Subversion Repositories HelenOS

Rev

Rev 3431 | Rev 3624 | Go to most recent revision | Only display areas with differences | Ignore whitespace | Details | Blame | Last modification | View Log | RSS feed

Rev 3431 Rev 3596
1
/*
1
/*
2
 * Copyright (c) 2001-2006 Jakub Jermar
2
 * Copyright (c) 2001-2006 Jakub Jermar
3
 * All rights reserved.
3
 * All rights reserved.
4
 *
4
 *
5
 * Redistribution and use in source and binary forms, with or without
5
 * Redistribution and use in source and binary forms, with or without
6
 * modification, are permitted provided that the following conditions
6
 * modification, are permitted provided that the following conditions
7
 * are met:
7
 * are met:
8
 *
8
 *
9
 * - Redistributions of source code must retain the above copyright
9
 * - Redistributions of source code must retain the above copyright
10
 *   notice, this list of conditions and the following disclaimer.
10
 *   notice, this list of conditions and the following disclaimer.
11
 * - Redistributions in binary form must reproduce the above copyright
11
 * - Redistributions in binary form must reproduce the above copyright
12
 *   notice, this list of conditions and the following disclaimer in the
12
 *   notice, this list of conditions and the following disclaimer in the
13
 *   documentation and/or other materials provided with the distribution.
13
 *   documentation and/or other materials provided with the distribution.
14
 * - The name of the author may not be used to endorse or promote products
14
 * - The name of the author may not be used to endorse or promote products
15
 *   derived from this software without specific prior written permission.
15
 *   derived from this software without specific prior written permission.
16
 *
16
 *
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
 */
27
 */
28
 
28
 
29
/** @addtogroup genericmm
29
/** @addtogroup genericmm
30
 * @{
30
 * @{
31
 */
31
 */
32
 
32
 
33
/**
33
/**
34
 * @file
34
 * @file
35
 * @brief   Address space related functions.
35
 * @brief   Address space related functions.
36
 *
36
 *
37
 * This file contains address space manipulation functions.
37
 * This file contains address space manipulation functions.
38
 * Roughly speaking, this is a higher-level client of
38
 * Roughly speaking, this is a higher-level client of
39
 * Virtual Address Translation (VAT) subsystem.
39
 * Virtual Address Translation (VAT) subsystem.
40
 *
40
 *
41
 * Functionality provided by this file allows one to
41
 * Functionality provided by this file allows one to
42
 * create address spaces and create, resize and share
42
 * create address spaces and create, resize and share
43
 * address space areas.
43
 * address space areas.
44
 *
44
 *
45
 * @see page.c
45
 * @see page.c
46
 *
46
 *
47
 */
47
 */
48
 
48
 
49
#include <mm/as.h>
49
#include <mm/as.h>
50
#include <arch/mm/as.h>
50
#include <arch/mm/as.h>
51
#include <mm/page.h>
51
#include <mm/page.h>
52
#include <mm/frame.h>
52
#include <mm/frame.h>
53
#include <mm/slab.h>
53
#include <mm/slab.h>
54
#include <mm/tlb.h>
54
#include <mm/tlb.h>
55
#include <arch/mm/page.h>
55
#include <arch/mm/page.h>
56
#include <genarch/mm/page_pt.h>
56
#include <genarch/mm/page_pt.h>
57
#include <genarch/mm/page_ht.h>
57
#include <genarch/mm/page_ht.h>
58
#include <mm/asid.h>
58
#include <mm/asid.h>
59
#include <arch/mm/asid.h>
59
#include <arch/mm/asid.h>
60
#include <preemption.h>
60
#include <preemption.h>
61
#include <synch/spinlock.h>
61
#include <synch/spinlock.h>
62
#include <synch/mutex.h>
62
#include <synch/mutex.h>
63
#include <adt/list.h>
63
#include <adt/list.h>
64
#include <adt/btree.h>
64
#include <adt/btree.h>
65
#include <proc/task.h>
65
#include <proc/task.h>
66
#include <proc/thread.h>
66
#include <proc/thread.h>
67
#include <arch/asm.h>
67
#include <arch/asm.h>
68
#include <panic.h>
68
#include <panic.h>
69
#include <debug.h>
69
#include <debug.h>
70
#include <print.h>
70
#include <print.h>
71
#include <memstr.h>
71
#include <memstr.h>
72
#include <macros.h>
72
#include <macros.h>
73
#include <arch.h>
73
#include <arch.h>
74
#include <errno.h>
74
#include <errno.h>
75
#include <config.h>
75
#include <config.h>
76
#include <align.h>
76
#include <align.h>
77
#include <arch/types.h>
77
#include <arch/types.h>
78
#include <syscall/copy.h>
78
#include <syscall/copy.h>
79
#include <arch/interrupt.h>
79
#include <arch/interrupt.h>
80
 
80
 
81
#ifdef CONFIG_VIRT_IDX_DCACHE
81
#ifdef CONFIG_VIRT_IDX_DCACHE
82
#include <arch/mm/cache.h>
82
#include <arch/mm/cache.h>
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
83
#endif /* CONFIG_VIRT_IDX_DCACHE */
84
 
84
 
85
/**
85
/**
86
 * Each architecture decides what functions will be used to carry out
86
 * Each architecture decides what functions will be used to carry out
87
 * address space operations such as creating or locking page tables.
87
 * address space operations such as creating or locking page tables.
88
 */
88
 */
89
as_operations_t *as_operations = NULL;
89
as_operations_t *as_operations = NULL;
90
 
90
 
91
/**
91
/**
92
 * Slab for as_t objects.
92
 * Slab for as_t objects.
93
 */
93
 */
94
static slab_cache_t *as_slab;
94
static slab_cache_t *as_slab;
95
 
95
 
96
/**
96
/**
97
 * This lock serializes access to the ASID subsystem.
97
 * This lock serializes access to the ASID subsystem.
98
 * It protects:
98
 * It protects:
99
 * - inactive_as_with_asid_head list
99
 * - inactive_as_with_asid_head list
100
 * - as->asid for each as of the as_t type
100
 * - as->asid for each as of the as_t type
101
 * - asids_allocated counter
101
 * - asids_allocated counter
102
 */
102
 */
103
SPINLOCK_INITIALIZE(asidlock);
103
SPINLOCK_INITIALIZE(asidlock);
104
 
104
 
105
/**
105
/**
106
 * This list contains address spaces that are not active on any
106
 * This list contains address spaces that are not active on any
107
 * processor and that have valid ASID.
107
 * processor and that have valid ASID.
108
 */
108
 */
109
LIST_INITIALIZE(inactive_as_with_asid_head);
109
LIST_INITIALIZE(inactive_as_with_asid_head);
110
 
110
 
111
/** Kernel address space. */
111
/** Kernel address space. */
112
as_t *AS_KERNEL = NULL;
112
as_t *AS_KERNEL = NULL;
113
 
113
 
114
static int area_flags_to_page_flags(int);
114
static int area_flags_to_page_flags(int);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
115
static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
116
static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117
static void sh_info_remove_reference(share_info_t *);
117
static void sh_info_remove_reference(share_info_t *);
118
 
118
 
119
static int as_constructor(void *obj, int flags)
119
static int as_constructor(void *obj, int flags)
120
{
120
{
121
    as_t *as = (as_t *) obj;
121
    as_t *as = (as_t *) obj;
122
    int rc;
122
    int rc;
123
 
123
 
124
    link_initialize(&as->inactive_as_with_asid_link);
124
    link_initialize(&as->inactive_as_with_asid_link);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
125
    mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
   
126
   
127
    rc = as_constructor_arch(as, flags);
127
    rc = as_constructor_arch(as, flags);
128
   
128
   
129
    return rc;
129
    return rc;
130
}
130
}
131
 
131
 
132
static int as_destructor(void *obj)
132
static int as_destructor(void *obj)
133
{
133
{
134
    as_t *as = (as_t *) obj;
134
    as_t *as = (as_t *) obj;
135
 
135
 
136
    return as_destructor_arch(as);
136
    return as_destructor_arch(as);
137
}
137
}
138
 
138
 
139
/** Initialize address space subsystem. */
139
/** Initialize address space subsystem. */
140
void as_init(void)
140
void as_init(void)
141
{
141
{
142
    as_arch_init();
142
    as_arch_init();
143
 
143
 
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
144
    as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
145
        as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
   
146
   
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
147
    AS_KERNEL = as_create(FLAG_AS_KERNEL);
148
    if (!AS_KERNEL)
148
    if (!AS_KERNEL)
149
        panic("can't create kernel address space\n");
149
        panic("can't create kernel address space\n");
150
   
150
   
151
}
151
}
152
 
152
 
153
/** Create address space.
153
/** Create address space.
154
 *
154
 *
155
 * @param flags     Flags that influence the way in wich the address space
155
 * @param flags     Flags that influence the way in wich the address space
156
 *          is created.
156
 *          is created.
157
 */
157
 */
158
as_t *as_create(int flags)
158
as_t *as_create(int flags)
159
{
159
{
160
    as_t *as;
160
    as_t *as;
161
 
161
 
162
    as = (as_t *) slab_alloc(as_slab, 0);
162
    as = (as_t *) slab_alloc(as_slab, 0);
163
    (void) as_create_arch(as, 0);
163
    (void) as_create_arch(as, 0);
164
   
164
   
165
    btree_create(&as->as_area_btree);
165
    btree_create(&as->as_area_btree);
166
   
166
   
167
    if (flags & FLAG_AS_KERNEL)
167
    if (flags & FLAG_AS_KERNEL)
168
        as->asid = ASID_KERNEL;
168
        as->asid = ASID_KERNEL;
169
    else
169
    else
170
        as->asid = ASID_INVALID;
170
        as->asid = ASID_INVALID;
171
   
171
   
172
    atomic_set(&as->refcount, 0);
172
    atomic_set(&as->refcount, 0);
173
    as->cpu_refcount = 0;
173
    as->cpu_refcount = 0;
174
#ifdef AS_PAGE_TABLE
174
#ifdef AS_PAGE_TABLE
175
    as->genarch.page_table = page_table_create(flags);
175
    as->genarch.page_table = page_table_create(flags);
176
#else
176
#else
177
    page_table_create(flags);
177
    page_table_create(flags);
178
#endif
178
#endif
179
 
179
 
180
    return as;
180
    return as;
181
}
181
}
182
 
182
 
183
/** Destroy adress space.
183
/** Destroy adress space.
184
 *
184
 *
185
 * When there are no tasks referencing this address space (i.e. its refcount is
185
 * When there are no tasks referencing this address space (i.e. its refcount is
186
 * zero), the address space can be destroyed.
186
 * zero), the address space can be destroyed.
187
 *
187
 *
188
 * We know that we don't hold any spinlock.
188
 * We know that we don't hold any spinlock.
189
 *
189
 *
190
 * @param as        Address space to be destroyed.
190
 * @param as        Address space to be destroyed.
191
 */
191
 */
192
void as_destroy(as_t *as)
192
void as_destroy(as_t *as)
193
{
193
{
194
    ipl_t ipl;
194
    ipl_t ipl;
195
    bool cond;
195
    bool cond;
196
    DEADLOCK_PROBE_INIT(p_asidlock);
196
    DEADLOCK_PROBE_INIT(p_asidlock);
197
 
197
 
198
    ASSERT(atomic_get(&as->refcount) == 0);
198
    ASSERT(atomic_get(&as->refcount) == 0);
199
   
199
   
200
    /*
200
    /*
201
     * Since there is no reference to this area,
201
     * Since there is no reference to this area,
202
     * it is safe not to lock its mutex.
202
     * it is safe not to lock its mutex.
203
     */
203
     */
204
 
204
 
205
    /*
205
    /*
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
206
     * We need to avoid deadlock between TLB shootdown and asidlock.
207
     * We therefore try to take asid conditionally and if we don't succeed,
207
     * We therefore try to take asid conditionally and if we don't succeed,
208
     * we enable interrupts and try again. This is done while preemption is
208
     * we enable interrupts and try again. This is done while preemption is
209
     * disabled to prevent nested context switches. We also depend on the
209
     * disabled to prevent nested context switches. We also depend on the
210
     * fact that so far no spinlocks are held.
210
     * fact that so far no spinlocks are held.
211
     */
211
     */
212
    preemption_disable();
212
    preemption_disable();
213
    ipl = interrupts_read();
213
    ipl = interrupts_read();
214
retry:
214
retry:
215
    interrupts_disable();
215
    interrupts_disable();
216
    if (!spinlock_trylock(&asidlock)) {
216
    if (!spinlock_trylock(&asidlock)) {
217
        interrupts_enable();
217
        interrupts_enable();
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
218
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
219
        goto retry;
219
        goto retry;
220
    }
220
    }
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
221
    preemption_enable();    /* Interrupts disabled, enable preemption */
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
222
    if (as->asid != ASID_INVALID && as != AS_KERNEL) {
223
        if (as != AS && as->cpu_refcount == 0)
223
        if (as != AS && as->cpu_refcount == 0)
224
            list_remove(&as->inactive_as_with_asid_link);
224
            list_remove(&as->inactive_as_with_asid_link);
225
        asid_put(as->asid);
225
        asid_put(as->asid);
226
    }
226
    }
227
    spinlock_unlock(&asidlock);
227
    spinlock_unlock(&asidlock);
228
 
228
 
229
    /*
229
    /*
230
     * Destroy address space areas of the address space.
230
     * Destroy address space areas of the address space.
231
     * The B+tree must be walked carefully because it is
231
     * The B+tree must be walked carefully because it is
232
     * also being destroyed.
232
     * also being destroyed.
233
     */
233
     */
234
    for (cond = true; cond; ) {
234
    for (cond = true; cond; ) {
235
        btree_node_t *node;
235
        btree_node_t *node;
236
 
236
 
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
237
        ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
238
        node = list_get_instance(as->as_area_btree.leaf_head.next,
239
            btree_node_t, leaf_link);
239
            btree_node_t, leaf_link);
240
 
240
 
241
        if ((cond = node->keys)) {
241
        if ((cond = node->keys)) {
242
            as_area_destroy(as, node->key[0]);
242
            as_area_destroy(as, node->key[0]);
243
        }
243
        }
244
    }
244
    }
245
 
245
 
246
    btree_destroy(&as->as_area_btree);
246
    btree_destroy(&as->as_area_btree);
247
#ifdef AS_PAGE_TABLE
247
#ifdef AS_PAGE_TABLE
248
    page_table_destroy(as->genarch.page_table);
248
    page_table_destroy(as->genarch.page_table);
249
#else
249
#else
250
    page_table_destroy(NULL);
250
    page_table_destroy(NULL);
251
#endif
251
#endif
252
 
252
 
253
    interrupts_restore(ipl);
253
    interrupts_restore(ipl);
254
 
254
 
255
    slab_free(as_slab, as);
255
    slab_free(as_slab, as);
256
}
256
}
257
 
257
 
258
/** Create address space area of common attributes.
258
/** Create address space area of common attributes.
259
 *
259
 *
260
 * The created address space area is added to the target address space.
260
 * The created address space area is added to the target address space.
261
 *
261
 *
262
 * @param as        Target address space.
262
 * @param as        Target address space.
263
 * @param flags     Flags of the area memory.
263
 * @param flags     Flags of the area memory.
264
 * @param size      Size of area.
264
 * @param size      Size of area.
265
 * @param base      Base address of area.
265
 * @param base      Base address of area.
266
 * @param attrs     Attributes of the area.
266
 * @param attrs     Attributes of the area.
267
 * @param backend   Address space area backend. NULL if no backend is used.
267
 * @param backend   Address space area backend. NULL if no backend is used.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
268
 * @param backend_data  NULL or a pointer to an array holding two void *.
269
 *
269
 *
270
 * @return      Address space area on success or NULL on failure.
270
 * @return      Address space area on success or NULL on failure.
271
 */
271
 */
272
as_area_t *
272
as_area_t *
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
273
as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
274
    mem_backend_t *backend, mem_backend_data_t *backend_data)
275
{
275
{
276
    ipl_t ipl;
276
    ipl_t ipl;
277
    as_area_t *a;
277
    as_area_t *a;
278
   
278
   
279
    if (base % PAGE_SIZE)
279
    if (base % PAGE_SIZE)
280
        return NULL;
280
        return NULL;
281
 
281
 
282
    if (!size)
282
    if (!size)
283
        return NULL;
283
        return NULL;
284
 
284
 
285
    /* Writeable executable areas are not supported. */
285
    /* Writeable executable areas are not supported. */
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
286
    if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
287
        return NULL;
287
        return NULL;
288
   
