations interleave on magazine
-
 
201
      boundaries. The advantage of this setup is that during most of the
205
      boundaries.</para>
202
      allocations, no global spinlock needs to be held.</para>
206
 
203
 
207
      <para>Should HelenOS run short of memory, it would start deallocating
204
      <para>Should HelenOS run short of memory, it would start deallocating
208
      objects from magazines, calling slab cache destructor on them and
205
      objects from magazines, calling slab cache destructor on them and
209
      putting them back into slabs. When a slab contanins no allocated object,
206
      putting them back into slabs. When a slab contanins no allocated object,
210
      it is immediately freed.</para>
207
      it is immediately freed.</para>
211
 
208
 
212
      <para><figure>
209
      <para><figure>
213
          <mediaobject id="slab_alloc">
210
          <mediaobject id="slab_alloc">
214
            <imageobject role="html">
211
            <imageobject role="html">
215
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
212
              <imagedata fileref="images/slab_alloc.png" format="PNG" />
216
            </imageobject>
213
            </imageobject>
217
          </mediaobject>
214
          </mediaobject>
218
 
215
 
219
          <title>Slab allocator scheme.</title>
216
          <title>Slab allocator scheme.</title>
220
        </figure></para>
217
        </figure></para>
221
 
218
 
222
      <section>
219
      <section>
223
        <title>Implementation</title>
220
        <title>Implementation</title>
224
 
221
 
225
        <para>The slab allocator is closely modelled after OpenSolaris slab
222
        <para>The slab allocator is closely modelled after OpenSolaris slab
226
        allocator by Jeff Bonwick and Jonathan Adams with the following
223
        allocator by Jeff Bonwick and Jonathan Adams with the following
227
        exceptions:<itemizedlist>
224
        exceptions:<itemizedlist>
228
            <listitem>
225
            <listitem>
229
               empty slabs are immediately deallocated
226
               empty slabs are immediately deallocated and
230
            </listitem>
227
            </listitem>
231
 
228
 
232
            <listitem>
229
            <listitem>
233
              <para>empty magazines are deallocated when not needed</para>
230
              <para>empty magazines are deallocated when not needed.</para>
234
            </listitem>
231
            </listitem>
235
          </itemizedlist> Following features are not currently supported but
232
          </itemizedlist>The following features are not currently supported
236
        would be easy to do: <itemizedlist>
233
        but would be easy to do: <itemizedlist>
237
            <listitem>
234
            <listitem>
238
               cache coloring
235
               cache coloring and
239
            </listitem>
236
            </listitem>
240
 
237
 
241
            <listitem>
238
            <listitem>
242
               dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted)
239
               dynamic magazine grow (different magazine sizes are already supported, but the allocation strategy would need to be adjusted).
243
            </listitem>
240
            </listitem>
244
          </itemizedlist></para>
241
          </itemizedlist></para>
245
 
242
 
246
        <section>
243
        <section>
247
        <indexterm><primary>memory management</primary><secondary>slab magazine</secondary></indexterm>
-
 
248
        <title>Magazine layer</title>
-
 
249
 
-
 
250
          <para>Due to the extensive bottleneck on SMP architures, caused by
-
 
251
          global slab locking mechanism, making processing of all slab
-
 
252
          allocation requests serialized, a new layer was introduced to the
-
 
253
          classic slab allocator design. Slab allocator was extended to
-
 
254
          support per-CPU caches 'magazines' to achieve good SMP scaling.
-
 
255
          <termdef>Slab SMP perfromance bottleneck was resolved by introducing
-
 
256
          a per-CPU caching scheme called as <glossterm>magazine
-
 
257
          layer</glossterm></termdef>.</para>
-
 
258
 
-
 
259
          <para>Magazine is a N-element cache of objects, so each magazine can
-
 
260
          satisfy N allocations. Magazine behaves like a automatic weapon
-
 
261
          magazine (LIFO, stack), so the allocation/deallocation become simple
-
 
262
          push/pop pointer operation. Trick is that CPU does not access global
-
 
263
          slab allocator data during the allocation from its magazine, thus
-
 
