Subversion Repositories HelenOS

Rev

Rev 3596 | Rev 4377 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3596 Rev 3624
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int);
114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
-
 
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
115
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
116
static void sh_info_remove_reference(share_info_t *);
118
 
117
 
119
static int as_constructor(void *obj, int flags)
118
static int as_constructor(void *obj, int flags)
120
{
119
{
121
    as_t *as = (as_t *) obj;
120
    as_t *as = (as_t *) obj;
122
    int rc;
121
    int rc;
123
 
122
 
124
    link_initialize(&as->inactive_as_with_asid_link);
123
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
124
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
   
125
   
127
    rc = as_constructor_arch(as, flags);
126
    rc = as_constructor_arch(as, flags);
128
   
127
   
129
    return rc;
128
    return rc;
130
}
129
}
131
 
130
 
132
static int as_destructor(void *obj)
131
static int as_destructor(void *obj)
133
{
132
{
134
    as_t *as = (as_t *) obj;
133
    as_t *as = (as_t *) obj;
135
 
134
 
136
    return as_destructor_arch(as);
135
    return as_destructor_arch(as);
137
}
136
}
138
 
137
 
139
/** Initialize address space subsystem. */
138
/** Initialize address space subsystem. */
140
void as_init(void)
139
void as_init(void)
141
{
140
{
142
    as_arch_init();
141
    as_arch_init();
143
 
142
 
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
143
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
144
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
   
145
   
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
146
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    if (!AS_KERNEL)
147
    if (!AS_KERNEL)
149
        panic("can't create kernel address space\n");
148
        panic("can't create kernel address space\n");
150
   
149
   
151
}
150
}
152
 
151
 
153
/** Create address space.
152
/** Create address space.
154
 *
153
 *
155
 * @param flags     Flags that influence the way in wich the address space
154
 * @param flags     Flags that influence the way in wich the address space
156
 *          is created.
155
 *          is created.
157
 */
156
 */
158
as_t *as_create(int flags)
157
as_t *as_create(int flags)
159
{
158
{
160
    as_t *as;
159
    as_t *as;
161
 
160
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
161
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
162
    (void) as_create_arch(as, 0);
164
   
163
   
165
    btree_create(&as->as_area_btree);
164
    btree_create(&as->as_area_btree);
166
   
165
   
167
    if (flags & FLAG_AS_KERNEL)
166
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
167
        as->asid = ASID_KERNEL;
169
    else
168
    else
170
        as->asid = ASID_INVALID;
169
        as->asid = ASID_INVALID;
171
   
170
   
172
    atomic_set(&as->refcount, 0);
171
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
172
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
173
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
174
    as->genarch.page_table = page_table_create(flags);
176
#else
175
#else
177
    page_table_create(flags);
176
    page_table_create(flags);
178
#endif
177
#endif
179
 
178
 
180
    return as;
179
    return as;
181
}
180
}
182
 
181
 
183
/** Destroy adress space.
182
/** Destroy adress space.
184
 *
183
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
184
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
185
 * zero), the address space can be destroyed.
187
 *
186
 *
188
 * We know that we don't hold any spinlock.
187
 * We know that we don't hold any spinlock.
189
 *
188
 *
190
 * @param as        Address space to be destroyed.
189
 * @param as        Address space to be destroyed.
191
 */
190
 */
192
void as_destroy(as_t *as)
191
void as_destroy(as_t *as)
193
{
192
{
194
    ipl_t ipl;
193
    ipl_t ipl;
195
    bool cond;
194
    bool cond;
196
    DEADLOCK_PROBE_INIT(p_asidlock);
195
    DEADLOCK_PROBE_INIT(p_asidlock);
197
 
196
 
198
    ASSERT(atomic_get(&as->refcount) == 0);
197
    ASSERT(atomic_get(&as->refcount) == 0);
199
   
198
   
200
    /*
199
    /*
201
     * Since there is no reference to this area,
200
     * Since there is no reference to this area,
202
     * it is safe not to lock its mutex.
201
     * it is safe not to lock its mutex.
203
     */
202
     */
204
 
203
 
205
    /*
204
    /*
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
205
     * We need to avoid deadlock between TLB shootdown and asidlock.
207
     * We therefore try to take asid conditionally and if we don't succeed,
206
     * We therefore try to take asid conditionally and if we don't succeed,
208
     * we enable interrupts and try again. This is done while preemption is
207
     * we enable interrupts and try again. This is done while preemption is
209
     * disabled to prevent nested context switches. We also depend on the
208
     * disabled to prevent nested context switches. We also depend on the
210
     * fact that so far no spinlocks are held.
209
     * fact that so far no spinlocks are held.
211
     */
210
     */
212
    preemption_disable();
211
    preemption_disable();
213
    ipl = interrupts_read();
212
    ipl = interrupts_read();
214
retry:
213
retry:
215
    interrupts_disable();
214
    interrupts_disable();
216
    if (!spinlock_trylock(&asidlock)) {
215
    if (!spinlock_trylock(&asidlock)) {
217
        interrupts_enable();
216
        interrupts_enable();
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
217
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
        goto retry;
218
        goto retry;
220
    }
219
    }
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
220
    preemption_enable();    /* Interrupts disabled, enable preemption */
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
221
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
223
        if (as != AS && as->cpu_refcount == 0)
222
        if (as != AS && as->cpu_refcount == 0)
224
            list_remove(&as->inactive_as_with_asid_link);
223
            list_remove(&as->inactive_as_with_asid_link);
225
        asid_put(as->asid);
224
        asid_put(as->asid);
226
    }
225
    }
227
    spinlock_unlock(&asidlock);
226
    spinlock_unlock(&asidlock);
228
 
227
 
229
    /*
228
    /*
230
     * Destroy address space areas of the address space.
229
     * Destroy address space areas of the address space.
231
     * The B+tree must be walked carefully because it is
230
     * The B+tree must be walked carefully because it is
232
     * also being destroyed.
231
     * also being destroyed.
233
     */
232
     */
234
    for (cond = true; cond; ) {
233
    for (cond = true; cond; ) {
235
        btree_node_t *node;
234
        btree_node_t *node;
236
 
235
 
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
236
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
237
        node = list_get_instance(as->as_area_btree.leaf_head.next,
239
            btree_node_t, leaf_link);
238
            btree_node_t, leaf_link);
240
 
239
 
241
        if ((cond = node->keys)) {
240
        if ((cond = node->keys)) {
242
            as_area_destroy(as, node->key[0]);
241
            as_area_destroy(as, node->key[0]);
243
        }
242
        }
244
    }
243
    }
245
 
244
 
246
    btree_destroy(&as->as_area_btree);
245
    btree_destroy(&as->as_area_btree);
247
#ifdef AS_PAGE_TABLE
246
#ifdef AS_PAGE_TABLE
248
    page_table_destroy(as->genarch.page_table);
247
    page_table_destroy(as->genarch.page_table);
249
#else
248
#else
250
    page_table_destroy(NULL);
249
    page_table_destroy(NULL);
251
#endif
250
#endif
252
 
251
 
253
    interrupts_restore(ipl);
252
    interrupts_restore(ipl);
254
 
253
 
255
    slab_free(as_slab, as);
254
    slab_free(as_slab, as);
256
}
255
}
257
 
256
 
258
/** Create address space area of common attributes.
257
/** Create address space area of common attributes.
259
 *
258
 *
260
 * The created address space area is added to the target address space.
259
 * The created address space area is added to the target address space.
261
 *
260
 *
262
 * @param as        Target address space.
261
 * @param as        Target address space.
263
 * @param flags     Flags of the area memory.
262
 * @param flags     Flags of the area memory.
264
 * @param size      Size of area.
263
 * @param size      Size of area.
265
 * @param base      Base address of area.
264
 * @param base      Base address of area.
266
 * @param attrs     Attributes of the area.
265
 * @param attrs     Attributes of the area.
267
 * @param backend   Address space area backend. NULL if no backend is used.
266
 * @param backend   Address space area backend. NULL if no backend is used.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
267
 * @param backend_data  NULL or a pointer to an array holding two void *.
269
 *
268
 *
270
 * @return      Address space area on success or NULL on failure.
269
 * @return      Address space area on success or NULL on failure.
271
 */
270
 */
272
as_area_t *
271
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
272
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
273
    mem_backend_t *backend, mem_backend_data_t *backend_data)
275
{
274
{
276
    ipl_t ipl;
275
    ipl_t ipl;
277
    as_area_t *a;
276
    as_area_t *a;
278
   
277
   
279
    if (base % PAGE_SIZE)
278
    if (base % PAGE_SIZE)
280
        return NULL;
279
        return NULL;
281
 
280
 
282
    if (!size)
281
    if (!size)
283
        return NULL;
282
        return NULL;
284
 
283
 
285
    /* Writeable executable areas are not supported. */
284
    /* Writeable executable areas are not supported. */
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
285
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
        return NULL;
286
        return NULL;
288
   
287
   
289
    ipl = interrupts_disable();
288
    ipl = interrupts_disable();
290
    mutex_lock(&as->lock);
289
    mutex_lock(&as->lock);
291
   
290
   
292
    if (!check_area_conflicts(as, base, size, NULL)) {
291
    if (!check_area_conflicts(as, base, size, NULL)) {
293
        mutex_unlock(&as->lock);
292
        mutex_unlock(&as->lock);
294
        interrupts_restore(ipl);
293
        interrupts_restore(ipl);
295
        return NULL;
294
        return NULL;
296
    }
295
    }
297
   
296
   
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
297
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
299
 
298
 
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
299
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
301
   
300
   
302
    a->as = as;
301
    a->as = as;
303
    a->flags = flags;
302
    a->flags = flags;
304
    a->attributes = attrs;
303
    a->attributes = attrs;
305
    a->pages = SIZE2FRAMES(size);
304
    a->pages = SIZE2FRAMES(size);
306
    a->base = base;
305
    a->base = base;
307
    a->sh_info = NULL;
306
    a->sh_info = NULL;
308
    a->backend = backend;
307
    a->backend = backend;
309
    if (backend_data)
308
    if (backend_data)
310
        a->backend_data = *backend_data;
309
        a->backend_data = *backend_data;
311
    else
310
    else
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
311
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
313
 
312
 
314
    btree_create(&a->used_space);
313
    btree_create(&a->used_space);
315
   
314
   
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
315
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
317
 
316
 
318
    mutex_unlock(&as->lock);
317
    mutex_unlock(&as->lock);
319
    interrupts_restore(ipl);
318
    interrupts_restore(ipl);
320
 
319
 
321
    return a;
320
    return a;
322
}
321
}
323
 
322
 
324
/** Find address space area and change it.
323
/** Find address space area and change it.
325
 *
324
 *
326
 * @param as        Address space.
325
 * @param as        Address space.
327
 * @param address   Virtual address belonging to the area to be changed.
326
 * @param address   Virtual address belonging to the area to be changed.
328
 *          Must be page-aligned.
327
 *          Must be page-aligned.
329
 * @param size      New size of the virtual memory block starting at
328
 * @param size      New size of the virtual memory block starting at
330
 *          address.
329
 *          address.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
330
 * @param flags     Flags influencing the remap operation. Currently unused.
332
 *
331
 *
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
332
 * @return      Zero on success or a value from @ref errno.h otherwise.
334
 */
333
 */
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
334
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
336
{
335
{
337
    as_area_t *area;
336
    as_area_t *area;
338
    ipl_t ipl;
337
    ipl_t ipl;
339
    size_t pages;
338
    size_t pages;
340
   
339
   
341
    ipl = interrupts_disable();
340
    ipl = interrupts_disable();
342
    mutex_lock(&as->lock);
341
    mutex_lock(&as->lock);
343
   
342
   
344
    /*
343
    /*
345
     * Locate the area.
344
     * Locate the area.
346
     */
345
     */
347
    area = find_area_and_lock(as, address);
346
    area = find_area_and_lock(as, address);
348
    if (!area) {
347
    if (!area) {
349
        mutex_unlock(&as->lock);
348
        mutex_unlock(&as->lock);
350
        interrupts_restore(ipl);
349
        interrupts_restore(ipl);
351
        return ENOENT;
350
        return ENOENT;
352
    }
351
    }
353
 
352
 
354
    if (area->backend == &phys_backend) {
353
    if (area->backend == &phys_backend) {
355
        /*
354
        /*
356
         * Remapping of address space areas associated
355
         * Remapping of address space areas associated
357
         * with memory mapped devices is not supported.
356
         * with memory mapped devices is not supported.
358
         */
357
         */
359
        mutex_unlock(&area->lock);
358
        mutex_unlock(&area->lock);
360
        mutex_unlock(&as->lock);
359
        mutex_unlock(&as->lock);
361
        interrupts_restore(ipl);
360
        interrupts_restore(ipl);
362
        return ENOTSUP;
361
        return ENOTSUP;
363
    }
362
    }
364
    if (area->sh_info) {
363
    if (area->sh_info) {
365
        /*
364
        /*
366
         * Remapping of shared address space areas
365
         * Remapping of shared address space areas
367
         * is not supported.
366
         * is not supported.
368
         */
367
         */
369
        mutex_unlock(&area->lock);
368
        mutex_unlock(&area->lock);
370
        mutex_unlock(&as->lock);
369
        mutex_unlock(&as->lock);
371
        interrupts_restore(ipl);
370
        interrupts_restore(ipl);
372
        return ENOTSUP;
371
        return ENOTSUP;
373
    }
372
    }
374
 
373
 
375
    pages = SIZE2FRAMES((address - area->base) + size);
374
    pages = SIZE2FRAMES((address - area->base) + size);
376
    if (!pages) {
375
    if (!pages) {
377
        /*
376
        /*
378
         * Zero size address space areas are not allowed.
377
         * Zero size address space areas are not allowed.
379
         */
378
         */
380
        mutex_unlock(&area->lock);
379
        mutex_unlock(&area->lock);
381
        mutex_unlock(&as->lock);
380
        mutex_unlock(&as->lock);
382
        interrupts_restore(ipl);
381
        interrupts_restore(ipl);
383
        return EPERM;
382
        return EPERM;
384
    }
383
    }
385
   
384
   
386
    if (pages < area->pages) {
385
    if (pages < area->pages) {
387
        bool cond;
386
        bool cond;
388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
387
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
389
 
388
 
390
        /*
389
        /*
391
         * Shrinking the area.
390
         * Shrinking the area.
392
         * No need to check for overlaps.
391
         * No need to check for overlaps.
393
         */
392
         */
394
 