288
   
289
    ipl = interrupts_disable();
289
    ipl = interrupts_disable();
290
    mutex_lock(&as->lock);
290
    mutex_lock(&as->lock);
291
   
291
   
292
    if (!check_area_conflicts(as, base, size, NULL)) {
292
    if (!check_area_conflicts(as, base, size, NULL)) {
293
        mutex_unlock(&as->lock);
293
        mutex_unlock(&as->lock);
294
        interrupts_restore(ipl);
294
        interrupts_restore(ipl);
295
        return NULL;
295
        return NULL;
296
    }
296
    }
297
   
297
   
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
298
    a = (as_area_t *) malloc(sizeof(as_area_t), 0);
299
 
299
 
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
300
    mutex_initialize(&a->lock, MUTEX_PASSIVE);
301
   
301
   
302
    a->as = as;
302
    a->as = as;
303
    a->flags = flags;
303
    a->flags = flags;
304
    a->attributes = attrs;
304
    a->attributes = attrs;
305
    a->pages = SIZE2FRAMES(size);
305
    a->pages = SIZE2FRAMES(size);
306
    a->base = base;
306
    a->base = base;
307
    a->sh_info = NULL;
307
    a->sh_info = NULL;
308
    a->backend = backend;
308
    a->backend = backend;
309
    if (backend_data)
309
    if (backend_data)
310
        a->backend_data = *backend_data;
310
        a->backend_data = *backend_data;
311
    else
311
    else
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
312
        memsetb(&a->backend_data, sizeof(a->backend_data), 0);
313
 
313
 
314
    btree_create(&a->used_space);
314
    btree_create(&a->used_space);
315
   
315
   
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
316
    btree_insert(&as->as_area_btree, base, (void *) a, NULL);
317
 
317
 
318
    mutex_unlock(&as->lock);
318
    mutex_unlock(&as->lock);
319
    interrupts_restore(ipl);
319
    interrupts_restore(ipl);
320
 
320
 
321
    return a;
321
    return a;
322
}
322
}
323
 
323
 
324
/** Find address space area and change it.
324
/** Find address space area and change it.
325
 *
325
 *
326
 * @param as        Address space.
326
 * @param as        Address space.
327
 * @param address   Virtual address belonging to the area to be changed.
327
 * @param address   Virtual address belonging to the area to be changed.
328
 *          Must be page-aligned.
328
 *          Must be page-aligned.
329
 * @param size      New size of the virtual memory block starting at
329
 * @param size      New size of the virtual memory block starting at
330
 *          address.
330
 *          address.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
331
 * @param flags     Flags influencing the remap operation. Currently unused.
332
 *
332
 *
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
333
 * @return      Zero on success or a value from @ref errno.h otherwise.
334
 */
334
 */
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
335
int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
336
{
336
{
337
    as_area_t *area;
337
    as_area_t *area;
338
    ipl_t ipl;
338
    ipl_t ipl;
339
    size_t pages;
339
    size_t pages;
340
   
340
   
341
    ipl = interrupts_disable();
341
    ipl = interrupts_disable();
342
    mutex_lock(&as->lock);
342
    mutex_lock(&as->lock);
343
   
343
   
344
    /*
344
    /*
345
     * Locate the area.
345
     * Locate the area.
346
     */
346
     */
347
    area = find_area_and_lock(as, address);
347
    area = find_area_and_lock(as, address);
348
    if (!area) {
348
    if (!area) {
349
        mutex_unlock(&as->lock);
349
        mutex_unlock(&as->lock);
350
        interrupts_restore(ipl);
350
        interrupts_restore(ipl);
351
        return ENOENT;
351
        return ENOENT;
352
    }
352
    }
353
 
353
 
354
    if (area->backend == &phys_backend) {
354
    if (area->backend == &phys_backend) {
355
        /*
355
        /*
356
         * Remapping of address space areas associated
356
         * Remapping of address space areas associated
357
         * with memory mapped devices is not supported.
357
         * with memory mapped devices is not supported.
358
         */
358
         */
359
        mutex_unlock(&area->lock);
359
        mutex_unlock(&area->lock);
360
        mutex_unlock(&as->lock);
360
        mutex_unlock(&as->lock);
361
        interrupts_restore(ipl);
361
        interrupts_restore(ipl);
362
        return ENOTSUP;
362
        return ENOTSUP;
363
    }
363
    }
364
    if (area->sh_info) {
364
    if (area->sh_info) {
365
        /*
365
        /*
366
         * Remapping of shared address space areas
366
         * Remapping of shared address space areas
367
         * is not supported.
367
         * is not supported.
368
         */
368
         */
369
        mutex_unlock(&area->lock);
369
        mutex_unlock(&area->lock);
370
        mutex_unlock(&as->lock);
370
        mutex_unlock(&as->lock);
371
        interrupts_restore(ipl);
371
        interrupts_restore(ipl);
372
        return ENOTSUP;
372
        return ENOTSUP;
373
    }
373
    }
374
 
374
 
375
    pages = SIZE2FRAMES((address - area->base) + size);
375
    pages = SIZE2FRAMES((address - area->base) + size);
376
    if (!pages) {
376
    if (!pages) {
377
        /*
377
        /*
378
         * Zero size address space areas are not allowed.
378
         * Zero size address space areas are not allowed.
379
         */
379
         */
380
        mutex_unlock(&area->lock);
380
        mutex_unlock(&area->lock);
381
        mutex_unlock(&as->lock);
381
        mutex_unlock(&as->lock);
382
        interrupts_restore(ipl);
382
        interrupts_restore(ipl);
383
        return EPERM;
383
        return EPERM;
384
    }
384
    }
385
   
385
   
386
    if (pages < area->pages) {
386
    if (pages < area->pages) {
387
        bool cond;
387
        bool cond;
388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
388
        uintptr_t start_free = area->base + pages * PAGE_SIZE;
389
 
389
 
390
        /*
390
        /*
391
         * Shrinking the area.
391
         * Shrinking the area.
392
         * No need to check for overlaps.
392
         * No need to check for overlaps.
393
         */
393
         */
394
 
394
 
395
        /*
395
        /*
396
         * Start TLB shootdown sequence.
396
         * Start TLB shootdown sequence.
397
         */
397
         */
398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
398
        tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
399
            pages * PAGE_SIZE, area->pages - pages);
399
            pages * PAGE_SIZE, area->pages - pages);
400
 
400
 
401
        /*
401
        /*
402
         * Remove frames belonging to used space starting from
402
         * Remove frames belonging to used space starting from
403
         * the highest addresses downwards until an overlap with
403
         * the highest addresses downwards until an overlap with
404
         * the resized address space area is found. Note that this
404
         * the resized address space area is found. Note that this
405
         * is also the right way to remove part of the used_space
405
         * is also the right way to remove part of the used_space
406
         * B+tree leaf list.
406
         * B+tree leaf list.
407
         */    
407
         */    
408
        for (cond = true; cond;) {
408
        for (cond = true; cond;) {
409
            btree_node_t *node;
409
            btree_node_t *node;
410
       
410
       
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
411
            ASSERT(!list_empty(&area->used_space.leaf_head));
412
            node =
412
            node =
413
                list_get_instance(area->used_space.leaf_head.prev,
413
                list_get_instance(area->used_space.leaf_head.prev,
414
                btree_node_t, leaf_link);
414
                btree_node_t, leaf_link);
415
            if ((cond = (bool) node->keys)) {
415
            if ((cond = (bool) node->keys)) {
416
                uintptr_t b = node->key[node->keys - 1];
416
                uintptr_t b = node->key[node->keys - 1];
417
                count_t c =
417
                count_t c =
418
                    (count_t) node->value[node->keys - 1];
418
                    (count_t) node->value[node->keys - 1];
419
                unsigned int i = 0;
419
                unsigned int i = 0;
420
           
420
           
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
421
                if (overlaps(b, c * PAGE_SIZE, area->base,
422
                    pages * PAGE_SIZE)) {
422
                    pages * PAGE_SIZE)) {
423
                   
423
                   
424
                    if (b + c * PAGE_SIZE <= start_free) {
424
                    if (b + c * PAGE_SIZE <= start_free) {
425
                        /*
425
                        /*
426
                         * The whole interval fits
426
                         * The whole interval fits
427
                         * completely in the resized
427
                         * completely in the resized
428
                         * address space area.
428
                         * address space area.
429
                         */
429
                         */
430
                        break;
430
                        break;
431
                    }
431
                    }
432
       
432
       
433
                    /*
433
                    /*
434
                     * Part of the interval corresponding
434
                     * Part of the interval corresponding
435
                     * to b and c overlaps with the resized
435
                     * to b and c overlaps with the resized
436
                     * address space area.
436
                     * address space area.
437
                     */
437
                     */
438
       
438
       
439
                    cond = false;   /* we are almost done */
439
                    cond = false;   /* we are almost done */
440
                    i = (start_free - b) >> PAGE_WIDTH;
440
                    i = (start_free - b) >> PAGE_WIDTH;
441
                    if (!used_space_remove(area, start_free,
441
                    if (!used_space_remove(area, start_free,
442
                        c - i))
442
                        c - i))
443
                        panic("Could not remove used "
443
                        panic("Could not remove used "
444
                            "space.\n");
444
                            "space.\n");
445
                } else {
445
                } else {
446
                    /*
446
                    /*
447
                     * The interval of used space can be
447
                     * The interval of used space can be
448
                     * completely removed.
448
                     * completely removed.
449
                     */
449
                     */
450
                    if (!used_space_remove(area, b, c))
450
                    if (!used_space_remove(area, b, c))
451
                        panic("Could not remove used "
451
                        panic("Could not remove used "
452
                            "space.\n");
452
                            "space.\n");
453
                }
453
                }
454
           
454
           
455
                for (; i < c; i++) {
455
                for (; i < c; i++) {
456
                    pte_t *pte;
456
                    pte_t *pte;
457
           
457
           
458
                    page_table_lock(as, false);
458
                    page_table_lock(as, false);
459
                    pte = page_mapping_find(as, b +
459
                    pte = page_mapping_find(as, b +
460
                        i * PAGE_SIZE);
460
                        i * PAGE_SIZE);
461
                    ASSERT(pte && PTE_VALID(pte) &&
461
                    ASSERT(pte && PTE_VALID(pte) &&
462
                        PTE_PRESENT(pte));
462
                        PTE_PRESENT(pte));
463
                    if (area->backend &&
463
                    if (area->backend &&
464
                        area->backend->frame_free) {
464
                        area->backend->frame_free) {
465
                        area->backend->frame_free(area,
465
                        area->backend->frame_free(area,
466
                            b + i * PAGE_SIZE,
466
                            b + i * PAGE_SIZE,
467
                            PTE_GET_FRAME(pte));
467
                            PTE_GET_FRAME(pte));
468
                    }
468
                    }
469
                    page_mapping_remove(as, b +
469
                    page_mapping_remove(as, b +
470
                        i * PAGE_SIZE);
470
                        i * PAGE_SIZE);
471
                    page_table_unlock(as, false);
471
                    page_table_unlock(as, false);
472
                }
472
                }
473
            }
473
            }
474
        }
474
        }
475
 
475
 
476
        /*
476
        /*
477
         * Finish TLB shootdown sequence.
477
         * Finish TLB shootdown sequence.
478
         */
478
         */
479
 
479
 
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
480
        tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
481
            area->pages - pages);
481
            area->pages - pages);
482
        /*
482
        /*
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
483
         * Invalidate software translation caches (e.g. TSB on sparc64).
484
         */
484
         */
485
        as_invalidate_translation_cache(as, area->base +
485
        as_invalidate_translation_cache(as, area->base +
486
            pages * PAGE_SIZE, area->pages - pages);
486
            pages * PAGE_SIZE, area->pages - pages);
487
        tlb_shootdown_finalize();
487
        tlb_shootdown_finalize();
488
       
488
       
489
    } else {
489
    } else {
490
        /*
490
        /*
491
         * Growing the area.
491
         * Growing the area.
492
         * Check for overlaps with other address space areas.
492
         * Check for overlaps with other address space areas.
493
         */
493
         */
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
494
        if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
495
            area)) {
495
            area)) {
496
            mutex_unlock(&area->lock);
496
            mutex_unlock(&area->lock);
497
            mutex_unlock(&as->lock);       
497
            mutex_unlock(&as->lock);       
498
            interrupts_restore(ipl);
498
            interrupts_restore(ipl);
499
            return EADDRNOTAVAIL;
499
            return EADDRNOTAVAIL;
500
        }
500
        }
501
    }
501
    }
502
 
502
 
503
    area->pages = pages;
503
    area->pages = pages;
504
   
504
   
505
    mutex_unlock(&area->lock);
505
    mutex_unlock(&area->lock);
506
    mutex_unlock(&as->lock);
506
    mutex_unlock(&as->lock);
507
    interrupts_restore(ipl);
507
    interrupts_restore(ipl);
508
 
508
 
509
    return 0;
509
    return 0;
510
}
510
}
511
 
511
 
512
/** Destroy address space area.
512
/** Destroy address space area.
513
 *
513
 *
514
 * @param as        Address space.
514
 * @param as        Address space.
515
 * @param address   Address within the area to be deleted.
515
 * @param address   Address within the area to be deleted.
516
 *
516
 *
517
 * @return      Zero on success or a value from @ref errno.h on failure.
517
 * @return      Zero on success or a value from @ref errno.h on failure.
518
 */
518
 */
519
int as_area_destroy(as_t *as, uintptr_t address)
519
int as_area_destroy(as_t *as, uintptr_t address)
520
{
520
{
521
    as_area_t *area;
521
    as_area_t *area;
522
    uintptr_t base;
522
    uintptr_t base;
523
    link_t *cur;
523
    link_t *cur;
524
    ipl_t ipl;
524
    ipl_t ipl;
525
 
525
 
526
    ipl = interrupts_disable();
526
    ipl = interrupts_disable();
527
    mutex_lock(&as->lock);
527
    mutex_lock(&as->lock);
528
 
528
 
529
    area = find_area_and_lock(as, address);
529
    area = find_area_and_lock(as, address);
530
    if (!area) {
530
    if (!area) {
531
        mutex_unlock(&as->lock);
531
        mutex_unlock(&as->lock);
532
        interrupts_restore(ipl);
532
        interrupts_restore(ipl);
533
        return ENOENT;
533
        return ENOENT;
534
    }
534
    }
535
 
535
 
536
    base = area->base;
536
    base = area->base;
537
 
537
 
538
    /*
538
    /*
539
     * Start TLB shootdown sequence.
539
     * Start TLB shootdown sequence.
540
     */
540
     */
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
541
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
542
 
542
 
543
    /*
543
    /*
544
     * Visit only the pages mapped by used_space B+tree.
544
     * Visit only the pages mapped by used_space B+tree.
545
     */
545
     */
546
    for (cur = area->used_space.leaf_head.next;
546
    for (cur = area->used_space.leaf_head.next;
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
547
        cur != &area->used_space.leaf_head; cur = cur->next) {
548
        btree_node_t *node;
548
        btree_node_t *node;
549
        unsigned int i;
549
        unsigned int i;
550
       
550
       
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
551
        node = list_get_instance(cur, btree_node_t, leaf_link);
552
        for (i = 0; i < node->keys; i++) {
552
        for (i = 0; i < node->keys; i++) {
553
            uintptr_t b = node->key[i];
553
            uintptr_t b = node->key[i];
554
            count_t j;
554
            count_t j;
555
            pte_t *pte;
555
            pte_t *pte;
556
           
556
           
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
557
            for (j = 0; j < (count_t) node->value[i]; j++) {
558
                page_table_lock(as, false);
558
                page_table_lock(as, false);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
559
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
560
                ASSERT(pte && PTE_VALID(pte) &&
560
                ASSERT(pte && PTE_VALID(pte) &&
561
                    PTE_PRESENT(pte));
561
                    PTE_PRESENT(pte));
562
                if (area->backend &&
562
                if (area->backend &&
563
                    area->backend->frame_free) {
563
                    area->backend->frame_free) {
564
                    area->backend->frame_free(area, b +
564
                    area->backend->frame_free(area, b +
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
565
                        j * PAGE_SIZE, PTE_GET_FRAME(pte));
566
                }
566
                }
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
567
                page_mapping_remove(as, b + j * PAGE_SIZE);            
568
                page_table_unlock(as, false);
568
                page_table_unlock(as, false);
569
            }
569
            }
570
        }
570
        }
571
    }
571
    }
572
 
572
 
573
    /*
573
    /*
574
     * Finish TLB shootdown sequence.
574
     * Finish TLB shootdown sequence.
575
     */
575
     */
576
 
