Subversion Repositories HelenOS

Rev

Rev 3127 | Rev 3425 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3127 Rev 3424
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
#ifndef __OBJC__
85
#ifndef __OBJC__
86
/**
86
/**
87
 * Each architecture decides what functions will be used to carry out
87
 * Each architecture decides what functions will be used to carry out
88
 * address space operations such as creating or locking page tables.
88
 * address space operations such as creating or locking page tables.
89
 */
89
 */
90
as_operations_t *as_operations = NULL;
90
as_operations_t *as_operations = NULL;
91
 
91
 
92
/**
92
/**
93
 * Slab for as_t objects.
93
 * Slab for as_t objects.
94
 */
94
 */
95
static slab_cache_t *as_slab;
95
static slab_cache_t *as_slab;
96
#endif
96
#endif
97
 
97
 
98
/**
98
/**
99
 * This lock serializes access to the ASID subsystem.
99
 * This lock serializes access to the ASID subsystem.
100
 * It protects:
100
 * It protects:
101
 * - inactive_as_with_asid_head list
101
 * - inactive_as_with_asid_head list
102
 * - as->asid for each as of the as_t type
102
 * - as->asid for each as of the as_t type
103
 * - asids_allocated counter
103
 * - asids_allocated counter
104
 */
104
 */
105
SPINLOCK_INITIALIZE(asidlock);
105
SPINLOCK_INITIALIZE(asidlock);
106
 
106
 
107
/**
107
/**
108
 * This list contains address spaces that are not active on any
108
 * This list contains address spaces that are not active on any
109
 * processor and that have valid ASID.
109
 * processor and that have valid ASID.
110
 */
110
 */
111
LIST_INITIALIZE(inactive_as_with_asid_head);
111
LIST_INITIALIZE(inactive_as_with_asid_head);
112
 
112
 
113
/** Kernel address space. */
113
/** Kernel address space. */
114
as_t *AS_KERNEL = NULL;
114
as_t *AS_KERNEL = NULL;
115
 
115
 
116
static int area_flags_to_page_flags(int aflags);
116
static int area_flags_to_page_flags(int aflags);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
117
static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
118
static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
119
    as_area_t *avoid_area);
119
    as_area_t *avoid_area);
120
static void sh_info_remove_reference(share_info_t *sh_info);
120
static void sh_info_remove_reference(share_info_t *sh_info);
121
 
121
 
122
#ifndef __OBJC__
122
#ifndef __OBJC__
123
static int as_constructor(void *obj, int flags)
123
static int as_constructor(void *obj, int flags)
124
{
124
{
125
    as_t *as = (as_t *) obj;
125
    as_t *as = (as_t *) obj;
126
    int rc;
126
    int rc;
127
 
127
 
128
    link_initialize(&as->inactive_as_with_asid_link);
128
    link_initialize(&as->inactive_as_with_asid_link);
129
    mutex_initialize(&as->lock);   
129
    mutex_initialize(&as->lock);   
130
   
130
   
131
    rc = as_constructor_arch(as, flags);
131
    rc = as_constructor_arch(as, flags);
132
   
132
   
133
    return rc;
133
    return rc;
134
}
134
}
135
 
135
 
136
static int as_destructor(void *obj)
136
static int as_destructor(void *obj)
137
{
137
{
138
    as_t *as = (as_t *) obj;
138
    as_t *as = (as_t *) obj;
139
 
139
 
140
    return as_destructor_arch(as);
140
    return as_destructor_arch(as);
141
}
141
}
142
#endif
142
#endif
143
 
143
 
144
/** Initialize address space subsystem. */
144
/** Initialize address space subsystem. */
145
void as_init(void)
145
void as_init(void)
146
{
146
{
147
    as_arch_init();
147
    as_arch_init();
148
 
148
 
149
#ifndef __OBJC__
149
#ifndef __OBJC__
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
150
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
152
#endif
152
#endif
153
   
153
   
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
154
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
155
    if (!AS_KERNEL)
155
    if (!AS_KERNEL)
156
        panic("can't create kernel address space\n");
156
        panic("can't create kernel address space\n");
157
   
157
   
158
}
158
}
159
 
159
 
160
/** Create address space.
160
/** Create address space.
161
 *
161
 *
162
 * @param flags Flags that influence way in wich the address space is created.
162
 * @param flags Flags that influence way in wich the address space is created.
163
 */
163
 */
164
as_t *as_create(int flags)
164
as_t *as_create(int flags)
165
{
165
{
166
    as_t *as;
166
    as_t *as;
167
 
167
 
168
#ifdef __OBJC__
168
#ifdef __OBJC__
169
    as = [as_t new];
169
    as = [as_t new];
170
    link_initialize(&as->inactive_as_with_asid_link);
170
    link_initialize(&as->inactive_as_with_asid_link);
171
    mutex_initialize(&as->lock);   
171
    mutex_initialize(&as->lock);   
172
    (void) as_constructor_arch(as, flags);
172
    (void) as_constructor_arch(as, flags);
173
#else
173
#else
174
    as = (as_t *) slab_alloc(as_slab, 0);
174
    as = (as_t *) slab_alloc(as_slab, 0);
175
#endif
175
#endif
176
    (void) as_create_arch(as, 0);
176
    (void) as_create_arch(as, 0);
177
   
177
   
178
    btree_create(&as->as_area_btree);
178
    btree_create(&as->as_area_btree);
179
   
179
   
180
    if (flags & FLAG_AS_KERNEL)
180
    if (flags & FLAG_AS_KERNEL)
181
        as->asid = ASID_KERNEL;
181
        as->asid = ASID_KERNEL;
182
    else
182
    else
183
        as->asid = ASID_INVALID;
183
        as->asid = ASID_INVALID;
184
   
184
   
185
    atomic_set(&as->refcount, 0);
185
    atomic_set(&as->refcount, 0);
186
    as->cpu_refcount = 0;
186
    as->cpu_refcount = 0;
187
#ifdef AS_PAGE_TABLE
187
#ifdef AS_PAGE_TABLE
188
    as->genarch.page_table = page_table_create(flags);
188
    as->genarch.page_table = page_table_create(flags);
189
#else
189
#else
190
    page_table_create(flags);
190
    page_table_create(flags);
191
#endif
191
#endif
192
 
192
 
193
    return as;
193
    return as;
194
}
194
}
195
 
195
 
196
/** Destroy adress space.
196
/** Destroy adress space.
197
 *
197
 *
198
 * When there are no tasks referencing this address space (i.e. its refcount is
198
 * When there are no tasks referencing this address space (i.e. its refcount is
199
 * zero), the address space can be destroyed.
199
 * zero), the address space can be destroyed.
200
 *
200
 *
201
 * We know that we don't hold any spinlock.
201
 * We know that we don't hold any spinlock.
202
 */
202
 */
203
void as_destroy(as_t *as)
203
void as_destroy(as_t *as)
204
{
204
{
205
    ipl_t ipl;
205
    ipl_t ipl;
206
    bool cond;
206
    bool cond;
207
    DEADLOCK_PROBE_INIT(p_asidlock);
207
    DEADLOCK_PROBE_INIT(p_asidlock);
208
 
208
 
209
    ASSERT(atomic_get(&as->refcount) == 0);
209
    ASSERT(atomic_get(&as->refcount) == 0);
210
   
210
   
211
    /*
211
    /*
212
     * Since there is no reference to this area,
212
     * Since there is no reference to this area,
213
     * it is safe not to lock its mutex.
213
     * it is safe not to lock its mutex.
214
     */
214
     */
215
 
215
 
216
    /*
216
    /*
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
217
     * We need to avoid deadlock between TLB shootdown and asidlock.
218
     * We therefore try to take asid conditionally and if we don't succeed,
218
     * We therefore try to take asid conditionally and if we don't succeed,
219
     * we enable interrupts and try again. This is done while preemption is
219
     * we enable interrupts and try again. This is done while preemption is
220
     * disabled to prevent nested context switches. We also depend on the
220
     * disabled to prevent nested context switches. We also depend on the
221
     * fact that so far no spinlocks are held.
221
     * fact that so far no spinlocks are held.
222
     */
222
     */
223
    preemption_disable();
223
    preemption_disable();
224
    ipl = interrupts_read();
224
    ipl = interrupts_read();
225
retry:
225
retry:
226
    interrupts_disable();
226
    interrupts_disable();
227
    if (!spinlock_trylock(&asidlock)) {
227
    if (!spinlock_trylock(&asidlock)) {
228
        interrupts_enable();
228
        interrupts_enable();
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
229
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
230
        goto retry;
230
        goto retry;
231
    }
231
    }
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
232
    preemption_enable();    /* Interrupts disabled, enable preemption */
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
233
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
234
        if (as != AS && as->cpu_refcount == 0)
234
        if (as != AS && as->cpu_refcount == 0)
235
            list_remove(&as->inactive_as_with_asid_link);
235
            list_remove(&as->inactive_as_with_asid_link);
236
        asid_put(as->asid);
236
        asid_put(as->asid);
237
    }
237
    }
238
    spinlock_unlock(&asidlock);
238
    spinlock_unlock(&asidlock);
239
 
239
 
240
    /*
240
    /*
241
     * Destroy address space areas of the address space.
241
     * Destroy address space areas of the address space.
242
     * The B+tree must be walked carefully because it is
242
     * The B+tree must be walked carefully because it is
243
     * also being destroyed.
243
     * also being destroyed.
244
     */
244
     */
245
    for (cond = true; cond; ) {
245
    for (cond = true; cond; ) {
246
        btree_node_t *node;
246
        btree_node_t *node;
247
 
247
 
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
248
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
249
        node = list_get_instance(as->as_area_btree.leaf_head.next,
250
            btree_node_t, leaf_link);
250
            btree_node_t, leaf_link);
251
 
251
 
252
        if ((cond = node->keys)) {
252
        if ((cond = node->keys)) {
253
            as_area_destroy(as, node->key[0]);
253
            as_area_destroy(as, node->key[0]);
254
        }
254
        }
255
    }
255
    }
256
 
256
 
257
    btree_destroy(&as->as_area_btree);
257
    btree_destroy(&as->as_area_btree);
258
#ifdef AS_PAGE_TABLE
258
#ifdef AS_PAGE_TABLE
259
    page_table_destroy(as->genarch.page_table);
259
    page_table_destroy(as->genarch.page_table);
260
#else
260
#else
261
    page_table_destroy(NULL);
261
    page_table_destroy(NULL);
262
#endif
262
#endif
263
 
263
 
264
    interrupts_restore(ipl);
264
    interrupts_restore(ipl);
265
 
265
 
266
#ifdef __OBJC__
266
#ifdef __OBJC__
267
    [as free];
267
    [as free];
268
#else
268
#else
269
    slab_free(as_slab, as);
269
    slab_free(as_slab, as);
270
#endif
270
#endif
271
}
271
}
272
 
272
 
273
/** Create address space area of common attributes.
273
/** Create address space area of common attributes.
274
 *
274
 *
275
 * The created address space area is added to the target address space.
275
 * The created address space area is added to the target address space.
276
 *
276
 *
277
 * @param as Target address space.
277
 * @param as Target address space.
278
 * @param flags Flags of the area memory.
278
 * @param flags Flags of the area memory.
279
 * @param size Size of area.
279
 * @param size Size of area.
280
 * @param base Base address of area.
280
 * @param base Base address of area.
281
 * @param attrs Attributes of the area.
281
 * @param attrs Attributes of the area.
282
 * @param backend Address space area backend. NULL if no backend is used.
282
 * @param backend Address space area backend. NULL if no backend is used.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
283
 * @param backend_data NULL or a pointer to an array holding two void *.
284
 *
284
 *
285
 * @return Address space area on success or NULL on failure.
285
 * @return Address space area on success or NULL on failure.
286
 */
286
 */
287
as_area_t *
287
as_area_t *
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
288
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
289
           mem_backend_t *backend, mem_backend_data_t *backend_data)
290
{
290
{
291
    ipl_t ipl;
291
    ipl_t ipl;
292
    as_area_t *a;
292
    as_area_t *a;
293
   
293
   
294
    if (base % PAGE_SIZE)
294
    if (base % PAGE_SIZE)
295
        return NULL;
295
        return NULL;
296
 
296
 
297
    if (!size)
297
    if (!size)
298
        return NULL;
298
        return NULL;
299
 
299
 
300
    /* Writeable executable areas are not supported. */
300
    /* Writeable executable areas are not supported. */
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
301
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
302
        return NULL;
302
        return NULL;
303
   
303
   
304
    ipl = interrupts_disable();
304
    ipl = interrupts_disable();
305
    mutex_lock(&as->lock);
305
    mutex_lock(&as->lock);
306
   
306
   
307
    if (!check_area_conflicts(as, base, size, NULL)) {
307
    if (!check_area_conflicts(as, base, size, NULL)) {
308
        mutex_unlock(&as->lock);
308
        mutex_unlock(&as->lock);
309
        interrupts_restore(ipl);
309
        interrupts_restore(ipl);
310
        return NULL;
310
        return NULL;
311
    }
311
    }
312
   
312
   
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
313
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
314
 
314
 
315
    mutex_initialize(&a->lock);
315
    mutex_initialize(&a->lock);
316
   
316
   
317
    a->as = as;
317
    a->as = as;
318
    a->flags = flags;
318
    a->flags = flags;
319
    a->attributes = attrs;
319
    a->attributes = attrs;
320
    a->pages = SIZE2FRAMES(size);
320
    a->pages = SIZE2FRAMES(size);
321
    a->base = base;
321
    a->base = base;
322
    a->sh_info = NULL;
322
    a->sh_info = NULL;
323
    a->backend = backend;
323
    a->backend = backend;
324
    if (backend_data)
324
    if (backend_data)
325
        a->backend_data = *backend_data;
325
        a->backend_data = *backend_data;
326
    else
326
    else
327
        memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
327
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
328
            0);
-
 
329
 
328
 
330
    btree_create(&a->used_space);
329
    btree_create(&a->used_space);
331
   
330
   
332
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
331
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
333
 
332
 
334
    mutex_unlock(&as->lock);
333
    mutex_unlock(&as->lock);
335
    interrupts_restore(ipl);
334
    interrupts_restore(ipl);
336
 
335
 
337
    return a;
336
    return a;
338
}
337
}
339
 
338
 
340
/** Find address space area and change it.
339
/** Find address space area and change it.
341
 *
340
 *
342
 * @param as Address space.
341
 * @param as Address space.
343
 * @param address Virtual address belonging to the area to be changed. Must be
342
 * @param address Virtual address belonging to the area to be changed. Must be
344
 *     page-aligned.
343
 *     page-aligned.
345
 * @param size New size of the virtual memory block starting at address.
344
 * @param size New size of the virtual memory block starting at address.
346
 * @param flags Flags influencing the remap operation. Currently unused.
345
 * @param flags Flags influencing the remap operation. Currently unused.
347
 *
346
 *
348
 * @return Zero on success or a value from @ref errno.h otherwise.
347
 * @return Zero on success or a value from @ref errno.h otherwise.
349
 */
348
 */
350
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
349
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
351
{
350
{
352
    as_area_t *area;
351
    as_area_t *area;
353
    ipl_t ipl;
352
    ipl_t ipl;
354
    size_t pages;
353
    size_t pages;
355
   