393
 
395
        /*
394
        /*
396
         * Start TLB shootdown sequence.
395
         * Start TLB shootdown sequence.
397
         */
396
         */
398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
397
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
399
            pages * PAGE_SIZE, area->pages - pages);
398
            pages * PAGE_SIZE, area->pages - pages);
400
 
399
 
401
        /*
400
        /*
402
         * Remove frames belonging to used space starting from
401
         * Remove frames belonging to used space starting from
403
         * the highest addresses downwards until an overlap with
402
         * the highest addresses downwards until an overlap with
404
         * the resized address space area is found. Note that this
403
         * the resized address space area is found. Note that this
405
         * is also the right way to remove part of the used_space
404
         * is also the right way to remove part of the used_space
406
         * B+tree leaf list.
405
         * B+tree leaf list.
407
         */    
406
         */    
408
        for (cond = true; cond;) {
407
        for (cond = true; cond;) {
409
            btree_node_t *node;
408
            btree_node_t *node;
410
       
409
       
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
410
            ASSERT(!list_empty(&area->used_space.leaf_head));
412
            node =
411
            node =
413
                list_get_instance(area->used_space.leaf_head.prev,
412
                list_get_instance(area->used_space.leaf_head.prev,
414
                btree_node_t, leaf_link);
413
                btree_node_t, leaf_link);
415
            if ((cond = (bool) node->keys)) {
414
            if ((cond = (bool) node->keys)) {
416
                uintptr_t b = node->key[node->keys - 1];
415
                uintptr_t b = node->key[node->keys - 1];
417
                count_t c =
416
                count_t c =
418
                    (count_t) node->value[node->keys - 1];
417
                    (count_t) node->value[node->keys - 1];
419
                unsigned int i = 0;
418
                unsigned int i = 0;
420
           
419
           
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
420
                if (overlaps(b, c * PAGE_SIZE, area->base,
422
                    pages * PAGE_SIZE)) {
421
                    pages * PAGE_SIZE)) {
423
                   
422
                   
424
                    if (b + c * PAGE_SIZE <= start_free) {
423
                    if (b + c * PAGE_SIZE <= start_free) {
425
                        /*
424
                        /*
426
                         * The whole interval fits
425
                         * The whole interval fits
427
                         * completely in the resized
426
                         * completely in the resized
428
                         * address space area.
427
                         * address space area.
429
                         */
428
                         */
430
                        break;
429
                        break;
431
                    }
430
                    }
432
       
431
       
433
                    /*
432
                    /*
434
                     * Part of the interval corresponding
433
                     * Part of the interval corresponding
435
                     * to b and c overlaps with the resized
434
                     * to b and c overlaps with the resized
436
                     * address space area.
435
                     * address space area.
437
                     */
436
                     */
438
       
437
       
439
                    cond = false;   /* we are almost done */
438
                    cond = false;   /* we are almost done */
440
                    i = (start_free - b) >> PAGE_WIDTH;
439
                    i = (start_free - b) >> PAGE_WIDTH;
441
                    if (!used_space_remove(area, start_free,
440
                    if (!used_space_remove(area, start_free,
442
                        c - i))
441
                        c - i))
443
                        panic("Could not remove used "
442
                        panic("Could not remove used "
444
                            "space.\n");
443
                            "space.\n");
445
                } else {
444
                } else {
446
                    /*
445
                    /*
447
                     * The interval of used space can be
446
                     * The interval of used space can be
448
                     * completely removed.
447
                     * completely removed.
449
                     */
448
                     */
450
                    if (!used_space_remove(area, b, c))
449
                    if (!used_space_remove(area, b, c))
451
                        panic("Could not remove used "
450
                        panic("Could not remove used "
452
                            "space.\n");
451
                            "space.\n");
453
                }
452
                }
454
           
453
           
455
                for (; i < c; i++) {
454
                for (; i < c; i++) {
456
                    pte_t *pte;
455
                    pte_t *pte;
457
           
456
           
458
                    page_table_lock(as, false);
457
                    page_table_lock(as, false);
459
                    pte = page_mapping_find(as, b +
458
                    pte = page_mapping_find(as, b +
460
                        i * PAGE_SIZE);
459
                        i * PAGE_SIZE);
461
                    ASSERT(pte && PTE_VALID(pte) &&
460
                    ASSERT(pte && PTE_VALID(pte) &&
462
                        PTE_PRESENT(pte));
461
                        PTE_PRESENT(pte));
463
                    if (area->backend &&
462
                    if (area->backend &&
464
                        area->backend->frame_free) {
463
                        area->backend->frame_free) {
465
                        area->backend->frame_free(area,
464
                        area->backend->frame_free(area,
466
                            b + i * PAGE_SIZE,
465
                            b + i * PAGE_SIZE,
467
                            PTE_GET_FRAME(pte));
466
                            PTE_GET_FRAME(pte));
468
                    }
467
                    }
469
                    page_mapping_remove(as, b +
468
                    page_mapping_remove(as, b +
470
                        i * PAGE_SIZE);
469
                        i * PAGE_SIZE);
471
                    page_table_unlock(as, false);
470
                    page_table_unlock(as, false);
472
                }
471
                }
473
            }
472
            }
474
        }
473
        }
475
 
474
 
476
        /*
475
        /*
477
         * Finish TLB shootdown sequence.
476
         * Finish TLB shootdown sequence.
478
         */
477
         */
479
 
478
 
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
479
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
            area->pages - pages);
480
            area->pages - pages);
482
        /*
481
        /*
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
482
         * Invalidate software translation caches (e.g. TSB on sparc64).
484
         */
483
         */
485
        as_invalidate_translation_cache(as, area->base +
484
        as_invalidate_translation_cache(as, area->base +
486
            pages * PAGE_SIZE, area->pages - pages);
485
            pages * PAGE_SIZE, area->pages - pages);
487
        tlb_shootdown_finalize();
486
        tlb_shootdown_finalize();
488
       
487
       
489
    } else {
488
    } else {
490
        /*
489
        /*
491
         * Growing the area.
490
         * Growing the area.
492
         * Check for overlaps with other address space areas.
491
         * Check for overlaps with other address space areas.
493
         */
492
         */
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
493
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
            area)) {
494
            area)) {
496
            mutex_unlock(&area->lock);
495
            mutex_unlock(&area->lock);
497
            mutex_unlock(&as->lock);       
496
            mutex_unlock(&as->lock);       
498
            interrupts_restore(ipl);
497
            interrupts_restore(ipl);
499
            return EADDRNOTAVAIL;
498
            return EADDRNOTAVAIL;
500
        }
499
        }
501
    }
500
    }
502
 
501
 
503
    area->pages = pages;
502
    area->pages = pages;
504
   
503
   
505
    mutex_unlock(&area->lock);
504
    mutex_unlock(&area->lock);
506
    mutex_unlock(&as->lock);
505
    mutex_unlock(&as->lock);
507
    interrupts_restore(ipl);
506
    interrupts_restore(ipl);
508
 
507
 
509
    return 0;
508
    return 0;
510
}
509
}
511
 
510
 
512
/** Destroy address space area.
511
/** Destroy address space area.
513
 *
512
 *
514
 * @param as        Address space.
513
 * @param as        Address space.
515
 * @param address   Address within the area to be deleted.
514
 * @param address   Address within the area to be deleted.
516
 *
515
 *
517
 * @return      Zero on success or a value from @ref errno.h on failure.
516
 * @return      Zero on success or a value from @ref errno.h on failure.
518
 */
517
 */
519
int as_area_destroy(as_t *as, uintptr_t address)
518
int as_area_destroy(as_t *as, uintptr_t address)
520
{
519
{
521
    as_area_t *area;
520
    as_area_t *area;
522
    uintptr_t base;
521
    uintptr_t base;
523
    link_t *cur;
522
    link_t *cur;
524
    ipl_t ipl;
523
    ipl_t ipl;
525
 
524
 
526
    ipl = interrupts_disable();
525
    ipl = interrupts_disable();
527
    mutex_lock(&as->lock);
526
    mutex_lock(&as->lock);
528
 
527
 
529
    area = find_area_and_lock(as, address);
528
    area = find_area_and_lock(as, address);
530
    if (!area) {
529
    if (!area) {
531
        mutex_unlock(&as->lock);
530
        mutex_unlock(&as->lock);
532
        interrupts_restore(ipl);
531
        interrupts_restore(ipl);
533
        return ENOENT;
532
        return ENOENT;
534
    }
533
    }
535
 
534
 
536
    base = area->base;
535
    base = area->base;
537
 
536
 
538
    /*
537
    /*
539
     * Start TLB shootdown sequence.
538
     * Start TLB shootdown sequence.
540
     */
539
     */
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
540
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
542
 
541
 
543
    /*
542
    /*
544
     * Visit only the pages mapped by used_space B+tree.
543
     * Visit only the pages mapped by used_space B+tree.
545
     */
544
     */
546
    for (cur = area->used_space.leaf_head.next;
545
    for (cur = area->used_space.leaf_head.next;
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
546
        cur != &area->used_space.leaf_head; cur = cur->next) {
548
        btree_node_t *node;
547
        btree_node_t *node;
549
        unsigned int i;
548
        unsigned int i;
550
       
549
       
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
550
        node = list_get_instance(cur, btree_node_t, leaf_link);
552
        for (i = 0; i < node->keys; i++) {
551
        for (i = 0; i < node->keys; i++) {
553
            uintptr_t b = node->key[i];
552
            uintptr_t b = node->key[i];
554
            count_t j;
553
            count_t j;
555
            pte_t *pte;
554
            pte_t *pte;
556
           
555
           
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
556
            for (j = 0; j < (count_t) node->value[i]; j++) {
558
                page_table_lock(as, false);
557
                page_table_lock(as, false);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
558
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
                ASSERT(pte && PTE_VALID(pte) &&
559
                ASSERT(pte && PTE_VALID(pte) &&
561
                    PTE_PRESENT(pte));
560
                    PTE_PRESENT(pte));
562
                if (area->backend &&
561
                if (area->backend &&
563
                    area->backend->frame_free) {
562
                    area->backend->frame_free) {
564
                    area->backend->frame_free(area, b +
563
                    area->backend->frame_free(area, b +
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
564
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
566
                }
565
                }
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
566
                page_mapping_remove(as, b + j * PAGE_SIZE);            
568
                page_table_unlock(as, false);
567
                page_table_unlock(as, false);
569
            }
568
            }
570
        }
569
        }
571
    }
570
    }
572
 
571
 
573
    /*
572
    /*
574
     * Finish TLB shootdown sequence.
573
     * Finish TLB shootdown sequence.
575
     */
574
     */
576
 
575
 
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
576
    tlb_invalidate_pages(as->asid, area->base, area->pages);
578
    /*
577
    /*
579
     * Invalidate potential software translation caches (e.g. TSB on
578
     * Invalidate potential software translation caches (e.g. TSB on
580
     * sparc64).
579
     * sparc64).
581
     */
580
     */
582
    as_invalidate_translation_cache(as, area->base, area->pages);
581
    as_invalidate_translation_cache(as, area->base, area->pages);
583
    tlb_shootdown_finalize();
582
    tlb_shootdown_finalize();
584
   
583
   
585
    btree_destroy(&area->used_space);
584
    btree_destroy(&area->used_space);
586
 
585
 
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
586
    area->attributes |= AS_AREA_ATTR_PARTIAL;
588
   
587
   
589
    if (area->sh_info)
588
    if (area->sh_info)
590
        sh_info_remove_reference(area->sh_info);
589
        sh_info_remove_reference(area->sh_info);
591
       
590
       
592
    mutex_unlock(&area->lock);
591
    mutex_unlock(&area->lock);
593
 
592
 
594
    /*
593
    /*
595
     * Remove the empty area from address space.
594
     * Remove the empty area from address space.
596
     */
595
     */
597
    btree_remove(&as->as_area_btree, base, NULL);
596
    btree_remove(&as->as_area_btree, base, NULL);
598
   
597
   
599
    free(area);
598
    free(area);
600
   
599
   
601
    mutex_unlock(&as->lock);
600
    mutex_unlock(&as->lock);
602
    interrupts_restore(ipl);
601
    interrupts_restore(ipl);
603
    return 0;
602
    return 0;
604
}
603
}
605
 
604
 
606
/** Share address space area with another or the same address space.
605
/** Share address space area with another or the same address space.
607
 *
606
 *
608
 * Address space area mapping is shared with a new address space area.
607
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
608
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
609
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
610
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
611
 * mapping is done through the backend share function.
613
 *
612
 *
614
 * @param src_as    Pointer to source address space.
613
 * @param src_as    Pointer to source address space.
615
 * @param src_base  Base address of the source address space area.
614
 * @param src_base  Base address of the source address space area.
616
 * @param acc_size  Expected size of the source area.
615
 * @param acc_size  Expected size of the source area.
617
 * @param dst_as    Pointer to destination address space.
616
 * @param dst_as    Pointer to destination address space.
618
 * @param dst_base  Target base address.
617
 * @param dst_base  Target base address.
619
 * @param dst_flags_mask Destination address space area flags mask.
618
 * @param dst_flags_mask Destination address space area flags mask.
620
 *
619
 *
621
 * @return      Zero on success or ENOENT if there is no such task or if
620
 * @return      Zero on success or ENOENT if there is no such task or if
622
 *          there is no such address space area, EPERM if there was
621
 *          there is no such address space area, EPERM if there was
623
 *          a problem in accepting the area or ENOMEM if there was a
622
 *          a problem in accepting the area or ENOMEM if there was a
624
 *          problem in allocating destination address space area.
623
 *          problem in allocating destination address space area.
625
 *          ENOTSUP is returned if the address space area backend
624
 *          ENOTSUP is returned if the address space area backend
626
 *          does not support sharing.
625
 *          does not support sharing.
627
 */
626
 */
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
627
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
628
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
630
{
629
{
631
    ipl_t ipl;
630
    ipl_t ipl;
632
    int src_flags;
631
    int src_flags;
633
    size_t src_size;
632
    size_t src_size;
634
    as_area_t *src_area, *dst_area;
633
    as_area_t *src_area, *dst_area;
635
    share_info_t *sh_info;
634
    share_info_t *sh_info;
636
    mem_backend_t *src_backend;
635
    mem_backend_t *src_backend;
637
    mem_backend_data_t src_backend_data;
636
    mem_backend_data_t src_backend_data;
638
   