576
 
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
577
    tlb_invalidate_pages(as->asid, area->base, area->pages);
578
    /*
578
    /*
579
     * Invalidate potential software translation caches (e.g. TSB on
579
     * Invalidate potential software translation caches (e.g. TSB on
580
     * sparc64).
580
     * sparc64).
581
     */
581
     */
582
    as_invalidate_translation_cache(as, area->base, area->pages);
582
    as_invalidate_translation_cache(as, area->base, area->pages);
583
    tlb_shootdown_finalize();
583
    tlb_shootdown_finalize();
584
   
584
   
585
    btree_destroy(&area->used_space);
585
    btree_destroy(&area->used_space);
586
 
586
 
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
587
    area->attributes |= AS_AREA_ATTR_PARTIAL;
588
   
588
   
589
    if (area->sh_info)
589
    if (area->sh_info)
590
        sh_info_remove_reference(area->sh_info);
590
        sh_info_remove_reference(area->sh_info);
591
       
591
       
592
    mutex_unlock(&area->lock);
592
    mutex_unlock(&area->lock);
593
 
593
 
594
    /*
594
    /*
595
     * Remove the empty area from address space.
595
     * Remove the empty area from address space.
596
     */
596
     */
597
    btree_remove(&as->as_area_btree, base, NULL);
597
    btree_remove(&as->as_area_btree, base, NULL);
598
   
598
   
599
    free(area);
599
    free(area);
600
   
600
   
601
    mutex_unlock(&as->lock);
601
    mutex_unlock(&as->lock);
602
    interrupts_restore(ipl);
602
    interrupts_restore(ipl);
603
    return 0;
603
    return 0;
604
}
604
}
605
 
605
 
606
/** Share address space area with another or the same address space.
606
/** Share address space area with another or the same address space.
607
 *
607
 *
608
 * Address space area mapping is shared with a new address space area.
608
 * Address space area mapping is shared with a new address space area.
609
 * If the source address space area has not been shared so far,
609
 * If the source address space area has not been shared so far,
610
 * a new sh_info is created. The new address space area simply gets the
610
 * a new sh_info is created. The new address space area simply gets the
611
 * sh_info of the source area. The process of duplicating the
611
 * sh_info of the source area. The process of duplicating the
612
 * mapping is done through the backend share function.
612
 * mapping is done through the backend share function.
613
 *
613
 *
614
 * @param src_as    Pointer to source address space.
614
 * @param src_as    Pointer to source address space.
615
 * @param src_base  Base address of the source address space area.
615
 * @param src_base  Base address of the source address space area.
616
 * @param acc_size  Expected size of the source area.
616
 * @param acc_size  Expected size of the source area.
617
 * @param dst_as    Pointer to destination address space.
617
 * @param dst_as    Pointer to destination address space.
618
 * @param dst_base  Target base address.
618
 * @param dst_base  Target base address.
619
 * @param dst_flags_mask Destination address space area flags mask.
619
 * @param dst_flags_mask Destination address space area flags mask.
620
 *
620
 *
621
 * @return      Zero on success or ENOENT if there is no such task or if
621
 * @return      Zero on success or ENOENT if there is no such task or if
622
 *          there is no such address space area, EPERM if there was
622
 *          there is no such address space area, EPERM if there was
623
 *          a problem in accepting the area or ENOMEM if there was a
623
 *          a problem in accepting the area or ENOMEM if there was a
624
 *          problem in allocating destination address space area.
624
 *          problem in allocating destination address space area.
625
 *          ENOTSUP is returned if the address space area backend
625
 *          ENOTSUP is returned if the address space area backend
626
 *          does not support sharing.
626
 *          does not support sharing.
627
 */
627
 */
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
628
int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
629
    as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
630
{
630
{
631
    ipl_t ipl;
631
    ipl_t ipl;
632
    int src_flags;
632
    int src_flags;
633
    size_t src_size;
633
    size_t src_size;
634
    as_area_t *src_area, *dst_area;
634
    as_area_t *src_area, *dst_area;
635
    share_info_t *sh_info;
635
    share_info_t *sh_info;
636
    mem_backend_t *src_backend;
636
    mem_backend_t *src_backend;
637
    mem_backend_data_t src_backend_data;
637
    mem_backend_data_t src_backend_data;
638
   
638
   
639
    ipl = interrupts_disable();
639
    ipl = interrupts_disable();
640
    mutex_lock(&src_as->lock);
640
    mutex_lock(&src_as->lock);
641
    src_area = find_area_and_lock(src_as, src_base);
641
    src_area = find_area_and_lock(src_as, src_base);
642
    if (!src_area) {
642
    if (!src_area) {
643
        /*
643
        /*
644
         * Could not find the source address space area.
644
         * Could not find the source address space area.
645
         */
645
         */
646
        mutex_unlock(&src_as->lock);
646
        mutex_unlock(&src_as->lock);
647
        interrupts_restore(ipl);
647
        interrupts_restore(ipl);
648
        return ENOENT;
648
        return ENOENT;
649
    }
649
    }
650
 
650
 
651
    if (!src_area->backend || !src_area->backend->share) {
651
    if (!src_area->backend || !src_area->backend->share) {
652
        /*
652
        /*
653
         * There is no backend or the backend does not
653
         * There is no backend or the backend does not
654
         * know how to share the area.
654
         * know how to share the area.
655
         */
655
         */
656
        mutex_unlock(&src_area->lock);
656
        mutex_unlock(&src_area->lock);
657
        mutex_unlock(&src_as->lock);
657
        mutex_unlock(&src_as->lock);
658
        interrupts_restore(ipl);
658
        interrupts_restore(ipl);
659
        return ENOTSUP;
659
        return ENOTSUP;
660
    }
660
    }
661
   
661
   
662
    src_size = src_area->pages * PAGE_SIZE;
662
    src_size = src_area->pages * PAGE_SIZE;
663
    src_flags = src_area->flags;
663
    src_flags = src_area->flags;
664
    src_backend = src_area->backend;
664
    src_backend = src_area->backend;
665
    src_backend_data = src_area->backend_data;
665
    src_backend_data = src_area->backend_data;
666
 
666
 
667
    /* Share the cacheable flag from the original mapping */
667
    /* Share the cacheable flag from the original mapping */
668
    if (src_flags & AS_AREA_CACHEABLE)
668
    if (src_flags & AS_AREA_CACHEABLE)
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
669
        dst_flags_mask |= AS_AREA_CACHEABLE;
670
 
670
 
671
    if (src_size != acc_size ||
671
    if (src_size != acc_size ||
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
672
        (src_flags & dst_flags_mask) != dst_flags_mask) {
673
        mutex_unlock(&src_area->lock);
673
        mutex_unlock(&src_area->lock);
674
        mutex_unlock(&src_as->lock);
674
        mutex_unlock(&src_as->lock);
675
        interrupts_restore(ipl);
675
        interrupts_restore(ipl);
676
        return EPERM;
676
        return EPERM;
677
    }
677
    }
678
 
678
 
679
    /*
679
    /*
680
     * Now we are committed to sharing the area.
680
     * Now we are committed to sharing the area.
681
     * First, prepare the area for sharing.
681
     * First, prepare the area for sharing.
682
     * Then it will be safe to unlock it.
682
     * Then it will be safe to unlock it.
683
     */
683
     */
684
    sh_info = src_area->sh_info;
684
    sh_info = src_area->sh_info;
685
    if (!sh_info) {
685
    if (!sh_info) {
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
686
        sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
687
        mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
688
        sh_info->refcount = 2;
688
        sh_info->refcount = 2;
689
        btree_create(&sh_info->pagemap);
689
        btree_create(&sh_info->pagemap);
690
        src_area->sh_info = sh_info;
690
        src_area->sh_info = sh_info;
691
        /*
691
        /*
692
         * Call the backend to setup sharing.
692
         * Call the backend to setup sharing.
693
         */
693
         */
694
        src_area->backend->share(src_area);
694
        src_area->backend->share(src_area);
695
    } else {
695
    } else {
696
        mutex_lock(&sh_info->lock);
696
        mutex_lock(&sh_info->lock);
697
        sh_info->refcount++;
697
        sh_info->refcount++;
698
        mutex_unlock(&sh_info->lock);
698
        mutex_unlock(&sh_info->lock);
699
    }
699
    }
700
 
700
 
701
    mutex_unlock(&src_area->lock);
701
    mutex_unlock(&src_area->lock);
702
    mutex_unlock(&src_as->lock);
702
    mutex_unlock(&src_as->lock);
703
 
703
 
704
    /*
704
    /*
705
     * Create copy of the source address space area.
705
     * Create copy of the source address space area.
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
706
     * The destination area is created with AS_AREA_ATTR_PARTIAL
707
     * attribute set which prevents race condition with
707
     * attribute set which prevents race condition with
708
     * preliminary as_page_fault() calls.
708
     * preliminary as_page_fault() calls.
709
     * The flags of the source area are masked against dst_flags_mask
709
     * The flags of the source area are masked against dst_flags_mask
710
     * to support sharing in less privileged mode.
710
     * to support sharing in less privileged mode.
711
     */
711
     */
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
712
    dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
713
        AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
714
    if (!dst_area) {
714
    if (!dst_area) {
715
        /*
715
        /*
716
         * Destination address space area could not be created.
716
         * Destination address space area could not be created.
717
         */
717
         */
718
        sh_info_remove_reference(sh_info);
718
        sh_info_remove_reference(sh_info);
719
       
719
       
720
        interrupts_restore(ipl);
720
        interrupts_restore(ipl);
721
        return ENOMEM;
721
        return ENOMEM;
722
    }
722
    }
723
 
723
 
724
    /*
724
    /*
725
     * Now the destination address space area has been
725
     * Now the destination address space area has been
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
726
     * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
727
     * attribute and set the sh_info.
727
     * attribute and set the sh_info.
728
     */
728
     */
729
    mutex_lock(&dst_as->lock); 
729
    mutex_lock(&dst_as->lock); 
730
    mutex_lock(&dst_area->lock);
730
    mutex_lock(&dst_area->lock);
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
731
    dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
732
    dst_area->sh_info = sh_info;
732
    dst_area->sh_info = sh_info;
733
    mutex_unlock(&dst_area->lock);
733
    mutex_unlock(&dst_area->lock);
734
    mutex_unlock(&dst_as->lock);   
734
    mutex_unlock(&dst_as->lock);   
735
 
735
 
736
    interrupts_restore(ipl);
736
    interrupts_restore(ipl);
737
   
737
   
738
    return 0;
738
    return 0;
739
}
739
}
740
 
740
 
741
/** Check access mode for address space area.
741
/** Check access mode for address space area.
742
 *
742
 *
743
 * The address space area must be locked prior to this call.
743
 * The address space area must be locked prior to this call.
744
 *
744
 *
745
 * @param area      Address space area.
745
 * @param area      Address space area.
746
 * @param access    Access mode.
746
 * @param access    Access mode.
747
 *
747
 *
748
 * @return      False if access violates area's permissions, true
748
 * @return      False if access violates area's permissions, true
749
 *          otherwise.
749
 *          otherwise.
750
 */
750
 */
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
751
bool as_area_check_access(as_area_t *area, pf_access_t access)
752
{
752
{
753
    int flagmap[] = {
753
    int flagmap[] = {
754
        [PF_ACCESS_READ] = AS_AREA_READ,
754
        [PF_ACCESS_READ] = AS_AREA_READ,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
755
        [PF_ACCESS_WRITE] = AS_AREA_WRITE,
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
756
        [PF_ACCESS_EXEC] = AS_AREA_EXEC
757
    };
757
    };
758
 
758
 
759
    if (!(area->flags & flagmap[access]))
759
    if (!(area->flags & flagmap[access]))
760
        return false;
760
        return false;
761
   
761
   
762
    return true;
762
    return true;
763
}
763
}
764
 
764
 
765
/** Change adress space area flags.
765
/** Change adress space area flags.
766
 *
766
 *
767
 * The idea is to have the same data, but with a different access mode.
767
 * The idea is to have the same data, but with a different access mode.
768
 * This is needed e.g. for writing code into memory and then executing it.
768
 * This is needed e.g. for writing code into memory and then executing it.
769
 * In order for this to work properly, this may copy the data
769
 * In order for this to work properly, this may copy the data
770
 * into private anonymous memory (unless it's already there).
770
 * into private anonymous memory (unless it's already there).
771
 *
771
 *
772
 * @param as        Address space.
772
 * @param as        Address space.
773
 * @param flags     Flags of the area memory.
773
 * @param flags     Flags of the area memory.
774
 * @param address   Address withing the area to be changed.
774
 * @param address   Address withing the area to be changed.
775
 *
775
 *
776
 * @return      Zero on success or a value from @ref errno.h on failure.
776
 * @return      Zero on success or a value from @ref errno.h on failure.
777
 */
777
 */
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
778
int as_area_change_flags(as_t *as, int flags, uintptr_t address)
779
{
779
{
780
    as_area_t *area;
780
    as_area_t *area;
781
    uintptr_t base;
781
    uintptr_t base;
782
    link_t *cur;
782
    link_t *cur;
783
    ipl_t ipl;
783
    ipl_t ipl;
784
    int page_flags;
784
    int page_flags;
785
    uintptr_t *old_frame;
785
    uintptr_t *old_frame;
786
    index_t frame_idx;
786
    index_t frame_idx;
787
    count_t used_pages;
787
    count_t used_pages;
788
 
788
 
789
    /* Flags for the new memory mapping */
789
    /* Flags for the new memory mapping */
790
    page_flags = area_flags_to_page_flags(flags);
790
    page_flags = area_flags_to_page_flags(flags);
791
 
791
 
792
    ipl = interrupts_disable();
792
    ipl = interrupts_disable();
793
    mutex_lock(&as->lock);
793
    mutex_lock(&as->lock);
794
 
794
 
795
    area = find_area_and_lock(as, address);
795
    area = find_area_and_lock(as, address);
796
    if (!area) {
796
    if (!area) {
797
        mutex_unlock(&as->lock);
797
        mutex_unlock(&as->lock);
798
        interrupts_restore(ipl);
798
        interrupts_restore(ipl);
799
        return ENOENT;
799
        return ENOENT;
800
    }
800
    }
801
 
801
 
802
    if (area->sh_info || area->backend != &anon_backend) {
802
    if (area->sh_info || area->backend != &anon_backend) {
803
        /* Copying shared areas not supported yet */
803
        /* Copying shared areas not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
804
        /* Copying non-anonymous memory not supported yet */
805
        mutex_unlock(&area->lock);
805
        mutex_unlock(&area->lock);
806
        mutex_unlock(&as->lock);
806
        mutex_unlock(&as->lock);
807
        interrupts_restore(ipl);
807
        interrupts_restore(ipl);
808
        return ENOTSUP;
808
        return ENOTSUP;
809
    }
809
    }
810
 
810
 
811
    base = area->base;
811
    base = area->base;
812
 
812
 
813
    /*
813
    /*
814
     * Compute total number of used pages in the used_space B+tree
814
     * Compute total number of used pages in the used_space B+tree
815
     */
815
     */
816
    used_pages = 0;
816
    used_pages = 0;
817
 
817
 
818
    for (cur = area->used_space.leaf_head.next;
818
    for (cur = area->used_space.leaf_head.next;
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
819
        cur != &area->used_space.leaf_head; cur = cur->next) {
820
        btree_node_t *node;
820
        btree_node_t *node;
821
        unsigned int i;
821
        unsigned int i;
822
       
822
       
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
823
        node = list_get_instance(cur, btree_node_t, leaf_link);
824
        for (i = 0; i < node->keys; i++) {
824
        for (i = 0; i < node->keys; i++) {
825
            used_pages += (count_t) node->value[i];
825
            used_pages += (count_t) node->value[i];
826
        }
826
        }
827
    }
827
    }
828
 
828
 
829
    /* An array for storing frame numbers */
829
    /* An array for storing frame numbers */
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
830
    old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
831
 
831
 
832
    /*
832
    /*
833
     * Start TLB shootdown sequence.
833
     * Start TLB shootdown sequence.
834
     */
834
     */
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
835
    tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
836
 
836
 
837
    /*
837
    /*
838
     * Remove used pages from page tables and remember their frame
838
     * Remove used pages from page tables and remember their frame
839
     * numbers.
839
     * numbers.
840
     */
840
     */
841
    frame_idx = 0;
841
    frame_idx = 0;
842
 
842
 
843
    for (cur = area->used_space.leaf_head.next;
843
    for (cur = area->used_space.leaf_head.next;
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
844
        cur != &area->used_space.leaf_head; cur = cur->next) {
845
        btree_node_t *node;
845
        btree_node_t *node;
846
        unsigned int i;
846
        unsigned int i;
847
       