264
          making possible parallel allocations between CPUs.</para>
-
 
265
 
-
 
266
          <para>Implementation also requires adding another feature as the
-
 
267
          CPU-bound magazine is actually a pair of magazines to avoid
-
 
268
          thrashing when during allocation/deallocatiion of 1 item at the
-
 
269
          magazine size boundary. LIFO order is enforced, which should avoid
-
 
270
          fragmentation as much as possible.</para>
-
 
271
 
-
 
272
          <para>Another important entity of magazine layer is the common full
-
 
273
          magazine list (also called a depot), that stores full magazines that
-
 
274
          may be used by any of the CPU magazine caches to reload active CPU
-
 
275
          magazine. This list of magazines can be pre-filled with full
-
 
276
          magazines during initialization, but in current implementation it is
-
 
277
          filled during object deallocation, when CPU magazine becomes
-
 
278
          full.</para>
-
 
279
 
-
 
280
          <para>Slab allocator control structures are allocated from special
-
 
281
          slabs, that are marked by special flag, indicating that it should
-
 
282
          not be used for slab magazine layer. This is done to avoid possible
-
 
283
          infinite recursions and deadlock during conventional slab allocaiton
-
 
284
          requests.</para>
-
 
285
        </section>
-
 
286
 
-
 
287
        <section>
-
 
288
          <title>Allocation/deallocation</title>
244
          <title>Allocation/deallocation</title>
289
 
245
 
290
          <para>Every cache contains list of full slabs and list of partialy
-
 
291
          full slabs. Empty slabs are immediately freed (thrashing will be
-
 
292
          avoided because of magazines).</para>
-
 
293
 
-
 
294
          <para>The SLAB allocator allocates lots of space and does not free
246
          <para>The following two paragraphs summarize and complete the
295
          it. When frame allocator fails to allocate the frame, it calls
247
          description of the slab allocator operation (i.e.
296
          slab_reclaim(). It tries 'light reclaim' first, then brutal reclaim.
-
 
297
          The light reclaim releases slabs from cpu-shared magazine-list,
-
 
298
          until at least 1 slab is deallocated in each cache (this algorithm
-
 
299
          should probably change). The brutal reclaim removes all cached
248
          <code>slab_alloc</code> and <code>slab_free</code>
300
          objects, even from CPU-bound magazines.</para>
249
          operations).</para>
301
 
250
 
302
          <formalpara>
251
          <formalpara>
303
            <title>Allocation</title>
252
            <title>Allocation</title>
304
 
253
 
305
            <para><emphasis>Step 1.</emphasis> When it comes to the allocation
254
            <para><emphasis>Step 1.</emphasis> When an allocation request
306
            request, slab allocator first of all checks availability of memory
255
            comes, the slab allocator checks availability of memory in the
-
 
256
            current magazine of the local processor magazine cache. If the
307
            in local CPU-bound magazine. If it is there, we would just "pop"
257
            available memory is there, the allocator just pops the magazine
308
            the CPU magazine and return the pointer to object.</para>
258
            and returns pointer to the object.</para>
309
 
259
 
310
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
260
            <para><emphasis>Step 2.</emphasis> If the current magazine in the
311
            empty, allocator will attempt to reload magazin, swapping it with
261
            processor magazine cache is empty, the allocator will attempt to
312
            second CPU magazine and returns to the first step.</para>
262
            swap it with the last magazine from the cache and return to the
-
 
263
            first step. If also the last magazine is empty, the algorithm will
-
 
264
            fall through to Step 3.</para>
313
 
265
 
314
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
266
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
315
            when both CPU-bound magazines are empty, which makes allocator to
267
            situation when both magazines in the processor magazine cache are
316
            access shared full-magazines depot to reload CPU-bound magazines.
268
            empty. The allocator reloads one magazine from the shared list of
317
            If reload is succesful (meaning there are full magazines in depot)
269
            full magazines. If the reload is successful (i.e. there are full
318
            algoritm continues at Step 1.</para>
270
            magazines in the list), the algorithm continues with Step
-
 