637
   
639
    ipl = interrupts_disable();
638
    ipl = interrupts_disable();
640
    mutex_lock(&src_as->lock);
639
    mutex_lock(&src_as->lock);
641
    src_area = find_area_and_lock(src_as, src_base);
640
    src_area = find_area_and_lock(src_as, src_base);
642
    if (!src_area) {
641
    if (!src_area) {
643
        /*
642
        /*
644
         * Could not find the source address space area.
643
         * Could not find the source address space area.
645
         */
644
         */
646
        mutex_unlock(&src_as->lock);
645
        mutex_unlock(&src_as->lock);
647
        interrupts_restore(ipl);
646
        interrupts_restore(ipl);
648
        return ENOENT;
647
        return ENOENT;
649
    }
648
    }
650
 
649
 
651
    if (!src_area->backend || !src_area->backend->share) {
650
    if (!src_area->backend || !src_area->backend->share) {
652
        /*
651
        /*
653
         * There is no backend or the backend does not
652
         * There is no backend or the backend does not
654
         * know how to share the area.
653
         * know how to share the area.
655
         */
654
         */
656
        mutex_unlock(&src_area->lock);
655
        mutex_unlock(&src_area->lock);
657
        mutex_unlock(&src_as->lock);
656
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
657
        interrupts_restore(ipl);
659
        return ENOTSUP;
658
        return ENOTSUP;
660
    }
659
    }
661
   
660
   
662
    src_size = src_area->pages * PAGE_SIZE;
661
    src_size = src_area->pages * PAGE_SIZE;
663
    src_flags = src_area->flags;
662
    src_flags = src_area->flags;
664
    src_backend = src_area->backend;
663
    src_backend = src_area->backend;
665
    src_backend_data = src_area->backend_data;
664
    src_backend_data = src_area->backend_data;
666
 
665
 
667
    /* Share the cacheable flag from the original mapping */
666
    /* Share the cacheable flag from the original mapping */
668
    if (src_flags & AS_AREA_CACHEABLE)
667
    if (src_flags & AS_AREA_CACHEABLE)
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
668
        dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
669
 
671
    if (src_size != acc_size ||
670
    if (src_size != acc_size ||
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
671
        (src_flags & dst_flags_mask) != dst_flags_mask) {
673
        mutex_unlock(&src_area->lock);
672
        mutex_unlock(&src_area->lock);
674
        mutex_unlock(&src_as->lock);
673
        mutex_unlock(&src_as->lock);
675
        interrupts_restore(ipl);
674
        interrupts_restore(ipl);
676
        return EPERM;
675
        return EPERM;
677
    }
676
    }
678
 
677
 
679
    /*
678
    /*
680
     * Now we are committed to sharing the area.
679
     * Now we are committed to sharing the area.
681
     * First, prepare the area for sharing.
680
     * First, prepare the area for sharing.
682
     * Then it will be safe to unlock it.
681
     * Then it will be safe to unlock it.
683
     */
682
     */
684
    sh_info = src_area->sh_info;
683
    sh_info = src_area->sh_info;
685
    if (!sh_info) {
684
    if (!sh_info) {
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
685
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
686
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
688
        sh_info->refcount = 2;
687
        sh_info->refcount = 2;
689
        btree_create(&sh_info->pagemap);
688
        btree_create(&sh_info->pagemap);
690
        src_area->sh_info = sh_info;
689
        src_area->sh_info = sh_info;
691
        /*
690
        /*
692
         * Call the backend to setup sharing.
691
         * Call the backend to setup sharing.
693
         */
692
         */
694
        src_area->backend->share(src_area);
693
        src_area->backend->share(src_area);
695
    } else {
694
    } else {
696
        mutex_lock(&sh_info->lock);
695
        mutex_lock(&sh_info->lock);
697
        sh_info->refcount++;
696
        sh_info->refcount++;
698
        mutex_unlock(&sh_info->lock);
697
        mutex_unlock(&sh_info->lock);
699
    }
698
    }
700
 
699
 
701
    mutex_unlock(&src_area->lock);
700
    mutex_unlock(&src_area->lock);
702
    mutex_unlock(&src_as->lock);
701
    mutex_unlock(&src_as->lock);
703
 
702
 
704
    /*
703
    /*
705
     * Create copy of the source address space area.
704
     * Create copy of the source address space area.
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
705
     * The destination area is created with AS_AREA_ATTR_PARTIAL
707
     * attribute set which prevents race condition with
706
     * attribute set which prevents race condition with
708
     * preliminary as_page_fault() calls.
707
     * preliminary as_page_fault() calls.
709
     * The flags of the source area are masked against dst_flags_mask
708
     * The flags of the source area are masked against dst_flags_mask
710
     * to support sharing in less privileged mode.
709
     * to support sharing in less privileged mode.
711
     */
710
     */
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
711
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
712
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
714
    if (!dst_area) {
713
    if (!dst_area) {
715
        /*
714
        /*
716
         * Destination address space area could not be created.
715
         * Destination address space area could not be created.
717
         */
716
         */
718
        sh_info_remove_reference(sh_info);
717
        sh_info_remove_reference(sh_info);
719
       
718
       
720
        interrupts_restore(ipl);
719
        interrupts_restore(ipl);
721
        return ENOMEM;
720
        return ENOMEM;
722
    }
721
    }
723
 
722
 
724
    /*
723
    /*
725
     * Now the destination address space area has been
724
     * Now the destination address space area has been
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
725
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
727
     * attribute and set the sh_info.
726
     * attribute and set the sh_info.
728
     */
727
     */
729
    mutex_lock(&dst_as->lock); 
728
    mutex_lock(&dst_as->lock); 
730
    mutex_lock(&dst_area->lock);
729
    mutex_lock(&dst_area->lock);
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
730
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
732
    dst_area->sh_info = sh_info;
731
    dst_area->sh_info = sh_info;
733
    mutex_unlock(&dst_area->lock);
732
    mutex_unlock(&dst_area->lock);
734
    mutex_unlock(&dst_as->lock);   
733
    mutex_unlock(&dst_as->lock);   
735
 
734
 
736
    interrupts_restore(ipl);
735
    interrupts_restore(ipl);
737
   
736
   
738
    return 0;
737
    return 0;
739
}
738
}
740
 
739
 
741
/** Check access mode for address space area.
740
/** Check access mode for address space area.
742
 *
741
 *
743
 * The address space area must be locked prior to this call.
742
 * The address space area must be locked prior to this call.
744
 *
743
 *
745
 * @param area      Address space area.
744
 * @param area      Address space area.
746
 * @param access    Access mode.
745
 * @param access    Access mode.
747
 *
746
 *
748
 * @return      False if access violates area's permissions, true
747
 * @return      False if access violates area's permissions, true
749
 *          otherwise.
748
 *          otherwise.
750
 */
749
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
750
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
751
{
753
    int flagmap[] = {
752
    int flagmap[] = {
754
        [PF_ACCESS_READ] = AS_AREA_READ,
753
        [PF_ACCESS_READ] = AS_AREA_READ,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
754
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
755
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
757
    };
756
    };
758
 
757
 
759
    if (!(area->flags & flagmap[access]))
758
    if (!(area->flags & flagmap[access]))
760
        return false;
759
        return false;
761
   
760
   
762
    return true;
761
    return true;
763
}
762
}
764
 
763
 
765
/** Change adress space area flags.
764
/** Change adress space area flags.
766
 *
765
 *
767
 * The idea is to have the same data, but with a different access mode.
766
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
767
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
768
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
769
 * into private anonymous memory (unless it's already there).
771
 *
770
 *
772
 * @param as        Address space.
771
 * @param as        Address space.
773
 * @param flags     Flags of the area memory.
772
 * @param flags     Flags of the area memory.
774
 * @param address   Address withing the area to be changed.
773
 * @param address   Address withing the area to be changed.
775
 *
774
 *
776
 * @return      Zero on success or a value from @ref errno.h on failure.
775
 * @return      Zero on success or a value from @ref errno.h on failure.
777
 */
776
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
777
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
778
{
780
    as_area_t *area;
779
    as_area_t *area;
781
    uintptr_t base;
780
    uintptr_t base;
782
    link_t *cur;
781
    link_t *cur;
783
    ipl_t ipl;
782
    ipl_t ipl;
784
    int page_flags;
783
    int page_flags;
785
    uintptr_t *old_frame;
784
    uintptr_t *old_frame;
786
    index_t frame_idx;
785
    index_t frame_idx;
787
    count_t used_pages;
786
    count_t used_pages;
788
 
787
 
789
    /* Flags for the new memory mapping */
788
    /* Flags for the new memory mapping */
790
    page_flags = area_flags_to_page_flags(flags);
789
    page_flags = area_flags_to_page_flags(flags);
791
 
790
 
792
    ipl = interrupts_disable();
791
    ipl = interrupts_disable();
793
    mutex_lock(&as->lock);
792
    mutex_lock(&as->lock);
794
 
793
 
795
    area = find_area_and_lock(as, address);
794
    area = find_area_and_lock(as, address);
796
    if (!area) {
795
    if (!area) {
797
        mutex_unlock(&as->lock);
796
        mutex_unlock(&as->lock);
798
        interrupts_restore(ipl);
797
        interrupts_restore(ipl);
799
        return ENOENT;
798
        return ENOENT;
800
    }
799
    }
801
 
800
 
802
    if (area->sh_info || area->backend != &anon_backend) {
801
    if (area->sh_info || area->backend != &anon_backend) {
803
        /* Copying shared areas not supported yet */
802
        /* Copying shared areas not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
803
        /* Copying non-anonymous memory not supported yet */
805
        mutex_unlock(&area->lock);
804
        mutex_unlock(&area->lock);
806
        mutex_unlock(&as->lock);
805
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
806
        interrupts_restore(ipl);
808
        return ENOTSUP;
807
        return ENOTSUP;
809
    }
808
    }
810
 
809
 
811
    base = area->base;
810
    base = area->base;
812
 
811
 
813
    /*
812
    /*
814
     * Compute total number of used pages in the used_space B+tree
813
     * Compute total number of used pages in the used_space B+tree
815
     */
814
     */
816
    used_pages = 0;
815
    used_pages = 0;
817
 
816
 
818
    for (cur = area->used_space.leaf_head.next;
817
    for (cur = area->used_space.leaf_head.next;
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
818
        cur != &area->used_space.leaf_head; cur = cur->next) {
820
        btree_node_t *node;
819
        btree_node_t *node;
821
        unsigned int i;
820
        unsigned int i;
822
       
821
       
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
822
        node = list_get_instance(cur, btree_node_t, leaf_link);
824
        for (i = 0; i < node->keys; i++) {
823
        for (i = 0; i < node->keys; i++) {
825
            used_pages += (count_t) node->value[i];
824
            used_pages += (count_t) node->value[i];
826
        }
825
        }
827
    }
826
    }
828
 
827
 
829
    /* An array for storing frame numbers */
828
    /* An array for storing frame numbers */
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
829
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
830
 
832
    /*
831
    /*
833
     * Start TLB shootdown sequence.
832
     * Start TLB shootdown sequence.
834
     */
833
     */
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
834
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
835
 
837
    /*
836
    /*
838
     * Remove used pages from page tables and remember their frame
837
     * Remove used pages from page tables and remember their frame
839
     * numbers.
838
     * numbers.
840
     */
839
     */
841
    frame_idx = 0;
840
    frame_idx = 0;
842
 
841
 
843
    for (cur = area->used_space.leaf_head.next;
842
    for (cur = area->used_space.leaf_head.next;
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
843
        cur != &area->used_space.leaf_head; cur = cur->next) {
845
        btree_node_t *node;
844
        btree_node_t *node;
846
        unsigned int i;
845
        unsigned int i;
847
       
846
       
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
847
        node = list_get_instance(cur, btree_node_t, leaf_link);
849
        for (i = 0; i < node->keys; i++) {
848
        for (i = 0; i < node->keys; i++) {
850
            uintptr_t b = node->key[i];
849
            uintptr_t b = node->key[i];
851
            count_t j;
850
            count_t j;
852
            pte_t *pte;
851
            pte_t *pte;
853
           
852
           
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
853
            for (j = 0; j < (count_t) node->value[i]; j++) {
855
                page_table_lock(as, false);
854
                page_table_lock(as, false);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
855
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
                ASSERT(pte && PTE_VALID(pte) &&
856
                ASSERT(pte && PTE_VALID(pte) &&
858
                    PTE_PRESENT(pte));
857
                    PTE_PRESENT(pte));
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
858
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
859
 
861
                /* Remove old mapping */
860
                /* Remove old mapping */
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
861
                page_mapping_remove(as, b + j * PAGE_SIZE);
863
                page_table_unlock(as, false);
862
                page_table_unlock(as, false);
864
            }
863
            }
865
        }
864
        }
866
    }
865
    }
867
 
866
 
868
    /*
867
    /*
869
     * Finish TLB shootdown sequence.
868
     * Finish TLB shootdown sequence.
870
     */
869
     */
871
 
870
 
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
871
    tlb_invalidate_pages(as->asid, area->base, area->pages);
873
    /*
872
    /*
874
     * Invalidate potential software translation caches (e.g. TSB on
873
     * Invalidate potential software translation caches (e.g. TSB on
875
     * sparc64).
874
     * sparc64).
876
     */
875
     */
877
    as_invalidate_translation_cache(as, area->base, area->pages);
876
    as_invalidate_translation_cache(as, area->base, area->pages);
878
    tlb_shootdown_finalize();
877
    tlb_shootdown_finalize();
879
 
878
 
880
    /*
879
    /*
881
     * Set the new flags.
880
     * Set the new flags.
882
     */
881
     */
883
    area->flags = flags;
882
    area->flags = flags;
884
 
883
 
885
    /*
884
    /*
886
     * Map pages back in with new flags. This step is kept separate
885
     * Map pages back in with new flags. This step is kept separate
887
     * so that the memory area could not be accesed with both the old and
886
     * so that the memory area could not be accesed with both the old and
888
     * the new flags at once.
887
     * the new flags at once.
889
     */
888
     */
890
    frame_idx = 0;
889
    frame_idx = 0;
891
 
890
 
892
    for (cur = area->used_space.leaf_head.next;
891
    for (cur = area->used_space.leaf_head.next;
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
892
        cur != &area->used_space.leaf_head; cur = cur->next) {
894
        btree_node_t *node;
893
        btree_node_t *node;
895
        unsigned int i;
894
        unsigned int i;
896
       
895
       
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
896
        node = list_get_instance(cur, btree_node_t, leaf_link);
898
        for (i = 0; i < node->keys; i++) {
897
        for (i = 0; i < node->keys; i++) {
899
            uintptr_t b = node->key[i];
898
            uintptr_t b = node->key[i];
900
            count_t j;
899
            count_t j;
901
           
900
           
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
901
            for (j = 0; j < (count_t) node->value[i]; j++) {
903
                page_table_lock(as, false);
902
                page_table_lock(as, false);
904
 