847
       
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
848
        node = list_get_instance(cur, btree_node_t, leaf_link);
849
        for (i = 0; i < node->keys; i++) {
849
        for (i = 0; i < node->keys; i++) {
850
            uintptr_t b = node->key[i];
850
            uintptr_t b = node->key[i];
851
            count_t j;
851
            count_t j;
852
            pte_t *pte;
852
            pte_t *pte;
853
           
853
           
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
854
            for (j = 0; j < (count_t) node->value[i]; j++) {
855
                page_table_lock(as, false);
855
                page_table_lock(as, false);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
856
                pte = page_mapping_find(as, b + j * PAGE_SIZE);
857
                ASSERT(pte && PTE_VALID(pte) &&
857
                ASSERT(pte && PTE_VALID(pte) &&
858
                    PTE_PRESENT(pte));
858
                    PTE_PRESENT(pte));
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
859
                old_frame[frame_idx++] = PTE_GET_FRAME(pte);
860
 
860
 
861
                /* Remove old mapping */
861
                /* Remove old mapping */
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
862
                page_mapping_remove(as, b + j * PAGE_SIZE);
863
                page_table_unlock(as, false);
863
                page_table_unlock(as, false);
864
            }
864
            }
865
        }
865
        }
866
    }
866
    }
867
 
867
 
868
    /*
868
    /*
869
     * Finish TLB shootdown sequence.
869
     * Finish TLB shootdown sequence.
870
     */
870
     */
871
 
871
 
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
872
    tlb_invalidate_pages(as->asid, area->base, area->pages);
873
    /*
873
    /*
874
     * Invalidate potential software translation caches (e.g. TSB on
874
     * Invalidate potential software translation caches (e.g. TSB on
875
     * sparc64).
875
     * sparc64).
876
     */
876
     */
877
    as_invalidate_translation_cache(as, area->base, area->pages);
877
    as_invalidate_translation_cache(as, area->base, area->pages);
878
    tlb_shootdown_finalize();
878
    tlb_shootdown_finalize();
879
 
879
 
880
    /*
880
    /*
881
     * Set the new flags.
881
     * Set the new flags.
882
     */
882
     */
883
    area->flags = flags;
883
    area->flags = flags;
884
 
884
 
885
    /*
885
    /*
886
     * Map pages back in with new flags. This step is kept separate
886
     * Map pages back in with new flags. This step is kept separate
887
     * so that the memory area could not be accesed with both the old and
887
     * so that the memory area could not be accesed with both the old and
888
     * the new flags at once.
888
     * the new flags at once.
889
     */
889
     */
890
    frame_idx = 0;
890
    frame_idx = 0;
891
 
891
 
892
    for (cur = area->used_space.leaf_head.next;
892
    for (cur = area->used_space.leaf_head.next;
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
893
        cur != &area->used_space.leaf_head; cur = cur->next) {
894
        btree_node_t *node;
894
        btree_node_t *node;
895
        unsigned int i;
895
        unsigned int i;
896
       
896
       
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
897
        node = list_get_instance(cur, btree_node_t, leaf_link);
898
        for (i = 0; i < node->keys; i++) {
898
        for (i = 0; i < node->keys; i++) {
899
            uintptr_t b = node->key[i];
899
            uintptr_t b = node->key[i];
900
            count_t j;
900
            count_t j;
901
           
901
           
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
902
            for (j = 0; j < (count_t) node->value[i]; j++) {
903
                page_table_lock(as, false);
903
                page_table_lock(as, false);
904
 
904
 
905
                /* Insert the new mapping */
905
                /* Insert the new mapping */
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
906
                page_mapping_insert(as, b + j * PAGE_SIZE,
907
                    old_frame[frame_idx++], page_flags);
907
                    old_frame[frame_idx++], page_flags);
908
 
908
 
909
                page_table_unlock(as, false);
909
                page_table_unlock(as, false);
910
            }
910
            }
911
        }
911
        }
912
    }
912
    }
913
 
913
 
914
    free(old_frame);
914
    free(old_frame);
915
 
915
 
916
    mutex_unlock(&area->lock);
916
    mutex_unlock(&area->lock);
917
    mutex_unlock(&as->lock);
917
    mutex_unlock(&as->lock);
918
    interrupts_restore(ipl);
918
    interrupts_restore(ipl);
919
 
919
 
920
    return 0;
920
    return 0;
921
}
921
}
922
 
922
 
923
 
923
 
924
/** Handle page fault within the current address space.
924
/** Handle page fault within the current address space.
925
 *
925
 *
926
 * This is the high-level page fault handler. It decides whether the page fault
926
 * This is the high-level page fault handler. It decides whether the page fault
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
927
 * can be resolved by any backend and if so, it invokes the backend to resolve
928
 * the page fault.
928
 * the page fault.
929
 *
929
 *
930
 * Interrupts are assumed disabled.
930
 * Interrupts are assumed disabled.
931
 *
931
 *
932
 * @param page      Faulting page.
932
 * @param page      Faulting page.
933
 * @param access    Access mode that caused the page fault (i.e.
933
 * @param access    Access mode that caused the page fault (i.e.
934
 *          read/write/exec).
934
 *          read/write/exec).
935
 * @param istate    Pointer to the interrupted state.
935
 * @param istate    Pointer to the interrupted state.
936
 *
936
 *
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
937
 * @return      AS_PF_FAULT on page fault, AS_PF_OK on success or
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
938
 *          AS_PF_DEFER if the fault was caused by copy_to_uspace()
939
 *          or copy_from_uspace().
939
 *          or copy_from_uspace().
940
 */
940
 */
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
941
int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
942
{
942
{
943
    pte_t *pte;
943
    pte_t *pte;
944
    as_area_t *area;
944
    as_area_t *area;
945
   
945
   
946
    if (!THREAD)
946
    if (!THREAD)
947
        return AS_PF_FAULT;
947
        return AS_PF_FAULT;
948
       
948
       
949
    ASSERT(AS);
949
    ASSERT(AS);
950
 
950
 
951
    mutex_lock(&AS->lock);
951
    mutex_lock(&AS->lock);
952
    area = find_area_and_lock(AS, page);   
952
    area = find_area_and_lock(AS, page);   
953
    if (!area) {
953
    if (!area) {
954
        /*
954
        /*
955
         * No area contained mapping for 'page'.
955
         * No area contained mapping for 'page'.
956
         * Signal page fault to low-level handler.
956
         * Signal page fault to low-level handler.
957
         */
957
         */
958
        mutex_unlock(&AS->lock);
958
        mutex_unlock(&AS->lock);
959
        goto page_fault;
959
        goto page_fault;
960
    }
960
    }
961
 
961
 
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
962
    if (area->attributes & AS_AREA_ATTR_PARTIAL) {
963
        /*
963
        /*
964
         * The address space area is not fully initialized.
964
         * The address space area is not fully initialized.
965
         * Avoid possible race by returning error.
965
         * Avoid possible race by returning error.
966
         */
966
         */
967
        mutex_unlock(&area->lock);
967
        mutex_unlock(&area->lock);
968
        mutex_unlock(&AS->lock);
968
        mutex_unlock(&AS->lock);
969
        goto page_fault;       
969
        goto page_fault;       
970
    }
970
    }
971
 
971
 
972
    if (!area->backend || !area->backend->page_fault) {
972
    if (!area->backend || !area->backend->page_fault) {
973
        /*
973
        /*
974
         * The address space area is not backed by any backend
974
         * The address space area is not backed by any backend
975
         * or the backend cannot handle page faults.
975
         * or the backend cannot handle page faults.
976
         */
976
         */
977
        mutex_unlock(&area->lock);
977
        mutex_unlock(&area->lock);
978
        mutex_unlock(&AS->lock);
978
        mutex_unlock(&AS->lock);
979
        goto page_fault;       
979
        goto page_fault;       
980
    }
980
    }
981
 
981
 
982
    page_table_lock(AS, false);
982
    page_table_lock(AS, false);
983
   
983
   
984
    /*
984
    /*
985
     * To avoid race condition between two page faults on the same address,
985
     * To avoid race condition between two page faults on the same address,
986
     * we need to make sure the mapping has not been already inserted.
986
     * we need to make sure the mapping has not been already inserted.
987
     */
987
     */
988
    if ((pte = page_mapping_find(AS, page))) {
988
    if ((pte = page_mapping_find(AS, page))) {
989
        if (PTE_PRESENT(pte)) {
989
        if (PTE_PRESENT(pte)) {
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
990
            if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
991
                (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
992
                (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
993
                page_table_unlock(AS, false);
993
                page_table_unlock(AS, false);
994
                mutex_unlock(&area->lock);
994
                mutex_unlock(&area->lock);
995
                mutex_unlock(&AS->lock);
995
                mutex_unlock(&AS->lock);
996
                return AS_PF_OK;
996
                return AS_PF_OK;
997
            }
997
            }
998
        }
998
        }
999
    }
999
    }
1000
   
1000
   
1001
    /*
1001
    /*
1002
     * Resort to the backend page fault handler.
1002
     * Resort to the backend page fault handler.
1003
     */
1003
     */
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1004
    if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1005
        page_table_unlock(AS, false);
1005
        page_table_unlock(AS, false);
1006
        mutex_unlock(&area->lock);
1006
        mutex_unlock(&area->lock);
1007
        mutex_unlock(&AS->lock);
1007
        mutex_unlock(&AS->lock);
1008
        goto page_fault;
1008
        goto page_fault;
1009
    }
1009
    }
1010
   
1010
   
1011
    page_table_unlock(AS, false);
1011
    page_table_unlock(AS, false);
1012
    mutex_unlock(&area->lock);
1012
    mutex_unlock(&area->lock);
1013
    mutex_unlock(&AS->lock);
1013
    mutex_unlock(&AS->lock);
1014
    return AS_PF_OK;
1014
    return AS_PF_OK;
1015
 
1015
 
1016
page_fault:
1016
page_fault:
1017
    if (THREAD->in_copy_from_uspace) {
1017
    if (THREAD->in_copy_from_uspace) {
1018
        THREAD->in_copy_from_uspace = false;
1018
        THREAD->in_copy_from_uspace = false;
1019
        istate_set_retaddr(istate,
1019
        istate_set_retaddr(istate,
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1020
            (uintptr_t) &memcpy_from_uspace_failover_address);
1021
    } else if (THREAD->in_copy_to_uspace) {
1021
    } else if (THREAD->in_copy_to_uspace) {
1022
        THREAD->in_copy_to_uspace = false;
1022
        THREAD->in_copy_to_uspace = false;
1023
        istate_set_retaddr(istate,
1023
        istate_set_retaddr(istate,
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1024
            (uintptr_t) &memcpy_to_uspace_failover_address);
1025
    } else {
1025
    } else {
1026
        return AS_PF_FAULT;
1026
        return AS_PF_FAULT;
1027
    }
1027
    }
1028
 
1028
 
1029
    return AS_PF_DEFER;
1029
    return AS_PF_DEFER;
1030
}
1030
}
1031
 
1031
 
1032
/** Switch address spaces.
1032
/** Switch address spaces.
1033
 *
1033
 *
1034
 * Note that this function cannot sleep as it is essentially a part of
1034
 * Note that this function cannot sleep as it is essentially a part of
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1035
 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1036
 * thing which is forbidden in this context is locking the address space.
1036
 * thing which is forbidden in this context is locking the address space.
1037
 *
1037
 *
1038
 * When this function is enetered, no spinlocks may be held.
1038
 * When this function is enetered, no spinlocks may be held.
1039
 *
1039
 *
1040
 * @param old       Old address space or NULL.
1040
 * @param old       Old address space or NULL.
1041
 * @param new       New address space.
1041
 * @param new       New address space.
1042
 */
1042
 */
1043
void as_switch(as_t *old_as, as_t *new_as)
1043
void as_switch(as_t *old_as, as_t *new_as)
1044
{
1044
{
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1045
    DEADLOCK_PROBE_INIT(p_asidlock);
1046
    preemption_disable();
1046
    preemption_disable();
1047
retry:
1047
retry:
1048
    (void) interrupts_disable();
1048
    (void) interrupts_disable();
1049
    if (!spinlock_trylock(&asidlock)) {
1049
    if (!spinlock_trylock(&asidlock)) {
1050
        /*
1050
        /*
1051
         * Avoid deadlock with TLB shootdown.
1051
         * Avoid deadlock with TLB shootdown.
1052
         * We can enable interrupts here because
1052
         * We can enable interrupts here because
1053
         * preemption is disabled. We should not be
1053
         * preemption is disabled. We should not be
1054
         * holding any other lock.
1054
         * holding any other lock.
1055
         */
1055
         */
1056
        (void) interrupts_enable();
1056
        (void) interrupts_enable();
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1057
        DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1058
        goto retry;
1058
        goto retry;
1059
    }
1059
    }
1060
    preemption_enable();
1060
    preemption_enable();
1061
 
1061
 
1062
    /*
1062
    /*
1063
     * First, take care of the old address space.
1063
     * First, take care of the old address space.
1064
     */
1064
     */
1065
    if (old_as) {
1065
    if (old_as) {
1066
        ASSERT(old_as->cpu_refcount);
1066
        ASSERT(old_as->cpu_refcount);
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1067
        if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1068
            /*
1068
            /*
1069
             * The old address space is no longer active on
1069
             * The old address space is no longer active on
1070
             * any processor. It can be appended to the
1070
             * any processor. It can be appended to the
1071
             * list of inactive address spaces with assigned
1071
             * list of inactive address spaces with assigned
1072
             * ASID.
1072
             * ASID.
1073
             */
1073
             */
1074
            ASSERT(old_as->asid != ASID_INVALID);
1074
            ASSERT(old_as->asid != ASID_INVALID);
1075
            list_append(&old_as->inactive_as_with_asid_link,
1075
            list_append(&old_as->inactive_as_with_asid_link,
1076
                &inactive_as_with_asid_head);
1076
                &inactive_as_with_asid_head);
1077
        }
1077
        }
1078
 
1078
 
1079
        /*
1079
        /*
1080
         * Perform architecture-specific tasks when the address space
1080
         * Perform architecture-specific tasks when the address space
1081
         * is being removed from the CPU.
1081
         * is being removed from the CPU.
1082
         */
1082
         */
1083
        as_deinstall_arch(old_as);
1083
        as_deinstall_arch(old_as);
1084
    }
1084
    }
1085
 
1085
 
1086
    /*
1086
    /*
1087
     * Second, prepare the new address space.
1087
     * Second, prepare the new address space.
1088
     */
1088
     */
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1089
    if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1090
        if (new_as->asid != ASID_INVALID)
1090
        if (new_as->asid != ASID_INVALID)
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1091
            list_remove(&new_as->inactive_as_with_asid_link);
1092
        else
1092
        else
1093
            new_as->asid = asid_get();
1093
            new_as->asid = asid_get();
1094
    }
1094
    }
1095
#ifdef AS_PAGE_TABLE
1095
#ifdef AS_PAGE_TABLE
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1096
    SET_PTL0_ADDRESS(new_as->genarch.page_table);
1097
#endif
1097
#endif
1098
   
1098
   
1099
    /*
1099
    /*
1100
     * Perform architecture-specific steps.
1100
     * Perform architecture-specific steps.
1101
     * (e.g. write ASID to hardware register etc.)
1101
     * (e.g. write ASID to hardware register etc.)
1102
     */
1102
     */
1103
    as_install_arch(new_as);
1103
    as_install_arch(new_as);
1104
 
1104
 
1105
    spinlock_unlock(&asidlock);
1105
    spinlock_unlock(&asidlock);
1106
   
1106
   
1107
    AS = new_as;
1107
    AS = new_as;
1108
}
1108
}
1109
 
1109
 
1110
#ifdef CONFIG_UDEBUG
1110
#ifdef CONFIG_UDEBUG
1111
 
1111
 
1112
/** Write directly into a page, bypassing area flags.
1112
/** Write directly into a page, bypassing area flags.
1113
 *
1113
 *
1114
 * This allows a debugger to write into a page that is mapped read-only
1114
 * This allows a debugger to write into a page that is mapped read-only
1115
 * (such as the text segment). Naturally, this is only possible if the
1115
 * (such as the text segment). Naturally, this can only be done if the
1116
 * correspoinding area is not shared and anonymous.
1116
 * correspoinding area is private (not shared) and anonymous.
1117
 *
1117
 *
1118
 * FIXME: doesn't take into account that it isn't a good idea to write
1118
 * If this is not the case, this function calls as_area_make_writeable()
1119
 * into the frame if the area is shared or isn't anonymous
1119
 * first.
1120
 */
1120
 */
1121
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
1121
static int debug_write_inside_page(uintptr_t va, void *data, size_t n)
1122
{
1122
{
1123
    uintptr_t page;
1123
    uintptr_t page;
1124
    pte_t *pte;
1124
    pte_t *pte;
1125
    as_area_t *area;
1125
    as_area_t *area;
1126
    uintptr_t frame;
1126
    uintptr_t frame;
1127
    ipl_t ipl;
1127
    ipl_t ipl;
1128
    int rc;
1128
    int rc;
1129
 