271
            1.</para>
319
 
272
 
320
            <para><emphasis>Step 4.</emphasis> Final step of the allocation.
273
            <para><emphasis>Step 4.</emphasis> In this fail-safe step, an
321
            In this step object is allocated from the conventional slab layer
274
            object is allocated from the conventional slab layer and a pointer
322
            and pointer is returned.</para>
275
            to it is returned. If also the last magazine is full,</para>
323
          </formalpara>
276
          </formalpara>
324
 
277
 
325
          <formalpara>
278
          <formalpara>
326
            <title>Deallocation</title>
279
            <title>Deallocation</title>
327
 
280
 
328
            <para><emphasis>Step 1.</emphasis> During deallocation request,
281
            <para><emphasis>Step 1.</emphasis> During a deallocation request,
329
            slab allocator will check if the local CPU-bound magazine is not
282
            the slab allocator checks if the current magazine of the local
330
            full. In this case we will just push the pointer to this
283
            processor magazine cache is not full. If yes, the pointer to the
-
 
284
            objects is just pushed into the magazine and the algorithm
331
            magazine.</para>
285
            returns.</para>
332
 
286
 
333
            <para><emphasis>Step 2.</emphasis> If the CPU-bound magazine is
287
            <para><emphasis>Step 2.</emphasis> If the current magazine is
334
            full, allocator will attempt to reload magazin, swapping it with
288
            full, the allocator will attempt to swap it with the last magazine
335
            second CPU magazine and returns to the first step.</para>
289
            from the cache and return to the first step. If also the last
-
 
290
            magazine is empty, the algorithm will fall through to Step
-
 
291
            3.</para>
336
 
292
 
337
            <para><emphasis>Step 3.</emphasis> Now we are in the situation
293
            <para><emphasis>Step 3.</emphasis> Now the allocator is in the
338
            when both CPU-bound magazines are full, which makes allocator to
294
            situation when both magazines in the processor magazine cache are
339
            access shared full-magazines depot to put one of the magazines to
295
            full. The allocator moves one magazine to the shared list of full
340
            the depot and creating new empty magazine. Algoritm continues at
296
            magazines. The algoritm continues with Step 1.</para>
341
            Step 1.</para>
-
 
342
          </formalpara>
297
          </formalpara>
343
        </section>
298
        </section>
344
      </section>
299
      </section>
345
    </section>
300
    </section>
346
 
-
 
347
    <!-- End of Physmem -->
-
 
348
  </section>
301
  </section>
349
 
302
 
350
  <section>
303
  <section>
351
    <title>Virtual memory management</title>
304
    <title>Virtual memory management</title>
352
 
305
 
353
    <section>
306
    <section>
354
      <title>Introduction</title>
307
      <title>Introduction</title>
355
 
308
 
356
      <para>Virtual memory is a special memory management technique, used by
309
      <para>Virtual memory is a special memory management technique, used by
357
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
310
      kernel to achieve a bunch of mission critical goals. <itemizedlist>
358
          <listitem>
311
          <listitem>
359
             Isolate each task from other tasks that are running on the system at the same time.
312
             Isolate each task from other tasks that are running on the system at the same time.
360
          </listitem>
313
          </listitem>
361
 
314
 
362
          <listitem>
315
          <listitem>
363
             Allow to allocate more memory, than is actual physical memory size of the machine.
316
             Allow to allocate more memory, than is actual physical memory size of the machine.
364
          </listitem>
317
          </listitem>
365
 
318
 
366
          <listitem>
319
          <listitem>
367
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
320
             Allowing, in general, to load and execute two programs that are linked on the same address without complicated relocations.
368
          </listitem>
321
          </listitem>
369
        </itemizedlist></para>
322
        </itemizedlist></para>
370
 
323
 
371
      <para><!--
324
      <para><!--
372
 
325
 
-
 
326
                TLB shootdown ASID/ASID:PAGE/ALL.
-
 
327
                TLB shootdown requests can come in asynchroniously
-
 
328
                so there is a cache of TLB shootdown requests. Upon cache overflow TLB shootdown ALL is executed
-
 