903
 
905
                /* Insert the new mapping */
904
                /* Insert the new mapping */
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
905
                page_mapping_insert(as, b + j * PAGE_SIZE,
907
                    old_frame[frame_idx++], page_flags);
906
                    old_frame[frame_idx++], page_flags);
908
 
907
 
909
                page_table_unlock(as, false);
908
                page_table_unlock(as, false);
910
            }
909
            }
911
        }
910
        }
912
    }
911
    }
913
 
912
 
914
    free(old_frame);
913
    free(old_frame);
915
 
914
 
916
    mutex_unlock(&area->lock);
915
    mutex_unlock(&area->lock);
917
    mutex_unlock(&as->lock);
916
    mutex_unlock(&as->lock);
918
    interrupts_restore(ipl);
917
    interrupts_restore(ipl);
919
 
918
 
920
    return 0;
919
    return 0;
921
}
920
}
922
 
921
 
923
 
922
 
924
/** Handle page fault within the current address space.
923
/** Handle page fault within the current address space.
925
 *
924
 *
926
 * This is the high-level page fault handler. It decides whether the page fault
925
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
926
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
927
 * the page fault.
929
 *
928
 *
930
 * Interrupts are assumed disabled.
929
 * Interrupts are assumed disabled.
931
 *
930
 *
932
 * @param page      Faulting page.
931
 * @param page      Faulting page.
933
 * @param access    Access mode that caused the page fault (i.e.
932
 * @param access    Access mode that caused the page fault (i.e.
934
 *          read/write/exec).
933
 *          read/write/exec).
935
 * @param istate    Pointer to the interrupted state.
934
 * @param istate    Pointer to the interrupted state.
936
 *
935
 *
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
936
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
937
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 *          or copy_from_uspace().
938
 *          or copy_from_uspace().
940
 */
939
 */
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
940
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
942
{
941
{
943
    pte_t *pte;
942
    pte_t *pte;
944
    as_area_t *area;
943
    as_area_t *area;
945
   
944
   
946
    if (!THREAD)
945
    if (!THREAD)
947
        return AS_PF_FAULT;
946
        return AS_PF_FAULT;
948
       
947
       
949
    ASSERT(AS);
948
    ASSERT(AS);
950
 
949
 
951
    mutex_lock(&AS->lock);
950
    mutex_lock(&AS->lock);
952
    area = find_area_and_lock(AS, page);   
951
    area = find_area_and_lock(AS, page);   
953
    if (!area) {
952
    if (!area) {
954
        /*
953
        /*
955
         * No area contained mapping for 'page'.
954
         * No area contained mapping for 'page'.
956
         * Signal page fault to low-level handler.
955
         * Signal page fault to low-level handler.
957
         */
956
         */
958
        mutex_unlock(&AS->lock);
957
        mutex_unlock(&AS->lock);
959
        goto page_fault;
958
        goto page_fault;
960
    }
959
    }
961
 
960
 
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
961
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
        /*
962
        /*
964
         * The address space area is not fully initialized.
963
         * The address space area is not fully initialized.
965
         * Avoid possible race by returning error.
964
         * Avoid possible race by returning error.
966
         */
965
         */
967
        mutex_unlock(&area->lock);
966
        mutex_unlock(&area->lock);
968
        mutex_unlock(&AS->lock);
967
        mutex_unlock(&AS->lock);
969
        goto page_fault;       
968
        goto page_fault;       
970
    }
969
    }
971
 
970
 
972
    if (!area->backend || !area->backend->page_fault) {
971
    if (!area->backend || !area->backend->page_fault) {
973
        /*
972
        /*
974
         * The address space area is not backed by any backend
973
         * The address space area is not backed by any backend
975
         * or the backend cannot handle page faults.
974
         * or the backend cannot handle page faults.
976
         */
975
         */
977
        mutex_unlock(&area->lock);
976
        mutex_unlock(&area->lock);
978
        mutex_unlock(&AS->lock);
977
        mutex_unlock(&AS->lock);
979
        goto page_fault;       
978
        goto page_fault;       
980
    }
979
    }
981
 
980
 
982
    page_table_lock(AS, false);
981
    page_table_lock(AS, false);
983
   
982
   
984
    /*
983
    /*
985
     * To avoid race condition between two page faults on the same address,
984
     * To avoid race condition between two page faults on the same address,
986
     * we need to make sure the mapping has not been already inserted.
985
     * we need to make sure the mapping has not been already inserted.
987
     */
986
     */
988
    if ((pte = page_mapping_find(AS, page))) {
987
    if ((pte = page_mapping_find(AS, page))) {
989
        if (PTE_PRESENT(pte)) {
988
        if (PTE_PRESENT(pte)) {
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
989
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
990
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
991
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
993
                page_table_unlock(AS, false);
992
                page_table_unlock(AS, false);
994
                mutex_unlock(&area->lock);
993
                mutex_unlock(&area->lock);
995
                mutex_unlock(&AS->lock);
994
                mutex_unlock(&AS->lock);
996
                return AS_PF_OK;
995
                return AS_PF_OK;
997
            }
996
            }
998
        }
997
        }
999
    }
998
    }
1000
   
999
   
1001
    /*
1000
    /*
1002
     * Resort to the backend page fault handler.
1001
     * Resort to the backend page fault handler.
1003
     */
1002
     */
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1003
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1005
        page_table_unlock(AS, false);
1004
        page_table_unlock(AS, false);
1006
        mutex_unlock(&area->lock);
1005
        mutex_unlock(&area->lock);
1007
        mutex_unlock(&AS->lock);
1006
        mutex_unlock(&AS->lock);
1008
        goto page_fault;
1007
        goto page_fault;
1009
    }
1008
    }
1010
   
1009
   
1011
    page_table_unlock(AS, false);
1010
    page_table_unlock(AS, false);
1012
    mutex_unlock(&area->lock);
1011
    mutex_unlock(&area->lock);
1013
    mutex_unlock(&AS->lock);
1012
    mutex_unlock(&AS->lock);
1014
    return AS_PF_OK;
1013
    return AS_PF_OK;
1015
 
1014
 
1016
page_fault:
1015
page_fault:
1017
    if (THREAD->in_copy_from_uspace) {
1016
    if (THREAD->in_copy_from_uspace) {
1018
        THREAD->in_copy_from_uspace = false;
1017
        THREAD->in_copy_from_uspace = false;
1019
        istate_set_retaddr(istate,
1018
        istate_set_retaddr(istate,
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1019
            (uintptr_t) &memcpy_from_uspace_failover_address);
1021
    } else if (THREAD->in_copy_to_uspace) {
1020
    } else if (THREAD->in_copy_to_uspace) {
1022
        THREAD->in_copy_to_uspace = false;
1021
        THREAD->in_copy_to_uspace = false;
1023
        istate_set_retaddr(istate,
1022
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1023
            (uintptr_t) &memcpy_to_uspace_failover_address);
1025
    } else {
1024
    } else {
1026
        return AS_PF_FAULT;
1025
        return AS_PF_FAULT;
1027
    }
1026
    }
1028
 
1027
 
1029
    return AS_PF_DEFER;
1028
    return AS_PF_DEFER;
1030
}
1029
}
1031
 
1030
 
1032
/** Switch address spaces.
1031
/** Switch address spaces.
1033
 *
1032
 *
1034
 * Note that this function cannot sleep as it is essentially a part of
1033
 * Note that this function cannot sleep as it is essentially a part of
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1034
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1035
 * thing which is forbidden in this context is locking the address space.
1037
 *
1036
 *
1038
 * When this function is enetered, no spinlocks may be held.
1037
 * When this function is enetered, no spinlocks may be held.
1039
 *
1038
 *
1040
 * @param old       Old address space or NULL.
1039
 * @param old       Old address space or NULL.
1041
 * @param new       New address space.
1040
 * @param new       New address space.
1042
 */
1041
 */
1043
void as_switch(as_t *old_as, as_t *new_as)
1042
void as_switch(as_t *old_as, as_t *new_as)
1044
{
1043
{
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1044
    DEADLOCK_PROBE_INIT(p_asidlock);
1046
    preemption_disable();
1045
    preemption_disable();
1047
retry:
1046
retry:
1048
    (void) interrupts_disable();
1047
    (void) interrupts_disable();
1049
    if (!spinlock_trylock(&asidlock)) {
1048
    if (!spinlock_trylock(&asidlock)) {
1050
        /*
1049
        /*
1051
         * Avoid deadlock with TLB shootdown.
1050
         * Avoid deadlock with TLB shootdown.
1052
         * We can enable interrupts here because
1051
         * We can enable interrupts here because
1053
         * preemption is disabled. We should not be
1052
         * preemption is disabled. We should not be
1054
         * holding any other lock.
1053
         * holding any other lock.
1055
         */
1054
         */
1056
        (void) interrupts_enable();
1055
        (void) interrupts_enable();
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1056
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
        goto retry;
1057
        goto retry;
1059
    }
1058
    }
1060
    preemption_enable();
1059
    preemption_enable();
1061
 
1060
 
1062
    /*
1061
    /*
1063
     * First, take care of the old address space.
1062
     * First, take care of the old address space.
1064
     */
1063
     */
1065
    if (old_as) {
1064
    if (old_as) {
1066
        ASSERT(old_as->cpu_refcount);
1065
        ASSERT(old_as->cpu_refcount);
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1066
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1068
            /*
1067
            /*
1069
             * The old address space is no longer active on
1068
             * The old address space is no longer active on
1070
             * any processor. It can be appended to the
1069
             * any processor. It can be appended to the
1071
             * list of inactive address spaces with assigned
1070
             * list of inactive address spaces with assigned
1072
             * ASID.
1071
             * ASID.
1073
             */
1072
             */
1074
            ASSERT(old_as->asid != ASID_INVALID);
1073
            ASSERT(old_as->asid != ASID_INVALID);
1075
            list_append(&old_as->inactive_as_with_asid_link,
1074
            list_append(&old_as->inactive_as_with_asid_link,
1076
                &inactive_as_with_asid_head);
1075
                &inactive_as_with_asid_head);
1077
        }
1076
        }
1078
 
1077
 
1079
        /*
1078
        /*
1080
         * Perform architecture-specific tasks when the address space
1079
         * Perform architecture-specific tasks when the address space
1081
         * is being removed from the CPU.
1080
         * is being removed from the CPU.
1082
         */
1081
         */
1083
        as_deinstall_arch(old_as);
1082
        as_deinstall_arch(old_as);
1084
    }
1083
    }
1085
 
1084
 
1086
    /*
1085
    /*
1087
     * Second, prepare the new address space.
1086
     * Second, prepare the new address space.
1088
     */
1087
     */
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1088
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1090
        if (new_as->asid != ASID_INVALID)
1089
        if (new_as->asid != ASID_INVALID)
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1090
            list_remove(&new_as->inactive_as_with_asid_link);
1092
        else
1091
        else
1093
            new_as->asid = asid_get();
1092
            new_as->asid = asid_get();
1094
    }
1093
    }
1095
#ifdef AS_PAGE_TABLE
1094
#ifdef AS_PAGE_TABLE
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1095
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
1096
#endif
1098
   
1097
   
1099
    /*
1098
    /*
1100
     * Perform architecture-specific steps.
1099
     * Perform architecture-specific steps.
1101
     * (e.g. write ASID to hardware register etc.)
1100
     * (e.g. write ASID to hardware register etc.)
1102
     */
1101
     */
1103
    as_install_arch(new_as);
1102
    as_install_arch(new_as);
1104
 