1129
 
1130
    page = ALIGN_DOWN(va, PAGE_SIZE);
1130
    page = ALIGN_DOWN(va, PAGE_SIZE);
1131
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
1131
    ASSERT(ALIGN_DOWN(va + n - 1, PAGE_SIZE) == page);
1132
 
1132
 
1133
restart:
1133
restart:
1134
    mutex_lock(&AS->lock);
1134
    mutex_lock(&AS->lock);
1135
    ipl = interrupts_disable();
1135
    ipl = interrupts_disable();
1136
    area = find_area_and_lock(AS, page);
1136
    area = find_area_and_lock(AS, page);
1137
    if (area->backend != &anon_backend || area->sh_info != NULL) {
1137
    if (area->backend != &anon_backend || area->sh_info != NULL) {
1138
        mutex_unlock(&area->lock);
1138
        mutex_unlock(&area->lock);
1139
        mutex_unlock(&AS->lock);
1139
        mutex_unlock(&AS->lock);
1140
        interrupts_restore(ipl);
1140
        interrupts_restore(ipl);
1141
 
1141
 
1142
        rc = as_area_make_writeable(area->base);
1142
        rc = as_area_make_writeable(area->base);
1143
        if (rc != 0) return rc;
1143
        if (rc != 0) return rc;
1144
 
1144
 
1145
        goto restart;
1145
        goto restart;
1146
    }
1146
    }
1147
 
1147
 
1148
    pte = page_mapping_find(AS, page);
1148
    pte = page_mapping_find(AS, page);
1149
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1149
    if (! (pte && PTE_VALID(pte) && PTE_PRESENT(pte)) ) {
1150
        mutex_unlock(&area->lock);
1150
        mutex_unlock(&area->lock);
1151
        mutex_unlock(&AS->lock);
1151
        mutex_unlock(&AS->lock);
1152
        interrupts_restore(ipl);
1152
        interrupts_restore(ipl);
1153
 
1153
 
1154
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1154
        rc = as_page_fault(page, PF_ACCESS_WRITE, NULL);
1155
        if (rc == AS_PF_FAULT) return EINVAL;
1155
        if (rc == AS_PF_FAULT) return EINVAL;
1156
 
1156
 
1157
        goto restart;
1157
        goto restart;
1158
    }
1158
    }
1159
 
1159
 
1160
    frame = PTE_GET_FRAME(pte);
1160
    frame = PTE_GET_FRAME(pte);
1161
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1161
    memcpy((void *)(PA2KA(frame) + (va - page)), data, n);
1162
 
1162
 
1163
    mutex_unlock(&area->lock);
1163
    mutex_unlock(&area->lock);
1164
    mutex_unlock(&AS->lock);
1164
    mutex_unlock(&AS->lock);
1165
    interrupts_restore(ipl);
1165
    interrupts_restore(ipl);
1166
 
1166
 
1167
    return EOK;
1167
    return EOK;
1168
}
1168
}
1169
 
1169
 
1170
/** Write data bypassing area flags.
1170
/** Write data bypassing area flags.
1171
 *
1171
 *
1172
 * See debug_write_inside_page().
1172
 * See debug_write_inside_page().
1173
 */
1173
 */
1174
int as_debug_write(uintptr_t va, void *data, size_t n)
1174
int as_debug_write(uintptr_t va, void *data, size_t n)
1175
{
1175
{
1176
    size_t now;
1176
    size_t now;
1177
    int rc;
1177
    int rc;
1178
 
1178
 
1179
    while (n > 0) {
1179
    while (n > 0) {
1180
        /* Number of bytes until the end of page */
1180
        /* Number of bytes until the end of page */
1181
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
1181
        now = ALIGN_DOWN(va, PAGE_SIZE) + PAGE_SIZE - va;
1182
        if (now > n) now = n;
1182
        if (now > n) now = n;
1183
 
1183
 
1184
        rc = debug_write_inside_page(va, data, now);
1184
        rc = debug_write_inside_page(va, data, now);
1185
        if (rc != EOK) return rc;
1185
        if (rc != EOK) return rc;
1186
 
1186
 
1187
        va += now;
1187
        va += now;
1188
        data += now;
1188
        data += now;
1189
        n -= now;
1189
        n -= now;
1190
    }
1190
    }
1191
 
1191
 
1192
    return EOK;
1192
    return EOK;
1193
}
1193
}
1194
 
1194
 
1195
/** Make sure area is private and anonymous.
1195
/** Make sure area is private and anonymous.
1196
 *
1196
 *
1197
 * Not atomic atm.
1197
 * Not atomic atm.
1198
 * @param address   Virtual address in AS.
1198
 * @param address   Virtual address in AS.
1199
 */
1199
 */
1200
int as_area_make_writeable(uintptr_t address)
1200
int as_area_make_writeable(uintptr_t address)
1201
{
1201
{
1202
    ipl_t ipl;
1202
    ipl_t ipl;
1203
    as_area_t *area;
1203
    as_area_t *area;
1204
    uintptr_t base, page;
1204
    uintptr_t base, page;
1205
    uintptr_t old_frame, frame;
1205
    uintptr_t old_frame, frame;
1206
    size_t size;
1206
    size_t size;
1207
    int flags;
1207
    int flags;
1208
    int page_flags;
1208
    int page_flags;
1209
    pte_t *pte;
1209
    pte_t *pte;
1210
    int rc;
1210
    int rc;
1211
    uintptr_t *pagemap;
1211
    uintptr_t *pagemap;
1212
 
1212
 
1213
    ipl = interrupts_disable();
1213
    ipl = interrupts_disable();
1214
    mutex_lock(&AS->lock);
1214
    mutex_lock(&AS->lock);
1215
    area = find_area_and_lock(AS, address);
1215
    area = find_area_and_lock(AS, address);
1216
    if (!area) {
1216
    if (!area) {
1217
        /*
1217
        /*
1218
         * Could not find the address space area.
1218
         * Could not find the address space area.
1219
         */
1219
         */
1220
        mutex_unlock(&AS->lock);
1220
        mutex_unlock(&AS->lock);
1221
        interrupts_restore(ipl);
1221
        interrupts_restore(ipl);
1222
        return ENOENT;
1222
        return ENOENT;
1223
    }
1223
    }
1224
 
1224
 
1225
    if (area->backend == &anon_backend && !area->sh_info) {
1225
    if (area->backend == &anon_backend && !area->sh_info) {
1226
        /* Nothing to do */
1226
        /* Nothing to do */
1227
        mutex_unlock(&area->lock);
1227
        mutex_unlock(&area->lock);
1228
        mutex_unlock(&AS->lock);
1228
        mutex_unlock(&AS->lock);
1229
        interrupts_restore(ipl);
1229
        interrupts_restore(ipl);
1230
        return EOK;
1230
        return EOK;
1231
    }
1231
    }
1232
 
1232
 
1233
    base = area->base;
1233
    base = area->base;
1234
    size = area->pages * PAGE_SIZE;
1234
    size = area->pages * PAGE_SIZE;
1235
    flags = area->flags;
1235
    flags = area->flags;
1236
    page_flags = as_area_get_flags(area);
1236
    page_flags = as_area_get_flags(area);
1237
 
1237
 
1238
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1238
    pagemap = malloc(area->pages * sizeof(uintptr_t), 0);
1239
    page_table_lock(AS, false);
1239
    page_table_lock(AS, false);
1240
 
1240
 
1241
    for (page = base; page < base + size; page += PAGE_SIZE) {
1241
    for (page = base; page < base + size; page += PAGE_SIZE) {
1242
        pte = page_mapping_find(AS, page);
1242
        pte = page_mapping_find(AS, page);
1243
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1243
        if (!pte || !PTE_PRESENT(pte) || !PTE_READABLE(pte)) {
1244
            /* Fetch the missing page */
1244
            /* Fetch the missing page */
1245
            if (!area->backend || !area->backend->page_fault) {
1245
            if (!area->backend || !area->backend->page_fault) {
1246
                page_table_unlock(AS, false);
1246
                page_table_unlock(AS, false);
1247
                mutex_unlock(&area->lock);
1247
                mutex_unlock(&area->lock);
1248
                mutex_unlock(&AS->lock);
1248
                mutex_unlock(&AS->lock);
1249
                interrupts_restore(ipl);
1249
                interrupts_restore(ipl);
1250
                return EINVAL;
1250
                return EINVAL;
1251
            }
1251
            }
1252
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1252
            if (area->backend->page_fault(area, page, PF_ACCESS_READ) != AS_PF_OK) {
1253
                page_table_unlock(AS, false);
1253
                page_table_unlock(AS, false);
1254
                mutex_unlock(&area->lock);
1254
                mutex_unlock(&area->lock);
1255
                mutex_unlock(&AS->lock);
1255
                mutex_unlock(&AS->lock);
1256
                interrupts_restore(ipl);
1256
                interrupts_restore(ipl);
1257
                return EINVAL;
1257
                return EINVAL;
1258
            }
1258
            }
1259
        }
1259
        }
1260
        ASSERT(PTE_VALID(pte));
1260
        ASSERT(PTE_VALID(pte));
1261
 
1261
 
1262
        old_frame = PTE_GET_FRAME(pte);
1262
        old_frame = PTE_GET_FRAME(pte);
1263
 
1263
 
1264
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1264
        frame = (uintptr_t)frame_alloc(ONE_FRAME, 0);
1265
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1265
        memcpy((void *) PA2KA(frame), (void *)PA2KA(old_frame),
1266
            FRAME_SIZE);
1266
            FRAME_SIZE);
1267
 
1267
 
1268
        pagemap[(page - base) / PAGE_SIZE] = frame;
1268
        pagemap[(page - base) / PAGE_SIZE] = frame;
1269
    }
1269
    }
1270
 
1270
 
1271
    page_table_unlock(AS, false);
1271
    page_table_unlock(AS, false);
1272
    mutex_unlock(&area->lock);
1272
    mutex_unlock(&area->lock);
1273
    mutex_unlock(&AS->lock);
1273
    mutex_unlock(&AS->lock);
1274
    interrupts_restore(ipl);
1274
    interrupts_restore(ipl);
1275
 
1275
 
1276
    rc = as_area_destroy(AS, address);
1276
    rc = as_area_destroy(AS, address);
1277
    if (rc < 0) {
1277
    if (rc < 0) {
1278
        free(pagemap);
1278
        free(pagemap);
1279
        return rc;
1279
        return rc;
1280
    }
1280
    }
1281
 
1281
 
1282
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1282
    area = as_area_create(AS, flags, size, base, AS_AREA_ATTR_PARTIAL,
1283
        &anon_backend, NULL);
1283
        &anon_backend, NULL);
1284
    if (area == NULL) {
1284
    if (area == NULL) {
1285
        free(pagemap);
1285
        free(pagemap);
1286
        return rc;
1286
        return rc;
1287
    }
1287
    }
1288
 
1288
 
1289
    mutex_lock(&AS->lock);
1289
    mutex_lock(&AS->lock);
1290
    mutex_lock(&area->lock);
1290
    mutex_lock(&area->lock);
1291
    page_table_lock(AS, false);
1291
    page_table_lock(AS, false);
1292
    for (page = base; page < base + size; page += PAGE_SIZE) {
1292
    for (page = base; page < base + size; page += PAGE_SIZE) {
1293
        frame = pagemap[(page - base) / PAGE_SIZE];
1293
        frame = pagemap[(page - base) / PAGE_SIZE];
1294
 
1294
 
1295
        page_mapping_insert(AS, page, frame, page_flags);
1295
        page_mapping_insert(AS, page, frame, page_flags);
1296
        if (!used_space_insert(area, page, 1))
1296
        if (!used_space_insert(area, page, 1))
1297
            panic("Could not insert used space.\n");
1297
            panic("Could not insert used space.\n");
1298
    }
1298
    }
1299
 
1299
 
1300
    page_table_unlock(AS, false);
1300
    page_table_unlock(AS, false);
1301
 
1301
 
1302
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1302
    area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1303
 
1303
 
1304
    mutex_unlock(&area->lock);
1304
    mutex_unlock(&area->lock);
1305
    mutex_unlock(&AS->lock);
1305
    mutex_unlock(&AS->lock);
1306
 
1306
 
1307
    free(pagemap);
1307
    free(pagemap);
1308
 
1308
 
1309
    return EOK;
1309
    return EOK;
1310
}
1310
}
1311
 
1311
 
1312
#endif /* defined(CONFIG_UDEBUG) */
1312
#endif /* defined(CONFIG_UDEBUG) */
1313
 
1313
 
1314
/** Convert address space area flags to page flags.
1314
/** Convert address space area flags to page flags.
1315
 *
1315
 *
1316
 * @param aflags    Flags of some address space area.
1316
 * @param aflags    Flags of some address space area.
1317
 *
1317
 *
1318
 * @return      Flags to be passed to page_mapping_insert().
1318
 * @return      Flags to be passed to page_mapping_insert().
1319
 */
1319
 */
1320
int area_flags_to_page_flags(int aflags)
1320
int area_flags_to_page_flags(int aflags)
1321
{
1321
{
1322
    int flags;
1322
    int flags;
1323
 
1323
 
1324
    flags = PAGE_USER | PAGE_PRESENT;
1324
    flags = PAGE_USER | PAGE_PRESENT;
1325
   
1325
   
1326
    if (aflags & AS_AREA_READ)
1326
    if (aflags & AS_AREA_READ)
1327
        flags |= PAGE_READ;
1327
        flags |= PAGE_READ;
1328
       
1328
       
1329
    if (aflags & AS_AREA_WRITE)
1329
    if (aflags & AS_AREA_WRITE)
1330
        flags |= PAGE_WRITE;
1330
        flags |= PAGE_WRITE;
1331
   
1331
   
1332
    if (aflags & AS_AREA_EXEC)
1332
    if (aflags & AS_AREA_EXEC)
1333
        flags |= PAGE_EXEC;
1333
        flags |= PAGE_EXEC;
1334
   
1334
   
1335
    if (aflags & AS_AREA_CACHEABLE)
1335
    if (aflags & AS_AREA_CACHEABLE)
1336
        flags |= PAGE_CACHEABLE;
1336
        flags |= PAGE_CACHEABLE;
1337
       
1337
       
1338
    return flags;
1338
    return flags;
1339
}
1339
}
1340
 
1340
 
1341
/** Compute flags for virtual address translation subsytem.
1341
/** Compute flags for virtual address translation subsytem.
1342
 *
1342
 *
1343
 * The address space area must be locked.
1343
 * The address space area must be locked.
1344
 * Interrupts must be disabled.
1344
 * Interrupts must be disabled.
1345
 *
1345
 *
1346
 * @param a     Address space area.
1346
 * @param a     Address space area.
1347
 *
1347
 *
1348
 * @return      Flags to be used in page_mapping_insert().
1348
 * @return      Flags to be used in page_mapping_insert().
1349
 */
1349
 */
1350
int as_area_get_flags(as_area_t *a)
1350
int as_area_get_flags(as_area_t *a)
1351
{
1351
{
1352
    return area_flags_to_page_flags(a->flags);
1352
    return area_flags_to_page_flags(a->flags);
1353
}
1353
}
1354
 
1354
 
1355
/** Create page table.
1355
/** Create page table.
1356
 *
1356
 *
1357
 * Depending on architecture, create either address space private or global page
1357
 * Depending on architecture, create either address space private or global page
1358
 * table.
1358
 * table.
1359
 *
1359
 *
1360
 * @param flags     Flags saying whether the page table is for the kernel
1360
 * @param flags     Flags saying whether the page table is for the kernel
1361
 *          address space.
1361
 *          address space.
1362
 *
1362
 *
1363
 * @return      First entry of the page table.
1363
 * @return      First entry of the page table.
1364
 */
1364
 */
1365
pte_t *page_table_create(int flags)
1365
pte_t *page_table_create(int flags)
1366
{
1366
{
1367
    ASSERT(as_operations);
1367
    ASSERT(as_operations);
1368
    ASSERT(as_operations->page_table_create);
1368
    ASSERT(as_operations->page_table_create);
1369
   
1369
   
1370
    return as_operations->page_table_create(flags);
1370
    return as_operations->page_table_create(flags);
1371
}
1371
}
1372
 