329
 
-
 
330
 
373
                <para>
331
                <para>
374
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
332
                        Address spaces. Address space area (B+ tree). Only for uspace. Set of syscalls (shrink/extend etc).
375
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
333
                        Special address space area type - device - prohibits shrink/extend syscalls to call on it.
376
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
334
                        Address space has link to mapping tables (hierarchical - per Address space, hash - global tables).
377
                </para>
335
                </para>
378
 
336
 
379
--></para>
337
--></para>
380
    </section>
338
    </section>
381
 
339
 
382
    <section>
340
    <section>
-
 
341
      <title>Paging</title>
-
 
342
 
-
 
343
      <para>Virtual memory is usually using paged memory model, where virtual
-
 
344
      memory address space is divided into the <emphasis>pages</emphasis>
-
 
345
      (usually having size 4096 bytes) and physical memory is divided into the
-
 
346
      frames (same sized as a page, of course). Each page may be mapped to
-
 
347
      some frame and then, upon memory access to the virtual address, CPU
-
 
348
      performs <emphasis>address translation</emphasis> during the instruction
-
 
349
      execution. Non-existing mapping generates page fault exception, calling
-
 
350
      kernel exception handler, thus allowing kernel to manipulate rules of
-
 
351
      memory access. Information for pages mapping is stored by kernel in the
-
 
352
      <link linkend="page_tables">page tables</link></para>
-
 
353
 
-
 
354
      <para>The majority of the architectures use multi-level page tables,
-
 
355
      which means need to access physical memory several times before getting
-
 
356
      physical address. This fact would make serios performance overhead in
-
 
357
      virtual memory management. To avoid this <link linkend="tlb">Traslation
-
 
358
      Lookaside Buffer (TLB)</link> is used.</para>
-
 
359
    </section>
-
 
360
 
-
 
361
    <section>
383
      <title>Address spaces</title>
362
      <title>Address spaces</title>
384
 
363
 
385
      <section>
364
      <section>
386
    <indexterm><primary>memory management</primary><secondary>address space area</secondary></indexterm>
-
 
387
    <title>Address space areas</title>
365
        <title>Address space areas</title>
388
 
366
 
389
        <para>Each address space consists of mutually disjunctive continuous
367
        <para>Each address space consists of mutually disjunctive continuous
390
        address space areas. Address space area is precisely defined by its
368
        address space areas. Address space area is precisely defined by its
391
        base address and the number of frames/pages is contains.</para>
369
        base address and the number of frames/pages is contains.</para>
392
 
370
 
393
        <para>Address space area , that define behaviour and permissions on
371
        <para>Address space area , that define behaviour and permissions on
394
        the particular area. <itemizedlist>
372
        the particular area. <itemizedlist>
395
            <listitem>
373
            <listitem>
396
               
374
               
397
 
375
 
398
              <emphasis>AS_AREA_READ</emphasis>
376
              <emphasis>AS_AREA_READ</emphasis>
399
 
377
 
400
               flag indicates reading permission.
378
               flag indicates reading permission.
401
            </listitem>
379
            </listitem>
402
 
380
 
403
            <listitem>
381
            <listitem>
404
               
382
               
405
 
383
 
406
              <emphasis>AS_AREA_WRITE</emphasis>
384
              <emphasis>AS_AREA_WRITE</emphasis>
407
 
385
 
408
               flag indicates writing permission.
386
               flag indicates writing permission.
409
            </listitem>
387
            </listitem>
410
 
388
 
411
            <listitem>
389
            <listitem>
412
               
390
               
413
 
391
 
414
              <emphasis>AS_AREA_EXEC</emphasis>
392
              <emphasis>AS_AREA_EXEC</emphasis>
415
 
393
 
416
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
394
               flag indicates code execution permission. Some architectures do not support execution persmission restriction. In this case this flag has no effect.
417
            </listitem>
395
            </listitem>
418
 
396
 
419
            <listitem>
397
            <listitem>
420
               
398
               
421
 
399
 
422
              <emphasis>AS_AREA_DEVICE</emphasis>
400
              <emphasis>AS_AREA_DEVICE</emphasis>
423
 