1103
 
1105
    spinlock_unlock(&asidlock);
1104
    spinlock_unlock(&asidlock);
1106
   
1105
   
1107
    AS = new_as;
1106
    AS = new_as;
1108
}
1107
}
1109
 
1108
 
1110
#ifdef CONFIG_UDEBUG
-
 
1111
 
-
 
1112
/** Write directly into a page, bypassing area flags.
-
 
1113
 *
-
 
1114
 * This allows a debugger to write into a page that is mapped read-only
-
 
1115
 * (such as the text segment). Naturally, this can only be done if the
-
 
1116
 * correspoinding area is private (not shared) and anonymous.
-
 
1117
 *
-
 
1118
 * If this is not the case, this function calls as_area_make_writeable()
-
 
1119
 * first.
-
 
1120
 */
-
 
1121
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
-
 
1122
{
-
 
1123
    uintptr_t page;
-
 
1124
    pte_t *pte;
-
 
1125
    as_area_t *area;
-
 
1126
    uintptr_t frame;
-
 
1127
    ipl_t ipl;
-
 
1128
    int rc;
-
 
1129
 
-
 
1130
    page = ALIGN_DOWN(va, PAGE_SIZE);
-
 
1131
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
-
 
1132
 
-
 
1133
restart:
-
 
1134
    mutex_lock(&AS->lock);
-
 
1135
    ipl = interrupts_disable();
-
 
1136
    area = find_area_and_lock(AS, page);
-
 
1137
    if (area->backend != &anon_backend || area->sh_info != NULL) {
-
 
1138
        mutex_unlock(&area->lock);
-
 
1139
        mutex_unlock(&AS->lock);
-
 
1140
        interrupts_restore(ipl);
-
 
1141
 
-
 
1142
        rc = as_area_make_writeable(area->base);
-
 
1143
        if (rc != 0) return rc;
-
 
1144
 
-
 
1145
        goto restart;
-
 
1146
    }
-
 
1147
 
-
 
1148
    pte = page_mapping_find(AS, page);
-
 
1149
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
-
 
1150
        mutex_unlock(&area->lock);
-
 
1151
        mutex_unlock(&AS->lock);
-
 
1152
        interrupts_restore(ipl);
-
 
1153
 
-
 
1154
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
-
 
1155
        if (rc == AS_PF_FAULT) return EINVAL;
-
 
1156
 
-
 
1157
        goto restart;
-
 
1158
    }
-
 
1159
 
-
 
1160
    frame = PTE_GET_FRAME(pte);
-
 
1161
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
-
 
1162
 
-
 
1163
    mutex_unlock(&area->lock);
-
 
1164
    mutex_unlock(&AS->lock);
-
 
1165
    interrupts_restore(ipl);
-
 
1166
 
-
 
1167
    return EOK;
-
 
1168
}
-
 
1169
 
-
 
1170
/** Write data bypassing area flags.
-
 
1171
 *
-
 
1172
 * See debug_write_inside_page().
-
 
1173
 */
-
 
1174
int as_debug_write(uintptr_t va, void *data, size_t n)
-
 
1175
{
-
 
1176
    size_t now;
-
 
1177
    int rc;
-
 
1178
 
-
 
1179
    while (n > 0) {
-
 
1180
        /* Number of bytes until the end of page */
-
 
1181
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
-
 
1182
        if (now > n) now = n;
-
 
1183
 
-
 
1184
        rc = debug_write_inside_page(va, data, now);
-
 
1185
        if (rc != EOK) return rc;
-
 
1186
 
-
 
1187
        va += now;
-
 
1188
        data += now;
-
 
1189
        n -= now;
-
 
1190
    }
-
 
1191
 
-
 
1192
    return EOK;
-
 
1193
}
-
 
1194
 
-
 
1195
/** Make sure area is private and anonymous.
-
 
1196
 *
-
 
1197
 * Not atomic atm.
-
 
1198
 * @param address   Virtual address in AS.
-
 
1199
 */
-
 
1200
int as_area_make_writeable(uintptr_t address)
-
 
1201
{
-
 
1202
    ipl_t ipl;
-
 
1203
    as_area_t *area;
-
 
1204
    uintptr_t base, page;
-
 
1205
    uintptr_t old_frame, frame;
-
 
1206
    size_t size;
-
 
1207
    int flags;
-
 
1208
    int page_flags;
-
 
1209
    pte_t *pte;
-
 
1210
    int rc;
-
 
1211
    uintptr_t *pagemap;
-
 
1212
 
-
 
1213
    ipl = interrupts_disable();
-
 
1214
    mutex_lock(&AS->lock);
-
 
1215
    area = find_area_and_lock(AS, address);
-
 
1216
    if (!area) {
-
 
1217
        /*
-
 
1218
         * Could not find the address space area.
-
 
1219
         */
-
 
1220
        mutex_unlock(&AS->lock);
-
 
1221
        interrupts_restore(ipl);
-
 
1222
        return ENOENT;
-
 
1223
    }
-
 
1224
 
-
 
1225
    if (area->backend == &anon_backend && !area->sh_info) {
-
 
1226
        /* Nothing to do */
-
 
1227
        mutex_unlock(&area->lock);
-
 
1228
        mutex_unlock(&AS->lock);
-
 
1229
        interrupts_restore(ipl);
-
 
1230
        return EOK;
-
 
1231
    }
-
 
1232
 
-
 
1233
    base = area->base;
-
 
1234
    size = area->pages * PAGE_SIZE;
-
 
1235
    flags = area->flags;
-
 
1236
    page_flags = as_area_get_flags(area);
-
 
1237
 
-
 
1238
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
-
 
1239
    page_table_lock(AS, false);
-
 
1240
 
-
 
1241
    for (page = base; page < base + size; page += PAGE_SIZE) {
-
 
1242
        pte = page_mapping_find(AS, page);
-
 
1243
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
-
 
1244
            /* Fetch the missing page */
-
 
1245
            if (!area->backend || !area->backend->page_fault) {
-
 
1246
                page_table_unlock(AS, false);
-
 
1247
                mutex_unlock(&area->lock);
-
 
1248
                mutex_unlock(&AS->lock);
-
 
1249
                interrupts_restore(ipl);
-
 
1250
                return EINVAL;
-
 
1251
            }
-
 
1252
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
-
 
1253
                page_table_unlock(AS, false);
-
 
1254
                mutex_unlock(&area->lock);
-
 
1255
                mutex_unlock(&AS->lock);
-
 
1256
                interrupts_restore(ipl);
-
 
1257
                return EINVAL;
-
 
1258
            }
-
 
1259
        }
-
 
1260
        ASSERT(PTE_VALID(pte));
-
 
1261
 
-
 
1262
        old_frame = PTE_GET_FRAME(pte);
-
 
1263
 
-
 
1264
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
-
 
1265
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
-
 
1266
            FRAME_SIZE);
-
 
1267
 
-
 
1268
        pagemap[(page - base) / PAGE_SIZE] = frame;
-
 
1269
    }
-
 
1270
 
-
 
1271
    page_table_unlock(AS, false);
-
 
1272
    mutex_unlock(&area->lock);
-
 
1273
    mutex_unlock(&AS->lock);
-
 
1274
    interrupts_restore(ipl);
-
 
1275
 
-
 
1276
    rc = as_area_destroy(AS, address);
-
 
1277
    if (rc < 0) {
-
 
1278
        free(pagemap);
-
 
1279
        return rc;
-
 
1280
    }
-
 
1281
 
-
 
1282
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
-
 
1283
        &anon_backend, NULL);
-
 
1284
    if (area == NULL) {
-
 
1285
        free(pagemap);
-
 
1286
        return rc;
-
 
1287
    }
-
 
1288
 
-
 
1289
    mutex_lock(&AS->lock);
-
 
1290
    mutex_lock(&area->lock);
-
 
1291
    page_table_lock(AS, false);
-
 
1292
    for (page = base; page < base + size; page += PAGE_SIZE) {
-
 
1293
        frame = pagemap[(page - base) / PAGE_SIZE];
-
 
1294
 
-
 
1295
        page_mapping_insert(AS, page, frame, page_flags);
-
 
1296
        if (!used_space_insert(area, page, 1))
-
 
1297
            panic("Could not insert used space.\n");
-
 
1298
    }
-
 
1299
 
-
 
1300
    page_table_unlock(AS, false);
-
 
1301
 
-
 
1302
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
-
 
1303
 
-
 
1304
    mutex_unlock(&area->lock);
-
 
1305
    mutex_unlock(&AS->lock);
-
 
1306
 
-
 
1307
    free(pagemap);
-
 
1308
 
-
 
1309
    return EOK;
-
 
1310
}
-
 
1311
 
-
 
1312
#endif /* defined(CONFIG_UDEBUG) */
-
 
1313
 
-
 
1314
/** Convert address space area flags to page flags.
1109
/** Convert address space area flags to page flags.
1315
 *
1110
 *
1316
 * @param aflags    Flags of some address space area.
1111
 * @param aflags    Flags of some address space area.
1317
 *
1112
 *
1318
 * @return      Flags to be passed to page_mapping_insert().
1113
 * @return      Flags to be passed to page_mapping_insert().
1319
 */
1114
 */
1320
int area_flags_to_page_flags(int aflags)
1115
int area_flags_to_page_flags(int aflags)
1321
{
1116
{
1322
    int flags;
1117
    int flags;
1323
 
1118
 
1324
    flags = PAGE_USER | PAGE_PRESENT;
1119
    flags = PAGE_USER | PAGE_PRESENT;
1325
   
1120
   
1326
    if (aflags & AS_AREA_READ)
1121
    if (aflags & AS_AREA_READ)
1327
        flags |= PAGE_READ;
1122
        flags |= PAGE_READ;
1328
       
1123
       
1329
    if (aflags & AS_AREA_WRITE)
1124
    if (aflags & AS_AREA_WRITE)
1330
        flags |= PAGE_WRITE;
1125
        flags |= PAGE_WRITE;
1331
   
1126
   
1332
    if (aflags & AS_AREA_EXEC)
1127
    if (aflags & AS_AREA_EXEC)
1333
        flags |= PAGE_EXEC;
1128
        flags |= PAGE_EXEC;
1334
   
1129
   
1335
    if (aflags & AS_AREA_CACHEABLE)
1130
    if (aflags & AS_AREA_CACHEABLE)
1336
        flags |= PAGE_CACHEABLE;
1131
        flags |= PAGE_CACHEABLE;
1337
       
1132
       
1338
    return flags;
1133
    return flags;
1339
}
1134
}
1340
 
1135
 
1341
/** Compute flags for virtual address translation subsytem.
1136
/** Compute flags for virtual address translation subsytem.
1342
 *
1137
 *
1343
 * The address space area must be locked.
1138
 * The address space area must be locked.
1344
 * Interrupts must be disabled.
1139
 * Interrupts must be disabled.
1345
 *
1140
 *
1346
 * @param a     Address space area.
1141
 * @param a     Address space area.
1347
 *
1142
 *
1348
 * @return      Flags to be used in page_mapping_insert().
1143
 * @return      Flags to be used in page_mapping_insert().
1349
 */
1144
 */
1350
int as_area_get_flags(as_area_t *a)
1145
int as_area_get_flags(as_area_t *a)
1351
{
1146
{
1352
    return area_flags_to_page_flags(a->flags);
1147
    return area_flags_to_page_flags(a->flags);
1353
}
1148
}
1354
 
1149
 
1355
/** Create page table.
1150
/** Create page table.
1356
 *
1151
 *
1357
 * Depending on architecture, create either address space private or global page
1152
 * Depending on architecture, create either address space private or global page
1358
 * table.
1153
 * table.
1359
 *
1154
 *
1360
 * @param flags     Flags saying whether the page table is for the kernel
1155
 * @param flags     Flags saying whether the page table is for the kernel
1361
 *          address space.
1156
 *          address space.
1362
 *
1157
 *
1363
 * @return      First entry of the page table.
1158
 * @return      First entry of the page table.
1364
 */
1159
 */
1365
pte_t *page_table_create(int flags)
1160
pte_t *page_table_create(int flags)
1366
{
1161
{
1367
    ASSERT(as_operations);
1162
    ASSERT(as_operations);
1368
    ASSERT(as_operations->page_table_create);
1163
    ASSERT(as_operations->page_table_create);
1369
   
1164
   
1370
    return as_operations->page_table_create(flags);
1165
    return as_operations->page_table_create(flags);
1371
}
1166
}
1372
 
1167
 
1373
/** Destroy page table.
1168
/** Destroy page table.
1374
 *
1169
 *
1375
 * Destroy page table in architecture specific way.
1170
 * Destroy page table in architecture specific way.
1376
 *
1171
 *
1377
 * @param page_table    Physical address of PTL0.
1172
 * @param page_table    Physical address of PTL0.
1378
 */
1173
 */
1379
void page_table_destroy(pte_t *page_table)
1174
void page_table_destroy(pte_t *page_table)
1380
{
1175
{
1381
    ASSERT(as_operations);
1176
    ASSERT(as_operations);
1382
    ASSERT(as_operations->page_table_destroy);
1177
    ASSERT(as_operations->page_table_destroy);
1383
   
1178
   
1384
    as_operations->page_table_destroy(page_table);
1179
    as_operations->page_table_destroy(page_table);
1385
}
1180
}
1386
 
1181
 
1387
/** Lock page table.
1182
/** Lock page table.
1388
 *
1183
 *
1389
 * This function should be called before any page_mapping_insert(),
1184
 * This function should be called before any page_mapping_insert(),
1390
 * page_mapping_remove() and page_mapping_find().
1185
 * page_mapping_remove() and page_mapping_find().
1391
 *
1186
 *
1392
 * Locking order is such that address space areas must be locked
1187
 * Locking order is such that address space areas must be locked
1393
 * prior to this call. Address space can be locked prior to this
1188
 * prior to this call. Address space can be locked prior to this
1394
 * call in which case the lock argument is false.
1189
 * call in which case the lock argument is false.
1395
 *
1190
 *
1396
 * @param as        Address space.
1191
 * @param as        Address space.
1397
 * @param lock      If false, do not attempt to lock as->lock.
1192
 * @param lock      If false, do not attempt to lock as->lock.
1398
 */
1193
 */
1399
void page_table_lock(as_t *as, bool lock)
1194
void page_table_lock(as_t *as, bool lock)
1400
{
1195
{
1401
    ASSERT(as_operations);
1196
    ASSERT(as_operations);
1402
    ASSERT(as_operations->page_table_lock);
1197
    ASSERT(as_operations->page_table_lock);
1403
   
1198
   
1404
    as_operations->page_table_lock(as, lock);
1199
    as_operations->page_table_lock(as, lock);
1405
}
1200
}
1406
 
1201
 
1407
/** Unlock page table.
1202
/** Unlock page table.
1408
 *
1203
 *
1409
 * @param as        Address space.
1204
 * @param as        Address space.
1410
 * @param unlock    If false, do not attempt to unlock as->lock.
1205
 * @param unlock    If false, do not attempt to unlock as->lock.
1411
 */
1206
 */
1412
void page_table_unlock(as_t *as, bool unlock)
1207
void page_table_unlock(as_t *as, bool unlock)
1413
{
1208
{
1414
    ASSERT(as_operations);
1209
    ASSERT(as_operations);
1415
    ASSERT(as_operations->page_table_unlock);
1210
    ASSERT(as_operations->page_table_unlock);
1416
   
1211
   
1417
    as_operations->page_table_unlock(as, unlock);
1212
    as_operations->page_table_unlock(as, unlock);
1418
}
1213
}
1419
 
1214
 
1420
 
1215
 
1421
/** Find address space area and lock it.
1216
/** Find address space area and lock it.
1422
 *
1217
 *
1423
 * The address space must be locked and interrupts must be disabled.
1218
 * The address space must be locked and interrupts must be disabled.
1424
 *
1219
 *
1425
 * @param as        Address space.
1220
 * @param as        Address space.
1426
 * @param va        Virtual address.
1221
 * @param va        Virtual address.
1427
 *
1222
 *
1428
 * @return      Locked address space area containing va on success or
1223
 * @return      Locked address space area containing va on success or
1429
 *          NULL on failure.
1224
 *          NULL on failure.
1430
 */
1225
 */
1431
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1226
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1432
{
1227
{
1433
    as_area_t *a;
1228
    as_area_t *a;
1434
    btree_node_t *leaf, *lnode;
1229
    btree_node_t *leaf, *lnode;
1435
    unsigned int i;
1230
    unsigned int i;
1436
   
1231
   
1437
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1232
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1438
    if (a) {
1233
    if (a) {
1439
        /* va is the base address of an address space area */
1234
        /* va is the base address of an address space area */
1440
        mutex_lock(&a->lock);
1235
        mutex_lock(&a->lock);
1441
        return a;
1236
        return a;
1442
    }
1237
    }
1443
   
1238
   
1444
    /*
1239
    /*
1445
     * Search the leaf node and the righmost record of its left neighbour
1240
     * Search the leaf node and the righmost record of its left neighbour
1446
     * to find out whether this is a miss or va belongs to an address
1241
     * to find out whether this is a miss or va belongs to an address
1447
     * space area found there.
1242
     * space area found there.
1448
     */
1243
     */
1449
   
1244
   
1450
    /* First, search the leaf node itself. */
1245
    /* First, search the leaf node itself. */
1451
    for (i = 0; i < leaf->keys; i++) {
1246
    for (i = 0; i < leaf->keys; i++) {
1452
        a = (as_area_t *) leaf->value[i];
1247
        a = (as_area_t *) leaf->value[i];
1453
        mutex_lock(&a->lock);
1248
        mutex_lock(&a->lock);
1454
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1249
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1455
            return a;
1250
            return a;
1456
        }
1251
        }
1457
        mutex_unlock(&a->lock);
1252
        mutex_unlock(&a->lock);
1458
    }
1253
    }
1459
 