1372
 
1373
/** Destroy page table.
1373
/** Destroy page table.
1374
 *
1374
 *
1375
 * Destroy page table in architecture specific way.
1375
 * Destroy page table in architecture specific way.
1376
 *
1376
 *
1377
 * @param page_table    Physical address of PTL0.
1377
 * @param page_table    Physical address of PTL0.
1378
 */
1378
 */
1379
void page_table_destroy(pte_t *page_table)
1379
void page_table_destroy(pte_t *page_table)
1380
{
1380
{
1381
    ASSERT(as_operations);
1381
    ASSERT(as_operations);
1382
    ASSERT(as_operations->page_table_destroy);
1382
    ASSERT(as_operations->page_table_destroy);
1383
   
1383
   
1384
    as_operations->page_table_destroy(page_table);
1384
    as_operations->page_table_destroy(page_table);
1385
}
1385
}
1386
 
1386
 
1387
/** Lock page table.
1387
/** Lock page table.
1388
 *
1388
 *
1389
 * This function should be called before any page_mapping_insert(),
1389
 * This function should be called before any page_mapping_insert(),
1390
 * page_mapping_remove() and page_mapping_find().
1390
 * page_mapping_remove() and page_mapping_find().
1391
 *
1391
 *
1392
 * Locking order is such that address space areas must be locked
1392
 * Locking order is such that address space areas must be locked
1393
 * prior to this call. Address space can be locked prior to this
1393
 * prior to this call. Address space can be locked prior to this
1394
 * call in which case the lock argument is false.
1394
 * call in which case the lock argument is false.
1395
 *
1395
 *
1396
 * @param as        Address space.
1396
 * @param as        Address space.
1397
 * @param lock      If false, do not attempt to lock as->lock.
1397
 * @param lock      If false, do not attempt to lock as->lock.
1398
 */
1398
 */
1399
void page_table_lock(as_t *as, bool lock)
1399
void page_table_lock(as_t *as, bool lock)
1400
{
1400
{
1401
    ASSERT(as_operations);
1401
    ASSERT(as_operations);
1402
    ASSERT(as_operations->page_table_lock);
1402
    ASSERT(as_operations->page_table_lock);
1403
   
1403
   
1404
    as_operations->page_table_lock(as, lock);
1404
    as_operations->page_table_lock(as, lock);
1405
}
1405
}
1406
 
1406
 
1407
/** Unlock page table.
1407
/** Unlock page table.
1408
 *
1408
 *
1409
 * @param as        Address space.
1409
 * @param as        Address space.
1410
 * @param unlock    If false, do not attempt to unlock as->lock.
1410
 * @param unlock    If false, do not attempt to unlock as->lock.
1411
 */
1411
 */
1412
void page_table_unlock(as_t *as, bool unlock)
1412
void page_table_unlock(as_t *as, bool unlock)
1413
{
1413
{
1414
    ASSERT(as_operations);
1414
    ASSERT(as_operations);
1415
    ASSERT(as_operations->page_table_unlock);
1415
    ASSERT(as_operations->page_table_unlock);
1416
   
1416
   
1417
    as_operations->page_table_unlock(as, unlock);
1417
    as_operations->page_table_unlock(as, unlock);
1418
}
1418
}
1419
 
1419
 
1420
 
1420
 
1421
/** Find address space area and lock it.
1421
/** Find address space area and lock it.
1422
 *
1422
 *
1423
 * The address space must be locked and interrupts must be disabled.
1423
 * The address space must be locked and interrupts must be disabled.
1424
 *
1424
 *
1425
 * @param as        Address space.
1425
 * @param as        Address space.
1426
 * @param va        Virtual address.
1426
 * @param va        Virtual address.
1427
 *
1427
 *
1428
 * @return      Locked address space area containing va on success or
1428
 * @return      Locked address space area containing va on success or
1429
 *          NULL on failure.
1429
 *          NULL on failure.
1430
 */
1430
 */
1431
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1431
as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1432
{
1432
{
1433
    as_area_t *a;
1433
    as_area_t *a;
1434
    btree_node_t *leaf, *lnode;
1434
    btree_node_t *leaf, *lnode;
1435
    unsigned int i;
1435
    unsigned int i;
1436
   
1436
   
1437
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1437
    a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1438
    if (a) {
1438
    if (a) {
1439
        /* va is the base address of an address space area */
1439
        /* va is the base address of an address space area */
1440
        mutex_lock(&a->lock);
1440
        mutex_lock(&a->lock);
1441
        return a;
1441
        return a;
1442
    }
1442
    }
1443
   
1443
   
1444
    /*
1444
    /*
1445
     * Search the leaf node and the righmost record of its left neighbour
1445
     * Search the leaf node and the righmost record of its left neighbour
1446
     * to find out whether this is a miss or va belongs to an address
1446
     * to find out whether this is a miss or va belongs to an address
1447
     * space area found there.
1447
     * space area found there.
1448
     */
1448
     */
1449
   
1449
   
1450
    /* First, search the leaf node itself. */
1450
    /* First, search the leaf node itself. */
1451
    for (i = 0; i < leaf->keys; i++) {
1451
    for (i = 0; i < leaf->keys; i++) {
1452
        a = (as_area_t *) leaf->value[i];
1452
        a = (as_area_t *) leaf->value[i];
1453
        mutex_lock(&a->lock);
1453
        mutex_lock(&a->lock);
1454
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1454
        if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1455
            return a;
1455
            return a;
1456
        }
1456
        }
1457
        mutex_unlock(&a->lock);
1457
        mutex_unlock(&a->lock);
1458
    }
1458
    }
1459
 
1459
 
1460
    /*
1460
    /*
1461
     * Second, locate the left neighbour and test its last record.
1461
     * Second, locate the left neighbour and test its last record.
1462
     * Because of its position in the B+tree, it must have base < va.
1462
     * Because of its position in the B+tree, it must have base < va.
1463
     */
1463
     */
1464
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1464
    lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1465
    if (lnode) {
1465
    if (lnode) {
1466
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1466
        a = (as_area_t *) lnode->value[lnode->keys - 1];
1467
        mutex_lock(&a->lock);
1467
        mutex_lock(&a->lock);
1468
        if (va < a->base + a->pages * PAGE_SIZE) {
1468
        if (va < a->base + a->pages * PAGE_SIZE) {
1469
            return a;
1469
            return a;
1470
        }
1470
        }
1471
        mutex_unlock(&a->lock);
1471
        mutex_unlock(&a->lock);
1472
    }
1472
    }
1473
 
1473
 
1474
    return NULL;
1474
    return NULL;
1475
}
1475
}
1476
 
1476
 
1477
/** Check area conflicts with other areas.
1477
/** Check area conflicts with other areas.
1478
 *
1478
 *
1479
 * The address space must be locked and interrupts must be disabled.
1479
 * The address space must be locked and interrupts must be disabled.
1480
 *
1480
 *
1481
 * @param as        Address space.
1481
 * @param as        Address space.
1482
 * @param va        Starting virtual address of the area being tested.
1482
 * @param va        Starting virtual address of the area being tested.
1483
 * @param size      Size of the area being tested.
1483
 * @param size      Size of the area being tested.
1484
 * @param avoid_area    Do not touch this area.
1484
 * @param avoid_area    Do not touch this area.
1485
 *
1485
 *
1486
 * @return      True if there is no conflict, false otherwise.
1486
 * @return      True if there is no conflict, false otherwise.
1487
 */
1487
 */
1488
bool
1488
bool
1489
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1489
check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1490
{
1490
{
1491
    as_area_t *a;
1491
    as_area_t *a;
1492
    btree_node_t *leaf, *node;
1492
    btree_node_t *leaf, *node;
1493
    unsigned int i;
1493
    unsigned int i;
1494
   
1494
   
1495
    /*
1495
    /*
1496
     * We don't want any area to have conflicts with NULL page.
1496
     * We don't want any area to have conflicts with NULL page.
1497
     */
1497
     */
1498
    if (overlaps(va, size, NULL, PAGE_SIZE))
1498
    if (overlaps(va, size, NULL, PAGE_SIZE))
1499
        return false;
1499
        return false;
1500
   
1500
   
1501
    /*
1501
    /*
1502
     * The leaf node is found in O(log n), where n is proportional to
1502
     * The leaf node is found in O(log n), where n is proportional to
1503
     * the number of address space areas belonging to as.
1503
     * the number of address space areas belonging to as.
1504
     * The check for conflicts is then attempted on the rightmost
1504
     * The check for conflicts is then attempted on the rightmost
1505
     * record in the left neighbour, the leftmost record in the right
1505
     * record in the left neighbour, the leftmost record in the right
1506
     * neighbour and all records in the leaf node itself.
1506
     * neighbour and all records in the leaf node itself.
1507
     */
1507
     */
1508
   
1508
   
1509
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1509
    if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1510
        if (a != avoid_area)
1510
        if (a != avoid_area)
1511
            return false;
1511
            return false;
1512
    }
1512
    }
1513
   
1513
   
1514
    /* First, check the two border cases. */
1514
    /* First, check the two border cases. */
1515
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1515
    if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1516
        a = (as_area_t *) node->value[node->keys - 1];
1516
        a = (as_area_t *) node->value[node->keys - 1];
1517
        mutex_lock(&a->lock);
1517
        mutex_lock(&a->lock);
1518
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1518
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1519
            mutex_unlock(&a->lock);
1519
            mutex_unlock(&a->lock);
1520
            return false;
1520
            return false;
1521
        }
1521
        }
1522
        mutex_unlock(&a->lock);
1522
        mutex_unlock(&a->lock);
1523
    }
1523
    }
1524
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1524
    node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1525
    if (node) {
1525
    if (node) {
1526
        a = (as_area_t *) node->value[0];
1526
        a = (as_area_t *) node->value[0];
1527
        mutex_lock(&a->lock);
1527
        mutex_lock(&a->lock);
1528
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1528
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1529
            mutex_unlock(&a->lock);
1529
            mutex_unlock(&a->lock);
1530
            return false;
1530
            return false;
1531
        }
1531
        }
1532
        mutex_unlock(&a->lock);
1532
        mutex_unlock(&a->lock);
1533
    }
1533
    }
1534
   
1534
   
1535
    /* Second, check the leaf node. */
1535
    /* Second, check the leaf node. */
1536
    for (i = 0; i < leaf->keys; i++) {
1536
    for (i = 0; i < leaf->keys; i++) {
1537
        a = (as_area_t *) leaf->value[i];
1537
        a = (as_area_t *) leaf->value[i];
1538
   
1538
   
1539
        if (a == avoid_area)
1539
        if (a == avoid_area)
1540
            continue;
1540
            continue;
1541
   
1541
   
1542
        mutex_lock(&a->lock);
1542
        mutex_lock(&a->lock);
1543
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1543
        if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1544
            mutex_unlock(&a->lock);
1544
            mutex_unlock(&a->lock);
1545
            return false;
1545
            return false;
1546
        }
1546
        }
1547
        mutex_unlock(&a->lock);
1547
        mutex_unlock(&a->lock);
1548
    }
1548
    }
1549
 
1549
 
1550
    /*
1550
    /*
1551
     * So far, the area does not conflict with other areas.
1551
     * So far, the area does not conflict with other areas.
1552
     * Check if it doesn't conflict with kernel address space.
1552
     * Check if it doesn't conflict with kernel address space.
1553
     */  
1553
     */  
1554
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1554
    if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1555
        return !overlaps(va, size,
1555
        return !overlaps(va, size,
1556
            KERNEL_ADDRESS_SPACE_START,
1556
            KERNEL_ADDRESS_SPACE_START,
1557
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1557
            KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1558
    }
1558
    }
1559
 
1559
 
1560
    return true;
1560
    return true;
1561
}
1561
}
1562
 
1562
 
1563
/** Return size of the address space area with given base.
1563
/** Return size of the address space area with given base.
1564
 *
1564
 *
1565
 * @param base      Arbitrary address insede the address space area.
1565
 * @param base      Arbitrary address insede the address space area.
1566
 *
1566
 *
1567
 * @return      Size of the address space area in bytes or zero if it
1567
 * @return      Size of the address space area in bytes or zero if it
1568
 *          does not exist.
1568
 *          does not exist.
1569
 */
1569
 */
1570
size_t as_area_get_size(uintptr_t base)
1570
size_t as_area_get_size(uintptr_t base)
1571
{
1571
{
1572
    ipl_t ipl;
1572
    ipl_t ipl;
1573
    as_area_t *src_area;
1573
    as_area_t *src_area;
1574
    size_t size;
1574
    size_t size;
1575
 
1575
 
1576
    ipl = interrupts_disable();
1576
    ipl = interrupts_disable();
1577
    src_area = find_area_and_lock(AS, base);
1577
    src_area = find_area_and_lock(AS, base);
1578
    if (src_area) {
1578
    if (src_area) {
1579
        size = src_area->pages * PAGE_SIZE;
1579
        size = src_area->pages * PAGE_SIZE;
1580
        mutex_unlock(&src_area->lock);
1580
        mutex_unlock(&src_area->lock);
1581
    } else {
1581
    } else {
1582
        size = 0;
1582
        size = 0;
1583
    }
1583
    }
1584
    interrupts_restore(ipl);
1584
    interrupts_restore(ipl);
1585
    return size;
1585
    return size;
1586
}
1586
}
1587
 
1587
 
1588
/** Mark portion of address space area as used.
1588
/** Mark portion of address space area as used.
1589
 *
1589
 *
1590
 * The address space area must be already locked.
1590
 * The address space area must be already locked.
1591
 *
1591
 *
1592
 * @param a     Address space area.
1592
 * @param a     Address space area.
1593
 * @param page      First page to be marked.
1593
 * @param page      First page to be marked.
1594
 * @param count     Number of page to be marked.
1594
 * @param count     Number of page to be marked.
1595
 *
1595
 *
1596
 * @return      Zero on failure and non-zero on success.
1596
 * @return      Zero on failure and non-zero on success.
1597
 */
1597
 */
1598
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1598
int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1599
{
1599
{
1600
    btree_node_t *leaf, *node;
1600
    btree_node_t *leaf, *node;
1601
    count_t pages;
1601
    count_t pages;
1602
    unsigned int i;
1602
    unsigned int i;
1603
 
1603
 
1604
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1604
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1605
    ASSERT(count);
1605
    ASSERT(count);
1606
 
1606
 
1607
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1607
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1608
    if (pages) {
1608
    if (pages) {
1609
        /*
1609
        /*
1610
         * We hit the beginning of some used space.
1610
         * We hit the beginning of some used space.
1611
         */
1611
         */
1612
        return 0;
1612
        return 0;
1613
    }
1613
    }
1614
 
1614
 
1615
    if (!leaf->keys) {
1615
    if (!leaf->keys) {
1616
        btree_insert(&a->used_space, page, (void *) count, leaf);
1616
        btree_insert(&a->used_space, page, (void *) count, leaf);
1617
        return 1;
1617
        return 1;
1618
    }
1618
    }
1619
 
1619
 
1620
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1620
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1621
    if (node) {
1621
    if (node) {
1622
        uintptr_t left_pg = node->key[node->keys - 1];
1622
        uintptr_t left_pg = node->key[node->keys - 1];
1623
        uintptr_t right_pg = leaf->key[0];
1623
        uintptr_t right_pg = leaf->key[0];
1624
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1624
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1625
        count_t right_cnt = (count_t) leaf->value[0];
1625
        count_t right_cnt = (count_t) leaf->value[0];
1626
       
1626
       
1627
        /*
1627
        /*
1628
         * Examine the possibility that the interval fits
1628
         * Examine the possibility that the interval fits
1629
         * somewhere between the rightmost interval of
1629
         * somewhere between the rightmost interval of
1630
         * the left neigbour and the first interval of the leaf.
1630
         * the left neigbour and the first interval of the leaf.
1631
         */
1631
         */
1632
         