401
 
424
               marks area as mapped to the device memory.
402
               marks area as mapped to the device memory.
425
            </listitem>
403
            </listitem>
426
          </itemizedlist></para>
404
          </itemizedlist></para>
427
 
405
 
428
        <para>Kernel provides possibility tasks create/expand/shrink/share its
406
        <para>Kernel provides possibility tasks create/expand/shrink/share its
429
        address space via the set of syscalls.</para>
407
        address space via the set of syscalls.</para>
430
      </section>
408
      </section>
431
 
409
 
432
      <section>
410
      <section>
433
    <indexterm><primary>memory management</primary><secondary>asid</secondary></indexterm>
-
 
434
        <title>Address Space ID (ASID)</title>
411
        <title>Address Space ID (ASID)</title>
435
 
412
 
436
        <para>When switching to the different task, kernel also require to
413
        <para>When switching to the different task, kernel also require to
437
        switch mappings to the different address space. In case TLB cannot
414
        switch mappings to the different address space. In case TLB cannot
438
        distinguish address space mappings, all mapping information in TLB
415
        distinguish address space mappings, all mapping information in TLB
439
        from the old address space must be flushed, which can create certain
416
        from the old address space must be flushed, which can create certain
440
        uncessary overhead during the task switching. To avoid this, some
417
        uncessary overhead during the task switching. To avoid this, some
441
        architectures have capability to segregate different address spaces on
418
        architectures have capability to segregate different address spaces on
442
        hardware level introducing the address space identifier as a part of
419
        hardware level introducing the address space identifier as a part of
443
        TLB record, telling the virtual address space translation unit to
420
        TLB record, telling the virtual address space translation unit to
444
        which address space this record is applicable.</para>
421
        which address space this record is applicable.</para>
445
 
422
 
446
        <para>HelenOS kernel can take advantage of this hardware supported
423
        <para>HelenOS kernel can take advantage of this hardware supported
447
        identifier by having an ASID abstraction which is somehow related to
424
        identifier by having an ASID abstraction which is somehow related to
448
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
425
        the corresponding architecture identifier. I.e. on ia64 kernel ASID is
449
        derived from RID (region identifier) and on the mips32 kernel ASID is
426
        derived from RID (region identifier) and on the mips32 kernel ASID is
450
        actually the hardware identifier. As expected, this ASID information
427
        actually the hardware identifier. As expected, this ASID information
451
        record is the part of <emphasis>as_t</emphasis> structure.</para>
428
        record is the part of <emphasis>as_t</emphasis> structure.</para>
452
 
429
 
453
        <para>Due to the hardware limitations, hardware ASID has limited
430
        <para>Due to the hardware limitations, hardware ASID has limited
454
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
431
        length from 8 bits on ia64 to 24 bits on mips32, which makes it
455
        impossible to use it as unique address space identifier for all tasks
432
        impossible to use it as unique address space identifier for all tasks
456
        running in the system. In such situations special ASID stealing
433
        running in the system. In such situations special ASID stealing
457
        algoritm is used, which takes ASID from inactive task and assigns it
434
        algoritm is used, which takes ASID from inactive task and assigns it
458
        to the active task.</para>
435
        to the active task.</para>
459
 
436
 
460
        <para><classname>ASID stealing algoritm here.</classname></para>
437
        <para><classname>ASID stealing algoritm here.</classname></para>
461
      </section>
438
      </section>
462
    </section>
439
    </section>
463
 
440
 
464
    <section>
441
    <section>
465
      <title>Virtual address translation</title>
442
      <title>Virtual address translation</title>
466
 
443
 
467
      <section id="paging">
444
      <section id="page_tables">
468
        <title>Paging</title>
445
        <title>Page tables</title>
469
 
-
 
470
        <section>
-
 
471
          <title>Introduction</title>
-
 
472
 
446
 
473
          <para>Virtual memory is usually using paged memory model, where
-
 
474
          virtual memory address space is divided into the
-
 
475
          <emphasis>pages</emphasis> (usually having size 4096 bytes) and
-
 
476
          physical memory is divided into the frames (same sized as a page, of
-
 