1254
 
1460
    /*
1255
    /*
1461
     * Second, locate the left neighbour and test its last record.
1256
     * Second, locate the left neighbour and test its last record.
1462
     * Because of its position in the B+tree, it must have base < va.
1257
     * Because of its position in the B+tree, it must have base < va.
1463
     */
1258
     */
1464
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1259
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1465
    if (lnode) {
1260
    if (lnode) {
1466
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1261
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1467
        mutex_lock(&a->lock);
1262
        mutex_lock(&a->lock);
1468
        if (va < a->base + a->pages * PAGE_SIZE) {
1263
        if (va < a->base + a->pages * PAGE_SIZE) {
1469
            return a;
1264
            return a;
1470
        }
1265
        }
1471
        mutex_unlock(&a->lock);
1266
        mutex_unlock(&a->lock);
1472
    }
1267
    }
1473
 
1268
 
1474
    return NULL;
1269
    return NULL;
1475
}
1270
}
1476
 
1271
 
1477
/** Check area conflicts with other areas.
1272
/** Check area conflicts with other areas.
1478
 *
1273
 *
1479
 * The address space must be locked and interrupts must be disabled.
1274
 * The address space must be locked and interrupts must be disabled.
1480
 *
1275
 *
1481
 * @param as        Address space.
1276
 * @param as        Address space.
1482
 * @param va        Starting virtual address of the area being tested.
1277
 * @param va        Starting virtual address of the area being tested.
1483
 * @param size      Size of the area being tested.
1278
 * @param size      Size of the area being tested.
1484
 * @param avoid_area    Do not touch this area.
1279
 * @param avoid_area    Do not touch this area.
1485
 *
1280
 *
1486
 * @return      True if there is no conflict, false otherwise.
1281
 * @return      True if there is no conflict, false otherwise.
1487
 */
1282
 */
1488
bool
1283
bool
1489
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1284
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1490
{
1285
{
1491
    as_area_t *a;
1286
    as_area_t *a;
1492
    btree_node_t *leaf, *node;
1287
    btree_node_t *leaf, *node;
1493
    unsigned int i;
1288
    unsigned int i;
1494
   
1289
   
1495
    /*
1290
    /*
1496
     * We don't want any area to have conflicts with NULL page.
1291
     * We don't want any area to have conflicts with NULL page.
1497
     */
1292
     */
1498
    if (overlaps(va, size, NULL, PAGE_SIZE))
1293
    if (overlaps(va, size, NULL, PAGE_SIZE))
1499
        return false;
1294
        return false;
1500
   
1295
   
1501
    /*
1296
    /*
1502
     * The leaf node is found in O(log n), where n is proportional to
1297
     * The leaf node is found in O(log n), where n is proportional to
1503
     * the number of address space areas belonging to as.
1298
     * the number of address space areas belonging to as.
1504
     * The check for conflicts is then attempted on the rightmost
1299
     * The check for conflicts is then attempted on the rightmost
1505
     * record in the left neighbour, the leftmost record in the right
1300
     * record in the left neighbour, the leftmost record in the right
1506
     * neighbour and all records in the leaf node itself.
1301
     * neighbour and all records in the leaf node itself.
1507
     */
1302
     */
1508
   
1303
   
1509
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1304
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1510
        if (a != avoid_area)
1305
        if (a != avoid_area)
1511
            return false;
1306
            return false;
1512
    }
1307
    }
1513
   
1308
   
1514
    /* First, check the two border cases. */
1309
    /* First, check the two border cases. */
1515
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1310
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1516
        a = (as_area_t *) node->value[node->keys - 1];
1311
        a = (as_area_t *) node->value[node->keys - 1];
1517
        mutex_lock(&a->lock);
1312
        mutex_lock(&a->lock);
1518
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1313
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1519
            mutex_unlock(&a->lock);
1314
            mutex_unlock(&a->lock);
1520
            return false;
1315
            return false;
1521
        }
1316
        }
1522
        mutex_unlock(&a->lock);
1317
        mutex_unlock(&a->lock);
1523
    }
1318
    }
1524
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1319
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1525
    if (node) {
1320
    if (node) {
1526
        a = (as_area_t *) node->value[0];
1321
        a = (as_area_t *) node->value[0];
1527
        mutex_lock(&a->lock);
1322
        mutex_lock(&a->lock);
1528
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1323
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1529
            mutex_unlock(&a->lock);
1324
            mutex_unlock(&a->lock);
1530
            return false;
1325
            return false;
1531
        }
1326
        }
1532
        mutex_unlock(&a->lock);
1327
        mutex_unlock(&a->lock);
1533
    }
1328
    }
1534
   
1329
   
1535
    /* Second, check the leaf node. */
1330
    /* Second, check the leaf node. */
1536
    for (i = 0; i < leaf->keys; i++) {
1331
    for (i = 0; i < leaf->keys; i++) {
1537
        a = (as_area_t *) leaf->value[i];
1332
        a = (as_area_t *) leaf->value[i];
1538
   
1333
   
1539
        if (a == avoid_area)
1334
        if (a == avoid_area)
1540
            continue;
1335
            continue;
1541
   
1336
   
1542
        mutex_lock(&a->lock);
1337
        mutex_lock(&a->lock);
1543
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1338
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1544
            mutex_unlock(&a->lock);
1339
            mutex_unlock(&a->lock);
1545
            return false;
1340
            return false;
1546
        }
1341
        }
1547
        mutex_unlock(&a->lock);
1342
        mutex_unlock(&a->lock);
1548
    }
1343
    }
1549
 
1344
 
1550
    /*
1345
    /*
1551
     * So far, the area does not conflict with other areas.
1346
     * So far, the area does not conflict with other areas.
1552
     * Check if it doesn't conflict with kernel address space.
1347
     * Check if it doesn't conflict with kernel address space.
1553
     */  
1348
     */  
1554
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1349
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1555
        return !overlaps(va, size,
1350
        return !overlaps(va, size,
1556
            KERNEL_ADDRESS_SPACE_START,
1351
            KERNEL_ADDRESS_SPACE_START,
1557
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1352
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1558
    }
1353
    }
1559
 
1354
 
1560
    return true;
1355
    return true;
1561
}
1356
}
1562
 
1357
 
1563
/** Return size of the address space area with given base.
1358
/** Return size of the address space area with given base.
1564
 *
1359
 *
1565
 * @param base      Arbitrary address insede the address space area.
1360
 * @param base      Arbitrary address insede the address space area.
1566
 *
1361
 *
1567
 * @return      Size of the address space area in bytes or zero if it
1362
 * @return      Size of the address space area in bytes or zero if it
1568
 *          does not exist.
1363
 *          does not exist.
1569
 */
1364
 */
1570
size_t as_area_get_size(uintptr_t base)
1365
size_t as_area_get_size(uintptr_t base)
1571
{
1366
{
1572
    ipl_t ipl;
1367
    ipl_t ipl;
1573
    as_area_t *src_area;
1368
    as_area_t *src_area;
1574
    size_t size;
1369
    size_t size;
1575
 
1370
 
1576
    ipl = interrupts_disable();
1371
    ipl = interrupts_disable();
1577
    src_area = find_area_and_lock(AS, base);
1372
    src_area = find_area_and_lock(AS, base);
1578
    if (src_area) {
1373
    if (src_area) {
1579
        size = src_area->pages * PAGE_SIZE;
1374
        size = src_area->pages * PAGE_SIZE;
1580
        mutex_unlock(&src_area->lock);
1375
        mutex_unlock(&src_area->lock);
1581
    } else {
1376
    } else {
1582
        size = 0;
1377
        size = 0;
1583
    }
1378
    }
1584
    interrupts_restore(ipl);
1379
    interrupts_restore(ipl);
1585
    return size;
1380
    return size;
1586
}
1381
}
1587
 
1382
 
1588
/** Mark portion of address space area as used.
1383
/** Mark portion of address space area as used.
1589
 *
1384
 *
1590
 * The address space area must be already locked.
1385
 * The address space area must be already locked.
1591
 *
1386
 *
1592
 * @param a     Address space area.
1387
 * @param a     Address space area.
1593
 * @param page      First page to be marked.
1388
 * @param page      First page to be marked.
1594
 * @param count     Number of page to be marked.
1389
 * @param count     Number of page to be marked.
1595
 *
1390
 *
1596
 * @return      Zero on failure and non-zero on success.
1391
 * @return      Zero on failure and non-zero on success.
1597
 */
1392
 */
1598
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1393
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1599
{
1394
{
1600
    btree_node_t *leaf, *node;
1395
    btree_node_t *leaf, *node;
1601
    count_t pages;
1396
    count_t pages;
1602
    unsigned int i;
1397
    unsigned int i;
1603
 
1398
 
1604
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1399
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1605
    ASSERT(count);
1400
    ASSERT(count);
1606
 
1401
 
1607
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1402
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1608
    if (pages) {
1403
    if (pages) {
1609
        /*
1404
        /*
1610
         * We hit the beginning of some used space.
1405
         * We hit the beginning of some used space.
1611
         */
1406
         */
1612
        return 0;
1407
        return 0;
1613
    }
1408
    }
1614
 
1409
 
1615
    if (!leaf->keys) {
1410
    if (!leaf->keys) {
1616
        btree_insert(&a->used_space, page, (void *) count, leaf);
1411
        btree_insert(&a->used_space, page, (void *) count, leaf);
1617
        return 1;
1412
        return 1;
1618
    }
1413
    }
1619
 
1414
 
1620
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1415
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1621
    if (node) {
1416
    if (node) {
1622
        uintptr_t left_pg = node->key[node->keys - 1];
1417
        uintptr_t left_pg = node->key[node->keys - 1];
1623
        uintptr_t right_pg = leaf->key[0];
1418
        uintptr_t right_pg = leaf->key[0];
1624
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1419
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1625
        count_t right_cnt = (count_t) leaf->value[0];
1420
        count_t right_cnt = (count_t) leaf->value[0];
1626
       
1421
       
1627
        /*
1422
        /*
1628
         * Examine the possibility that the interval fits
1423
         * Examine the possibility that the interval fits
1629
         * somewhere between the rightmost interval of
1424
         * somewhere between the rightmost interval of
1630
         * the left neigbour and the first interval of the leaf.
1425
         * the left neigbour and the first interval of the leaf.
1631
         */
1426
         */
1632
         
1427
         
1633
        if (page >= right_pg) {
1428
        if (page >= right_pg) {
1634
            /* Do nothing. */
1429
            /* Do nothing. */
1635
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1430
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1636
            left_cnt * PAGE_SIZE)) {
1431
            left_cnt * PAGE_SIZE)) {
1637
            /* The interval intersects with the left interval. */
1432
            /* The interval intersects with the left interval. */
1638
            return 0;
1433
            return 0;
1639
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1434
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1640
            right_cnt * PAGE_SIZE)) {
1435
            right_cnt * PAGE_SIZE)) {
1641
            /* The interval intersects with the right interval. */
1436
            /* The interval intersects with the right interval. */
1642
            return 0;          
1437
            return 0;          
1643
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1438
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
            (page + count * PAGE_SIZE == right_pg)) {
1439
            (page + count * PAGE_SIZE == right_pg)) {
1645
            /*
1440
            /*
1646
             * The interval can be added by merging the two already
1441
             * The interval can be added by merging the two already
1647
             * present intervals.
1442
             * present intervals.
1648
             */
1443
             */
1649
            node->value[node->keys - 1] += count + right_cnt;
1444
            node->value[node->keys - 1] += count + right_cnt;
1650
            btree_remove(&a->used_space, right_pg, leaf);
1445
            btree_remove(&a->used_space, right_pg, leaf);
1651
            return 1;
1446
            return 1;
1652
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1447
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
            /*
1448
            /*
1654
             * The interval can be added by simply growing the left
1449
             * The interval can be added by simply growing the left
1655
             * interval.
1450
             * interval.
1656
             */
1451
             */
1657
            node->value[node->keys - 1] += count;
1452
            node->value[node->keys - 1] += count;
1658
            return 1;
1453
            return 1;
1659
        } else if (page + count * PAGE_SIZE == right_pg) {
1454
        } else if (page + count * PAGE_SIZE == right_pg) {
1660
            /*
1455
            /*
1661
             * The interval can be addded by simply moving base of
1456
             * The interval can be addded by simply moving base of
1662
             * the right interval down and increasing its size
1457
             * the right interval down and increasing its size
1663
             * accordingly.
1458
             * accordingly.
1664
             */
1459
             */
1665
            leaf->value[0] += count;
1460
            leaf->value[0] += count;
1666
            leaf->key[0] = page;
1461
            leaf->key[0] = page;
1667
            return 1;
1462
            return 1;
1668
        } else {
1463
        } else {
1669
            /*
1464
            /*
1670
             * The interval is between both neigbouring intervals,
1465
             * The interval is between both neigbouring intervals,
1671
             * but cannot be merged with any of them.
1466
             * but cannot be merged with any of them.
1672
             */
1467
             */
1673
            btree_insert(&a->used_space, page, (void *) count,
1468
            btree_insert(&a->used_space, page, (void *) count,
1674
                leaf);
1469
                leaf);
1675
            return 1;
1470
            return 1;
1676
        }
1471
        }
1677
    } else if (page < leaf->key[0]) {
1472
    } else if (page < leaf->key[0]) {
1678
        uintptr_t right_pg = leaf->key[0];
1473
        uintptr_t right_pg = leaf->key[0];
1679
        count_t right_cnt = (count_t) leaf->value[0];
1474
        count_t right_cnt = (count_t) leaf->value[0];
1680
   
1475
   
1681
        /*
1476
        /*
1682
         * Investigate the border case in which the left neighbour does
1477
         * Investigate the border case in which the left neighbour does
1683
         * not exist but the interval fits from the left.
1478
         * not exist but the interval fits from the left.
1684
         */
1479
         */
1685
         