1632
         
1633
        if (page >= right_pg) {
1633
        if (page >= right_pg) {
1634
            /* Do nothing. */
1634
            /* Do nothing. */
1635
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1635
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1636
            left_cnt * PAGE_SIZE)) {
1636
            left_cnt * PAGE_SIZE)) {
1637
            /* The interval intersects with the left interval. */
1637
            /* The interval intersects with the left interval. */
1638
            return 0;
1638
            return 0;
1639
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1639
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1640
            right_cnt * PAGE_SIZE)) {
1640
            right_cnt * PAGE_SIZE)) {
1641
            /* The interval intersects with the right interval. */
1641
            /* The interval intersects with the right interval. */
1642
            return 0;          
1642
            return 0;          
1643
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1643
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1644
            (page + count * PAGE_SIZE == right_pg)) {
1644
            (page + count * PAGE_SIZE == right_pg)) {
1645
            /*
1645
            /*
1646
             * The interval can be added by merging the two already
1646
             * The interval can be added by merging the two already
1647
             * present intervals.
1647
             * present intervals.
1648
             */
1648
             */
1649
            node->value[node->keys - 1] += count + right_cnt;
1649
            node->value[node->keys - 1] += count + right_cnt;
1650
            btree_remove(&a->used_space, right_pg, leaf);
1650
            btree_remove(&a->used_space, right_pg, leaf);
1651
            return 1;
1651
            return 1;
1652
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1652
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1653
            /*
1653
            /*
1654
             * The interval can be added by simply growing the left
1654
             * The interval can be added by simply growing the left
1655
             * interval.
1655
             * interval.
1656
             */
1656
             */
1657
            node->value[node->keys - 1] += count;
1657
            node->value[node->keys - 1] += count;
1658
            return 1;
1658
            return 1;
1659
        } else if (page + count * PAGE_SIZE == right_pg) {
1659
        } else if (page + count * PAGE_SIZE == right_pg) {
1660
            /*
1660
            /*
1661
             * The interval can be addded by simply moving base of
1661
             * The interval can be addded by simply moving base of
1662
             * the right interval down and increasing its size
1662
             * the right interval down and increasing its size
1663
             * accordingly.
1663
             * accordingly.
1664
             */
1664
             */
1665
            leaf->value[0] += count;
1665
            leaf->value[0] += count;
1666
            leaf->key[0] = page;
1666
            leaf->key[0] = page;
1667
            return 1;
1667
            return 1;
1668
        } else {
1668
        } else {
1669
            /*
1669
            /*
1670
             * The interval is between both neigbouring intervals,
1670
             * The interval is between both neigbouring intervals,
1671
             * but cannot be merged with any of them.
1671
             * but cannot be merged with any of them.
1672
             */
1672
             */
1673
            btree_insert(&a->used_space, page, (void *) count,
1673
            btree_insert(&a->used_space, page, (void *) count,
1674
                leaf);
1674
                leaf);
1675
            return 1;
1675
            return 1;
1676
        }
1676
        }
1677
    } else if (page < leaf->key[0]) {
1677
    } else if (page < leaf->key[0]) {
1678
        uintptr_t right_pg = leaf->key[0];
1678
        uintptr_t right_pg = leaf->key[0];
1679
        count_t right_cnt = (count_t) leaf->value[0];
1679
        count_t right_cnt = (count_t) leaf->value[0];
1680
   
1680
   
1681
        /*
1681
        /*
1682
         * Investigate the border case in which the left neighbour does
1682
         * Investigate the border case in which the left neighbour does
1683
         * not exist but the interval fits from the left.
1683
         * not exist but the interval fits from the left.
1684
         */
1684
         */
1685
         
1685
         
1686
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1686
        if (overlaps(page, count * PAGE_SIZE, right_pg,
1687
            right_cnt * PAGE_SIZE)) {
1687
            right_cnt * PAGE_SIZE)) {
1688
            /* The interval intersects with the right interval. */
1688
            /* The interval intersects with the right interval. */
1689
            return 0;
1689
            return 0;
1690
        } else if (page + count * PAGE_SIZE == right_pg) {
1690
        } else if (page + count * PAGE_SIZE == right_pg) {
1691
            /*
1691
            /*
1692
             * The interval can be added by moving the base of the
1692
             * The interval can be added by moving the base of the
1693
             * right interval down and increasing its size
1693
             * right interval down and increasing its size
1694
             * accordingly.
1694
             * accordingly.
1695
             */
1695
             */
1696
            leaf->key[0] = page;
1696
            leaf->key[0] = page;
1697
            leaf->value[0] += count;
1697
            leaf->value[0] += count;
1698
            return 1;
1698
            return 1;
1699
        } else {
1699
        } else {
1700
            /*
1700
            /*
1701
             * The interval doesn't adjoin with the right interval.
1701
             * The interval doesn't adjoin with the right interval.
1702
             * It must be added individually.
1702
             * It must be added individually.
1703
             */
1703
             */
1704
            btree_insert(&a->used_space, page, (void *) count,
1704
            btree_insert(&a->used_space, page, (void *) count,
1705
                leaf);
1705
                leaf);
1706
            return 1;
1706
            return 1;
1707
        }
1707
        }
1708
    }
1708
    }
1709
 
1709
 
1710
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1710
    node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1711
    if (node) {
1711
    if (node) {
1712
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1712
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1713
        uintptr_t right_pg = node->key[0];
1713
        uintptr_t right_pg = node->key[0];
1714
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1714
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1715
        count_t right_cnt = (count_t) node->value[0];
1715
        count_t right_cnt = (count_t) node->value[0];
1716
       
1716
       
1717
        /*
1717
        /*
1718
         * Examine the possibility that the interval fits
1718
         * Examine the possibility that the interval fits
1719
         * somewhere between the leftmost interval of
1719
         * somewhere between the leftmost interval of
1720
         * the right neigbour and the last interval of the leaf.
1720
         * the right neigbour and the last interval of the leaf.
1721
         */
1721
         */
1722
 
1722
 
1723
        if (page < left_pg) {
1723
        if (page < left_pg) {
1724
            /* Do nothing. */
1724
            /* Do nothing. */
1725
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1725
        } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1726
            left_cnt * PAGE_SIZE)) {
1726
            left_cnt * PAGE_SIZE)) {
1727
            /* The interval intersects with the left interval. */
1727
            /* The interval intersects with the left interval. */
1728
            return 0;
1728
            return 0;
1729
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1729
        } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1730
            right_cnt * PAGE_SIZE)) {
1730
            right_cnt * PAGE_SIZE)) {
1731
            /* The interval intersects with the right interval. */
1731
            /* The interval intersects with the right interval. */
1732
            return 0;          
1732
            return 0;          
1733
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1733
        } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1734
            (page + count * PAGE_SIZE == right_pg)) {
1734
            (page + count * PAGE_SIZE == right_pg)) {
1735
            /*
1735
            /*
1736
             * The interval can be added by merging the two already
1736
             * The interval can be added by merging the two already
1737
             * present intervals.
1737
             * present intervals.
1738
             * */
1738
             * */
1739
            leaf->value[leaf->keys - 1] += count + right_cnt;
1739
            leaf->value[leaf->keys - 1] += count + right_cnt;
1740
            btree_remove(&a->used_space, right_pg, node);
1740
            btree_remove(&a->used_space, right_pg, node);
1741
            return 1;
1741
            return 1;
1742
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1742
        } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1743
            /*
1743
            /*
1744
             * The interval can be added by simply growing the left
1744
             * The interval can be added by simply growing the left
1745
             * interval.
1745
             * interval.
1746
             * */
1746
             * */
1747
            leaf->value[leaf->keys - 1] +=  count;
1747
            leaf->value[leaf->keys - 1] +=  count;
1748
            return 1;
1748
            return 1;
1749
        } else if (page + count * PAGE_SIZE == right_pg) {
1749
        } else if (page + count * PAGE_SIZE == right_pg) {
1750
            /*
1750
            /*
1751
             * The interval can be addded by simply moving base of
1751
             * The interval can be addded by simply moving base of
1752
             * the right interval down and increasing its size
1752
             * the right interval down and increasing its size
1753
             * accordingly.
1753
             * accordingly.
1754
             */
1754
             */
1755
            node->value[0] += count;
1755
            node->value[0] += count;
1756
            node->key[0] = page;
1756
            node->key[0] = page;
1757
            return 1;
1757
            return 1;
1758
        } else {
1758
        } else {
1759
            /*
1759
            /*
1760
             * The interval is between both neigbouring intervals,
1760
             * The interval is between both neigbouring intervals,
1761
             * but cannot be merged with any of them.
1761
             * but cannot be merged with any of them.
1762
             */
1762
             */
1763
            btree_insert(&a->used_space, page, (void *) count,
1763
            btree_insert(&a->used_space, page, (void *) count,
1764
                leaf);
1764
                leaf);
1765
            return 1;
1765
            return 1;
1766
        }
1766
        }
1767
    } else if (page >= leaf->key[leaf->keys - 1]) {
1767
    } else if (page >= leaf->key[leaf->keys - 1]) {
1768
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1768
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1769
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1769
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1770
   
1770
   
1771
        /*
1771
        /*
1772
         * Investigate the border case in which the right neighbour
1772
         * Investigate the border case in which the right neighbour
1773
         * does not exist but the interval fits from the right.
1773
         * does not exist but the interval fits from the right.
1774
         */
1774
         */
1775
         
1775
         
1776
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1776
        if (overlaps(page, count * PAGE_SIZE, left_pg,
1777
            left_cnt * PAGE_SIZE)) {
1777
            left_cnt * PAGE_SIZE)) {
1778
            /* The interval intersects with the left interval. */
1778
            /* The interval intersects with the left interval. */
1779
            return 0;
1779
            return 0;
1780
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1780
        } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1781
            /*
1781
            /*
1782
             * The interval can be added by growing the left
1782
             * The interval can be added by growing the left
1783
             * interval.
1783
             * interval.
1784
             */
1784
             */
1785
            leaf->value[leaf->keys - 1] += count;
1785
            leaf->value[leaf->keys - 1] += count;
1786
            return 1;
1786
            return 1;
1787
        } else {
1787
        } else {
1788
            /*
1788
            /*
1789
             * The interval doesn't adjoin with the left interval.
1789
             * The interval doesn't adjoin with the left interval.
1790
             * It must be added individually.
1790
             * It must be added individually.
1791
             */
1791
             */
1792
            btree_insert(&a->used_space, page, (void *) count,
1792
            btree_insert(&a->used_space, page, (void *) count,
1793
                leaf);
1793
                leaf);
1794
            return 1;
1794
            return 1;
1795
        }
1795
        }
1796
    }
1796
    }
1797
   
1797
   
1798
    /*
1798
    /*
1799
     * Note that if the algorithm made it thus far, the interval can fit
1799
     * Note that if the algorithm made it thus far, the interval can fit
1800
     * only between two other intervals of the leaf. The two border cases
1800
     * only between two other intervals of the leaf. The two border cases
1801
     * were already resolved.
1801
     * were already resolved.
1802
     */
1802
     */
1803
    for (i = 1; i < leaf->keys; i++) {
1803
    for (i = 1; i < leaf->keys; i++) {
1804
        if (page < leaf->key[i]) {
1804
        if (page < leaf->key[i]) {
1805
            uintptr_t left_pg = leaf->key[i - 1];
1805
            uintptr_t left_pg = leaf->key[i - 1];
1806
            uintptr_t right_pg = leaf->key[i];
1806
            uintptr_t right_pg = leaf->key[i];
1807
            count_t left_cnt = (count_t) leaf->value[i - 1];
1807
            count_t left_cnt = (count_t) leaf->value[i - 1];
1808
            count_t right_cnt = (count_t) leaf->value[i];
1808
            count_t right_cnt = (count_t) leaf->value[i];
1809
 
1809
 
1810
            /*
1810
            /*
1811
             * The interval fits between left_pg and right_pg.
1811
             * The interval fits between left_pg and right_pg.
1812
             */
1812
             */
1813
 
1813
 
1814
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1814
            if (overlaps(page, count * PAGE_SIZE, left_pg,
1815
                left_cnt * PAGE_SIZE)) {
1815
                left_cnt * PAGE_SIZE)) {
1816
                /*
1816
                /*
1817
                 * The interval intersects with the left
1817
                 * The interval intersects with the left
1818
                 * interval.
1818
                 * interval.
1819
                 */
1819
                 */
1820
                return 0;
1820
                return 0;
1821
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1821
            } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1822
                right_cnt * PAGE_SIZE)) {
1822
                right_cnt * PAGE_SIZE)) {
1823
                /*
1823
                /*
1824
                 * The interval intersects with the right
1824
                 * The interval intersects with the right
1825
                 * interval.
1825
                 * interval.
1826
                 */
1826
                 */
1827
                return 0;          
1827
                return 0;          
1828
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1828
            } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1829
                (page + count * PAGE_SIZE == right_pg)) {
1829
                (page + count * PAGE_SIZE == right_pg)) {
1830
                /*
1830
                /*
1831
                 * The interval can be added by merging the two
1831
                 * The interval can be added by merging the two
1832
                 * already present intervals.
1832
                 * already present intervals.
1833
                 */
1833
                 */
1834
                leaf->value[i - 1] += count + right_cnt;
1834
                leaf->value[i - 1] += count + right_cnt;
1835
                btree_remove(&a->used_space, right_pg, leaf);
1835
                btree_remove(&a->used_space, right_pg, leaf);
1836
                return 1;
1836
                return 1;
1837
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1837
            } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1838
                /*
1838
                /*
1839
                 * The interval can be added by simply growing
1839
                 * The interval can be added by simply growing
1840
                 * the left interval.
1840
                 * the left interval.
1841
                 */
1841
                 */
1842
                leaf->value[i - 1] += count;
1842
                leaf->value[i - 1] += count;
1843
                return 1;
1843
                return 1;
1844
            } else if (page + count * PAGE_SIZE == right_pg) {
1844
            } else if (page + count * PAGE_SIZE == right_pg) {
1845
                /*
1845
                /*
1846
                     * The interval can be addded by simply moving
1846
                     * The interval can be addded by simply moving
1847
                 * base of the right interval down and
1847
                 * base of the right interval down and
1848
                 * increasing its size accordingly.
1848
                 * increasing its size accordingly.
1849
                 */
1849
                 */
1850
                leaf->value[i] += count;
1850
                leaf->value[i] += count;
1851
                leaf->key[i] = page;
1851
                leaf->key[i] = page;
1852
                return 1;
1852
                return 1;
1853
            } else {
1853
            } else {
1854
                /*
1854
                /*
1855
                 * The interval is between both neigbouring
1855
                 * The interval is between both neigbouring
1856
                 * intervals, but cannot be merged with any of
1856
                 * intervals, but cannot be merged with any of
1857
                 * them.
1857
                 * them.
1858
                 */
1858
                 */
1859
                btree_insert(&a->used_space, page,
1859
                btree_insert(&a->used_space, page,
1860
                    (void *) count, leaf);
1860
                    (void *) count, leaf);
1861
                return 1;
1861
                return 1;
1862
            }
1862
            }
1863
        }
1863
        }
1864
    }
1864
    }
1865
 
1865
 
1866
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1866
    panic("Inconsistency detected while adding %" PRIc " pages of used "
1867
        "space at %p.\n", count, page);
1867
        "space at %p.\n", count, page);
1868
}
1868
}
1869
 
1869
 
1870
/** Mark portion of address space area as unused.
1870
/** Mark portion of address space area as unused.
1871
 *
1871
 *
1872
 * The address space area must be already locked.
1872
 * The address space area must be already locked.
1873
 *
1873
 *
1874
 * @param a     Address space area.
1874
 * @param a     Address space area.
1875
 * @param page      First page to be marked.
1875
 * @param page      First page to be marked.
1876
 * @param count     Number of page to be marked.
1876
 * @param count     Number of page to be marked.
1877
 *
1877
 *
1878
 * @return      Zero on failure and non-zero on success.
1878
 * @return      Zero on failure and non-zero on success.
1879
 */
1879
 */
1880
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1880
int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1881
{
1881
{
1882
    btree_node_t *leaf, *node;
1882
    btree_node_t *leaf, *node;
1883
    count_t pages;
1883
    count_t pages;
1884
    unsigned int i;
1884
    unsigned int i;
1885
 
1885
 
1886
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1886
    ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1887
    ASSERT(count);
1887
    ASSERT(count);
1888
 
1888
 
1889
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1889
    pages = (count_t) btree_search(&a->used_space, page, &leaf);
1890
    if (pages) {
1890
    if (pages) {
1891
        /*
1891
        /*
1892
         * We are lucky, page is the beginning of some interval.
1892
         * We are lucky, page is the beginning of some interval.
1893
         */
1893
         */
1894
        if (count > pages) {
1894
        if (count > pages) {
1895
            return 0;
1895
            return 0;
1896
        } else if (count == pages) {
1896
        } else if (count == pages) {
1897
            btree_remove(&a->used_space, page, leaf);
1897
            btree_remove(&a->used_space, page, leaf);
1898
            return 1;
1898
            return 1;
1899
        } else {
1899
        } else {
1900
            /*
1900
            /*
1901
             * Find the respective interval.
1901
             * Find the respective interval.
1902
             * Decrease its size and relocate its start address.
1902
             * Decrease its size and relocate its start address.
1903
             */
1903
             */
1904
            for (i = 0; i < leaf->keys; i++) {
1904
            for (i = 0; i < leaf->keys; i++) {
1905
                if (leaf->key[i] == page) {
1905
                if (leaf->key[i] == page) {
1906
                    leaf->key[i] += count * PAGE_SIZE;
1906
                    leaf->key[i] += count * PAGE_SIZE;
1907
                    leaf->value[i] -= count;
1907
                    leaf->value[i] -= count;
1908
                    return 1;
1908
                    return 1;
1909
                }
1909
                }
1910
            }
1910
            }
1911
            goto error;
1911
            goto error;
1912
        }
1912
        }
1913
    }
1913
    }
1914
 