477
          course). Each page may be mapped to some frame and then, upon memory
-
 
478
          access to the virtual address, CPU performs <emphasis>address
-
 
479
          translation</emphasis> during the instruction execution.
-
 
480
          Non-existing mapping generates page fault exception, calling kernel
-
 
481
          exception handler, thus allowing kernel to manipulate rules of
-
 
482
          memory access. Information for pages mapping is stored by kernel in
-
 
483
          the page tables</para>
-
 
484
 
-
 
485
          <para>The majority of the architectures use multi-level page tables,
-
 
486
          which means need to access physical memory several times before
-
 
487
          getting physical address. This fact would make serios performance
-
 
488
          overhead in virtual memory management. To avoid this <link
-
 
489
          linkend="tlb">Traslation Lookaside Buffer (TLB)</link> is
-
 
490
          used.</para>
-
 
491
 
-
 
492
          <para>HelenOS kernel has two different approaches to the paging
447
        <para>HelenOS kernel has two different approaches to the paging
493
          implementation: <emphasis>4 level page tables</emphasis> and
448
        implementation: <emphasis>4 level page tables</emphasis> and
494
          <emphasis>global hash table</emphasis>, which are accessible via
449
        <emphasis>global hash tables</emphasis>, which are accessible via
495
          generic paging abstraction layer. Such different functionality was
450
        generic paging abstraction layer. Such different functionality was
496
          caused by the major architectural differences between supported
451
        caused by the major architectural differences between supported
497
          platforms. This abstraction is implemented with help of the global
452
        platforms. This abstraction is implemented with help of the global
498
          structure of pointers to basic mapping functions
453
        structure of pointers to basic mapping functions
499
          <emphasis>page_mapping_operations</emphasis>. To achieve different
454
        <emphasis>page_mapping_operations</emphasis>. To achieve different
500
          functionality of page tables, corresponding layer must implement
455
        functionality of page tables, corresponding layer must implement
501
          functions, declared in
456
        functions, declared in
502
          <emphasis>page_mapping_operations</emphasis></para>
457
        <emphasis>page_mapping_operations</emphasis></para>
503
 
-
 
504
          <para>Thanks to the abstract paging interface, there was a place
-
 
505
          left for more paging implementations (besides already implemented
-
 
506
          hieararchical page tables and hash table), for example B-Tree based
-
 
507
          page tables.</para>
-
 
508
        </section>
-
 
509
 
458
 
510
        <section>
459
        <formalpara>
511
          <title>Hierarchical 4-level page tables</title>
460
          <title>4-level page tables</title>
512
 
461
 
513
          <para>Hierarchical 4-level page tables are the generalization of the
462
          <para>4-level page tables are the generalization of the hardware
514
          hardware capabilities of most architectures. Each address space has
-
 
515
          its own page tables.<itemizedlist>
463
          capabilities of several architectures.<itemizedlist>
516
              <listitem>
464
              <listitem>
517
                 ia32 uses 2-level page tables, with full hardware support.
465
                 ia32 uses 2-level page tables, with full hardware support.
518
              </listitem>
466
              </listitem>
519
 
467
 
520
              <listitem>
468
              <listitem>
521
                 amd64 uses 4-level page tables, also coming with full hardware support.
469
                 amd64 uses 4-level page tables, also coming with full hardware support.
522
              </listitem>
470
              </listitem>
523
 
471
 
524
              <listitem>
472
              <listitem>
525
                 mips and ppc32 have 2-level tables, software simulated support.
473
                 mips and ppc32 have 2-level tables, software simulated support.
526
              </listitem>
474
              </listitem>
527
            </itemizedlist></para>
475
            </itemizedlist></para>
528
        </section>
476
        </formalpara>
529
 
477
 
530
        <section>
478
        <formalpara>
531
      <indexterm><primary>memory management</primary><secondary>hash table</secondary></indexterm>          
-
 