1480
         
1686
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1481
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1687
            right_cnt * PAGE_SIZE)) {
1482
            right_cnt * PAGE_SIZE)) {
1688
            /* The interval intersects with the right interval. */
1483
            /* The interval intersects with the right interval. */
1689
            return 0;
1484
            return 0;
1690
        } else if (page + count * PAGE_SIZE == right_pg) {
1485
        } else if (page + count * PAGE_SIZE == right_pg) {
1691
            /*
1486
            /*
1692
             * The interval can be added by moving the base of the
1487
             * The interval can be added by moving the base of the
1693
             * right interval down and increasing its size
1488
             * right interval down and increasing its size
1694
             * accordingly.
1489
             * accordingly.
1695
             */
1490
             */
1696
            leaf->key[0] = page;
1491
            leaf->key[0] = page;
1697
            leaf->value[0] += count;
1492
            leaf->value[0] += count;
1698
            return 1;
1493
            return 1;
1699
        } else {
1494
        } else {
1700
            /*
1495
            /*
1701
             * The interval doesn't adjoin with the right interval.
1496
             * The interval doesn't adjoin with the right interval.
1702
             * It must be added individually.
1497
             * It must be added individually.
1703
             */
1498
             */
1704
            btree_insert(&a->used_space, page, (void *) count,
1499
            btree_insert(&a->used_space, page, (void *) count,
1705
                leaf);
1500
                leaf);
1706
            return 1;
1501
            return 1;
1707
        }
1502
        }
1708
    }
1503
    }
1709
 
1504
 
1710
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1505
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1711
    if (node) {
1506
    if (node) {
1712
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1507
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1713
        uintptr_t right_pg = node->key[0];
1508
        uintptr_t right_pg = node->key[0];
1714
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1509
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1715
        count_t right_cnt = (count_t) node->value[0];
1510
        count_t right_cnt = (count_t) node->value[0];
1716
       
1511
       
1717
        /*
1512
        /*
1718
         * Examine the possibility that the interval fits
1513
         * Examine the possibility that the interval fits
1719
         * somewhere between the leftmost interval of
1514
         * somewhere between the leftmost interval of
1720
         * the right neigbour and the last interval of the leaf.
1515
         * the right neigbour and the last interval of the leaf.
1721
         */
1516
         */
1722
 
1517
 
1723
        if (page < left_pg) {
1518
        if (page < left_pg) {
1724
            /* Do nothing. */
1519
            /* Do nothing. */
1725
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1520
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1726
            left_cnt * PAGE_SIZE)) {
1521
            left_cnt * PAGE_SIZE)) {
1727
            /* The interval intersects with the left interval. */
1522
            /* The interval intersects with the left interval. */
1728
            return 0;
1523
            return 0;
1729
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1524
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1730
            right_cnt * PAGE_SIZE)) {
1525
            right_cnt * PAGE_SIZE)) {
1731
            /* The interval intersects with the right interval. */
1526
            /* The interval intersects with the right interval. */
1732
            return 0;          
1527
            return 0;          
1733
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1528
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1734
            (page + count * PAGE_SIZE == right_pg)) {
1529
            (page + count * PAGE_SIZE == right_pg)) {
1735
            /*
1530
            /*
1736
             * The interval can be added by merging the two already
1531
             * The interval can be added by merging the two already
1737
             * present intervals.
1532
             * present intervals.
1738
             * */
1533
             * */
1739
            leaf->value[leaf->keys - 1] += count + right_cnt;
1534
            leaf->value[leaf->keys - 1] += count + right_cnt;
1740
            btree_remove(&a->used_space, right_pg, node);
1535
            btree_remove(&a->used_space, right_pg, node);
1741
            return 1;
1536
            return 1;
1742
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1537
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1743
            /*
1538
            /*
1744
             * The interval can be added by simply growing the left
1539
             * The interval can be added by simply growing the left
1745
             * interval.
1540
             * interval.
1746
             * */
1541
             * */
1747
            leaf->value[leaf->keys - 1] +=  count;
1542
            leaf->value[leaf->keys - 1] +=  count;
1748
            return 1;
1543
            return 1;
1749
        } else if (page + count * PAGE_SIZE == right_pg) {
1544
        } else if (page + count * PAGE_SIZE == right_pg) {
1750
            /*
1545
            /*
1751
             * The interval can be addded by simply moving base of
1546
             * The interval can be addded by simply moving base of
1752
             * the right interval down and increasing its size
1547
             * the right interval down and increasing its size
1753
             * accordingly.
1548
             * accordingly.
1754
             */
1549
             */
1755
            node->value[0] += count;
1550
            node->value[0] += count;
1756
            node->key[0] = page;
1551
            node->key[0] = page;
1757
            return 1;
1552
            return 1;
1758
        } else {
1553
        } else {
1759
            /*
1554
            /*
1760
             * The interval is between both neigbouring intervals,
1555
             * The interval is between both neigbouring intervals,
1761
             * but cannot be merged with any of them.
1556
             * but cannot be merged with any of them.
1762
             */
1557
             */
1763
            btree_insert(&a->used_space, page, (void *) count,
1558
            btree_insert(&a->used_space, page, (void *) count,
1764
                leaf);
1559
                leaf);
1765
            return 1;
1560
            return 1;
1766
        }
1561
        }
1767
    } else if (page >= leaf->key[leaf->keys - 1]) {
1562
    } else if (page >= leaf->key[leaf->keys - 1]) {
1768
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1563
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1769
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1564
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1770
   
1565
   
1771
        /*
1566
        /*
1772
         * Investigate the border case in which the right neighbour
1567
         * Investigate the border case in which the right neighbour
1773
         * does not exist but the interval fits from the right.
1568
         * does not exist but the interval fits from the right.
1774
         */
1569
         */
1775
         
1570
         
1776
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1571
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1777
            left_cnt * PAGE_SIZE)) {
1572
            left_cnt * PAGE_SIZE)) {
1778
            /* The interval intersects with the left interval. */
1573
            /* The interval intersects with the left interval. */
1779
            return 0;
1574
            return 0;
1780
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1575
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1781
            /*
1576
            /*
1782
             * The interval can be added by growing the left
1577
             * The interval can be added by growing the left
1783
             * interval.
1578
             * interval.
1784
             */
1579
             */
1785
            leaf->value[leaf->keys - 1] += count;
1580
            leaf->value[leaf->keys - 1] += count;
1786
            return 1;
1581
            return 1;
1787
        } else {
1582
        } else {
1788
            /*
1583
            /*
1789
             * The interval doesn't adjoin with the left interval.
1584
             * The interval doesn't adjoin with the left interval.
1790
             * It must be added individually.
1585
             * It must be added individually.
1791
             */
1586
             */
1792
            btree_insert(&a->used_space, page, (void *) count,
1587
            btree_insert(&a->used_space, page, (void *) count,
1793
                leaf);
1588
                leaf);
1794
            return 1;
1589
            return 1;
1795
        }
1590
        }
1796
    }
1591
    }
1797
   
1592
   
1798
    /*
1593
    /*
1799
     * Note that if the algorithm made it thus far, the interval can fit
1594
     * Note that if the algorithm made it thus far, the interval can fit
1800
     * only between two other intervals of the leaf. The two border cases
1595
     * only between two other intervals of the leaf. The two border cases
1801
     * were already resolved.
1596
     * were already resolved.
1802
     */
1597
     */
1803
    for (i = 1; i < leaf->keys; i++) {
1598
    for (i = 1; i < leaf->keys; i++) {
1804
        if (page < leaf->key[i]) {
1599
        if (page < leaf->key[i]) {
1805
            uintptr_t left_pg = leaf->key[i - 1];
1600
            uintptr_t left_pg = leaf->key[i - 1];
1806
            uintptr_t right_pg = leaf->key[i];
1601
            uintptr_t right_pg = leaf->key[i];
1807
            count_t left_cnt = (count_t) leaf->value[i - 1];
1602
            count_t left_cnt = (count_t) leaf->value[i - 1];
1808
            count_t right_cnt = (count_t) leaf->value[i];
1603
            count_t right_cnt = (count_t) leaf->value[i];
1809
 
1604
 
1810
            /*
1605
            /*
1811
             * The interval fits between left_pg and right_pg.
1606
             * The interval fits between left_pg and right_pg.
1812
             */
1607
             */
1813
 
1608
 
1814
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1609
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1815
                left_cnt * PAGE_SIZE)) {
1610
                left_cnt * PAGE_SIZE)) {
1816
                /*
1611
                /*
1817
                 * The interval intersects with the left
1612
                 * The interval intersects with the left
1818
                 * interval.
1613
                 * interval.
1819
                 */
1614
                 */
1820
                return 0;
1615
                return 0;
1821
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1616
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1822
                right_cnt * PAGE_SIZE)) {
1617
                right_cnt * PAGE_SIZE)) {
1823
                /*
1618
                /*
1824
                 * The interval intersects with the right
1619
                 * The interval intersects with the right
1825
                 * interval.
1620
                 * interval.
1826
                 */
1621
                 */
1827
                return 0;          
1622
                return 0;          
1828
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1623
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1829
                (page + count * PAGE_SIZE == right_pg)) {
1624
                (page + count * PAGE_SIZE == right_pg)) {
1830
                /*
1625
                /*
1831
                 * The interval can be added by merging the two
1626
                 * The interval can be added by merging the two
1832
                 * already present intervals.
1627
                 * already present intervals.
1833
                 */
1628
                 */
1834
                leaf->value[i - 1] += count + right_cnt;
1629
                leaf->value[i - 1] += count + right_cnt;
1835
                btree_remove(&a->used_space, right_pg, leaf);
1630
                btree_remove(&a->used_space, right_pg, leaf);
1836
                return 1;
1631
                return 1;
1837
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1632
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1838
                /*
1633
                /*
1839
                 * The interval can be added by simply growing
1634
                 * The interval can be added by simply growing
1840
                 * the left interval.
1635
                 * the left interval.
1841
                 */
1636
                 */
1842
                leaf->value[i - 1] += count;
1637
                leaf->value[i - 1] += count;
1843
                return 1;
1638
                return 1;
1844
            } else if (page + count * PAGE_SIZE == right_pg) {
1639
            } else if (page + count * PAGE_SIZE == right_pg) {
1845
                /*
1640
                /*
1846
                     * The interval can be addded by simply moving
1641
                     * The interval can be addded by simply moving
1847
                 * base of the right interval down and
1642
                 * base of the right interval down and
1848
                 * increasing its size accordingly.
1643
                 * increasing its size accordingly.
1849
                 */
1644
                 */
1850
                leaf->value[i] += count;
1645
                leaf->value[i] += count;
1851
                leaf->key[i] = page;
1646
                leaf->key[i] = page;
1852
                return 1;
1647
                return 1;
1853
            } else {
1648
            } else {
1854
                /*
1649
                /*
1855
                 * The interval is between both neigbouring
1650
                 * The interval is between both neigbouring
1856
                 * intervals, but cannot be merged with any of
1651
                 * intervals, but cannot be merged with any of
1857
                 * them.
1652
                 * them.
1858
                 */
1653
                 */
1859
                btree_insert(&a->used_space, page,
1654
                btree_insert(&a->used_space, page,
1860
                    (void *) count, leaf);
1655
                    (void *) count, leaf);
1861
                return 1;
1656
                return 1;
1862
            }
1657
            }
1863
        }
1658
        }
1864
    }
1659
    }
1865
 
1660
 
1866
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1661
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1867
        "space at %p.\n", count, page);
1662
        "space at %p.\n", count, page);
1868
}
1663
}
1869
 
1664
 
1870
/** Mark portion of address space area as unused.
1665
/** Mark portion of address space area as unused.
1871
 *
1666
 *
1872
 * The address space area must be already locked.
1667
 * The address space area must be already locked.
1873
 *
1668
 *
1874
 * @param a     Address space area.
1669
 * @param a     Address space area.
1875
 * @param page      First page to be marked.
1670
 * @param page      First page to be marked.
1876
 * @param count     Number of page to be marked.
1671
 * @param count     Number of page to be marked.
1877
 *
1672
 *
1878
 * @return      Zero on failure and non-zero on success.
1673
 * @return      Zero on failure and non-zero on success.
1879
 */
1674
 */
1880
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1675
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1881
{
1676
{
1882
    btree_node_t *leaf, *node;
1677
    btree_node_t *leaf, *node;
1883
    count_t pages;
1678
    count_t pages;
1884
    unsigned int i;
1679
    unsigned int i;
1885
 
1680
 
1886
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1681
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1887
    ASSERT(count);
1682
    ASSERT(count);
1888
 
1683
 
1889
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1684
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1890
    if (pages) {
1685
    if (pages) {
1891
        /*
1686
        /*
1892
         * We are lucky, page is the beginning of some interval.
1687
         * We are lucky, page is the beginning of some interval.
1893
         */
1688
         */
1894
        if (count > pages) {
1689
        if (count > pages) {
1895
            return 0;
1690
            return 0;
1896
        } else if (count == pages) {
1691
        } else if (count == pages) {
1897
            btree_remove(&a->used_space, page, leaf);
1692
            btree_remove(&a->used_space, page, leaf);
1898
            return 1;
1693
            return 1;
1899
        } else {
1694
        } else {
1900
            /*
1695
            /*
1901
             * Find the respective interval.
1696
             * Find the respective interval.
1902
             * Decrease its size and relocate its start address.
1697
             * Decrease its size and relocate its start address.
1903
             */
1698
             */
1904
            for (i = 0; i < leaf->keys; i++) {
1699
            for (i = 0; i < leaf->keys; i++) {
1905
                if (leaf->key[i] == page) {
1700
                if (leaf->key[i] == page) {
1906
                    leaf->key[i] += count * PAGE_SIZE;
1701
                    leaf->key[i] += count * PAGE_SIZE;
1907
                    leaf->value[i] -= count;
1702
                    leaf->value[i] -= count;
1908
                    return 1;
1703
                    return 1;
1909
                }
1704
                }
1910
            }
1705
            }
1911
            goto error;
1706
            goto error;
1912
        }
1707
        }
1913
    }
1708
    }
1914
 
1709
 
1915
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1710
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1916
    if (node && page < leaf->key[0]) {
1711
    if (node && page < leaf->key[0]) {
1917
        uintptr_t left_pg = node->key[node->keys - 1];
1712
        uintptr_t left_pg = node->key[node->keys - 1];
1918
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1713
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1919
 
1714
 
1920
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1715
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1921
            count * PAGE_SIZE)) {
1716
            count * PAGE_SIZE)) {
1922
            if (page + count * PAGE_SIZE ==
1717
            if (page + count * PAGE_SIZE ==
1923
                left_pg + left_cnt * PAGE_SIZE) {
1718
                left_pg + left_cnt * PAGE_SIZE) {
1924
                /*
1719
                /*
1925
                 * The interval is contained in the rightmost
1720
                 * The interval is contained in the rightmost
1926
                 * interval of the left neighbour and can be
1721
                 * interval of the left neighbour and can be
1927
                 * removed by updating the size of the bigger
1722
                 * removed by updating the size of the bigger
1928
                 * interval.
1723
                 * interval.
1929
                 */
1724
                 */
1930
                node->value[node->keys - 1] -= count;
1725
                node->value[node->keys - 1] -= count;
1931
                return 1;
1726
                return 1;
1932
            } else if (page + count * PAGE_SIZE <
1727
            } else if (page + count * PAGE_SIZE <
1933
                left_pg + left_cnt*PAGE_SIZE) {
1728
                left_pg + left_cnt*PAGE_SIZE) {
1934
                count_t new_cnt;
1729
                count_t new_cnt;
1935
               