1914
 
1915
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1915
    node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1916
    if (node && page < leaf->key[0]) {
1916
    if (node && page < leaf->key[0]) {
1917
        uintptr_t left_pg = node->key[node->keys - 1];
1917
        uintptr_t left_pg = node->key[node->keys - 1];
1918
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1918
        count_t left_cnt = (count_t) node->value[node->keys - 1];
1919
 
1919
 
1920
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1920
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1921
            count * PAGE_SIZE)) {
1921
            count * PAGE_SIZE)) {
1922
            if (page + count * PAGE_SIZE ==
1922
            if (page + count * PAGE_SIZE ==
1923
                left_pg + left_cnt * PAGE_SIZE) {
1923
                left_pg + left_cnt * PAGE_SIZE) {
1924
                /*
1924
                /*
1925
                 * The interval is contained in the rightmost
1925
                 * The interval is contained in the rightmost
1926
                 * interval of the left neighbour and can be
1926
                 * interval of the left neighbour and can be
1927
                 * removed by updating the size of the bigger
1927
                 * removed by updating the size of the bigger
1928
                 * interval.
1928
                 * interval.
1929
                 */
1929
                 */
1930
                node->value[node->keys - 1] -= count;
1930
                node->value[node->keys - 1] -= count;
1931
                return 1;
1931
                return 1;
1932
            } else if (page + count * PAGE_SIZE <
1932
            } else if (page + count * PAGE_SIZE <
1933
                left_pg + left_cnt*PAGE_SIZE) {
1933
                left_pg + left_cnt*PAGE_SIZE) {
1934
                count_t new_cnt;
1934
                count_t new_cnt;
1935
               
1935
               
1936
                /*
1936
                /*
1937
                 * The interval is contained in the rightmost
1937
                 * The interval is contained in the rightmost
1938
                 * interval of the left neighbour but its
1938
                 * interval of the left neighbour but its
1939
                 * removal requires both updating the size of
1939
                 * removal requires both updating the size of
1940
                 * the original interval and also inserting a
1940
                 * the original interval and also inserting a
1941
                 * new interval.
1941
                 * new interval.
1942
                 */
1942
                 */
1943
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1943
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1944
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1944
                    (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1945
                node->value[node->keys - 1] -= count + new_cnt;
1945
                node->value[node->keys - 1] -= count + new_cnt;
1946
                btree_insert(&a->used_space, page +
1946
                btree_insert(&a->used_space, page +
1947
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1947
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1948
                return 1;
1948
                return 1;
1949
            }
1949
            }
1950
        }
1950
        }
1951
        return 0;
1951
        return 0;
1952
    } else if (page < leaf->key[0]) {
1952
    } else if (page < leaf->key[0]) {
1953
        return 0;
1953
        return 0;
1954
    }
1954
    }
1955
   
1955
   
1956
    if (page > leaf->key[leaf->keys - 1]) {
1956
    if (page > leaf->key[leaf->keys - 1]) {
1957
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1957
        uintptr_t left_pg = leaf->key[leaf->keys - 1];
1958
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1958
        count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1959
 
1959
 
1960
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1960
        if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1961
            count * PAGE_SIZE)) {
1961
            count * PAGE_SIZE)) {
1962
            if (page + count * PAGE_SIZE ==
1962
            if (page + count * PAGE_SIZE ==
1963
                left_pg + left_cnt * PAGE_SIZE) {
1963
                left_pg + left_cnt * PAGE_SIZE) {
1964
                /*
1964
                /*
1965
                 * The interval is contained in the rightmost
1965
                 * The interval is contained in the rightmost
1966
                 * interval of the leaf and can be removed by
1966
                 * interval of the leaf and can be removed by
1967
                 * updating the size of the bigger interval.
1967
                 * updating the size of the bigger interval.
1968
                 */
1968
                 */
1969
                leaf->value[leaf->keys - 1] -= count;
1969
                leaf->value[leaf->keys - 1] -= count;
1970
                return 1;
1970
                return 1;
1971
            } else if (page + count * PAGE_SIZE < left_pg +
1971
            } else if (page + count * PAGE_SIZE < left_pg +
1972
                left_cnt * PAGE_SIZE) {
1972
                left_cnt * PAGE_SIZE) {
1973
                count_t new_cnt;
1973
                count_t new_cnt;
1974
               
1974
               
1975
                /*
1975
                /*
1976
                 * The interval is contained in the rightmost
1976
                 * The interval is contained in the rightmost
1977
                 * interval of the leaf but its removal
1977
                 * interval of the leaf but its removal
1978
                 * requires both updating the size of the
1978
                 * requires both updating the size of the
1979
                 * original interval and also inserting a new
1979
                 * original interval and also inserting a new
1980
                 * interval.
1980
                 * interval.
1981
                 */
1981
                 */
1982
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1982
                new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1983
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1983
                    (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1984
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1984
                leaf->value[leaf->keys - 1] -= count + new_cnt;
1985
                btree_insert(&a->used_space, page +
1985
                btree_insert(&a->used_space, page +
1986
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1986
                    count * PAGE_SIZE, (void *) new_cnt, leaf);
1987
                return 1;
1987
                return 1;
1988
            }
1988
            }
1989
        }
1989
        }
1990
        return 0;
1990
        return 0;
1991
    }  
1991
    }  
1992
   
1992
   
1993
    /*
1993
    /*
1994
     * The border cases have been already resolved.
1994
     * The border cases have been already resolved.
1995
     * Now the interval can be only between intervals of the leaf.
1995
     * Now the interval can be only between intervals of the leaf.
1996
     */
1996
     */
1997
    for (i = 1; i < leaf->keys - 1; i++) {
1997
    for (i = 1; i < leaf->keys - 1; i++) {
1998
        if (page < leaf->key[i]) {
1998
        if (page < leaf->key[i]) {
1999
            uintptr_t left_pg = leaf->key[i - 1];
1999
            uintptr_t left_pg = leaf->key[i - 1];
2000
            count_t left_cnt = (count_t) leaf->value[i - 1];
2000
            count_t left_cnt = (count_t) leaf->value[i - 1];
2001
 
2001
 
2002
            /*
2002
            /*
2003
             * Now the interval is between intervals corresponding
2003
             * Now the interval is between intervals corresponding
2004
             * to (i - 1) and i.
2004
             * to (i - 1) and i.
2005
             */
2005
             */
2006
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
2006
            if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
2007
                count * PAGE_SIZE)) {
2007
                count * PAGE_SIZE)) {
2008
                if (page + count * PAGE_SIZE ==
2008
                if (page + count * PAGE_SIZE ==
2009
                    left_pg + left_cnt*PAGE_SIZE) {
2009
                    left_pg + left_cnt*PAGE_SIZE) {
2010
                    /*
2010
                    /*
2011
                     * The interval is contained in the
2011
                     * The interval is contained in the
2012
                     * interval (i - 1) of the leaf and can
2012
                     * interval (i - 1) of the leaf and can
2013
                     * be removed by updating the size of
2013
                     * be removed by updating the size of
2014
                     * the bigger interval.
2014
                     * the bigger interval.
2015
                     */
2015
                     */
2016
                    leaf->value[i - 1] -= count;
2016
                    leaf->value[i - 1] -= count;
2017
                    return 1;
2017
                    return 1;
2018
                } else if (page + count * PAGE_SIZE <
2018
                } else if (page + count * PAGE_SIZE <
2019
                    left_pg + left_cnt * PAGE_SIZE) {
2019
                    left_pg + left_cnt * PAGE_SIZE) {
2020
                    count_t new_cnt;
2020
                    count_t new_cnt;
2021
               
2021
               
2022
                    /*
2022
                    /*
2023
                     * The interval is contained in the
2023
                     * The interval is contained in the
2024
                     * interval (i - 1) of the leaf but its
2024
                     * interval (i - 1) of the leaf but its
2025
                     * removal requires both updating the
2025
                     * removal requires both updating the
2026
                     * size of the original interval and
2026
                     * size of the original interval and
2027
                     * also inserting a new interval.
2027
                     * also inserting a new interval.
2028
                     */
2028
                     */
2029
                    new_cnt = ((left_pg +
2029
                    new_cnt = ((left_pg +
2030
                        left_cnt * PAGE_SIZE) -
2030
                        left_cnt * PAGE_SIZE) -
2031
                        (page + count * PAGE_SIZE)) >>
2031
                        (page + count * PAGE_SIZE)) >>
2032
                        PAGE_WIDTH;
2032
                        PAGE_WIDTH;
2033
                    leaf->value[i - 1] -= count + new_cnt;
2033
                    leaf->value[i - 1] -= count + new_cnt;
2034
                    btree_insert(&a->used_space, page +
2034
                    btree_insert(&a->used_space, page +
2035
                        count * PAGE_SIZE, (void *) new_cnt,
2035
                        count * PAGE_SIZE, (void *) new_cnt,
2036
                        leaf);
2036
                        leaf);
2037
                    return 1;
2037
                    return 1;
2038
                }
2038
                }
2039
            }
2039
            }
2040
            return 0;
2040
            return 0;
2041
        }
2041
        }
2042
    }
2042
    }
2043
 
2043
 
2044
error:
2044
error:
2045
    panic("Inconsistency detected while removing %" PRIc " pages of used "
2045
    panic("Inconsistency detected while removing %" PRIc " pages of used "
2046
        "space from %p.\n", count, page);
2046
        "space from %p.\n", count, page);
2047
}
2047
}
2048
 
2048
 
2049
/** Remove reference to address space area share info.
2049
/** Remove reference to address space area share info.
2050
 *
2050
 *
2051
 * If the reference count drops to 0, the sh_info is deallocated.
2051
 * If the reference count drops to 0, the sh_info is deallocated.
2052
 *
2052
 *
2053
 * @param sh_info   Pointer to address space area share info.
2053
 * @param sh_info   Pointer to address space area share info.
2054
 */
2054
 */
2055
void sh_info_remove_reference(share_info_t *sh_info)
2055
void sh_info_remove_reference(share_info_t *sh_info)
2056
{
2056
{
2057
    bool dealloc = false;
2057
    bool dealloc = false;
2058
 
2058
 
2059
    mutex_lock(&sh_info->lock);
2059
    mutex_lock(&sh_info->lock);
2060
    ASSERT(sh_info->refcount);
2060
    ASSERT(sh_info->refcount);
2061
    if (--sh_info->refcount == 0) {
2061
    if (--sh_info->refcount == 0) {
2062
        dealloc = true;
2062
        dealloc = true;
2063
        link_t *cur;
2063
        link_t *cur;
2064
       
2064
       
2065
        /*
2065
        /*
2066
         * Now walk carefully the pagemap B+tree and free/remove
2066
         * Now walk carefully the pagemap B+tree and free/remove
2067
         * reference from all frames found there.
2067
         * reference from all frames found there.
2068
         */
2068
         */
2069
        for (cur = sh_info->pagemap.leaf_head.next;
2069
        for (cur = sh_info->pagemap.leaf_head.next;
2070
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
2070
            cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
2071
            btree_node_t *node;
2071
            btree_node_t *node;
2072
            unsigned int i;
2072
            unsigned int i;
2073
           
2073
           
2074
            node = list_get_instance(cur, btree_node_t, leaf_link);
2074
            node = list_get_instance(cur, btree_node_t, leaf_link);
2075
            for (i = 0; i < node->keys; i++)
2075
            for (i = 0; i < node->keys; i++)
2076
                frame_free((uintptr_t) node->value[i]);
2076
                frame_free((uintptr_t) node->value[i]);
2077
        }
2077
        }
2078
       
2078
       
2079
    }
2079
    }
2080
    mutex_unlock(&sh_info->lock);
2080
    mutex_unlock(&sh_info->lock);
2081
   
2081
   
2082
    if (dealloc) {
2082
    if (dealloc) {
2083
        btree_destroy(&sh_info->pagemap);
2083
        btree_destroy(&sh_info->pagemap);
2084
        free(sh_info);
2084
        free(sh_info);
2085
    }
2085
    }
2086
}
2086
}
2087
 
2087
 
2088
/*
2088
/*
2089
 * Address space related syscalls.
2089
 * Address space related syscalls.
2090
 */
2090
 */
2091
 
2091
 
2092
/** Wrapper for as_area_create(). */
2092
/** Wrapper for as_area_create(). */
2093
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
2093
unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
2094
{
2094
{
2095
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
2095
    if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
2096
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
2096
        AS_AREA_ATTR_NONE, &anon_backend, NULL))
2097
        return (unative_t) address;
2097
        return (unative_t) address;
2098
    else
2098
    else
2099
        return (unative_t) -1;
2099
        return (unative_t) -1;
2100
}
2100
}
2101
 
2101
 
2102
/** Wrapper for as_area_resize(). */
2102
/** Wrapper for as_area_resize(). */
2103
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
2103
unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
2104
{
2104
{
2105
    return (unative_t) as_area_resize(AS, address, size, 0);
2105
    return (unative_t) as_area_resize(AS, address, size, 0);
2106
}
2106
}
2107
 
2107
 
2108
/** Wrapper for as_area_change_flags(). */
2108
/** Wrapper for as_area_change_flags(). */
2109
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
2109
unative_t sys_as_area_change_flags(uintptr_t address, int flags)
2110
{
2110
{
2111
    return (unative_t) as_area_change_flags(AS, flags, address);
2111
    return (unative_t) as_area_change_flags(AS, flags, address);
2112
}
2112
}
2113
 
2113
 
2114
/** Wrapper for as_area_destroy(). */
2114
/** Wrapper for as_area_destroy(). */
2115
unative_t sys_as_area_destroy(uintptr_t address)
2115
unative_t sys_as_area_destroy(uintptr_t address)
2116
{
2116
{
2117
    return (unative_t) as_area_destroy(AS, address);
2117
    return (unative_t) as_area_destroy(AS, address);
2118
}
2118
}
2119
 
2119
 
2120
/** Print out information about address space.
2120
/** Print out information about address space.
2121
 *
2121
 *
2122
 * @param as        Address space.
2122
 * @param as        Address space.
2123
 */
2123
 */
2124
void as_print(as_t *as)
2124
void as_print(as_t *as)
2125
{
2125
{
2126
    ipl_t ipl;
2126
    ipl_t ipl;
2127
   
2127
   
2128
    ipl = interrupts_disable();
2128
    ipl = interrupts_disable();
2129
    mutex_lock(&as->lock);
2129
    mutex_lock(&as->lock);
2130
   
2130
   
2131
    /* print out info about address space areas */
2131
    /* print out info about address space areas */
2132
    link_t *cur;
2132
    link_t *cur;
2133
    for (cur = as->as_area_btree.leaf_head.next;
2133
    for (cur = as->as_area_btree.leaf_head.next;
2134
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2134
        cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2135
        btree_node_t *node;
2135
        btree_node_t *node;
2136
       
2136
       
2137
        node = list_get_instance(cur, btree_node_t, leaf_link);
2137
        node = list_get_instance(cur, btree_node_t, leaf_link);
2138
       
2138
       
2139
        unsigned int i;
2139
        unsigned int i;
2140
        for (i = 0; i < node->keys; i++) {
2140
        for (i = 0; i < node->keys; i++) {
2141
            as_area_t *area = node->value[i];
2141
            as_area_t *area = node->value[i];
2142
       
2142
       
2143
            mutex_lock(&area->lock);
2143
            mutex_lock(&area->lock);
2144
            printf("as_area: %p, base=%p, pages=%" PRIc
2144
            printf("as_area: %p, base=%p, pages=%" PRIc
2145
                " (%p - %p)\n", area, area->base, area->pages,
2145
                " (%p - %p)\n", area, area->base, area->pages,
2146
                area->base, area->base + FRAMES2SIZE(area->pages));
2146
                area->base, area->base + FRAMES2SIZE(area->pages));
2147
            mutex_unlock(&area->lock);
2147
            mutex_unlock(&area->lock);
2148
        }
2148
        }
2149
    }
2149
    }
2150
   
2150
   
2151
    mutex_unlock(&as->lock);
2151
    mutex_unlock(&as->lock);
2152
    interrupts_restore(ipl);
2152
    interrupts_restore(ipl);
2153
}
2153
}
2154
 
2154
 
2155
/** @}
2155
/** @}
2156
 */
2156
 */
2157
 
2157