354
   
356
    ipl = interrupts_disable();
355
    ipl = interrupts_disable();
357
    mutex_lock(&as->lock);
356
    mutex_lock(&as->lock);
358
   
357
   
359
    /*
358
    /*
360
     * Locate the area.
359
     * Locate the area.
361
     */
360
     */
362
    area = find_area_and_lock(as, address);
361
    area = find_area_and_lock(as, address);
363
    if (!area) {
362
    if (!area) {
364
        mutex_unlock(&as->lock);
363
        mutex_unlock(&as->lock);
365
        interrupts_restore(ipl);
364
        interrupts_restore(ipl);
366
        return ENOENT;
365
        return ENOENT;
367
    }
366
    }
368
 
367
 
369
    if (area->backend == &phys_backend) {
368
    if (area->backend == &phys_backend) {
370
        /*
369
        /*
371
         * Remapping of address space areas associated
370
         * Remapping of address space areas associated
372
         * with memory mapped devices is not supported.
371
         * with memory mapped devices is not supported.
373
         */
372
         */
374
        mutex_unlock(&area->lock);
373
        mutex_unlock(&area->lock);
375
        mutex_unlock(&as->lock);
374
        mutex_unlock(&as->lock);
376
        interrupts_restore(ipl);
375
        interrupts_restore(ipl);
377
        return ENOTSUP;
376
        return ENOTSUP;
378
    }
377
    }
379
    if (area->sh_info) {
378
    if (area->sh_info) {
380
        /*
379
        /*
381
         * Remapping of shared address space areas
380
         * Remapping of shared address space areas
382
         * is not supported.
381
         * is not supported.
383
         */
382
         */
384
        mutex_unlock(&area->lock);
383
        mutex_unlock(&area->lock);
385
        mutex_unlock(&as->lock);
384
        mutex_unlock(&as->lock);
386
        interrupts_restore(ipl);
385
        interrupts_restore(ipl);
387
        return ENOTSUP;
386
        return ENOTSUP;
388
    }
387
    }
389
 
388
 
390
    pages = SIZE2FRAMES((address - area->base) + size);
389
    pages = SIZE2FRAMES((address - area->base) + size);
391
    if (!pages) {
390
    if (!pages) {
392
        /*
391
        /*
393
         * Zero size address space areas are not allowed.
392
         * Zero size address space areas are not allowed.
394
         */
393
         */
395
        mutex_unlock(&area->lock);
394
        mutex_unlock(&area->lock);
396
        mutex_unlock(&as->lock);
395
        mutex_unlock(&as->lock);
397
        interrupts_restore(ipl);
396
        interrupts_restore(ipl);
398
        return EPERM;
397
        return EPERM;
399
    }
398
    }
400
   
399
   
401
    if (pages < area->pages) {
400
    if (pages < area->pages) {
402
        bool cond;
401
        bool cond;
403
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
402
        uintptr_t start_free = area->base + pages*PAGE_SIZE;
404
 
403
 
405
        /*
404
        /*
406
         * Shrinking the area.
405
         * Shrinking the area.
407
         * No need to check for overlaps.
406
         * No need to check for overlaps.
408
         */
407
         */
409
 
408
 
410
        /*
409
        /*
411
         * Start TLB shootdown sequence.
410
         * Start TLB shootdown sequence.
412
         */
411
         */
413
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
412
        tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
414
            pages * PAGE_SIZE, area->pages - pages);
413
            pages * PAGE_SIZE, area->pages - pages);
415
 
414
 
416
        /*
415
        /*
417
         * Remove frames belonging to used space starting from
416
         * Remove frames belonging to used space starting from
418
         * the highest addresses downwards until an overlap with
417
         * the highest addresses downwards until an overlap with
419
         * the resized address space area is found. Note that this
418
         * the resized address space area is found. Note that this
420
         * is also the right way to remove part of the used_space
419
         * is also the right way to remove part of the used_space
421
         * B+tree leaf list.
420
         * B+tree leaf list.
422
         */    
421
         */    
423
        for (cond = true; cond;) {
422
        for (cond = true; cond;) {
424
            btree_node_t *node;
423
            btree_node_t *node;
425
       
424
       
426
            ASSERT(!list_empty(&area->used_space.leaf_head));
425
            ASSERT(!list_empty(&area->used_space.leaf_head));
427
            node =
426
            node =
428
                list_get_instance(area->used_space.leaf_head.prev,
427
                list_get_instance(area->used_space.leaf_head.prev,
429
                btree_node_t, leaf_link);
428
                btree_node_t, leaf_link);
430
            if ((cond = (bool) node->keys)) {
429
            if ((cond = (bool) node->keys)) {
431
                uintptr_t b = node->key[node->keys - 1];
430
                uintptr_t b = node->key[node->keys - 1];
432
                count_t c =
431
                count_t c =
433
                    (count_t) node->value[node->keys - 1];
432
                    (count_t) node->value[node->keys - 1];
434
                unsigned int i = 0;
433
                unsigned int i = 0;
435
           
434
           
436
                if (overlaps(b, c * PAGE_SIZE, area->base,
435
                if (overlaps(b, c * PAGE_SIZE, area->base,
437
                    pages * PAGE_SIZE)) {
436
                    pages * PAGE_SIZE)) {
438
                   
437
                   
439
                    if (b + c * PAGE_SIZE <= start_free) {
438
                    if (b + c * PAGE_SIZE <= start_free) {
440
                        /*
439
                        /*
441
                         * The whole interval fits
440
                         * The whole interval fits
442
                         * completely in the resized
441
                         * completely in the resized
443
                         * address space area.
442
                         * address space area.
444
                         */
443
                         */
445
                        break;
444
                        break;
446
                    }
445
                    }
447
       
446
       
448
                    /*
447
                    /*
449
                     * Part of the interval corresponding
448
                     * Part of the interval corresponding
450
                     * to b and c overlaps with the resized
449
                     * to b and c overlaps with the resized
451
                     * address space area.
450
                     * address space area.
452
                     */
451
                     */
453
       
452
       
454
                    cond = false;   /* we are almost done */
453
                    cond = false;   /* we are almost done */
455
                    i = (start_free - b) >> PAGE_WIDTH;
454
                    i = (start_free - b) >> PAGE_WIDTH;
456
                    if (!used_space_remove(area, start_free,
455
                    if (!used_space_remove(area, start_free, c - i))
457
                        c - i))
-
 
458
                        panic("Could not remove used "
456
                        panic("Could not remove used space.\n");
459
                            "space.\n");
-
 
460
                } else {
457
                } else {
461
                    /*
458
                    /*
462
                     * The interval of used space can be
459
                     * The interval of used space can be
463
                     * completely removed.
460
                     * completely removed.
464
                     */
461
                     */
465
                    if (!used_space_remove(area, b, c))
462
                    if (!used_space_remove(area, b, c))
466
                        panic("Could not remove used "
463
                        panic("Could not remove used space.\n");
467
                            "space.\n");
-
 
468
                }
464
                }
469
           
465
           
470
                for (; i < c; i++) {
466
                for (; i < c; i++) {
471
                    pte_t *pte;
467
                    pte_t *pte;
472
           
468
           
473
                    page_table_lock(as, false);
469
                    page_table_lock(as, false);
474
                    pte = page_mapping_find(as, b +
470
                    pte = page_mapping_find(as, b +
475
                        i * PAGE_SIZE);
471
                        i * PAGE_SIZE);
476
                    ASSERT(pte && PTE_VALID(pte) &&
472
                    ASSERT(pte && PTE_VALID(pte) &&
477
                        PTE_PRESENT(pte));
473
                        PTE_PRESENT(pte));
478
                    if (area->backend &&
474
                    if (area->backend &&
479
                        area->backend->frame_free) {
475
                        area->backend->frame_free) {
480
                        area->backend->frame_free(area,
476
                        area->backend->frame_free(area,
481
                            b + i * PAGE_SIZE,
477
                            b + i * PAGE_SIZE,
482
                            PTE_GET_FRAME(pte));
478
                            PTE_GET_FRAME(pte));
483
                    }
479
                    }
484
                    page_mapping_remove(as, b +
480
                    page_mapping_remove(as, b +
485
                        i * PAGE_SIZE);
481
                        i * PAGE_SIZE);
486
                    page_table_unlock(as, false);
482
                    page_table_unlock(as, false);
487
                }
483
                }
488
            }
484
            }
489
        }
485
        }
490
 
486
 
491
        /*
487
        /*
492
         * Finish TLB shootdown sequence.
488
         * Finish TLB shootdown sequence.
493
         */
489
         */
494
 
490
 
495
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
491
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
496
            area->pages - pages);
492
            area->pages - pages);
497
        /*
493
        /*
498
         * Invalidate software translation caches (e.g. TSB on sparc64).
494
         * Invalidate software translation caches (e.g. TSB on sparc64).
499
         */
495
         */
500
        as_invalidate_translation_cache(as, area->base +
496
        as_invalidate_translation_cache(as, area->base +
501
            pages * PAGE_SIZE, area->pages - pages);
497
            pages * PAGE_SIZE, area->pages - pages);
502
        tlb_shootdown_finalize();
498
        tlb_shootdown_finalize();
503
       
499
       
504
    } else {
500
    } else {
505
        /*
501
        /*
506
         * Growing the area.
502
         * Growing the area.
507
         * Check for overlaps with other address space areas.
503
         * Check for overlaps with other address space areas.
508
         */
504
         */
509
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
505
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
510
            area)) {
506
            area)) {
511
            mutex_unlock(&area->lock);
507
            mutex_unlock(&area->lock);
512
            mutex_unlock(&as->lock);       
508
            mutex_unlock(&as->lock);       
513
            interrupts_restore(ipl);
509
            interrupts_restore(ipl);
514
            return EADDRNOTAVAIL;
510
            return EADDRNOTAVAIL;
515
        }
511
        }
516
    }
512
    }
517
 
513
 
518
    area->pages = pages;
514
    area->pages = pages;
519
   
515
   
520
    mutex_unlock(&area->lock);
516
    mutex_unlock(&area->lock);
521
    mutex_unlock(&as->lock);
517
    mutex_unlock(&as->lock);
522
    interrupts_restore(ipl);
518
    interrupts_restore(ipl);
523
 
519
 
524
    return 0;
520
    return 0;
525
}
521
}
526
 
522
 
527
/** Destroy address space area.
523
/** Destroy address space area.
528
 *
524
 *
529
 * @param as Address space.
525
 * @param as Address space.
530
 * @param address Address withing the area to be deleted.
526
 * @param address Address withing the area to be deleted.
531
 *
527
 *
532
 * @return Zero on success or a value from @ref errno.h on failure.
528
 * @return Zero on success or a value from @ref errno.h on failure.
533
 */
529
 */
534
int as_area_destroy(as_t *as, uintptr_t address)
530
int as_area_destroy(as_t *as, uintptr_t address)
535
{
531
{
536
    as_area_t *area;
532
    as_area_t *area;
537
    uintptr_t base;
533
    uintptr_t base;
538
    link_t *cur;
534
    link_t *cur;
539
    ipl_t ipl;
535
    ipl_t ipl;
540
 
536
 
541
    ipl = interrupts_disable();
537
    ipl = interrupts_disable();
542
    mutex_lock(&as->lock);
538
    mutex_lock(&as->lock);
543
 
539
 
544
    area = find_area_and_lock(as, address);
540
    area = find_area_and_lock(as, address);
545
    if (!area) {
541
    if (!area) {
546
        mutex_unlock(&as->lock);
542
        mutex_unlock(&as->lock);
547
        interrupts_restore(ipl);
543
        interrupts_restore(ipl);
548
        return ENOENT;
544
        return ENOENT;
549
    }
545
    }
550
 
546
 
551
    base = area->base;
547
    base = area->base;
552
 
548
 
553
    /*
549
    /*
554
     * Start TLB shootdown sequence.
550
     * Start TLB shootdown sequence.
555
     */
551
     */
556
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
552
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
557
 
553
 
558
    /*
554
    /*
559
     * Visit only the pages mapped by used_space B+tree.
555
     * Visit only the pages mapped by used_space B+tree.
560
     */
556
     */
561
    for (cur = area->used_space.leaf_head.next;
557
    for (cur = area->used_space.leaf_head.next;
562
        cur != &area->used_space.leaf_head; cur = cur->next) {
558
        cur != &area->used_space.leaf_head; cur = cur->next) {
563
        btree_node_t *node;
559
        btree_node_t *node;
564
        unsigned int i;
560
        unsigned int i;
565
       
561
       
566
        node = list_get_instance(cur, btree_node_t, leaf_link);
562
        node = list_get_instance(cur, btree_node_t, leaf_link);
567
        for (i = 0; i < node->keys; i++) {
563
        for (i = 0; i < node->keys; i++) {
568
            uintptr_t b = node->key[i];
564
            uintptr_t b = node->key[i];
569
            count_t j;
565
            count_t j;
570
            pte_t *pte;
566
            pte_t *pte;
571
           
567
           
572
            for (j = 0; j < (count_t) node->value[i]; j++) {
568
            for (j = 0; j < (count_t) node->value[i]; j++) {
573
                page_table_lock(as, false);
569
                page_table_lock(as, false);
574
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
570
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
575
                ASSERT(pte && PTE_VALID(pte) &&
571
                ASSERT(pte && PTE_VALID(pte) &&
576
                    PTE_PRESENT(pte));
572
                    PTE_PRESENT(pte));
577
                if (area->backend &&
573
                if (area->backend &&
578
                    area->backend->frame_free) {
574
                    area->backend->frame_free) {
579
                    area->backend->frame_free(area, b +
575
                    area->backend->frame_free(area, b +
580
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
576
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
581
                }
577
                }
582
                page_mapping_remove(as, b + j * PAGE_SIZE);            
578
                page_mapping_remove(as, b + j * PAGE_SIZE);            
583
                page_table_unlock(as, false);
579
                page_table_unlock(as, false);
584
            }
580
            }
585
        }
581
        }
586
    }
582
    }
587
 
583
 
588
    /*
584
    /*
589
     * Finish TLB shootdown sequence.
585
     * Finish TLB shootdown sequence.
590
     */
586
     */
591
 