532
      <title>Global hash table</title>
479
          <title>Global hash tables</title>
533
 
480
 
534
          <para>Implementation of the global hash table was encouraged by the
481
          <para>- global page hash table: existuje jen jedna v celem systemu
535
          ia64 architecture support. One of the major differences between
482
          (vyuziva ji ia64), pozn. ia64 ma zatim vypnuty VHPT. Pouziva se
536
          global hash table and hierarchical tables is that global hash table
483
          genericke hash table s oddelenymi collision chains. ASID support is
537
          exists only once in the system and the hierarchical tables are
-
 
538
          maintained per address space.</para>
484
          required to use global hash tables.</para>
539
 
-
 
540
          <para>Thus, hash table contains information about all address spaces
-
 
541
          mappings in the system, so, the hash of an entry must contain
-
 
542
          information of both address space pointer or id and the virtual
-
 
543
          address of the page. Generic hash table implementation assumes that
-
 
544
          the addresses of the pointers to the address spaces are likely to be
-
 
545
          on the close addresses, so it uses least significant bits for hash;
-
 
546
          also it assumes that the virtual page addresses have roughly the
-
 
547
          same probability of occurring, so the least significant bits of VPN
-
 
548
          compose the hash index.</para>
485
        </formalpara>
549
 
486
 
-
 
487
        <para>Thanks to the abstract paging interface, there is possibility
550
          <para>Collision chains ...</para>
488
        left have more paging implementations, for example B-Tree page
551
        </section>
489
        tables.</para>
552
      </section>
490
      </section>
553
 
491
 
554
      <section id="tlb">
492
      <section id="tlb">
555
        <indexterm><primary>memory management</primary><secondary>tlb</secondary></indexterm>
-
 
556
        <title>Translation Lookaside buffer</title>
493
        <title>Translation Lookaside buffer</title>
557
 
494
 
558
        <para>Due to the extensive overhead during the page mapping lookup in
495
        <para>Due to the extensive overhead during the page mapping lookup in
559
        the page tables, all architectures has fast assotiative cache memory
496
        the page tables, all architectures has fast assotiative cache memory
560
        built-in CPU. This memory called TLB stores recently used page table
497
        built-in CPU. This memory called TLB stores recently used page table
561
        entries.</para>
498
        entries.</para>
562
 
499
 
563
        <section id="tlb_shootdown">
500
        <section id="tlb_shootdown">
564
          <title>TLB consistency. TLB shootdown algorithm.</title>
501
          <title>TLB consistency. TLB shootdown algorithm.</title>
565
 
502
 
566
          <para>Operating system is responsible for keeping TLB consistent by
503
          <para>Operating system is responsible for keeping TLB consistent by
567
          invalidating the contents of TLB, whenever there is some change in
504
          invalidating the contents of TLB, whenever there is some change in
568
          page tables. Those changes may occur when page or group of pages
505
          page tables. Those changes may occur when page or group of pages
569
          were unmapped, mapping is changed or system switching active address
506
          were unmapped, mapping is changed or system switching active address
570
          space to schedule a new system task. Moreover, this invalidation
507
          space to schedule a new system task (which is a batch unmap of all
571
          operation must be done an all system CPUs because each CPU has its
508
          address space mappings). Moreover, this invalidation operation must
572
          own independent TLB cache. Thus maintaining TLB consistency on SMP
509
          be done an all system CPUs because each CPU has its own independent
573
          configuration as not as trivial task as it looks on the first
510
          TLB cache. Thus maintaining TLB consistency on SMP configuration as
574
          glance. Naive solution would assume that is the CPU which wants to
511
          not as trivial task as it looks at the first glance. Naive solution
575
          invalidate TLB will invalidate TLB caches on other CPUs. It is not
512
          would assume remote TLB invalidatation, which is not possible on the
576
          possible on the most of the architectures, because of the simple
513
          most of the architectures, because of the simple fact - flushing TLB
577
          fact - flushing TLB is allowed only on the local CPU and there is no
514
          is allowed only on the local CPU and there is no possibility to
578
          possibility to access other CPUs' TLB caches, thus invalidate TLB
515
          access other CPUs' TLB caches.</para>
579
          remotely.</para>
-
 