1730
               
1936
                /*
1731
                /*
1937
                 * The interval is contained in the rightmost
1732
                 * The interval is contained in the rightmost
1938
                 * interval of the left neighbour but its
1733
                 * interval of the left neighbour but its
1939
                 * removal requires both updating the size of
1734
                 * removal requires both updating the size of
1940
                 * the original interval and also inserting a
1735
                 * the original interval and also inserting a
1941
                 * new interval.
1736
                 * new interval.
1942
                 */
1737
                 */
1943
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1738
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1944
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1739
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1945
                node->value[node->keys - 1] -= count + new_cnt;
1740
                node->value[node->keys - 1] -= count + new_cnt;
1946
                btree_insert(&a->used_space, page +
1741
                btree_insert(&a->used_space, page +
1947
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1742
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1948
                return 1;
1743
                return 1;
1949
            }
1744
            }
1950
        }
1745
        }
1951
        return 0;
1746
        return 0;
1952
    } else if (page < leaf->key[0]) {
1747
    } else if (page < leaf->key[0]) {
1953
        return 0;
1748
        return 0;
1954
    }
1749
    }
1955
   
1750
   
1956
    if (page > leaf->key[leaf->keys - 1]) {
1751
    if (page > leaf->key[leaf->keys - 1]) {
1957
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1752
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1958
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1753
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1959
 
1754
 
1960
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1755
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1961
            count * PAGE_SIZE)) {
1756
            count * PAGE_SIZE)) {
1962
            if (page + count * PAGE_SIZE ==
1757
            if (page + count * PAGE_SIZE ==
1963
                left_pg + left_cnt * PAGE_SIZE) {
1758
                left_pg + left_cnt * PAGE_SIZE) {
1964
                /*
1759
                /*
1965
                 * The interval is contained in the rightmost
1760
                 * The interval is contained in the rightmost
1966
                 * interval of the leaf and can be removed by
1761
                 * interval of the leaf and can be removed by
1967
                 * updating the size of the bigger interval.
1762
                 * updating the size of the bigger interval.
1968
                 */
1763
                 */
1969
                leaf->value[leaf->keys - 1] -= count;
1764
                leaf->value[leaf->keys - 1] -= count;
1970
                return 1;
1765
                return 1;
1971
            } else if (page + count * PAGE_SIZE < left_pg +
1766
            } else if (page + count * PAGE_SIZE < left_pg +
1972
                left_cnt * PAGE_SIZE) {
1767
                left_cnt * PAGE_SIZE) {
1973
                count_t new_cnt;
1768
                count_t new_cnt;
1974
               
1769
               
1975
                /*
1770
                /*
1976
                 * The interval is contained in the rightmost
1771
                 * The interval is contained in the rightmost
1977
                 * interval of the leaf but its removal
1772
                 * interval of the leaf but its removal
1978
                 * requires both updating the size of the
1773
                 * requires both updating the size of the
1979
                 * original interval and also inserting a new
1774
                 * original interval and also inserting a new
1980
                 * interval.
1775
                 * interval.
1981
                 */
1776
                 */
1982
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1777
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1983
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1778
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1984
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1779
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1985
                btree_insert(&a->used_space, page +
1780
                btree_insert(&a->used_space, page +
1986
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1781
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1987
                return 1;
1782
                return 1;
1988
            }
1783
            }
1989
        }
1784
        }
1990
        return 0;
1785
        return 0;
1991
    }  
1786
    }  
1992
   
1787
   
1993
    /*
1788
    /*
1994
     * The border cases have been already resolved.
1789
     * The border cases have been already resolved.
1995
     * Now the interval can be only between intervals of the leaf.
1790
     * Now the interval can be only between intervals of the leaf.
1996
     */
1791
     */
1997
    for (i = 1; i < leaf->keys - 1; i++) {
1792
    for (i = 1; i < leaf->keys - 1; i++) {
1998
        if (page < leaf->key[i]) {
1793
        if (page < leaf->key[i]) {
1999
            uintptr_t left_pg = leaf->key[i - 1];
1794
            uintptr_t left_pg = leaf->key[i - 1];
2000
            count_t left_cnt = (count_t) leaf->value[i - 1];
1795
            count_t left_cnt = (count_t) leaf->value[i - 1];
2001
 
1796
 
2002
            /*
1797
            /*
2003
             * Now the interval is between intervals corresponding
1798
             * Now the interval is between intervals corresponding
2004
             * to (i - 1) and i.
1799
             * to (i - 1) and i.
2005
             */
1800
             */
2006
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1801
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
2007
                count * PAGE_SIZE)) {
1802
                count * PAGE_SIZE)) {
2008
                if (page + count * PAGE_SIZE ==
1803
                if (page + count * PAGE_SIZE ==
2009
                    left_pg + left_cnt*PAGE_SIZE) {
1804
                    left_pg + left_cnt*PAGE_SIZE) {
2010
                    /*
1805
                    /*
2011
                     * The interval is contained in the
1806
                     * The interval is contained in the
2012
                     * interval (i - 1) of the leaf and can
1807
                     * interval (i - 1) of the leaf and can
2013
                     * be removed by updating the size of
1808
                     * be removed by updating the size of
2014
                     * the bigger interval.
1809
                     * the bigger interval.
2015
                     */
1810
                     */
2016
                    leaf->value[i - 1] -= count;
1811
                    leaf->value[i - 1] -= count;
2017
                    return 1;
1812
                    return 1;
2018
                } else if (page + count * PAGE_SIZE <
1813
                } else if (page + count * PAGE_SIZE <
2019
                    left_pg + left_cnt * PAGE_SIZE) {
1814
                    left_pg + left_cnt * PAGE_SIZE) {
2020
                    count_t new_cnt;
1815
                    count_t new_cnt;
2021
               
1816
               
2022
                    /*
1817
                    /*
2023
                     * The interval is contained in the
1818
                     * The interval is contained in the
2024
                     * interval (i - 1) of the leaf but its
1819
                     * interval (i - 1) of the leaf but its
2025
                     * removal requires both updating the
1820
                     * removal requires both updating the
2026
                     * size of the original interval and
1821
                     * size of the original interval and
2027
                     * also inserting a new interval.
1822
                     * also inserting a new interval.
2028
                     */
1823
                     */
2029
                    new_cnt = ((left_pg +
1824
                    new_cnt = ((left_pg +
2030
                        left_cnt * PAGE_SIZE) -
1825
                        left_cnt * PAGE_SIZE) -
2031
                        (page + count * PAGE_SIZE)) >>
1826
                        (page + count * PAGE_SIZE)) >>
2032
                        PAGE_WIDTH;
1827
                        PAGE_WIDTH;
2033
                    leaf->value[i - 1] -= count + new_cnt;
1828
                    leaf->value[i - 1] -= count + new_cnt;
2034
                    btree_insert(&a->used_space, page +
1829
                    btree_insert(&a->used_space, page +
2035
                        count * PAGE_SIZE, (void *) new_cnt,
1830
                        count * PAGE_SIZE, (void *) new_cnt,
2036
                        leaf);
1831
                        leaf);
2037
                    return 1;
1832
                    return 1;
2038
                }
1833
                }
2039
            }
1834
            }
2040
            return 0;
1835
            return 0;
2041
        }
1836
        }
2042
    }
1837
    }
2043
 
1838
 
2044
error:
1839
error:
2045
    panic("Inconsistency detected while removing %" PRIc " pages of used "
1840
    panic("Inconsistency detected while removing %" PRIc " pages of used "
2046
        "space from %p.\n", count, page);
1841
        "space from %p.\n", count, page);
2047
}
1842
}
2048
 
1843
 
2049
/** Remove reference to address space area share info.
1844
/** Remove reference to address space area share info.
2050
 *
1845
 *
2051
 * If the reference count drops to 0, the sh_info is deallocated.
1846
 * If the reference count drops to 0, the sh_info is deallocated.
2052
 *
1847
 *
2053
 * @param sh_info   Pointer to address space area share info.
1848
 * @param sh_info   Pointer to address space area share info.
2054
 */
1849
 */
2055
void sh_info_remove_reference(share_info_t *sh_info)
1850
void sh_info_remove_reference(share_info_t *sh_info)
2056
{
1851
{
2057
    bool dealloc = false;
1852
    bool dealloc = false;
2058
 
1853
 
2059
    mutex_lock(&sh_info->lock);
1854
    mutex_lock(&sh_info->lock);
2060
    ASSERT(sh_info->refcount);
1855
    ASSERT(sh_info->refcount);
2061
    if (--sh_info->refcount == 0) {
1856
    if (--sh_info->refcount == 0) {
2062
        dealloc = true;
1857
        dealloc = true;
2063
        link_t *cur;
1858
        link_t *cur;
2064
       
1859
       
2065
        /*
1860
        /*
2066
         * Now walk carefully the pagemap B+tree and free/remove
1861
         * Now walk carefully the pagemap B+tree and free/remove
2067
         * reference from all frames found there.
1862
         * reference from all frames found there.
2068
         */
1863
         */
2069
        for (cur = sh_info->pagemap.leaf_head.next;
1864
        for (cur = sh_info->pagemap.leaf_head.next;
2070
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1865
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
2071
            btree_node_t *node;
1866
            btree_node_t *node;
2072
            unsigned int i;
1867
            unsigned int i;
2073
           
1868
           
2074
            node = list_get_instance(cur, btree_node_t, leaf_link);
1869
            node = list_get_instance(cur, btree_node_t, leaf_link);
2075
            for (i = 0; i < node->keys; i++)
1870
            for (i = 0; i < node->keys; i++)
2076
                frame_free((uintptr_t) node->value[i]);
1871
                frame_free((uintptr_t) node->value[i]);
2077
        }
1872
        }
2078
       
1873
       
2079
    }
1874
    }
2080
    mutex_unlock(&sh_info->lock);
1875
    mutex_unlock(&sh_info->lock);
2081
   
1876
   
2082
    if (dealloc) {
1877
    if (dealloc) {
2083
        btree_destroy(&sh_info->pagemap);
1878
        btree_destroy(&sh_info->pagemap);
2084
        free(sh_info);
1879
        free(sh_info);
2085
    }
1880
    }
2086
}
1881
}
2087
 
1882
 
2088
/*
1883
/*
2089
 * Address space related syscalls.
1884
 * Address space related syscalls.
2090
 */
1885
 */
2091
 
1886
 
2092
/** Wrapper for as_area_create(). */
1887
/** Wrapper for as_area_create(). */
2093
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1888
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
2094
{
1889
{
2095
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1890
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
2096
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
1891
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
2097
        return (unative_t) address;
1892
        return (unative_t) address;
2098
    else
1893
    else
2099
        return (unative_t) -1;
1894
        return (unative_t) -1;
2100
}
1895
}
2101
 
1896
 
2102
/** Wrapper for as_area_resize(). */
1897
/** Wrapper for as_area_resize(). */
2103
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1898
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
2104
{
1899
{
2105
    return (unative_t) as_area_resize(AS, address, size, 0);
1900
    return (unative_t) as_area_resize(AS, address, size, 0);
2106
}
1901
}
2107
 
1902
 
2108
/** Wrapper for as_area_change_flags(). */
1903
/** Wrapper for as_area_change_flags(). */
2109
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1904
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
2110
{
1905
{
2111
    return (unative_t) as_area_change_flags(AS, flags, address);
1906
    return (unative_t) as_area_change_flags(AS, flags, address);
2112
}
1907
}
2113
 
1908
 
2114
/** Wrapper for as_area_destroy(). */
1909
/** Wrapper for as_area_destroy(). */
2115
unative_t sys_as_area_destroy(uintptr_t address)
1910
unative_t sys_as_area_destroy(uintptr_t address)
2116
{
1911
{
2117
    return (unative_t) as_area_destroy(AS, address);
1912
    return (unative_t) as_area_destroy(AS, address);
2118
}
1913
}
2119
 
1914
 
2120
/** Print out information about address space.
1915
/** Print out information about address space.
2121
 *
1916
 *
2122
 * @param as        Address space.
1917
 * @param as        Address space.
2123
 */
1918
 */
2124
void as_print(as_t *as)
1919
void as_print(as_t *as)
2125
{
1920
{
2126
    ipl_t ipl;
1921
    ipl_t ipl;
2127
   
1922
   
2128
    ipl = interrupts_disable();
1923
    ipl = interrupts_disable();
2129
    mutex_lock(&as->lock);
1924
    mutex_lock(&as->lock);
2130
   
1925
   
2131
    /* print out info about address space areas */
1926
    /* print out info about address space areas */
2132
    link_t *cur;
1927
    link_t *cur;
2133
    for (cur = as->as_area_btree.leaf_head.next;
1928
    for (cur = as->as_area_btree.leaf_head.next;
2134
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1929
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2135
        btree_node_t *node;
1930
        btree_node_t *node;
2136
       
1931
       
2137
        node = list_get_instance(cur, btree_node_t, leaf_link);
1932
        node = list_get_instance(cur, btree_node_t, leaf_link);
2138
       
1933
       
2139
        unsigned int i;
1934
        unsigned int i;
2140
        for (i = 0; i < node->keys; i++) {
1935
        for (i = 0; i < node->keys; i++) {
2141
            as_area_t *area = node->value[i];
1936
            as_area_t *area = node->value[i];
2142
       
1937
       
2143
            mutex_lock(&area->lock);
1938
            mutex_lock(&area->lock);
2144
            printf("as_area: %p, base=%p, pages=%" PRIc
1939
            printf("as_area: %p, base=%p, pages=%" PRIc
2145
                " (%p - %p)\n", area, area->base, area->pages,
1940
                " (%p - %p)\n", area, area->base, area->pages,
2146
                area->base, area->base + FRAMES2SIZE(area->pages));
1941
                area->base, area->base + FRAMES2SIZE(area->pages));
2147
            mutex_unlock(&area->lock);
1942
            mutex_unlock(&area->lock);
2148
        }
1943
        }
2149
    }
1944
    }
2150
   
1945
   
2151
    mutex_unlock(&as->lock);
1946
    mutex_unlock(&as->lock);
2152
    interrupts_restore(ipl);
1947
    interrupts_restore(ipl);
2153
}
1948
}
2154
 
1949
 
2155
/** @}
1950
/** @}
2156
 */
1951
 */
2157
 
1952