587
 
592
    tlb_invalidate_pages(as->asid, area->base, area->pages);
588
    tlb_invalidate_pages(as->asid, area->base, area->pages);
593
    /*
589
    /*
594
     * Invalidate potential software translation caches (e.g. TSB on
590
     * Invalidate potential software translation caches (e.g. TSB on
595
     * sparc64).
591
     * sparc64).
596
     */
592
     */
597
    as_invalidate_translation_cache(as, area->base, area->pages);
593
    as_invalidate_translation_cache(as, area->base, area->pages);
598
    tlb_shootdown_finalize();
594
    tlb_shootdown_finalize();
599
   
595
   
600
    btree_destroy(&area->used_space);
596
    btree_destroy(&area->used_space);
601
 
597
 
602
    area->attributes |= AS_AREA_ATTR_PARTIAL;
598
    area->attributes |= AS_AREA_ATTR_PARTIAL;
603
   
599
   
604
    if (area->sh_info)
600
    if (area->sh_info)
605
        sh_info_remove_reference(area->sh_info);
601
        sh_info_remove_reference(area->sh_info);
606
       
602
       
607
    mutex_unlock(&area->lock);
603
    mutex_unlock(&area->lock);
608
 
604
 
609
    /*
605
    /*
610
     * Remove the empty area from address space.
606
     * Remove the empty area from address space.
611
     */
607
     */
612
    btree_remove(&as->as_area_btree, base, NULL);
608
    btree_remove(&as->as_area_btree, base, NULL);
613
   
609
   
614
    free(area);
610
    free(area);
615
   
611
   
616
    mutex_unlock(&as->lock);
612
    mutex_unlock(&as->lock);
617
    interrupts_restore(ipl);
613
    interrupts_restore(ipl);
618
    return 0;
614
    return 0;
619
}
615
}
620
 
616
 
621
/** Share address space area with another or the same address space.
617
/** Share address space area with another or the same address space.
622
 *
618
 *
623
 * Address space area mapping is shared with a new address space area.
619
 * Address space area mapping is shared with a new address space area.
624
 * If the source address space area has not been shared so far,
620
 * If the source address space area has not been shared so far,
625
 * a new sh_info is created. The new address space area simply gets the
621
 * a new sh_info is created. The new address space area simply gets the
626
 * sh_info of the source area. The process of duplicating the
622
 * sh_info of the source area. The process of duplicating the
627
 * mapping is done through the backend share function.
623
 * mapping is done through the backend share function.
628
 *
624
 *
629
 * @param src_as Pointer to source address space.
625
 * @param src_as Pointer to source address space.
630
 * @param src_base Base address of the source address space area.
626
 * @param src_base Base address of the source address space area.
631
 * @param acc_size Expected size of the source area.
627
 * @param acc_size Expected size of the source area.
632
 * @param dst_as Pointer to destination address space.
628
 * @param dst_as Pointer to destination address space.
633
 * @param dst_base Target base address.
629
 * @param dst_base Target base address.
634
 * @param dst_flags_mask Destination address space area flags mask.
630
 * @param dst_flags_mask Destination address space area flags mask.
635
 *
631
 *
636
 * @return Zero on success or ENOENT if there is no such task or if there is no
632
 * @return Zero on success or ENOENT if there is no such task or if there is no
637
 * such address space area, EPERM if there was a problem in accepting the area
633
 * such address space area, EPERM if there was a problem in accepting the area
638
 * or ENOMEM if there was a problem in allocating destination address space
634
 * or ENOMEM if there was a problem in allocating destination address space
639
 * area. ENOTSUP is returned if the address space area backend does not support
635
 * area. ENOTSUP is returned if the address space area backend does not support
640
 * sharing.
636
 * sharing.
641
 */
637
 */
642
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
638
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
643
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
639
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
644
{
640
{
645
    ipl_t ipl;
641
    ipl_t ipl;
646
    int src_flags;
642
    int src_flags;
647
    size_t src_size;
643
    size_t src_size;
648
    as_area_t *src_area, *dst_area;
644
    as_area_t *src_area, *dst_area;
649
    share_info_t *sh_info;
645
    share_info_t *sh_info;
650
    mem_backend_t *src_backend;
646
    mem_backend_t *src_backend;
651
    mem_backend_data_t src_backend_data;
647
    mem_backend_data_t src_backend_data;
652
   
648
   
653
    ipl = interrupts_disable();
649
    ipl = interrupts_disable();
654
    mutex_lock(&src_as->lock);
650
    mutex_lock(&src_as->lock);
655
    src_area = find_area_and_lock(src_as, src_base);
651
    src_area = find_area_and_lock(src_as, src_base);
656
    if (!src_area) {
652
    if (!src_area) {
657
        /*
653
        /*
658
         * Could not find the source address space area.
654
         * Could not find the source address space area.
659
         */
655
         */
660
        mutex_unlock(&src_as->lock);
656
        mutex_unlock(&src_as->lock);
661
        interrupts_restore(ipl);
657
        interrupts_restore(ipl);
662
        return ENOENT;
658
        return ENOENT;
663
    }
659
    }
664
 
660
 
665
    if (!src_area->backend || !src_area->backend->share) {
661
    if (!src_area->backend || !src_area->backend->share) {
666
        /*
662
        /*
667
         * There is no backend or the backend does not
663
         * There is no backend or the backend does not
668
         * know how to share the area.
664
         * know how to share the area.
669
         */
665
         */
670
        mutex_unlock(&src_area->lock);
666
        mutex_unlock(&src_area->lock);
671
        mutex_unlock(&src_as->lock);
667
        mutex_unlock(&src_as->lock);
672
        interrupts_restore(ipl);
668
        interrupts_restore(ipl);
673
        return ENOTSUP;
669
        return ENOTSUP;
674
    }
670
    }
675
   
671
   
676
    src_size = src_area->pages * PAGE_SIZE;
672
    src_size = src_area->pages * PAGE_SIZE;
677
    src_flags = src_area->flags;
673
    src_flags = src_area->flags;
678
    src_backend = src_area->backend;
674
    src_backend = src_area->backend;
679
    src_backend_data = src_area->backend_data;
675
    src_backend_data = src_area->backend_data;
680
 
676
 
681
    /* Share the cacheable flag from the original mapping */
677
    /* Share the cacheable flag from the original mapping */
682
    if (src_flags & AS_AREA_CACHEABLE)
678
    if (src_flags & AS_AREA_CACHEABLE)
683
        dst_flags_mask |= AS_AREA_CACHEABLE;
679
        dst_flags_mask |= AS_AREA_CACHEABLE;
684
 
680
 
685
    if (src_size != acc_size ||
681
    if (src_size != acc_size ||
686
        (src_flags & dst_flags_mask) != dst_flags_mask) {
682
        (src_flags & dst_flags_mask) != dst_flags_mask) {
687
        mutex_unlock(&src_area->lock);
683
        mutex_unlock(&src_area->lock);
688
        mutex_unlock(&src_as->lock);
684
        mutex_unlock(&src_as->lock);
689
        interrupts_restore(ipl);
685
        interrupts_restore(ipl);
690
        return EPERM;
686
        return EPERM;
691
    }
687
    }
692
 
688
 
693
    /*
689
    /*
694
     * Now we are committed to sharing the area.
690
     * Now we are committed to sharing the area.
695
     * First, prepare the area for sharing.
691
     * First, prepare the area for sharing.
696
     * Then it will be safe to unlock it.
692
     * Then it will be safe to unlock it.
697
     */
693
     */
698
    sh_info = src_area->sh_info;
694
    sh_info = src_area->sh_info;
699
    if (!sh_info) {
695
    if (!sh_info) {
700
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
696
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
701
        mutex_initialize(&sh_info->lock);
697
        mutex_initialize(&sh_info->lock);
702
        sh_info->refcount = 2;
698
        sh_info->refcount = 2;
703
        btree_create(&sh_info->pagemap);
699
        btree_create(&sh_info->pagemap);
704
        src_area->sh_info = sh_info;
700
        src_area->sh_info = sh_info;
705
        /*
701
        /*
706
         * Call the backend to setup sharing.
702
         * Call the backend to setup sharing.
707
         */
703
         */
708
        src_area->backend->share(src_area);
704
        src_area->backend->share(src_area);
709
    } else {
705
    } else {
710
        mutex_lock(&sh_info->lock);
706
        mutex_lock(&sh_info->lock);
711
        sh_info->refcount++;
707
        sh_info->refcount++;
712
        mutex_unlock(&sh_info->lock);
708
        mutex_unlock(&sh_info->lock);
713
    }
709
    }
714
 
710
 
715
    mutex_unlock(&src_area->lock);
711
    mutex_unlock(&src_area->lock);
716
    mutex_unlock(&src_as->lock);
712
    mutex_unlock(&src_as->lock);
717
 
713
 
718
    /*
714
    /*
719
     * Create copy of the source address space area.
715
     * Create copy of the source address space area.
720
     * The destination area is created with AS_AREA_ATTR_PARTIAL
716
     * The destination area is created with AS_AREA_ATTR_PARTIAL
721
     * attribute set which prevents race condition with
717
     * attribute set which prevents race condition with
722
     * preliminary as_page_fault() calls.
718
     * preliminary as_page_fault() calls.
723
     * The flags of the source area are masked against dst_flags_mask
719
     * The flags of the source area are masked against dst_flags_mask
724
     * to support sharing in less privileged mode.
720
     * to support sharing in less privileged mode.
725
     */
721
     */
726
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
722
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
727
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
723
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
728
    if (!dst_area) {
724
    if (!dst_area) {
729
        /*
725
        /*
730
         * Destination address space area could not be created.
726
         * Destination address space area could not be created.
731
         */
727
         */
732
        sh_info_remove_reference(sh_info);
728
        sh_info_remove_reference(sh_info);
733
       
729
       
734
        interrupts_restore(ipl);
730
        interrupts_restore(ipl);
735
        return ENOMEM;
731
        return ENOMEM;
736
    }
732
    }
737
 
733
 
738
    /*
734
    /*
739
     * Now the destination address space area has been
735
     * Now the destination address space area has been
740
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
736
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
741
     * attribute and set the sh_info.
737
     * attribute and set the sh_info.
742
     */
738
     */
743
    mutex_lock(&dst_as->lock); 
739
    mutex_lock(&dst_as->lock); 
744
    mutex_lock(&dst_area->lock);
740
    mutex_lock(&dst_area->lock);
745
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
741
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
746
    dst_area->sh_info = sh_info;
742
    dst_area->sh_info = sh_info;
747
    mutex_unlock(&dst_area->lock);
743
    mutex_unlock(&dst_area->lock);
748
    mutex_unlock(&dst_as->lock);   
744
    mutex_unlock(&dst_as->lock);   
749
 
745
 
750
    interrupts_restore(ipl);
746
    interrupts_restore(ipl);
751
   
747
   
752
    return 0;
748
    return 0;
753
}
749
}
754
 
750
 
755
/** Check access mode for address space area.
751
/** Check access mode for address space area.
756
 *
752
 *
757
 * The address space area must be locked prior to this call.
753
 * The address space area must be locked prior to this call.
758
 *
754
 *
759
 * @param area Address space area.
755
 * @param area Address space area.
760
 * @param access Access mode.
756
 * @param access Access mode.
761
 *
757
 *
762
 * @return False if access violates area's permissions, true otherwise.
758
 * @return False if access violates area's permissions, true otherwise.
763
 */
759
 */
764
bool as_area_check_access(as_area_t *area, pf_access_t access)
760
bool as_area_check_access(as_area_t *area, pf_access_t access)
765
{
761
{
766
    int flagmap[] = {
762
    int flagmap[] = {
767
        [PF_ACCESS_READ] = AS_AREA_READ,
763
        [PF_ACCESS_READ] = AS_AREA_READ,
768
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
764
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
769
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
765
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
770
    };
766
    };
771
 
767
 
772
    if (!(area->flags & flagmap[access]))
768
    if (!(area->flags & flagmap[access]))
773
        return false;
769
        return false;
774
   
770
   
775
    return true;
771
    return true;
776
}
772
}
777
 
773
 
778
/** Handle page fault within the current address space.
774
/** Handle page fault within the current address space.
779
 *
775
 *
780
 * This is the high-level page fault handler. It decides
776
 * This is the high-level page fault handler. It decides
781
 * whether the page fault can be resolved by any backend
777
 * whether the page fault can be resolved by any backend
782
 * and if so, it invokes the backend to resolve the page
778
 * and if so, it invokes the backend to resolve the page
783
 * fault.
779
 * fault.
784
 *
780
 *
785
 * Interrupts are assumed disabled.
781
 * Interrupts are assumed disabled.
786
 *
782
 *
787
 * @param page Faulting page.
783
 * @param page Faulting page.
788
 * @param access Access mode that caused the fault (i.e. read/write/exec).
784
 * @param access Access mode that caused the fault (i.e. read/write/exec).
789
 * @param istate Pointer to interrupted state.
785
 * @param istate Pointer to interrupted state.
790
 *
786
 *
791
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
787
 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
792
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
788
 *     fault was caused by copy_to_uspace() or copy_from_uspace().
793
 */
789
 */
794
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
790
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
795
{
791
{
796
    pte_t *pte;
792
    pte_t *pte;
797
    as_area_t *area;
793
    as_area_t *area;
798
   
794
   
799
    if (!THREAD)
795
    if (!THREAD)
800
        return AS_PF_FAULT;
796
        return AS_PF_FAULT;
801
       
797
       
802
    ASSERT(AS);
798
    ASSERT(AS);
803
 
799
 
804
    mutex_lock(&AS->lock);
800
    mutex_lock(&AS->lock);
805
    area = find_area_and_lock(AS, page);   
801
    area = find_area_and_lock(AS, page);   
806
    if (!area) {
802
    if (!area) {
807
        /*
803
        /*
808
         * No area contained mapping for 'page'.
804
         * No area contained mapping for 'page'.
809
         * Signal page fault to low-level handler.
805
         * Signal page fault to low-level handler.
810
         */
806
         */
811
        mutex_unlock(&AS->lock);
807
        mutex_unlock(&AS->lock);
812
        goto page_fault;
808
        goto page_fault;
813
    }
809
    }
814
 
810
 
815
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
811
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
816
        /*
812
        /*
817
         * The address space area is not fully initialized.
813
         * The address space area is not fully initialized.
818
         * Avoid possible race by returning error.
814
         * Avoid possible race by returning error.
819
         */
815
         */
820
        mutex_unlock(&area->lock);
816
        mutex_unlock(&area->lock);
821
        mutex_unlock(&AS->lock);
817
        mutex_unlock(&AS->lock);
822
        goto page_fault;       
818
        goto page_fault;       
823
    }
819
    }
824
 