580
 
516
 
581
          <para>Technique of remote invalidation of TLB entries is called "TLB
517
          <para>Technique of remote invalidation of TLB entries is called "TLB
582
          shootdown". HelenOS uses a variation of the algorithm described by
518
          shootdown". HelenOS uses a variation of the algorithm described by
583
          D. Black et al., "Translation Lookaside Buffer Consistency: A
519
          D. Black et al., "Translation Lookaside Buffer Consistency: A
584
          Software Approach," Proc. Third Int'l Conf. Architectural Support
520
          Software Approach," Proc. Third Int'l Conf. Architectural Support
585
          for Programming Languages and Operating Systems, 1989, pp.
521
          for Programming Languages and Operating Systems, 1989, pp.
586
          113-122.</para>
522
          113-122.</para>
587
 
523
 
588
          <para>As the situation demands, you will want partitial invalidation
524
          <para>As the situation demands, you will want partitial invalidation
589
          of TLB caches. In case of simple memory mapping change it is
525
          of TLB caches. In case of simple memory mapping change it is
590
          necessary to invalidate only one or more adjacent pages. In case if
526
          necessary to invalidate only one or more adjacent pages. In case if
591
          the architecture is aware of ASIDs, when kernel needs to dump some
527
          the architecture is aware of ASIDs, during the address space
592
          ASID to use by another task, it invalidates only entries from this
528
          switching, kernel invalidates only entries from this particular
593
          particular address space. Final option of the TLB invalidation is
529
          address space. Final option of the TLB invalidation is the complete
594
          the complete TLB cache invalidation, which is the operation that
530
          TLB cache invalidation, which is the operation that flushes all
595
          flushes all entries in TLB.</para>
531
          entries in TLB.</para>
596
 
532
 
597
          <para>TLB shootdown is performed in two phases.</para>
533
          <para>TLB shootdown is performed in two phases. First, the initiator
598
 
-
 
-
 
534
          process sends an IPI message indicating the TLB shootdown request to
-
 
535
          the rest of the CPUs. Then, it waits until all CPUs confirm TLB
-
 
536
          invalidating action execution.</para>
599
          <formalpara>
537
        </section>
600
            <title>Phase 1.</title>
538
      </section>
-
 
539
    </section>
601
 
540
 
602
            <para>First, initiator locks a global TLB spinlock, then request
-
 
603
            is being put to the local request cache of every other CPU in the
-
 
604
            system protected by its spinlock. In case the cache is full, all
-
 
605
            requests in the cache are replaced by one request, indicating
-
 
606
            global TLB flush. Then the initiator thread sends an IPI message
-
 
607
            indicating the TLB shootdown request to the rest of the CPUs and
-
 
608
            waits actively until all CPUs confirm TLB invalidating action
-
 
609
            execution by setting up a special flag. After setting this flag
-
 
610
            this thread is blocked on the TLB spinlock, held by the
-
 
611
            initiator.</para>
541
    <section>
612
          </formalpara>
542
      <title>---</title>
613
 
543
 
614
          <formalpara>
-
 
615
            <title>Phase 2.</title>
544
      <para>At the moment HelenOS does not support swapping.</para>
616
 
545
 
617
            <para>All CPUs are waiting on the TLB spinlock to execute TLB
546
      <para>- pouzivame vypadky stranky k alokaci ramcu on-demand v ramci
618
            invalidation action and have indicated their intention to the
-
 
619
            initiator. Initiator continues, cleaning up its TLB and releasing
547
      as_area - na architekturach, ktere to podporuji, podporujeme non-exec
620
            the global TLB spinlock. After this all other CPUs gain and
-
 
621
            immidiately release TLB spinlock and perform TLB invalidation
-
 
622
            actions.</para>
548
      stranky</para>
623
          </formalpara>
-
 
624
        </section>
-
 
625
      </section>
-
 
626
    </section>
549
    </section>
627
  </section>
550
  </section>
628
</chapter>
551
</chapter>