820
 
825
    if (!area->backend || !area->backend->page_fault) {
821
    if (!area->backend || !area->backend->page_fault) {
826
        /*
822
        /*
827
         * The address space area is not backed by any backend
823
         * The address space area is not backed by any backend
828
         * or the backend cannot handle page faults.
824
         * or the backend cannot handle page faults.
829
         */
825
         */
830
        mutex_unlock(&area->lock);
826
        mutex_unlock(&area->lock);
831
        mutex_unlock(&AS->lock);
827
        mutex_unlock(&AS->lock);
832
        goto page_fault;       
828
        goto page_fault;       
833
    }
829
    }
834
 
830
 
835
    page_table_lock(AS, false);
831
    page_table_lock(AS, false);
836
   
832
   
837
    /*
833
    /*
838
     * To avoid race condition between two page faults
834
     * To avoid race condition between two page faults
839
     * on the same address, we need to make sure
835
     * on the same address, we need to make sure
840
     * the mapping has not been already inserted.
836
     * the mapping has not been already inserted.
841
     */
837
     */
842
    if ((pte = page_mapping_find(AS, page))) {
838
    if ((pte = page_mapping_find(AS, page))) {
843
        if (PTE_PRESENT(pte)) {
839
        if (PTE_PRESENT(pte)) {
844
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
840
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
845
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
841
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
846
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
842
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
847
                page_table_unlock(AS, false);
843
                page_table_unlock(AS, false);
848
                mutex_unlock(&area->lock);
844
                mutex_unlock(&area->lock);
849
                mutex_unlock(&AS->lock);
845
                mutex_unlock(&AS->lock);
850
                return AS_PF_OK;
846
                return AS_PF_OK;
851
            }
847
            }
852
        }
848
        }
853
    }
849
    }
854
   
850
   
855
    /*
851
    /*
856
     * Resort to the backend page fault handler.
852
     * Resort to the backend page fault handler.
857
     */
853
     */
858
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
854
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
859
        page_table_unlock(AS, false);
855
        page_table_unlock(AS, false);
860
        mutex_unlock(&area->lock);
856
        mutex_unlock(&area->lock);
861
        mutex_unlock(&AS->lock);
857
        mutex_unlock(&AS->lock);
862
        goto page_fault;
858
        goto page_fault;
863
    }
859
    }
864
   
860
   
865
    page_table_unlock(AS, false);
861
    page_table_unlock(AS, false);
866
    mutex_unlock(&area->lock);
862
    mutex_unlock(&area->lock);
867
    mutex_unlock(&AS->lock);
863
    mutex_unlock(&AS->lock);
868
    return AS_PF_OK;
864
    return AS_PF_OK;
869
 
865
 
870
page_fault:
866
page_fault:
871
    if (THREAD->in_copy_from_uspace) {
867
    if (THREAD->in_copy_from_uspace) {
872
        THREAD->in_copy_from_uspace = false;
868
        THREAD->in_copy_from_uspace = false;
873
        istate_set_retaddr(istate,
869
        istate_set_retaddr(istate,
874
            (uintptr_t) &memcpy_from_uspace_failover_address);
870
            (uintptr_t) &memcpy_from_uspace_failover_address);
875
    } else if (THREAD->in_copy_to_uspace) {
871
    } else if (THREAD->in_copy_to_uspace) {
876
        THREAD->in_copy_to_uspace = false;
872
        THREAD->in_copy_to_uspace = false;
877
        istate_set_retaddr(istate,
873
        istate_set_retaddr(istate,
878
            (uintptr_t) &memcpy_to_uspace_failover_address);
874
            (uintptr_t) &memcpy_to_uspace_failover_address);
879
    } else {
875
    } else {
880
        return AS_PF_FAULT;
876
        return AS_PF_FAULT;
881
    }
877
    }
882
 
878
 
883
    return AS_PF_DEFER;
879
    return AS_PF_DEFER;
884
}
880
}
885
 
881
 
886
/** Switch address spaces.
882
/** Switch address spaces.
887
 *
883
 *
888
 * Note that this function cannot sleep as it is essentially a part of
884
 * Note that this function cannot sleep as it is essentially a part of
889
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
885
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
890
 * thing which is forbidden in this context is locking the address space.
886
 * thing which is forbidden in this context is locking the address space.
891
 *
887
 *
892
 * When this function is enetered, no spinlocks may be held.
888
 * When this function is enetered, no spinlocks may be held.
893
 *
889
 *
894
 * @param old Old address space or NULL.
890
 * @param old Old address space or NULL.
895
 * @param new New address space.
891
 * @param new New address space.
896
 */
892
 */
897
void as_switch(as_t *old_as, as_t *new_as)
893
void as_switch(as_t *old_as, as_t *new_as)
898
{
894
{
899
    DEADLOCK_PROBE_INIT(p_asidlock);
895
    DEADLOCK_PROBE_INIT(p_asidlock);
900
    preemption_disable();
896
    preemption_disable();
901
retry:
897
retry:
902
    (void) interrupts_disable();
898
    (void) interrupts_disable();
903
    if (!spinlock_trylock(&asidlock)) {
899
    if (!spinlock_trylock(&asidlock)) {
904
        /*
900
        /*
905
         * Avoid deadlock with TLB shootdown.
901
         * Avoid deadlock with TLB shootdown.
906
         * We can enable interrupts here because
902
         * We can enable interrupts here because
907
         * preemption is disabled. We should not be
903
         * preemption is disabled. We should not be
908
         * holding any other lock.
904
         * holding any other lock.
909
         */
905
         */
910
        (void) interrupts_enable();
906
        (void) interrupts_enable();
911
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
907
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
912
        goto retry;
908
        goto retry;
913
    }
909
    }
914
    preemption_enable();
910
    preemption_enable();
915
 
911
 
916
    /*
912
    /*
917
     * First, take care of the old address space.
913
     * First, take care of the old address space.
918
     */
914
     */
919
    if (old_as) {
915
    if (old_as) {
920
        ASSERT(old_as->cpu_refcount);
916
        ASSERT(old_as->cpu_refcount);
921
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
917
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
922
            /*
918
            /*
923
             * The old address space is no longer active on
919
             * The old address space is no longer active on
924
             * any processor. It can be appended to the
920
             * any processor. It can be appended to the
925
             * list of inactive address spaces with assigned
921
             * list of inactive address spaces with assigned
926
             * ASID.
922
             * ASID.
927
             */
923
             */
928
            ASSERT(old_as->asid != ASID_INVALID);
924
            ASSERT(old_as->asid != ASID_INVALID);
929
            list_append(&old_as->inactive_as_with_asid_link,
925
            list_append(&old_as->inactive_as_with_asid_link,
930
                &inactive_as_with_asid_head);
926
                &inactive_as_with_asid_head);
931
        }
927
        }
932
 
928
 
933
        /*
929
        /*
934
         * Perform architecture-specific tasks when the address space
930
         * Perform architecture-specific tasks when the address space
935
         * is being removed from the CPU.
931
         * is being removed from the CPU.
936
         */
932
         */
937
        as_deinstall_arch(old_as);
933
        as_deinstall_arch(old_as);
938
    }
934
    }
939
 
935
 
940
    /*
936
    /*
941
     * Second, prepare the new address space.
937
     * Second, prepare the new address space.
942
     */
938
     */
943
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
939
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
944
        if (new_as->asid != ASID_INVALID)
940
        if (new_as->asid != ASID_INVALID)
945
            list_remove(&new_as->inactive_as_with_asid_link);
941
            list_remove(&new_as->inactive_as_with_asid_link);
946
        else
942
        else
947
            new_as->asid = asid_get();
943
            new_as->asid = asid_get();
948
    }
944
    }
949
#ifdef AS_PAGE_TABLE
945
#ifdef AS_PAGE_TABLE
950
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
946
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
951
#endif
947
#endif
952
   
948
   
953
    /*
949
    /*
954
     * Perform architecture-specific steps.
950
     * Perform architecture-specific steps.
955
     * (e.g. write ASID to hardware register etc.)
951
     * (e.g. write ASID to hardware register etc.)
956
     */
952
     */
957
    as_install_arch(new_as);
953
    as_install_arch(new_as);
958
 
954
 
959
    spinlock_unlock(&asidlock);
955
    spinlock_unlock(&asidlock);
960
   
956
   
961
    AS = new_as;
957
    AS = new_as;
962
}
958
}
963
 
959
 
964
/** Write directly into a page, bypassing area flags.
960
/** Write directly into a page, bypassing area flags.
965
 *
961
 *
966
 * This allows a debugger to write into a page that is mapped read-only
962
 * This allows a debugger to write into a page that is mapped read-only
967
 * (such as the text segment). Naturally, this is only possible if the
963
 * (such as the text segment). Naturally, this is only possible if the
968
 * correspoinding area is not shared and anonymous.
964
 * correspoinding area is not shared and anonymous.
969
 *
965
 *
970
 * FIXME: doesn't take into account that it isn't a good idea to write
966
 * FIXME: doesn't take into account that it isn't a good idea to write
971
 * into the frame if the area is shared or isn't anonymous
967
 * into the frame if the area is shared or isn't anonymous
972
 */
968
 */
973
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
969
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
974
{
970
{
975
    uintptr_t page;
971
    uintptr_t page;
976
    pte_t *pte;
972
    pte_t *pte;
977
    as_area_t *area;
973
    as_area_t *area;
978
    uintptr_t frame;
974
    uintptr_t frame;
979
    ipl_t ipl;
975
    ipl_t ipl;
980
    int rc;
976
    int rc;
981
 
977
 
982
    page = ALIGN_DOWN(va, PAGE_SIZE);
978
    page = ALIGN_DOWN(va, PAGE_SIZE);
983
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
979
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
984
 
980
 
985
restart:
981
restart:
986
    mutex_lock(&AS->lock);
982
    mutex_lock(&AS->lock);
987
    ipl = interrupts_disable();
983
    ipl = interrupts_disable();
988
    area = find_area_and_lock(AS, page);
984
    area = find_area_and_lock(AS, page);
989
    if (area->backend != &anon_backend || area->sh_info != NULL) {
985
    if (area->backend != &anon_backend || area->sh_info != NULL) {
990
        mutex_unlock(&area->lock);
986
        mutex_unlock(&area->lock);
991
        mutex_unlock(&AS->lock);
987
        mutex_unlock(&AS->lock);
992
        interrupts_restore(ipl);
988
        interrupts_restore(ipl);
993
 
989
 
994
        rc = as_area_make_writeable(area->base);
990
        rc = as_area_make_writeable(area->base);
995
        if (rc != 0) return rc;
991
        if (rc != 0) return rc;
996
 
992
 
997
        goto restart;
993
        goto restart;
998
    }
994
    }
999
 
995
 
1000
    pte = page_mapping_find(AS, page);
996
    pte = page_mapping_find(AS, page);
1001
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
997
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1002
        mutex_unlock(&area->lock);
998
        mutex_unlock(&area->lock);
1003
        mutex_unlock(&AS->lock);
999
        mutex_unlock(&AS->lock);
1004
        interrupts_restore(ipl);
1000
        interrupts_restore(ipl);
1005
 
1001
 
1006
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1002
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1007
        if (rc == AS_PF_FAULT) return EINVAL;
1003
        if (rc == AS_PF_FAULT) return EINVAL;
1008
 
1004
 
1009
        goto restart;
1005
        goto restart;
1010
    }
1006
    }
1011
 
1007
 
1012
    frame = PTE_GET_FRAME(pte);
1008
    frame = PTE_GET_FRAME(pte);
1013
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1009
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1014
 
1010
 
1015
    mutex_unlock(&area->lock);
1011
    mutex_unlock(&area->lock);
1016
    mutex_unlock(&AS->lock);
1012
    mutex_unlock(&AS->lock);
1017
    interrupts_restore(ipl);
1013
    interrupts_restore(ipl);
1018
 
1014
 
1019
    return EOK;
1015
    return EOK;
1020
}
1016
}
1021
 
1017
 
1022
/** Write data bypassing area flags.
1018
/** Write data bypassing area flags.
1023
 *
1019
 *
1024
 * See debug_write_inside_page().
1020
 * See debug_write_inside_page().
1025
 */
1021
 */
1026
int as_debug_write(uintptr_t va, void *data, size_t n)
1022
int as_debug_write(uintptr_t va, void *data, size_t n)
1027
{
1023
{
1028
    size_t now;
1024
    size_t now;
1029
    int rc;
1025
    int rc;
1030
 
1026
 
1031
    while (n > 0) {
1027
    while (n > 0) {
1032
        /* Number of bytes until the end of page */
1028
        /* Number of bytes until the end of page */
1033
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
1029
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
1034
        if (now > n) now = n;
1030
        if (now > n) now = n;
1035
 
1031
 
1036
        rc = debug_write_inside_page(va, data, now);
1032
        rc = debug_write_inside_page(va, data, now);
1037
        if (rc != EOK) return rc;
1033
        if (rc != EOK) return rc;
1038
 
1034
 
1039
        va += now;
1035
        va += now;
1040
        data += now;
1036
        data += now;
1041
        n -= now;
1037
        n -= now;
1042
    }
1038
    }
1043
 
1039
 
1044
    return EOK;
1040
    return EOK;
1045
}
1041
}
1046
 
1042
 
1047
/** Make sure area is private and anonymous.
1043
/** Make sure area is private and anonymous.
1048
 *
1044
 *
1049
 * Not atomic atm.
1045
 * Not atomic atm.
1050
 * @param address   Virtual address in AS.
1046
 * @param address   Virtual address in AS.
1051
 */
1047
 */
1052
int as_area_make_writeable(uintptr_t address)
1048
int as_area_make_writeable(uintptr_t address)
1053
{
1049
{
1054
    ipl_t ipl;
1050
    ipl_t ipl;
1055
    as_area_t *area;
1051
    as_area_t *area;
1056
    uintptr_t base, page;
1052
    uintptr_t base, page;
1057
    uintptr_t old_frame, frame;
1053
    uintptr_t old_frame, frame;
1058
    size_t size;
1054
    size_t size;
1059
    int flags;
1055
    int flags;
1060
    int page_flags;
1056
    int page_flags;
1061
    pte_t *pte;
1057
    pte_t *pte;
1062
    int rc;
1058
    int rc;
1063
    uintptr_t *pagemap;
1059
    uintptr_t *pagemap;
1064
 
1060
 
1065
    ipl = interrupts_disable();
1061
    ipl = interrupts_disable();
1066
    mutex_lock(&AS->lock);
1062
    mutex_lock(&AS->lock);
1067
    area = find_area_and_lock(AS, address);
1063
    area = find_area_and_lock(AS, address);
1068
    if (!area) {
1064
    if (!area) {
1069
        /*
1065
        /*
1070
         * Could not find the address space area.
1066
         * Could not find the address space area.
1071
         */
1067
         */
1072
        mutex_unlock(&AS->lock);
1068
        mutex_unlock(&AS->lock);
1073
        interrupts_restore(ipl);
1069
        interrupts_restore(ipl);
1074
        return ENOENT;
1070
        return ENOENT;
1075
    }
1071
    }
1076
 
1072
 
1077
    if (area->backend == &anon_backend && !area->sh_info) {
1073
    if (area->backend == &anon_backend && !area->sh_info) {
1078
        /* Nothing to do */
1074
        /* Nothing to do */
1079
        mutex_unlock(&area->lock);
1075
        mutex_unlock(&area->lock);
1080
        mutex_unlock(&AS->lock);
1076
        mutex_unlock(&AS->lock);
1081
        interrupts_restore(ipl);
1077
        interrupts_restore(ipl);
1082
        return EOK;
1078
        return EOK;
1083
    }
1079
    }
1084
 
1080
 
1085
    base = area->base;
1081
    base = area->base;
1086
    size = area->pages * PAGE_SIZE;
1082
    size = area->pages * PAGE_SIZE;
1087
    flags = area->flags;
1083
    flags = area->flags;
1088
    page_flags = as_area_get_flags(area);
1084
    page_flags = as_area_get_flags(area);
1089
 
1085
 
1090
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1086
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1091
    page_table_lock(AS, false);
1087
    page_table_lock(AS, false);
1092
 
1088
 
1093
    for (page = base; page < base + size; page += PAGE_SIZE) {
1089
    for (page = base; page < base + size; page += PAGE_SIZE) {
1094
        pte = page_mapping_find(AS, page);
1090
        pte = page_mapping_find(AS, page);
1095
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1091
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1096
            /* Fetch the missing page */
1092
            /* Fetch the missing page */
1097
            if (!area->backend || !area->backend->page_fault) {
1093
            if (!area->backend || !area->backend->page_fault) {
1098
                page_table_unlock(AS, false);
1094
                page_table_unlock(AS, false);
1099
                mutex_unlock(&area->lock);
1095
                mutex_unlock(&area->lock);
1100
                mutex_unlock(&AS->lock);
1096
                mutex_unlock(&AS->lock);
1101
                interrupts_restore(ipl);
1097
                interrupts_restore(ipl);
1102
                return EINVAL;
1098
                return EINVAL;
1103
            }
1099
            }
1104
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1100
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1105
                page_table_unlock(AS, false);
1101
                page_table_unlock(AS, false);
1106
                mutex_unlock(&area->lock);
1102
                mutex_unlock(&area->lock);
1107
                mutex_unlock(&AS->lock);
1103
                mutex_unlock(&AS->lock);
1108
                interrupts_restore(ipl);
1104
                interrupts_restore(ipl);
1109
                return EINVAL;
1105
                return EINVAL;
1110
            }
1106
            }
1111
        }
1107
        }
1112
        ASSERT(PTE_VALID(pte));
1108
        ASSERT(PTE_VALID(pte));
1113
 
1109
 
1114
        old_frame = PTE_GET_FRAME(pte);
1110
        old_frame = PTE_GET_FRAME(pte);
1115
 
1111
 
1116
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1112
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1117
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1113
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1118
            FRAME_SIZE);
1114
            FRAME_SIZE);
1119
 
1115
 
1120
        pagemap[(page - base) / PAGE_SIZE] = frame;
1116
        pagemap[(page - base) / PAGE_SIZE] = frame;
1121
    }
1117
    }
1122
 
1118
 
1123
    page_table_unlock(AS, false);
1119
    page_table_unlock(AS, false);
1124
    mutex_unlock(&area->lock);
1120
    mutex_unlock(&area->lock);
1125
    mutex_unlock(&AS->lock);
1121
    mutex_unlock(&AS->lock);
1126
    interrupts_restore(ipl);
1122
    interrupts_restore(ipl);
1127
 
1123
 
1128
    rc = as_area_destroy(AS, address);
1124
    rc = as_area_destroy(AS, address);
1129
    if (rc < 0) {
1125
    if (rc < 0) {
1130
        free(pagemap);
1126
        free(pagemap);
1131
        return rc;
1127
        return rc;
1132
    }
1128
    }
1133
 
1129
 
1134
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1130
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1135
        &anon_backend, NULL);
1131
        &anon_backend, NULL);
1136
    if (area == NULL) {
1132
    if (area == NULL) {
1137
        free(pagemap);
1133
        free(pagemap);
1138
        return rc;
1134
        return rc;
1139
    }
1135
    }
1140
 
1136
 
1141
    mutex_lock(&AS->lock);
1137
    mutex_lock(&AS->lock);
1142
    mutex_lock(&area->lock);
1138
    mutex_lock(&area->lock);
1143
    page_table_lock(AS, false);
1139
    page_table_lock(AS, false);
1144
    for (page = base; page < base + size; page += PAGE_SIZE) {
1140
    for (page = base; page < base + size; page += PAGE_SIZE) {
1145
        frame = pagemap[(page - base) / PAGE_SIZE];
1141
        frame = pagemap[(page - base) / PAGE_SIZE];
1146
 
1142
 
1147
        page_mapping_insert(AS, page, frame, page_flags);
1143
        page_mapping_insert(AS, page, frame, page_flags);
1148
        if (!used_space_insert(area, page, 1))
1144
        if (!used_space_insert(area, page, 1))
1149
            panic("Could not insert used space.\n");
1145
            panic("Could not insert used space.\n");
1150
    }
1146
    }
1151
 
1147
 
1152
    page_table_unlock(AS, false);
1148
    page_table_unlock(AS, false);
1153
 
1149
 
1154
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1150
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1155
 
1151
 
1156
    mutex_unlock(&area->lock);
1152
    mutex_unlock(&area->lock);
1157
    mutex_unlock(&AS->lock);
1153
    mutex_unlock(&AS->lock);
1158
 
1154
 
1159
    free(pagemap);
1155
    free(pagemap);
1160
 
1156
 
1161
    return EOK;
1157
    return EOK;
1162
}
1158
}
1163
 
1159
 
1164
/** Convert address space area flags to page flags.
1160
/** Convert address space area flags to page flags.
1165
 *
1161
 *
1166
 * @param aflags Flags of some address space area.
1162
 * @param aflags Flags of some address space area.
1167
 *
1163
 *
1168
 * @return Flags to be passed to page_mapping_insert().
1164
 * @return Flags to be passed to page_mapping_insert().
1169
 */
1165
 */
1170
int area_flags_to_page_flags(int aflags)
1166
int area_flags_to_page_flags(int aflags)
1171
{
1167
{
1172
    int flags;
1168
    int flags;
1173
 
1169
 
1174
    flags = PAGE_USER | PAGE_PRESENT;
1170
    flags = PAGE_USER | PAGE_PRESENT;
1175
   
1171
   
1176
    if (aflags & AS_AREA_READ)
1172
    if (aflags & AS_AREA_READ)
1177
        flags |= PAGE_READ;
1173
        flags |= PAGE_READ;
1178
       
1174
       
1179
    if (aflags & AS_AREA_WRITE)
1175
    if (aflags & AS_AREA_WRITE)
1180
        flags |= PAGE_WRITE;
1176
        flags |= PAGE_WRITE;
1181
   
1177
   
1182
    if (aflags & AS_AREA_EXEC)
1178
    if (aflags & AS_AREA_EXEC)
1183
        flags |= PAGE_EXEC;
1179
        flags |= PAGE_EXEC;
1184
   
1180
   
1185
    if (aflags & AS_AREA_CACHEABLE)
1181
    if (aflags & AS_AREA_CACHEABLE)
1186
        flags |= PAGE_CACHEABLE;
1182
        flags |= PAGE_CACHEABLE;
1187
       
1183
       
1188
    return flags;
1184
    return flags;
1189
}
1185
}
1190
 
1186
 
1191
/** Compute flags for virtual address translation subsytem.
1187
/** Compute flags for virtual address translation subsytem.
1192
 *
1188
 *
1193
 * The address space area must be locked.
1189
 * The address space area must be locked.
1194
 * Interrupts must be disabled.
1190
 * Interrupts must be disabled.
1195
 *
1191
 *
1196
 * @param a Address space area.
1192
 * @param a Address space area.
1197
 *
1193
 *
1198
 * @return Flags to be used in page_mapping_insert().
1194
 * @return Flags to be used in page_mapping_insert().
1199
 */
1195
 */
1200
int as_area_get_flags(as_area_t *a)
1196
int as_area_get_flags(as_area_t *a)
1201
{
1197
{
1202
    return area_flags_to_page_flags(a->flags);
1198
    return area_flags_to_page_flags(a->flags);
1203
}
1199
}
1204
 
1200
 
1205
/** Create page table.
1201
/** Create page table.
1206
 *
1202
 *
1207
 * Depending on architecture, create either address space
1203
 * Depending on architecture, create either address space
1208
 * private or global page table.
1204
 * private or global page table.
1209
 *
1205
 *
1210
 * @param flags Flags saying whether the page table is for kernel address space.
1206
 * @param flags Flags saying whether the page table is for kernel address space.
1211
 *
1207
 *
1212
 * @return First entry of the page table.
1208
 * @return First entry of the page table.
1213
 */
1209
 */
1214
pte_t *page_table_create(int flags)
1210
pte_t *page_table_create(int flags)
1215
{
1211
{
1216
#ifdef __OBJC__
1212
#ifdef __OBJC__
1217
    return [as_t page_table_create: flags];
1213
    return [as_t page_table_create: flags];
1218
#else
1214
#else
1219
    ASSERT(as_operations);
1215
    ASSERT(as_operations);
1220
    ASSERT(as_operations->page_table_create);
1216
    ASSERT(as_operations->page_table_create);
1221
   
1217
   
1222
    return as_operations->page_table_create(flags);
1218
    return as_operations->page_table_create(flags);
1223
#endif
1219
#endif
1224
}
1220
}
1225
 
1221
 
1226
/** Destroy page table.
1222
/** Destroy page table.
1227
 *
1223
 *
1228
 * Destroy page table in architecture specific way.
1224
 * Destroy page table in architecture specific way.
1229
 *
1225
 *
1230
 * @param page_table Physical address of PTL0.
1226
 * @param page_table Physical address of PTL0.
1231
 */
1227
 */
1232
void page_table_destroy(pte_t *page_table)
1228
void page_table_destroy(pte_t *page_table)
1233
{
1229
{
1234
#ifdef __OBJC__
1230
#ifdef __OBJC__
1235
    return [as_t page_table_destroy: page_table];
1231
    return [as_t page_table_destroy: page_table];
1236
#else
1232
#else
1237
    ASSERT(as_operations);
1233
    ASSERT(as_operations);
1238
    ASSERT(as_operations->page_table_destroy);
1234
    ASSERT(as_operations->page_table_destroy);
1239
   
1235
   
1240
    as_operations->page_table_destroy(page_table);
1236
    as_operations->page_table_destroy(page_table);
1241
#endif
1237
#endif
1242
}
1238
}
1243
 
1239
 
1244
/** Lock page table.
1240
/** Lock page table.
1245
 *
1241
 *
1246
 * This function should be called before any page_mapping_insert(),
1242
 * This function should be called before any page_mapping_insert(),
1247
 * page_mapping_remove() and page_mapping_find().
1243
 * page_mapping_remove() and page_mapping_find().
1248
 *
1244
 *
1249
 * Locking order is such that address space areas must be locked
1245
 * Locking order is such that address space areas must be locked
1250
 * prior to this call. Address space can be locked prior to this
1246
 * prior to this call. Address space can be locked prior to this
1251
 * call in which case the lock argument is false.
1247
 * call in which case the lock argument is false.
1252
 *
1248
 *
1253
 * @param as Address space.
1249
 * @param as Address space.
1254
 * @param lock If false, do not attempt to lock as->lock.
1250
 * @param lock If false, do not attempt to lock as->lock.
1255
 */
1251
 */
1256
void page_table_lock(as_t *as, bool lock)
1252
void page_table_lock(as_t *as, bool lock)
1257
{
1253
{
1258
#ifdef __OBJC__
1254
#ifdef __OBJC__
1259
    [as page_table_lock: lock];
1255
    [as page_table_lock: lock];
1260
#else
1256
#else
1261
    ASSERT(as_operations);
1257
    ASSERT(as_operations);
1262
    ASSERT(as_operations->page_table_lock);
1258
    ASSERT(as_operations->page_table_lock);
1263
   
1259
   
1264
    as_operations->page_table_lock(as, lock);
1260
    as_operations->page_table_lock(as, lock);
1265
#endif
1261
#endif
1266
}
1262
}
1267
 
1263
 
1268
/** Unlock page table.
1264
/** Unlock page table.
1269
 *
1265
 *
1270
 * @param as Address space.
1266
 * @param as Address space.
1271
 * @param unlock If false, do not attempt to unlock as->lock.
1267
 * @param unlock If false, do not attempt to unlock as->lock.
1272
 */
1268
 */
1273
void page_table_unlock(as_t *as, bool unlock)
1269
void page_table_unlock(as_t *as, bool unlock)
1274
{
1270
{
1275
#ifdef __OBJC__
1271
#ifdef __OBJC__
1276
    [as page_table_unlock: unlock];
1272
    [as page_table_unlock: unlock];
1277
#else
1273
#else
1278
    ASSERT(as_operations);
1274
    ASSERT(as_operations);
1279
    ASSERT(as_operations->page_table_unlock);
1275
    ASSERT(as_operations->page_table_unlock);
1280
   
1276
   
1281
    as_operations->page_table_unlock(as, unlock);
1277
    as_operations->page_table_unlock(as, unlock);
1282
#endif
1278
#endif
1283
}
1279
}
1284
 
1280
 
1285
 
1281
 
1286
/** Find address space area and lock it.
1282
/** Find address space area and lock it.
1287
 *
1283
 *
1288
 * The address space must be locked and interrupts must be disabled.
1284
 * The address space must be locked and interrupts must be disabled.
1289
 *
1285
 *
1290
 * @param as Address space.
1286
 * @param as Address space.
1291
 * @param va Virtual address.
1287
 * @param va Virtual address.
1292
 *
1288
 *
1293
 * @return Locked address space area containing va on success or NULL on
1289
 * @return Locked address space area containing va on success or NULL on
1294
 *     failure.
1290
 *     failure.
1295
 */
1291
 */
1296
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1292
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1297
{
1293
{
1298
    as_area_t *a;
1294
    as_area_t *a;
1299
    btree_node_t *leaf, *lnode;
1295
    btree_node_t *leaf, *lnode;
1300
    unsigned int i;
1296
    unsigned int i;
1301
   
1297
   
1302
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1298
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1303
    if (a) {
1299
    if (a) {
1304
        /* va is the base address of an address space area */
1300
        /* va is the base address of an address space area */
1305
        mutex_lock(&a->lock);
1301
        mutex_lock(&a->lock);
1306
        return a;
1302
        return a;
1307
    }
1303
    }
1308
   
1304
   
1309
    /*
1305
    /*
1310
     * Search the leaf node and the righmost record of its left neighbour
1306
     * Search the leaf node and the righmost record of its left neighbour
1311
     * to find out whether this is a miss or va belongs to an address
1307
     * to find out whether this is a miss or va belongs to an address
1312
     * space area found there.
1308
     * space area found there.
1313
     */
1309
     */
1314
   
1310
   
1315
    /* First, search the leaf node itself. */
1311
    /* First, search the leaf node itself. */
1316
    for (i = 0; i < leaf->keys; i++) {
1312
    for (i = 0; i < leaf->keys; i++) {
1317
        a = (as_area_t *) leaf->value[i];
1313
        a = (as_area_t *) leaf->value[i];
1318
        mutex_lock(&a->lock);
1314
        mutex_lock(&a->lock);
1319
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1315
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1320
            return a;
1316
            return a;
1321
        }
1317
        }
1322
        mutex_unlock(&a->lock);
1318
        mutex_unlock(&a->lock);
1323
    }
1319
    }
1324
 
1320
 
1325
    /*
1321
    /*
1326
     * Second, locate the left neighbour and test its last record.
1322
     * Second, locate the left neighbour and test its last record.
1327
     * Because of its position in the B+tree, it must have base < va.
1323
     * Because of its position in the B+tree, it must have base < va.
1328
     */
1324
     */
1329
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1325
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1330
    if (lnode) {
1326
    if (lnode) {
1331
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1327
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1332
        mutex_lock(&a->lock);
1328
        mutex_lock(&a->lock);
1333
        if (va < a->base + a->pages * PAGE_SIZE) {
1329
        if (va < a->base + a->pages * PAGE_SIZE) {
1334
            return a;
1330
            return a;
1335
        }
1331
        }
1336
        mutex_unlock(&a->lock);
1332
        mutex_unlock(&a->lock);
1337
    }
1333
    }
1338
 
1334
 
1339
    return NULL;
1335
    return NULL;
1340
}
1336
}
1341
 
1337
 
1342
/** Check area conflicts with other areas.
1338
/** Check area conflicts with other areas.
1343
 *
1339
 *
1344
 * The address space must be locked and interrupts must be disabled.
1340
 * The address space must be locked and interrupts must be disabled.
1345
 *
1341
 *
1346
 * @param as Address space.
1342
 * @param as Address space.
1347
 * @param va Starting virtual address of the area being tested.
1343
 * @param va Starting virtual address of the area being tested.
1348
 * @param size Size of the area being tested.
1344
 * @param size Size of the area being tested.
1349
 * @param avoid_area Do not touch this area.
1345
 * @param avoid_area Do not touch this area.
1350
 *
1346
 *
1351
 * @return True if there is no conflict, false otherwise.
1347
 * @return True if there is no conflict, false otherwise.
1352
 */
1348
 */
1353
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1349
bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1354
              as_area_t *avoid_area)
1350
              as_area_t *avoid_area)
1355
{
1351
{
1356
    as_area_t *a;
1352
    as_area_t *a;
1357
    btree_node_t *leaf, *node;
1353
    btree_node_t *leaf, *node;
1358
    unsigned int i;
1354
    unsigned int i;
1359
   
1355
   
1360
    /*
1356
    /*
1361
     * We don't want any area to have conflicts with NULL page.
1357
     * We don't want any area to have conflicts with NULL page.
1362
     */
1358
     */
1363
    if (overlaps(va, size, NULL, PAGE_SIZE))
1359
    if (overlaps(va, size, NULL, PAGE_SIZE))
1364
        return false;
1360
        return false;
1365
   
1361
   
1366
    /*
1362
    /*
1367
     * The leaf node is found in O(log n), where n is proportional to
1363
     * The leaf node is found in O(log n), where n is proportional to
1368
     * the number of address space areas belonging to as.
1364
     * the number of address space areas belonging to as.
1369
     * The check for conflicts is then attempted on the rightmost
1365
     * The check for conflicts is then attempted on the rightmost
1370
     * record in the left neighbour, the leftmost record in the right
1366
     * record in the left neighbour, the leftmost record in the right
1371
     * neighbour and all records in the leaf node itself.
1367
     * neighbour and all records in the leaf node itself.
1372
     */
1368
     */
1373
   
1369
   
1374
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1370
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1375
        if (a != avoid_area)
1371
        if (a != avoid_area)
1376
            return false;
1372
            return false;
1377
    }
1373
    }
1378
   
1374
   
1379
    /* First, check the two border cases. */
1375
    /* First, check the two border cases. */
1380
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1376
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1381
        a = (as_area_t *) node->value[node->keys - 1];
1377
        a = (as_area_t *) node->value[node->keys - 1];
1382
        mutex_lock(&a->lock);
1378
        mutex_lock(&a->lock);
1383
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1379
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1384
            mutex_unlock(&a->lock);
1380
            mutex_unlock(&a->lock);
1385
            return false;
1381
            return false;
1386
        }
1382
        }
1387
        mutex_unlock(&a->lock);
1383
        mutex_unlock(&a->lock);
1388
    }
1384
    }
1389
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1385
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1390
    if (node) {
1386
    if (node) {
1391
        a = (as_area_t *) node->value[0];
1387
        a = (as_area_t *) node->value[0];
1392
        mutex_lock(&a->lock);
1388
        mutex_lock(&a->lock);
1393
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1389
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1394
            mutex_unlock(&a->lock);
1390
            mutex_unlock(&a->lock);
1395
            return false;
1391
            return false;
1396
        }
1392
        }
1397
        mutex_unlock(&a->lock);
1393
        mutex_unlock(&a->lock);
1398
    }
1394
    }
1399
   
1395
   
1400
    /* Second, check the leaf node. */
1396
    /* Second, check the leaf node. */
1401
    for (i = 0; i < leaf->keys; i++) {
1397
    for (i = 0; i < leaf->keys; i++) {
1402
        a = (as_area_t *) leaf->value[i];
1398
        a = (as_area_t *) leaf->value[i];
1403
   
1399
   
1404
        if (a == avoid_area)
1400
        if (a == avoid_area)
1405
            continue;
1401
            continue;
1406
   
1402
   
1407
        mutex_lock(&a->lock);
1403
        mutex_lock(&a->lock);
1408
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1404
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1409
            mutex_unlock(&a->lock);
1405
            mutex_unlock(&a->lock);
1410
            return false;
1406
            return false;
1411
        }
1407
        }
1412
        mutex_unlock(&a->lock);
1408
        mutex_unlock(&a->lock);
1413
    }
1409
    }
1414
 
1410
 
1415
    /*
1411
    /*
1416
     * So far, the area does not conflict with other areas.
1412
     * So far, the area does not conflict with other areas.
1417
     * Check if it doesn't conflict with kernel address space.
1413
     * Check if it doesn't conflict with kernel address space.
1418
     */  
1414
     */  
1419
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1415
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1420
        return !overlaps(va, size,
1416
        return !overlaps(va, size,
1421
            KERNEL_ADDRESS_SPACE_START,
1417
            KERNEL_ADDRESS_SPACE_START,
1422
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1418
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1423
    }
1419
    }
1424
 
1420
 
1425
    return true;
1421
    return true;
1426
}
1422
}
1427
 
1423
 
1428
/** Return size of the address space area with given base.
1424
/** Return size of the address space area with given base.
1429
 *
1425
 *
1430
 * @param base      Arbitrary address insede the address space area.
1426
 * @param base      Arbitrary address insede the address space area.
1431
 *
1427
 *
1432
 * @return      Size of the address space area in bytes or zero if it
1428
 * @return      Size of the address space area in bytes or zero if it
1433
 *          does not exist.
1429
 *          does not exist.
1434
 */
1430
 */
1435
size_t as_area_get_size(uintptr_t base)
1431
size_t as_area_get_size(uintptr_t base)
1436
{
1432
{
1437
    ipl_t ipl;
1433
    ipl_t ipl;
1438
    as_area_t *src_area;
1434
    as_area_t *src_area;
1439
    size_t size;
1435
    size_t size;
1440
 
1436
 
1441
    ipl = interrupts_disable();
1437
    ipl = interrupts_disable();
1442
    src_area = find_area_and_lock(AS, base);
1438
    src_area = find_area_and_lock(AS, base);
1443
    if (src_area){
1439
    if (src_area){
1444
        size = src_area->pages * PAGE_SIZE;
1440
        size = src_area->pages * PAGE_SIZE;
1445
        mutex_unlock(&src_area->lock);
1441
        mutex_unlock(&src_area->lock);
1446
    } else {
1442
    } else {
1447
        size = 0;
1443
        size = 0;
1448
    }
1444
    }
1449
    interrupts_restore(ipl);
1445
    interrupts_restore(ipl);
1450
    return size;
1446
    return size;
1451
}
1447
}
1452
 
1448
 
1453
/** Mark portion of address space area as used.
1449
/** Mark portion of address space area as used.
1454
 *
1450
 *
1455
 * The address space area must be already locked.
1451
 * The address space area must be already locked.
1456
 *
1452
 *
1457
 * @param a Address space area.
1453
 * @param a Address space area.
1458
 * @param page First page to be marked.
1454
 * @param page First page to be marked.
1459
 * @param count Number of page to be marked.
1455
 * @param count Number of page to be marked.
1460
 *
1456
 *
1461
 * @return 0 on failure and 1 on success.
1457
 * @return 0 on failure and 1 on success.
1462
 */
1458
 */
1463
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1459
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1464
{
1460
{
1465
    btree_node_t *leaf, *node;
1461
    btree_node_t *leaf, *node;
1466
    count_t pages;
1462
    count_t pages;
1467
    unsigned int i;
1463
    unsigned int i;
1468
 
1464
 
1469
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1465
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1470
    ASSERT(count);
1466
    ASSERT(count);
1471
 
1467
 
1472
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1468
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1473
    if (pages) {
1469
    if (pages) {
1474
        /*
1470
        /*
1475
         * We hit the beginning of some used space.
1471
         * We hit the beginning of some used space.
1476
         */
1472
         */
1477
        return 0;
1473
        return 0;
1478
    }
1474
    }
1479
 
1475
 
1480
    if (!leaf->keys) {
1476
    if (!leaf->keys) {
1481
        btree_insert(&a->used_space, page, (void *) count, leaf);
1477
        btree_insert(&a->used_space, page, (void *) count, leaf);
1482
        return 1;
1478
        return 1;
1483
    }
1479
    }
1484
 
1480
 
1485
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1481
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1486
    if (node) {
1482
    if (node) {
1487
        uintptr_t left_pg = node->key[node->keys - 1];
1483
        uintptr_t left_pg = node->key[node->keys - 1];
1488
        uintptr_t right_pg = leaf->key[0];
1484
        uintptr_t right_pg = leaf->key[0];
1489
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1485
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1490
        count_t right_cnt = (count_t) leaf->value[0];
1486
        count_t right_cnt = (count_t) leaf->value[0];
1491
       
1487
       
1492
        /*
1488
        /*
1493
         * Examine the possibility that the interval fits
1489
         * Examine the possibility that the interval fits
1494
         * somewhere between the rightmost interval of
1490
         * somewhere between the rightmost interval of
1495
         * the left neigbour and the first interval of the leaf.
1491
         * the left neigbour and the first interval of the leaf.
1496
         */
1492
         */
1497
         
1493
         
1498
        if (page >= right_pg) {
1494
        if (page >= right_pg) {
1499
            /* Do nothing. */
1495
            /* Do nothing. */
1500
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1496
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1501
            left_cnt * PAGE_SIZE)) {
1497
            left_cnt * PAGE_SIZE)) {
1502
            /* The interval intersects with the left interval. */
1498
            /* The interval intersects with the left interval. */
1503
            return 0;
1499
            return 0;
1504
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1500
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1505
            right_cnt * PAGE_SIZE)) {
1501
            right_cnt * PAGE_SIZE)) {
1506
            /* The interval intersects with the right interval. */
1502
            /* The interval intersects with the right interval. */
1507
            return 0;          
1503
            return 0;          
1508
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1504
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1509
            (page + count * PAGE_SIZE == right_pg)) {
1505
            (page + count * PAGE_SIZE == right_pg)) {
1510
            /*
1506
            /*
1511
             * The interval can be added by merging the two already
1507
             * The interval can be added by merging the two already
1512
             * present intervals.
1508
             * present intervals.
1513
             */
1509
             */
1514
            node->value[node->keys - 1] += count + right_cnt;
1510
            node->value[node->keys - 1] += count + right_cnt;
1515
            btree_remove(&a->used_space, right_pg, leaf);
1511
            btree_remove(&a->used_space, right_pg, leaf);
1516
            return 1;
1512
            return 1;
1517
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1513
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1518
            /*
1514
            /*
1519
             * The interval can be added by simply growing the left
1515
             * The interval can be added by simply growing the left
1520
             * interval.
1516
             * interval.
1521
             */
1517
             */
1522
            node->value[node->keys - 1] += count;
1518
            node->value[node->keys - 1] += count;
1523
            return 1;
1519
            return 1;
1524
        } else if (page + count * PAGE_SIZE == right_pg) {
1520
        } else if (page + count * PAGE_SIZE == right_pg) {
1525
            /*
1521
            /*
1526
             * The interval can be addded by simply moving base of
1522
             * The interval can be addded by simply moving base of
1527
             * the right interval down and increasing its size
1523
             * the right interval down and increasing its size
1528
             * accordingly.
1524
             * accordingly.
1529
             */
1525
             */
1530
            leaf->value[0] += count;
1526
            leaf->value[0] += count;
1531
            leaf->key[0] = page;
1527
            leaf->key[0] = page;
1532
            return 1;
1528
            return 1;
1533
        } else {
1529
        } else {
1534
            /*
1530
            /*
1535
             * The interval is between both neigbouring intervals,
1531
             * The interval is between both neigbouring intervals,
1536
             * but cannot be merged with any of them.
1532
             * but cannot be merged with any of them.
1537
             */
1533
             */
1538
            btree_insert(&a->used_space, page, (void *) count,
1534
            btree_insert(&a->used_space, page, (void *) count,
1539
                leaf);
1535
                leaf);
1540
            return 1;
1536
            return 1;
1541
        }
1537
        }
1542
    } else if (page < leaf->key[0]) {
1538
    } else if (page < leaf->key[0]) {
1543
        uintptr_t right_pg = leaf->key[0];
1539
        uintptr_t right_pg = leaf->key[0];
1544
        count_t right_cnt = (count_t) leaf->value[0];
1540
        count_t right_cnt = (count_t) leaf->value[0];
1545
   
1541
   
1546
        /*
1542
        /*
1547
         * Investigate the border case in which the left neighbour does
1543
         * Investigate the border case in which the left neighbour does
1548
         * not exist but the interval fits from the left.
1544
         * not exist but the interval fits from the left.
1549
         */
1545
         */
1550
         
1546
         
1551
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1547
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1552
            right_cnt * PAGE_SIZE)) {
1548
            right_cnt * PAGE_SIZE)) {
1553
            /* The interval intersects with the right interval. */
1549
            /* The interval intersects with the right interval. */
1554
            return 0;
1550
            return 0;
1555
        } else if (page + count * PAGE_SIZE == right_pg) {
1551
        } else if (page + count * PAGE_SIZE == right_pg) {
1556
            /*
1552
            /*
1557
             * The interval can be added by moving the base of the
1553
             * The interval can be added by moving the base of the
1558
             * right interval down and increasing its size
1554
             * right interval down and increasing its size
1559
             * accordingly.
1555
             * accordingly.
1560
             */
1556
             */
1561
            leaf->key[0] = page;
1557
            leaf->key[0] = page;
1562
            leaf->value[0] += count;
1558
            leaf->value[0] += count;
1563
            return 1;
1559
            return 1;
1564
        } else {
1560
        } else {
1565
            /*
1561
            /*
1566
             * The interval doesn't adjoin with the right interval.
1562
             * The interval doesn't adjoin with the right interval.
1567
             * It must be added individually.
1563
             * It must be added individually.
1568
             */
1564
             */
1569
            btree_insert(&a->used_space, page, (void *) count,
1565
            btree_insert(&a->used_space, page, (void *) count,
1570
                leaf);
1566
                leaf);
1571
            return 1;
1567
            return 1;
1572
        }
1568
        }
1573
    }
1569
    }
1574
 
1570
 
1575
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1571
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1576
    if (node) {
1572
    if (node) {
1577
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1573
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1578
        uintptr_t right_pg = node->key[0];
1574
        uintptr_t right_pg = node->key[0];
1579
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1575
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1580
        count_t right_cnt = (count_t) node->value[0];
1576
        count_t right_cnt = (count_t) node->value[0];
1581
       
1577
       
1582
        /*
1578
        /*
1583
         * Examine the possibility that the interval fits
1579
         * Examine the possibility that the interval fits
1584
         * somewhere between the leftmost interval of
1580
         * somewhere between the leftmost interval of
1585
         * the right neigbour and the last interval of the leaf.
1581
         * the right neigbour and the last interval of the leaf.
1586
         */
1582
         */
1587
 
1583
 
1588
        if (page < left_pg) {
1584
        if (page < left_pg) {
1589
            /* Do nothing. */
1585
            /* Do nothing. */
1590
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1586
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1591
            left_cnt * PAGE_SIZE)) {
1587
            left_cnt * PAGE_SIZE)) {
1592
            /* The interval intersects with the left interval. */
1588
            /* The interval intersects with the left interval. */
1593
            return 0;
1589
            return 0;
1594
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1590
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1595
            right_cnt * PAGE_SIZE)) {
1591
            right_cnt * PAGE_SIZE)) {
1596
            /* The interval intersects with the right interval. */
1592
            /* The interval intersects with the right interval. */
1597
            return 0;          
1593
            return 0;          
1598
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1594
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1599
            (page + count * PAGE_SIZE == right_pg)) {
1595
            (page + count * PAGE_SIZE == right_pg)) {
1600
            /*
1596
            /*
1601
             * The interval can be added by merging the two already
1597
             * The interval can be added by merging the two already
1602
             * present intervals.
1598
             * present intervals.
1603
             * */
1599
             * */
1604
            leaf->value[leaf->keys - 1] += count + right_cnt;
1600
            leaf->value[leaf->keys - 1] += count + right_cnt;
1605
            btree_remove(&a->used_space, right_pg, node);
1601
            btree_remove(&a->used_space, right_pg, node);
1606
            return 1;
1602
            return 1;
1607
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1603
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1608
            /*
1604
            /*
1609
             * The interval can be added by simply growing the left
1605
             * The interval can be added by simply growing the left
1610
             * interval.
1606
             * interval.
1611
             * */
1607
             * */
1612
            leaf->value[leaf->keys - 1] +=  count;
1608
            leaf->value[leaf->keys - 1] +=  count;
1613
            return 1;
1609
            return 1;
1614
        } else if (page + count * PAGE_SIZE == right_pg) {
1610
        } else if (page + count * PAGE_SIZE == right_pg) {
1615
            /*
1611
            /*
1616
             * The interval can be addded by simply moving base of
1612
             * The interval can be addded by simply moving base of
1617
             * the right interval down and increasing its size
1613
             * the right interval down and increasing its size
1618
             * accordingly.
1614
             * accordingly.
1619
             */
1615
             */
1620
            node->value[0] += count;
1616
            node->value[0] += count;
1621
            node->key[0] = page;
1617
            node->key[0] = page;
1622
            return 1;
1618
            return 1;
1623
        } else {
1619
        } else {
1624
            /*
1620
            /*
1625
             * The interval is between both neigbouring intervals,
1621
             * The interval is between both neigbouring intervals,
1626
             * but cannot be merged with any of them.
1622
             * but cannot be merged with any of them.
1627
             */
1623
             */
1628
            btree_insert(&a->used_space, page, (void *) count,
1624
            btree_insert(&a->used_space, page, (void *) count,
1629
                leaf);
1625
                leaf);
1630
            return 1;
1626
            return 1;
1631
        }
1627
        }
1632
    } else if (page >= leaf->key[leaf->keys - 1]) {
1628
    } else if (page >= leaf->key[leaf->keys - 1]) {
1633
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1629
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1634
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1630
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1635
   
1631
   
1636
        /*
1632
        /*
1637
         * Investigate the border case in which the right neighbour
1633
         * Investigate the border case in which the right neighbour
1638
         * does not exist but the interval fits from the right.
1634
         * does not exist but the interval fits from the right.
1639
         */
1635
         */
1640
         
1636
         
1641
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1637
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1642
            left_cnt * PAGE_SIZE)) {
1638
            left_cnt * PAGE_SIZE)) {
1643
            /* The interval intersects with the left interval. */
1639
            /* The interval intersects with the left interval. */
1644
            return 0;
1640
            return 0;
1645
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1641
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1646
            /*
1642
            /*
1647
             * The interval can be added by growing the left
1643
             * The interval can be added by growing the left
1648
             * interval.
1644
             * interval.
1649
             */
1645
             */
1650
            leaf->value[leaf->keys - 1] += count;
1646
            leaf->value[leaf->keys - 1] += count;
1651
            return 1;
1647
            return 1;
1652
        } else {
1648
        } else {
1653
            /*
1649
            /*
1654
             * The interval doesn't adjoin with the left interval.
1650
             * The interval doesn't adjoin with the left interval.
1655
             * It must be added individually.
1651
             * It must be added individually.
1656
             */
1652
             */
1657
            btree_insert(&a->used_space, page, (void *) count,
1653
            btree_insert(&a->used_space, page, (void *) count,
1658
                leaf);
1654
                leaf);
1659
            return 1;
1655
            return 1;
1660
        }
1656
        }
1661
    }
1657
    }
1662
   
1658
   
1663
    /*
1659
    /*
1664
     * Note that if the algorithm made it thus far, the interval can fit
1660
     * Note that if the algorithm made it thus far, the interval can fit
1665
     * only between two other intervals of the leaf. The two border cases
1661
     * only between two other intervals of the leaf. The two border cases
1666
     * were already resolved.
1662
     * were already resolved.
1667
     */
1663
     */
1668
    for (i = 1; i < leaf->keys; i++) {
1664
    for (i = 1; i < leaf->keys; i++) {
1669
        if (page < leaf->key[i]) {
1665
        if (page < leaf->key[i]) {
1670
            uintptr_t left_pg = leaf->key[i - 1];
1666
            uintptr_t left_pg = leaf->key[i - 1];
1671
            uintptr_t right_pg = leaf->key[i];
1667
            uintptr_t right_pg = leaf->key[i];
1672
            count_t left_cnt = (count_t) leaf->value[i - 1];
1668
            count_t left_cnt = (count_t) leaf->value[i - 1];
1673
            count_t right_cnt = (count_t) leaf->value[i];
1669
            count_t right_cnt = (count_t) leaf->value[i];
1674
 
1670
 
1675
            /*
1671
            /*
1676
             * The interval fits between left_pg and right_pg.
1672
             * The interval fits between left_pg and right_pg.
1677
             */
1673
             */
1678
 
1674
 
1679
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1675
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1680
                left_cnt * PAGE_SIZE)) {
1676
                left_cnt * PAGE_SIZE)) {
1681
                /*
1677
                /*
1682
                 * The interval intersects with the left
1678
                 * The interval intersects with the left
1683
                 * interval.
1679
                 * interval.
1684
                 */
1680
                 */
1685
                return 0;
1681
                return 0;
1686
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1682
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1687
                right_cnt * PAGE_SIZE)) {
1683
                right_cnt * PAGE_SIZE)) {
1688
                /*
1684
                /*
1689
                 * The interval intersects with the right
1685
                 * The interval intersects with the right
1690
                 * interval.
1686
                 * interval.
1691
                 */
1687
                 */
1692
                return 0;          
1688
                return 0;          
1693
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1689
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1694
                (page + count * PAGE_SIZE == right_pg)) {
1690
                (page + count * PAGE_SIZE == right_pg)) {
1695
                /*
1691
                /*
1696
                 * The interval can be added by merging the two
1692
                 * The interval can be added by merging the two
1697
                 * already present intervals.
1693
                 * already present intervals.
1698
                 */
1694
                 */
1699
                leaf->value[i - 1] += count + right_cnt;
1695
                leaf->value[i - 1] += count + right_cnt;
1700
                btree_remove(&a->used_space, right_pg, leaf);
1696
                btree_remove(&a->used_space, right_pg, leaf);
1701
                return 1;
1697
                return 1;
1702
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1698
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1703
                /*
1699
                /*
1704
                 * The interval can be added by simply growing
1700
                 * The interval can be added by simply growing
1705
                 * the left interval.
1701
                 * the left interval.
1706
                 */
1702
                 */
1707
                leaf->value[i - 1] += count;
1703
                leaf->value[i - 1] += count;
1708
                return 1;
1704
                return 1;
1709
            } else if (page + count * PAGE_SIZE == right_pg) {
1705
            } else if (page + count * PAGE_SIZE == right_pg) {
1710
                /*
1706
                /*
1711
                     * The interval can be addded by simply moving
1707
                     * The interval can be addded by simply moving
1712
                 * base of the right interval down and
1708
                 * base of the right interval down and
1713
                 * increasing its size accordingly.
1709
                 * increasing its size accordingly.
1714
                 */
1710
                 */
1715
                leaf->value[i] += count;
1711
                leaf->value[i] += count;
1716
                leaf->key[i] = page;
1712
                leaf->key[i] = page;
1717
                return 1;
1713
                return 1;
1718
            } else {
1714
            } else {
1719
                /*
1715
                /*
1720
                 * The interval is between both neigbouring
1716
                 * The interval is between both neigbouring
1721
                 * intervals, but cannot be merged with any of
1717
                 * intervals, but cannot be merged with any of
1722
                 * them.
1718
                 * them.
1723
                 */
1719
                 */
1724
                btree_insert(&a->used_space, page,
1720
                btree_insert(&a->used_space, page,
1725
                    (void *) count, leaf);
1721
                    (void *) count, leaf);
1726
                return 1;
1722
                return 1;
1727
            }
1723
            }
1728
        }
1724
        }
1729
    }
1725
    }
1730
 
1726
 
1731
    panic("Inconsistency detected while adding %d pages of used space at "
1727
    panic("Inconsistency detected while adding %" PRIc " pages of used space at "
1732
        "%p.\n", count, page);
1728
        "%p.\n", count, page);
1733
}
1729
}
1734
 
1730
 
1735
/** Mark portion of address space area as unused.
1731
/** Mark portion of address space area as unused.
1736
 *
1732
 *
1737
 * The address space area must be already locked.
1733
 * The address space area must be already locked.
1738
 *
1734
 *
1739
 * @param a Address space area.
1735
 * @param a Address space area.
1740
 * @param page First page to be marked.
1736
 * @param page First page to be marked.
1741
 * @param count Number of page to be marked.
1737
 * @param count Number of page to be marked.
1742
 *
1738
 *
1743
 * @return 0 on failure and 1 on success.
1739
 * @return 0 on failure and 1 on success.
1744
 */
1740
 */
1745
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1741
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1746
{
1742
{
1747
    btree_node_t *leaf, *node;
1743
    btree_node_t *leaf, *node;
1748
    count_t pages;
1744
    count_t pages;
1749
    unsigned int i;
1745
    unsigned int i;
1750
 
1746
 
1751
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1747
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1752
    ASSERT(count);
1748
    ASSERT(count);
1753
 
1749
 
1754
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1750
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1755
    if (pages) {
1751
    if (pages) {
1756
        /*
1752
        /*
1757
         * We are lucky, page is the beginning of some interval.
1753
         * We are lucky, page is the beginning of some interval.
1758
         */
1754
         */
1759
        if (count > pages) {
1755
        if (count > pages) {
1760
            return 0;
1756
            return 0;
1761
        } else if (count == pages) {
1757
        } else if (count == pages) {
1762
            btree_remove(&a->used_space, page, leaf);
1758
            btree_remove(&a->used_space, page, leaf);
1763
            return 1;
1759
            return 1;
1764
        } else {
1760
        } else {
1765
            /*
1761
            /*
1766
             * Find the respective interval.
1762
             * Find the respective interval.
1767
             * Decrease its size and relocate its start address.
1763
             * Decrease its size and relocate its start address.
1768
             */
1764
             */
1769
            for (i = 0; i < leaf->keys; i++) {
1765
            for (i = 0; i < leaf->keys; i++) {
1770
                if (leaf->key[i] == page) {
1766
                if (leaf->key[i] == page) {
1771
                    leaf->key[i] += count * PAGE_SIZE;
1767
                    leaf->key[i] += count * PAGE_SIZE;
1772
                    leaf->value[i] -= count;
1768
                    leaf->value[i] -= count;
1773
                    return 1;
1769
                    return 1;
1774
                }
1770
                }
1775
            }
1771
            }
1776
            goto error;
1772
            goto error;
1777
        }
1773
        }
1778
    }
1774
    }
1779
 
1775
 
1780
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1776
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1781
    if (node && page < leaf->key[0]) {
1777
    if (node && page < leaf->key[0]) {
1782
        uintptr_t left_pg = node->key[node->keys - 1];
1778
        uintptr_t left_pg = node->key[node->keys - 1];
1783
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1779
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1784
 
1780
 
1785
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1781
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1786
            count * PAGE_SIZE)) {
1782
            count * PAGE_SIZE)) {
1787
            if (page + count * PAGE_SIZE ==
1783
            if (page + count * PAGE_SIZE ==
1788
                left_pg + left_cnt * PAGE_SIZE) {
1784
                left_pg + left_cnt * PAGE_SIZE) {
1789
                /*
1785
                /*
1790
                 * The interval is contained in the rightmost
1786
                 * The interval is contained in the rightmost
1791
                 * interval of the left neighbour and can be
1787
                 * interval of the left neighbour and can be
1792
                 * removed by updating the size of the bigger
1788
                 * removed by updating the size of the bigger
1793
                 * interval.
1789
                 * interval.
1794
                 */
1790
                 */
1795
                node->value[node->keys - 1] -= count;
1791
                node->value[node->keys - 1] -= count;
1796
                return 1;
1792
                return 1;
1797
            } else if (page + count * PAGE_SIZE <
1793
            } else if (page + count * PAGE_SIZE <
1798
                left_pg + left_cnt*PAGE_SIZE) {
1794
                left_pg + left_cnt*PAGE_SIZE) {
1799
                count_t new_cnt;
1795
                count_t new_cnt;
1800
               
1796
               
1801
                /*
1797
                /*
1802
                 * The interval is contained in the rightmost
1798
                 * The interval is contained in the rightmost
1803
                 * interval of the left neighbour but its
1799
                 * interval of the left neighbour but its
1804
                 * removal requires both updating the size of
1800
                 * removal requires both updating the size of
1805
                 * the original interval and also inserting a
1801
                 * the original interval and also inserting a
1806
                 * new interval.
1802
                 * new interval.
1807
                 */
1803
                 */
1808
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1804
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1809
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1805
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1810
                node->value[node->keys - 1] -= count + new_cnt;
1806
                node->value[node->keys - 1] -= count + new_cnt;
1811
                btree_insert(&a->used_space, page +
1807
                btree_insert(&a->used_space, page +
1812
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1808
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1813
                return 1;
1809
                return 1;
1814
            }
1810
            }
1815
        }
1811
        }
1816
        return 0;
1812
        return 0;
1817
    } else if (page < leaf->key[0]) {
1813
    } else if (page < leaf->key[0]) {
1818
        return 0;
1814
        return 0;
1819
    }
1815
    }
1820
   
1816
   
1821
    if (page > leaf->key[leaf->keys - 1]) {
1817
    if (page > leaf->key[leaf->keys - 1]) {
1822
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1818
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1823
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1819
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1824
 
1820
 
1825
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1821
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1826
            count * PAGE_SIZE)) {
1822
            count * PAGE_SIZE)) {
1827
            if (page + count * PAGE_SIZE ==
1823
            if (page + count * PAGE_SIZE ==
1828
                left_pg + left_cnt * PAGE_SIZE) {
1824
                left_pg + left_cnt * PAGE_SIZE) {
1829
                /*
1825
                /*
1830
                 * The interval is contained in the rightmost
1826
                 * The interval is contained in the rightmost
1831
                 * interval of the leaf and can be removed by
1827
                 * interval of the leaf and can be removed by
1832
                 * updating the size of the bigger interval.
1828
                 * updating the size of the bigger interval.
1833
                 */
1829
                 */
1834
                leaf->value[leaf->keys - 1] -= count;
1830
                leaf->value[leaf->keys - 1] -= count;
1835
                return 1;
1831
                return 1;
1836
            } else if (page + count * PAGE_SIZE < left_pg +
1832
            } else if (page + count * PAGE_SIZE < left_pg +
1837
                left_cnt * PAGE_SIZE) {
1833
                left_cnt * PAGE_SIZE) {
1838
                count_t new_cnt;
1834
                count_t new_cnt;
1839
               
1835
               
1840
                /*
1836
                /*
1841
                 * The interval is contained in the rightmost
1837
                 * The interval is contained in the rightmost
1842
                 * interval of the leaf but its removal
1838
                 * interval of the leaf but its removal
1843
                 * requires both updating the size of the
1839
                 * requires both updating the size of the
1844
                 * original interval and also inserting a new
1840
                 * original interval and also inserting a new
1845
                 * interval.
1841
                 * interval.
1846
                 */
1842
                 */
1847
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1843
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1848
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1844
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1849
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1845
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1850
                btree_insert(&a->used_space, page +
1846
                btree_insert(&a->used_space, page +
1851
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1847
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1852
                return 1;
1848
                return 1;
1853
            }
1849
            }
1854
        }
1850
        }
1855
        return 0;
1851
        return 0;
1856
    }  
1852
    }  
1857
   
1853
   
1858
    /*
1854
    /*
1859
     * The border cases have been already resolved.
1855
     * The border cases have been already resolved.
1860
     * Now the interval can be only between intervals of the leaf.
1856
     * Now the interval can be only between intervals of the leaf.
1861
     */
1857
     */
1862
    for (i = 1; i < leaf->keys - 1; i++) {
1858
    for (i = 1; i < leaf->keys - 1; i++) {
1863
        if (page < leaf->key[i]) {
1859
        if (page < leaf->key[i]) {
1864
            uintptr_t left_pg = leaf->key[i - 1];
1860
            uintptr_t left_pg = leaf->key[i - 1];
1865
            count_t left_cnt = (count_t) leaf->value[i - 1];
1861
            count_t left_cnt = (count_t) leaf->value[i - 1];
1866
 
1862
 
1867
            /*
1863
            /*
1868
             * Now the interval is between intervals corresponding
1864
             * Now the interval is between intervals corresponding
1869
             * to (i - 1) and i.
1865
             * to (i - 1) and i.
1870
             */
1866
             */
1871
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1867
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1872
                count * PAGE_SIZE)) {
1868
                count * PAGE_SIZE)) {
1873
                if (page + count * PAGE_SIZE ==
1869
                if (page + count * PAGE_SIZE ==
1874
                    left_pg + left_cnt*PAGE_SIZE) {
1870
                    left_pg + left_cnt*PAGE_SIZE) {
1875
                    /*
1871
                    /*
1876
                     * The interval is contained in the
1872
                     * The interval is contained in the
1877
                     * interval (i - 1) of the leaf and can
1873
                     * interval (i - 1) of the leaf and can
1878
                     * be removed by updating the size of
1874
                     * be removed by updating the size of
1879
                     * the bigger interval.
1875
                     * the bigger interval.
1880
                     */
1876
                     */
1881
                    leaf->value[i - 1] -= count;
1877
                    leaf->value[i - 1] -= count;
1882
                    return 1;
1878
                    return 1;
1883
                } else if (page + count * PAGE_SIZE <
1879
                } else if (page + count * PAGE_SIZE <
1884
                    left_pg + left_cnt * PAGE_SIZE) {
1880
                    left_pg + left_cnt * PAGE_SIZE) {
1885
                    count_t new_cnt;
1881
                    count_t new_cnt;
1886
               
1882
               
1887
                    /*
1883
                    /*
1888
                     * The interval is contained in the
1884
                     * The interval is contained in the
1889
                     * interval (i - 1) of the leaf but its
1885
                     * interval (i - 1) of the leaf but its
1890
                     * removal requires both updating the
1886
                     * removal requires both updating the
1891
                     * size of the original interval and
1887
                     * size of the original interval and
1892
                     * also inserting a new interval.
1888
                     * also inserting a new interval.
1893
                     */
1889
                     */
1894
                    new_cnt = ((left_pg +
1890
                    new_cnt = ((left_pg +
1895
                        left_cnt * PAGE_SIZE) -
1891
                        left_cnt * PAGE_SIZE) -
1896
                        (page + count * PAGE_SIZE)) >>
1892
                        (page + count * PAGE_SIZE)) >>
1897
                        PAGE_WIDTH;
1893
                        PAGE_WIDTH;
1898
                    leaf->value[i - 1] -= count + new_cnt;
1894
                    leaf->value[i - 1] -= count + new_cnt;
1899
                    btree_insert(&a->used_space, page +
1895
                    btree_insert(&a->used_space, page +
1900
                        count * PAGE_SIZE, (void *) new_cnt,
1896
                        count * PAGE_SIZE, (void *) new_cnt,
1901
                        leaf);
1897
                        leaf);
1902
                    return 1;
1898
                    return 1;
1903
                }
1899
                }
1904
            }
1900
            }
1905
            return 0;
1901
            return 0;
1906
        }
1902
        }
1907
    }
1903
    }
1908
 
1904
 
1909
error:
1905
error:
1910
    panic("Inconsistency detected while removing %d pages of used space "
1906
    panic("Inconsistency detected while removing %" PRIc " pages of used space "
1911
        "from %p.\n", count, page);
1907
        "from %p.\n", count, page);
1912
}
1908
}
1913
 
1909
 
1914
/** Remove reference to address space area share info.
1910
/** Remove reference to address space area share info.
1915
 *
1911
 *
1916
 * If the reference count drops to 0, the sh_info is deallocated.
1912
 * If the reference count drops to 0, the sh_info is deallocated.
1917
 *
1913
 *
1918
 * @param sh_info Pointer to address space area share info.
1914
 * @param sh_info Pointer to address space area share info.
1919
 */
1915
 */
1920
void sh_info_remove_reference(share_info_t *sh_info)
1916
void sh_info_remove_reference(share_info_t *sh_info)
1921
{
1917
{
1922
    bool dealloc = false;
1918
    bool dealloc = false;
1923
 
1919
 
1924
    mutex_lock(&sh_info->lock);
1920
    mutex_lock(&sh_info->lock);
1925
    ASSERT(sh_info->refcount);
1921
    ASSERT(sh_info->refcount);
1926
    if (--sh_info->refcount == 0) {
1922
    if (--sh_info->refcount == 0) {
1927
        dealloc = true;
1923
        dealloc = true;
1928
        link_t *cur;
1924
        link_t *cur;
1929
       
1925
       
1930
        /*
1926
        /*
1931
         * Now walk carefully the pagemap B+tree and free/remove
1927
         * Now walk carefully the pagemap B+tree and free/remove
1932
         * reference from all frames found there.
1928
         * reference from all frames found there.
1933
         */
1929
         */
1934
        for (cur = sh_info->pagemap.leaf_head.next;
1930
        for (cur = sh_info->pagemap.leaf_head.next;
1935
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1931
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1936
            btree_node_t *node;
1932
            btree_node_t *node;
1937
            unsigned int i;
1933
            unsigned int i;
1938
           
1934
           
1939
            node = list_get_instance(cur, btree_node_t, leaf_link);
1935
            node = list_get_instance(cur, btree_node_t, leaf_link);
1940
            for (i = 0; i < node->keys; i++)
1936
            for (i = 0; i < node->keys; i++)
1941
                frame_free((uintptr_t) node->value[i]);
1937
                frame_free((uintptr_t) node->value[i]);
1942
        }
1938
        }
1943
       
1939
       
1944
    }
1940
    }
1945
    mutex_unlock(&sh_info->lock);
1941
    mutex_unlock(&sh_info->lock);
1946
   
1942
   
1947
    if (dealloc) {
1943
    if (dealloc) {
1948
        btree_destroy(&sh_info->pagemap);
1944
        btree_destroy(&sh_info->pagemap);
1949
        free(sh_info);
1945
        free(sh_info);
1950
    }
1946
    }
1951
}
1947
}
1952
 
1948
 
1953
/*
1949
/*
1954
 * Address space related syscalls.
1950
 * Address space related syscalls.
1955
 */
1951
 */
1956
 
1952
 
1957
/** Wrapper for as_area_create(). */
1953
/** Wrapper for as_area_create(). */
1958
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1954
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1959
{
1955
{
1960
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1956
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1961
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1957
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1962
        return (unative_t) address;
1958
        return (unative_t) address;
1963
    else
1959
    else
1964
        return (unative_t) -1;
1960
        return (unative_t) -1;
1965
}
1961
}
1966
 
1962
 
1967
/** Wrapper for as_area_resize(). */
1963
/** Wrapper for as_area_resize(). */
1968
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1964
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1969
{
1965
{
1970
    return (unative_t) as_area_resize(AS, address, size, 0);
1966
    return (unative_t) as_area_resize(AS, address, size, 0);
1971
}
1967
}
1972
 
1968
 
1973
/** Wrapper for as_area_destroy(). */
1969
/** Wrapper for as_area_destroy(). */
1974
unative_t sys_as_area_destroy(uintptr_t address)
1970
unative_t sys_as_area_destroy(uintptr_t address)
1975
{
1971
{
1976
    return (unative_t) as_area_destroy(AS, address);
1972
    return (unative_t) as_area_destroy(AS, address);
1977
}
1973
}
1978
 
1974
 
1979
/** Print out information about address space.
1975
/** Print out information about address space.
1980
 *
1976
 *
1981
 * @param as Address space.
1977
 * @param as Address space.
1982
 */
1978
 */
1983
void as_print(as_t *as)
1979
void as_print(as_t *as)
1984
{
1980
{
1985
    ipl_t ipl;
1981
    ipl_t ipl;
1986
   
1982
   
1987
    ipl = interrupts_disable();
1983
    ipl = interrupts_disable();
1988
    mutex_lock(&as->lock);
1984
    mutex_lock(&as->lock);
1989
   
1985
   
1990
    /* print out info about address space areas */
1986
    /* print out info about address space areas */
1991
    link_t *cur;
1987
    link_t *cur;
1992
    for (cur = as->as_area_btree.leaf_head.next;
1988
    for (cur = as->as_area_btree.leaf_head.next;
1993
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1989
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1994
        btree_node_t *node;
1990
        btree_node_t *node;
1995
       
1991
       
1996
        node = list_get_instance(cur, btree_node_t, leaf_link);
1992
        node = list_get_instance(cur, btree_node_t, leaf_link);
1997
       
1993
       
1998
        unsigned int i;
1994
        unsigned int i;
1999
        for (i = 0; i < node->keys; i++) {
1995
        for (i = 0; i < node->keys; i++) {
2000
            as_area_t *area = node->value[i];
1996
            as_area_t *area = node->value[i];
2001
       
1997
       
2002
            mutex_lock(&area->lock);
1998
            mutex_lock(&area->lock);
2003
            printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1999
            printf("as_area: %p, base=%p, pages=%" PRIc " (%p - %p)\n",
2004
                area, area->base, area->pages, area->base,
2000
                area, area->base, area->pages, area->base,
2005
                area->base + area->pages*PAGE_SIZE);
2001
                area->base + FRAMES2SIZE(area->pages));
2006
            mutex_unlock(&area->lock);
2002
            mutex_unlock(&area->lock);
2007
        }
2003
        }
2008
    }
2004
    }
2009
   
2005
   
2010
    mutex_unlock(&as->lock);
2006
    mutex_unlock(&as->lock);
2011
    interrupts_restore(ipl);
2007
    interrupts_restore(ipl);
2012
}
2008
}
2013
 
2009
 
2014
/** @}
2010
/** @}
2015
 */
2011
 */
2016
 
2012